
On the Enumeration of Double-Base Chains with
Applications to Elliptic Curve Cryptography

Christophe Doche

Department of Computing
Macquarie University, Australia
christophe.doche@mq.edu.au.

Abstract. The Double-Base Number System (DBNS) uses two bases, 2
and 3, in order to represent any integer n. A Double-Base Chain (DBC)
is a special case of a DBNS expansion. DBCs have been introduced
to speed up the scalar multiplication [n]P on certain families of ellip-
tic curves used in cryptography. In this context, our contributions are
twofold. First, given integers n, a, and b, we outline a recursive algo-
rithm to compute the number of different DBCs with a leading factor
dividing 2a3b and representing n. A simple modification of the algorithm
allows to determine the number of DBCs with a specified length as well
as the actual expansions. In turn, this gives rise to a method to compute
an optimal DBC representing n, i.e. an expansion with minimal length.
Our implementation is able to return an optimal expansion for most
integers up to 260 bits in a few minutes. Second, we introduce an origi-
nal and potentially more efficient approach to compute a random scalar
multiplication [n]P , based on the concept of controlled DBC. Instead of
generating a random integer n and then trying to find an optimal, or
at least a short DBC to represent it, we propose to directly generate n
as a random DBC with a chosen leading factor 2a3b and length `. To
inform the selection of those parameters, in particular `, which drives
the trade-off between the efficiency and the security of the underlying
cryptosystem, we enumerate the total number of DBCs having a given
leading factor 2a3b and a certain length `. The comparison between this
total number of DBCs and the total number of integers that we wish
to represent a priori provides some guidance regarding the selection of
suitable parameters. Experiments indicate that our new Near Optimal
Controlled DBC approach provides a speedup of at least 10% with re-
spect to the NAF for sizes from 192 to 512 bits. Computations involve
elliptic curves defined over Fp, using the Inverted Edwards coordinate
system and state of the art scalar multiplication techniques.

Keywords. Double-base number system, elliptic curve cryptography.

c© IACR . This article is the final version submitted by the author to the IACR
and to Springer-Verlag on 15 September . The version published by Springer-
Verlag is available at http://www.springer.com/

http://www.springer.com/

1 Introduction

1.1 Elliptic Curve Cryptography

An elliptic curve E defined over a field K is a nonsingular projective plane cubic
together with a point with coordinates in K. For cryptographic applications, the
field K is always finite. In practice, it is a large prime field Fp or a binary field
F2d . We refer to [23] for a mathematical presentation of elliptic curves and to
[1, 16] for a discussion focused on cryptographic applications.
There are different ways to represent the curve E, in particular with a Weierstraß
equation or in Edwards form [13, 3]. Irrespective of the representation, the set of
points lying on the curve E can be endowed with an abelian group structure. This
property has been exploited for about twenty five years to implement public-key
cryptographic primitives.
The core operation in elliptic curve cryptography is the scalar multiplication,
which consists in computing [n]P given a point P on the curve E and some
integer n. Several methods exist relying on different representations of n. One
of the simplest approach relies on the non-adjacent form (NAF) [20, 19], which
allows to compute [n]P with t doublings and t/3 additions on average, where t
is the binary length of n. The approach discussed next is more sophisticated and
has recently received increasing attention.

1.2 Double-Base Number System

The Double-Base Number System (DBNS) was introduced by Dimitrov and
Cooklev [5] and later used in the context of elliptic curve cryptography [6].
With this system, an integer n is represented as

n =
∑̀
i=1

ci2
ai3bi , with ci ∈ {−1, 1}. (1)

This representation is highly redundant and an expansion can easily be found
with a greedy-type approach. The principle is to find at each step the best
approximation of a given integer in terms of a {2, 3}-integer , i.e. an integer of
the form 2a3b. Then compute the difference and reapply the process until we
reach zero.

Example 1 Applying this approach to n = 542788, we find that

542788 = 2837 − 2337 + 2433 − 2.32 − 2.

In [7], Dimitrov et al. show that for any integer n, this greedy approach returns
a DBNS expansion of n having at most O

(
logn

log logn

)
terms. However, in general

this system is not well suited for scalar multiplications. For instance, in order to
compute [542788]P from the DBNS expansion given in Example 1, it seems that
we need more than 8 doublings and 7 triplings unless we can use extra storage
to keep certain intermediate results. But, if we are lucky enough that the terms
in the expansion can be ordered in such a way that their powers of 2 and 3 are
both decreasing, then it becomes trivial to obtain [n]P .

1.3 Double-Base Chain

The concept of Double-Base Chain (DBC), introduced in [6], corresponds to an
expansion of the form

∑̀
i=1

ci2
ai3bi , with ci ∈ {−1, 1} (2)

such that a1 > a2 > · · · > a` and b1 > b2 > · · · > b`. (3)

Equivalently, (3) means that 2a`3b` | · · · | 2a23b2 | 2a13b1 . It guarantees that
exactly a` doublings, b` triplings, `− 1 additions, and at most two variables are
sufficient to compute [n]P . It is straightforward to adapt the greedy algorithm
to return a DBC.

Example 2 A modified greedy algorithm returns the following DBC

542788 = 21433 + 21233 − 21032 − 210 + 26 + 22.

The DBC expansion returned by the greedy approach is always at least as long
than its DBNS counterpart. Furthermore, it has been shown in [18] that for any
size t, there exists a t-bit integer n such that any DBC representing n needs
at least Ω(t) terms. But the DBC has the advantage to offer a much more
direct and easy way to compute a scalar multiplication. The most natural ap-
proach is probably to proceed from right-to-left. With this method, each term
2ai3bi is computed individually and all the terms are added together. This can
be implemented using two variables. The left-to-right method, which can be
seen as a Horner-like scheme, needs only one variable. Simply initialize it with
[c12a1−a23b1−b2]P , then add c2P and apply [2a2−a33b2−b3] to the result. Repeat-
ing this process eventually gives [n]P , as illustrated with the chain of Example 2

[542788]P = [22]
(
[24]
(
[24]
(
[32]
(
[223]([22]P + P)− P

)
− P

)
+ P

)
+ P

)
.

Note that there are other methods to compute a DBC, see for instance a tree-
based algorithm developed in [9]. There exist also several variants and general-
izations of the DBC. For instance, the extended DBC [10] relies on nontrivial
coefficients and precomputed points in order to obtain shorter chains. There is
also a notion of joint DBC [11, 12] for double scalar multiplications of the form
[n]P + [m]Q. Next we are interested to find the best possible chains for a given
integer. To this end, we introduce the following.

Definition 1 We call the largest {2,3}-integer of a DBC chain in absolute value,
i.e. 2a13b1 in (2), the leading factor of the chain. It encapsulates the total number
of doublings and of triplings necessary to compute [n]P .

Among all the different DBCs with a leading factor dividing 2a3b and represent-
ing n, the DBCs with minimal length play a special role as they minimize the
number of additions required to compute [n]P . This observation gives rise to the
following definition.

Definition 2 Given integers a, b, and n, a DBC with a leading factor dividing
2a3b and representing n is said to be optimal for n, if its length ` is minimal
across all the DBCs with leading factor dividing 2a3b and representing n.

Remark 1 For the purpose of this study, we slightly modify the definitions of
a Double-Base expansion and of a DBC so that we can precisely and meaning-
fully enumerate them. Concretely, we require that each term 2ai3bi appears at
most once in any expansion or chain. In practice, expansions always fulfill this
property. Also, this requirement is not a real constraint since 2ai3bi + 2ai3bi =
2ai+13bi . From now on, when we use the terms double-base expansion or DBC,
this restriction is implied.

Definition 3 An unsigned Double-Base Chain is a DBC of the form (2) such
that all the coefficients ci’s are equal to 1 and satisfying (3).

Some properties of the set containing all the unsigned DBCs of a given integer n,
in particular its structure and cardinality, are studied in [17]. Next, we investigate
the number of signed DBCs representing a given integer.

2 Enumerating DBCs Representing a Given Integer

2.1 Partition Problem

Given an integer n, the number p(n) of partitions of n of the form

n = dk + · · ·+ d2 + d1 with d1 | d2 | · · · | dk

is studied by Erdős and Loxton in [14]. The authors also introduce p1(n) as the
number of partitions of n of the form n = dk + · · ·+ d2 + 1 with d1 | d2 | · · · | dk.
They observe that p(n) = p1(n) + p1(n+ 1) and that

p1(n) =
∑

d|n−1,d>1

p1

(
n− 1

d

)
·

2.2 Enumerating DBCs

Mimicking their approach, we introduce q(a, b, n), the number of signed parti-
tions of n of the form

n = dk ± dk−1 ± · · · ± d2 ± d1 with d1 | d2 | · · · | dk | 2a3b.

Clearly, q(a, b, n) corresponds to the number of DBCs with a leading factor
dividing 2a3b and representing n. Note that in the signed version, it is necessary
to take into account a and b, the largest powers of 2 and 3. Indeed, we observe
that 1 = 2k −

∑k−1
i=0 2i for any k > 0. This shows that the number of signed

representations of any integer is infinite. Obviously, the problem disappears when

we bound the leading factor of an expansion by 2a3b. Similarly, we introduce
q1(a, b, n) as the number of partitions of n of the form

n = dk ± dk−1 ± · · · ± d2 + 1 with d2 | · · · | dk | 2a3b

and q1̄(a, b, n) as the number of partitions of n of the form

n = dk ± dk−1 ± · · · ± d2 − 1 with d2 | · · · | dk | 2a3b.

In the following, we denote the valuation of u at 2 and 3 by val2(u) and val3(u),
respectively.

Proposition 1 We have

1. q(a, b, n) = q1(a, b, n) + q1̄(a, b, n) + q1̄(a, b, n− 1).
2.

q1(a, b, n) =
∑

d|gcd(n−1,2a3b)
d>1

q1

(
a− val2(d), b− val3(d),

n− 1

d

)

+
∑

d|gcd(n−1,2a3b)
d>1

q1̄

(
a− val2(d), b− val3(d),

n− 1

d

)

3.

q1̄(a, b, n) =
∑

d|gcd(n+1,2a3b)
d>1

q1

(
a− val2(d), b− val3(d),

n+ 1

d

)

+
∑

d|gcd(n+1,2a3b)
d>1

q1̄

(
a− val2(d), b− val3(d),

n+ 1

d

)
.

4. q1(a, b, 1) = 1, if a > 0 and b > 0, and q1(a, b, 1) = 0 otherwise.
5. q1̄(a, b, 1) = a, if a > 0 and b > 0, and q1̄(a, b, 1) = 0 otherwise.

Proof.

1. We observe that any DBC representing n must end by 1, −1, or a term that
is a nontrivial divisor of the leading factor. These three sets form a partition
of all the DBCs representing n. By definition, the cardinality of the first two
sets is q1(a, b, n) and q1̄(a, b, n). There exists a bijection between this last set
and the set of DBCs representing n− 1 ending with −1. Note that we could
also compute q(a, b, n) as q1(a, b, n) + q1̄(a, b, n) + q1(a, b, n+ 1).

2. Let us consider a DBC with a leading factor dividing 2a3b, ending with 1, and
representing n. Then this DBC can be written

∑
i ci2

ai3bi±d+1 where d > 1
and d | 2ai3bi for all i. If we denote α = val2(d) and β = val3(d), we see that

the chain
∑
i ci2

ai−α3bi−β ± 1 represents (n− 1)/d. We note that its leading
factor must divide 2a−α3b−β and it ends by 1 or −1. Also, by construction,
the factor d is a divisor of n− 1 and of 2a3b. Reciprocally, take d = 2α3β a
common divisor of n− 1 and 2a3b. Then for any DBC with a leading factor
dividing 2a−α3b−β and representing (n− 1)/d, it corresponds a unique DBC
with a leading factor dividing 2a3b, finishing with 1 and representing n.

3. The proof is similar to 2., except that we need to consider DBCs of the form∑
i ci2

ai3bi ± d− 1.
4. We assume that each term 2ai3bi appears at most once, cf Remark 1. With

this constraint in mind, it is easy to check that there is a unique DBC ending
with 1 and representing 1, namely the chain 1.

5. Regarding the DBCs representing 1 and ending with −1, we note that for
any k > 0, we have 2k −

∑k−1
i=0 2i = 1. In particular, the previous formula

for k = 1 up to a gives rise to a total number of a different DBCs with a
leading factor dividing 2a3b, ending with −1, and representing 1. It is easy
to see that there is no other solution. This shows that q1̄(a, b, 1) = a, when
a > 0 and b > 0. ut

Using Proposition 1, it is possible to compute q(a, b, n) recursively, for any tuple
(a, b, n).

Example 3 We have q(14, 5, 542788) = 2092690. In other words, there are
2092690 different DBCs with a leading factor dividing 214310 and representing
542788.

Remark 2 The approach is highly recursive but precomputing small values can
greatly speed up computations. For instance, precomputing q1(a, b, n) and q1̄(a, b, n)
for all (a, b, n) ∈ [0, 30] × [0, 20] × [1, 1000] allows to deal with numbers of size
up to 30 bits in a few seconds.

2.3 Enumerating DBCs of Bounded Length

A simple modification of the algorithm outlined above allows to determine the
total number of different DBCs of length less or equal to ` with a leading factor
dividing 2a3b and representing an integer n. Namely, we introduce a new pa-
rameter ` to keep track of the length of the DBC. It is straightforward to check
that

q(a, b, `, n) = q1(a, b, `, n) + q1̄(a, b, `, n) + q1̄(a, b, `+ 1, n− 1).

Additionally, q1(a, b, `, n) and q1̄(a, b, `, n) satisfy relations similar to the ones
expressed in Proposition 1. For instance,

q1(a, b, `, n) =
∑

d|gcd(n−1,2a3b)
d>1

q1

(
a− val2(d), b− val3(d), `− 1,

n− 1

d

)

+
∑

d|gcd(n−1,2a3b)
d>1

q1̄

(
a− val2(d), b− val3(d), `− 1,

n− 1

d

)
.

Finally, it is easy to see that q1(a, b, `, 1) = min(1,max(0, `)) and q1̄(a, b, `, 1) =
min(a,max(0, `− 1)). This gives rise to Algorithms 1 and 2.

Algorithm 1. q1(a, b, `, n)

Input: An integer n and parameters a, b, and `.

Output: The number of DBCs representing n, ending with 1, having a
leading factor dividing 2a3b, and a length less than or equal to `.

1. if n 6 0 or a < 0 or b < 0 or ` 6 0 then return 0

2. else if n = 1 then

3. if a > 0 and b > 0 then return min(1,max(0, `))

4. else return 0

5. else if n > 1 then

6. D ← gcd(n− 1, 2a3b)

7. s← 0

8. for each divisor d > 1 of D do

9. s← s + q1

(
a− val2(d), b− val3(d), `− 1, n−1

d

)
10. s← s + q1̄

(
a− val2(d), b− val3(d), `− 1, n−1

d

)
11. return s

Algorithm 2. q1̄(a, b, `, n)

Input: An integer n and parameters a, b, and `.

Output: The number of DBCs representing n, ending with −1, having
a leading factor dividing 2a3b, and a length less than or equal to `.

1. if n 6 0 or a < 0 or b < 0 or ` 6 0 then return 0

2. else if n = 1 then

3. if a > 0 and b > 0 then return min
(
a,max(0, `− 1)

)
4. else return 0

5. else if n > 1 then

6. D ← gcd(n + 1, 2a3b)

7. s← 0

8. for each divisor d > 1 of D do

9. s← s + q1

(
a− val2(d, 2), b− val3(d, 3), `− 1, n+1

d

)
10. s← s + q1̄

(
a− val2(d, 2), b− val3(d, 3), `− 1, n+1

d

)
11. return s

Example 4 Using Algorithms 1 and 2, we see that among the 2092690 different
DBCs with a leading factor dividing 214310 and representing 542788, there are
three optimal chains of length 5, 81 chains of length 6, 843 of length 7, 5005 of
length 8, 19715 of length 9, 56148 of length 10, and so on. The total number is
bounded as for instance, there cannot be a DBC of length greater or equal to 26
since the leading factor is at most 214310.

2.4 Optimal DBCs

Using the algorithms described in the previous part, it is simple to determine
the optimal length of a DBC representing an integer n with a leading factor
dividing 2a3b. Simply compute q(a, b, `, n) for increasing values of ` > 1 until
a positive cardinality is returned. Also, along with the total number of DBCs,
it is possible to return the list of all the actual DBCs representing an integer,
by introducing a few simple modifications in the Algorithms 1 and 2. We note
that we can further modify Algorithms 1 and 2 so that we compute only the
DBCs having a specified length. Also, in case we are only interested in finding
an optimal chain for a given integer n, we can implement a simple early abort
technique to terminate the search once a DBC of a certain given size has been
found. This is possible because these algorithms perform a depth-first search.

Example 5 Among the three optimal DBCs of length 5 with leading factor di-
viding 214310 and representing 542788, one is

2837 − 2635 − 2633 + 263 + 22.

The running time of this approach is largely driven by the length of the optimal
chain that is returned. Typically, it takes a few seconds for chains of length 12 up
to a few hours for length 15. In general, it is practical to determine an optimal
DBC for integers of size around 60 to 70 bits. See Section 5.1 and Table 1 for
details including actual experiments and timings of our C++ implementation that
is available from our homepage, see [8].
So it is clear that computing an optimal DBC for a scalar of size around 200 bits,
i.e. the kind of size typically used in elliptic curve cryptography, is completely out
of reach with this approach. Instead, we consider another approach to efficiently
perform a random scalar multiplication [n]P .

3 Enumerating DBCs with Given Parameters

Instead of computing the number of DBCs representing a given integer n, this
time we want to count the number of different DBCs with a given leading factor
2a3b and a given length `.

Remark 3 The same problem is straightforward for DBNS expansions. Indeed,
we see from (1) that there are 2`

(
(a+1)(b+1)

`

)
different expansions of length ` and

such that max ai = a and max bi = b. Note that all the expansions are different
in this count, but the integers they represent are not necessarily all different.

It is more involved to determine the number of unsigned DBCs (see Definition 3)
and of DBCs with a given leading factor 2a3b and a given length `.

3.1 First Properties

Definition 4 Let S`(a, b) denote the number of unsigned DBCs of length ` with
a leading factor equal to 2a3b. Let T`(a, b) denote the number of unsigned DBCs
of length ` with a leading factor dividing 2a3b.

Proposition 2 Let ` > 1. We have:

1. S`+1(a, b) = T`(a, b)− S`(a, b).
2.

T`+1(a, b) =

a∑
i=0

b∑
j=0

[
(a− i+ 1)(b− j + 1)− 1

]
S`(i, j).

3. S`(a, b) and T`(a, b) are both symmetrical polynomials.
4. The leading terms of S`(a, b) and of T`(a, b) are respectively (ab)`−1

(`−1)!2 and (ab)`

`!2
.

Proof. The first three relations are a simple consequence of the definitions of
S`(a, b) and T`(a, b). To prove 4. we first note that S`(a, b) is of degree 2` − 2
and T`(a, b) is of degree 2`. This can be shown by induction based on S1(a, b) = 1,
T1(a, b) = (a+ 1)(b+ 1), and using 1. and 2. We can now prove 4. by induction.
The property is true for S1(a, b) and T1(a, b). Also, by 1. and given that S`+1(a, b)
and T`(a, b) are of the same degree, it is clear that their leading terms are equal.
So by the induction hypothesis, it is clear that the property holds for S`(a, b),
for all ` > 1. Now assuming it holds for T`−1(a, b), let us show that it holds for
T`(a, b). Using the induction hypothesis, we observe that the leading term of

T`(a, b) =

a∑
i=0

b∑
j=0

[
(a− i+ 1)(b− j + 1)− 1

]
S`−1(i, j)

is equal to the leading term of

1

(`− 2)!2

a∑
i=0

b∑
j=0

(a− i)(b− j)(ij)`−2·

Next, we note that the leading term of

a∑
i=0

ik is 1
(k+1)a

k+1. We deduce that the
leading term of

a∑
i=0

b∑
j=0

(a− i)(b− j)(ij)`−2

is

(ab)`
(

1

`2
+

1

(`− 1)2
− 2

`(`− 1)

)
=

(ab)`

((`− 1)`)2
·

It follows that the leading term of T`(a, b) is (ab)`

`!2
, as expected. ut

Remark 4 The number of signed DBCs of length ` with a leading factor equal
to 2a3b and dividing 2a3b can be easily deduced from S`(a, b) and T`(a, b), re-
spectively. Namely, it is only necessary to multiply by a factor 2`. Note that all
those DBCs represent positive and negative integers. But it is easy to see that the
sign of the integer represented by a chain corresponds to the sign of the largest
term of the chain. See Lemma 1 in Section 4. So if we are only interested in
DBCs representing positive values, the multiplication factor between unsigned
and signed DBCs should be 2`−1.

3.2 Explicit Computations

Recall that S1(a, b) = 1 and T1(a, b) = (a+ 1)(b+ 1). Proposition 2 can then be
used to explicitly determine the polynomials S` and T` of rank ` > 2 recursively.
For instance, we have S2(a, b) = ab + a + b from 1. and T2(a, b) = 1

4 (ab + 2a +
2b)T1(a, b) using 2. We can then compute S3(a, b), then T3(a, b), and so on.
In practice, however, the complexity of those polynomials rapidly grows with `
and it becomes quickly impossible to compute them formally. Fortunately, we
are only interested by the value of these polynomials at a specific pair (a0, b0).
This can be done very efficiently using some precomputations and Lagrange
interpolation. Since S` is a polynomial of degree ` − 1 in a and ` − 1 in b, it is
enough to know the value of S` at `2 pairs (ai, bj), for (i, j) ∈ [1, `]2 in order
to compute S`(a0, b0). First, for each i ∈ [1, `], we interpolate with respect to
the second coordinate based on the values S`(ai, bj), for j ∈ [1, `]. We obtain
` polynomials in variable b. Specializing those polynomials at b0, we obtain
` values and a second Lagrange interpolation, followed by a specialization at
a0 gives S`(a0, b0). Note that in order to find the Lagrange polynomial P (x)
interpolating the points (xk, f(xk)), it is faster, in our case, to use the following
formulas

P (x) = w(x)
∑̀
k=1

f(xk)

w′(xk)(x− xk)
with w(x) =

∏̀
j=1

(x− xj)

rather than a more classical approach such as Aitken method. For each length
`, the `2 precomputed values can be obtained with Proposition 2. There is a
similar approach for evaluating T` at (a0, b0).
Our PARI/GP implementation allows to deal efficiently with length ` up to 150.
For most pairs (a, b), it takes less than 50ms to evaluate S`(a, b) or T`(a, b). In any
case, at most a few seconds are necessary. The corresponding precomputations
require about 45 MB. Only 10 MB are necessary to handle lengths ` up to 100.
See [8] to access the actual implementation.

3.3 Generalization to Multi-Base Chains

It is easy to generalize the previous results to Multi-Base Chains. Let p1, . . . , pk
be k pairwise coprime bases. A Multi-Base Chain (MBC) allows to represent a

positive integer n as

n =
∑̀
i=1

cip
a1,i
1 . . . p

ak,i

k , with c1 = 1 and ci = ±1, for i > 1

and aj,1 > aj,2 > · · · > aj,`, for all j ∈ [1, k]. An unsigned Multi-Base Chain is
similar to a Multi-Base Chain except that all the ci’s are equal to 1. In any case,
we assume that the term p

a1,i
1 . . . p

ak,i

k appears at most once in any expansion.

Definition 5 Let a denote the vector (a1, . . . , ak) and let S`(a) be the number
of unsigned Multi-Base Chains of length ` satisfying aj,1 = aj, for all j. Also,
let T`(a) be the number of unsigned Multi-Base Chains of length ` satisfying
aj,1 6 aj, for all j.

The following Proposition is a simple generalization of Proposition 2. The proof
is also similar.

Proposition 3 Let ` > 1. We have

1. S`+1(a) = T`(a)− S`(a).
2.

T`+1(a) =

a1∑
i1=0

· · ·
ak∑
ik=0

[
k∏
j=1

(aj − ij + 1)− 1

]
S`(a).

3. S`(a) and T`(a) are both symmetrical polynomials.
4. The leading terms of S`(a) and of T`(a) are respectively (a1...ak)`−1

(`−1)!k
and

(a1...ak)`

`!k
.

Remark 5 Again the number of MBCs of length ` with a leading factor equal
or dividing pa1,11 . . . pak,1k can be easily deduced from S`(a) or T`(a). Namely, it
is only necessary to multiply by a factor 2`−1.

Example 6 For k = 3, we have

S1(a) = (a1 + 1)(a2 + 1)(a3 + 1),

T1(a) = 1,

S2(a) =
1

8
(a1a2a3 + 2a1a2 + 2a1a3 + 2a2a3 + 4a1 + 4a2 + 4a3)S1(a),

T2(a) = a1a2a3 + a1a2 + a1a3 + a2a3 + a1 + a2 + a3.

4 Controlled DBC for Scalar Multiplication

For cryptographic applications, we propose a new way to perform a random
scalar multiplication based on the concept of controlled DBC . The idea is to
directly generate a random DBC expansion instead of choosing a random integer
n and then finding a corresponding DBC to represent it.

Definition 6 Given a leading factor 2a3b and a given length `, the controlled
DBC approach refers to the generation of a DBC expansion

∑̀
i=1

ci2
ai3bi , with ci ∈ {−1, 1}

such that c1 = 1, a1 = a, b1 = b, and whose `− 1 remaining terms ci2
ai3bi are

selected to satisfy a1 > a2 > · · · > a` and b1 > b2 > · · · > b`.

This has two main advantages. Although very efficient, the greedy approach
still requires some time to return a DBC. No conversion is necessary with this
approach. Furthermore, there is no guarantee that the DBC expansion returned
by the greedy approach is optimal. In fact, we have evidence that the greedy
method returns a DBC that is far from optimal in general, especially for large
integers. See Section 5.2 and Figure 2. By choosing the DBC expansion first, in
particular its leading factor as well as its length, we can get closer to the average
optimal length. As a result, we can perform a scalar multiplication faster than
with the DBC obtained with the greedy approach by saving many additions. This
approach raises a few questions, in particular, regarding a suitable selection of
the length. For a given size and a given leading factor, it is possible to estimate
the length which corresponds heuristically to the average optimal length of a
DBC representing integers of that size with that leading factor. See Definition 7
for the notion of Near Optimal Length.

First, let us address the range of the integers that can be represented a priori
with a DBC having a leading term equal to 2a3b.

4.1 Integer Range

The following result provides an answer.

Lemma 1 Any DBC with leading factor 2a3b belongs to the interval[
3b + 1

2
, 2a+13b − 3b + 1

2

]
.

It follows that the sign of the integer represented by a DBC with leading factor
equal to 2a3b is driven by the sign of the coefficient of the leading factor in the
DBC.

Proof. It is not difficult to see that the largest integer represented with a DBC
having a leading factor equal to 2a3b can be constructed with a greedy-type
approach. In other words, it is enough to pick the largest available term at each
step to end up with the largest possible integer. Starting from 2a3b, the next
term in the DBC is of the form 2i3j with i 6 a, j 6 b, and (i, j) 6= (a, b).
Assuming that a > 1, clearly, 2a−13b is the largest possible integer we can pick.

If a = 0, then there is no choice but to pick 3b−1. Repeating this argument, we
deduce that the largest integer that can be represented is

2a3b +

a−1∑
j=0

2j3b +

b−1∑
j=0

3j = 2a+13b +
3b − 1

2
.

Similarly, the smallest integer corresponds to 3b+1
2

. Finally, it is obvious that if
a DBC starts with −2a3b, then the integers that can be represented with this
DBC belong to the interval[

−2a+13b +
3b + 1

2
, − 3b + 1

2

]
.

So integers represented by a DBC starting with 2a3b are always positive and
those represented by a DBC starting with −2a3b are always negative. ut

The work in Section 3 gives the exact cardinality of the set containing all the
DBCs with selected parameters. It is then tempting to select a length ` giving
rise to as many DBCs as there are integers in the interval given in Lemma 1.
However, this is ignoring that in general an integer has many different DBCs
representations.

4.2 Redundancy and Near Optimal Length

In the controlled DBC approach, we need to be careful in selecting the length
`, as generating DBCs that are not long enough could compromise the security
of the cryptosystem by severely restricting the number of scalars that can be
represented with those chains. What length is then long enough? See Definition 7
for the notion Near Optimal Length addressing this question.
For various leading factors up to 230310 and length between 1 and 12, we have
computed the number of different optimal representations of integers having an
optimal DBC with this particular leading factor and length. For every selection of
parameters, we consider between 10, 000 and 100 such integers. We then compute
the average number of optimal DBCs for each length between 1 and 12, taking
into account all the possible leading factors. This search was carried out with
the algorithms developed in Section 2. The data fit an exponential regression of
the form y = exp(0.4717x− 1.1683) with R2 = 0.9975, see Figure 1.
To double-check the relevance of this estimate, we investigate DBCs having a
leading factor of the form 23`. We know that in this case the optimal length is
`, which corresponds to the NAF. We then compute the number of DBCs with
a leading factor equal to 3` and a length equal to ` using what we have done
in Section 3. Dividing this quantity by 23`+1, which corresponds approximately
to the number of integers that can be represented a priori, we should obtain an
estimate of the average number of optimal DBCs representing an integer, i.e.
something close to exp(0.4717`− 1.1683). For all ` ∈ [10, 100], the ratio between
these two quantities lies in the interval [0.0974, 3.384]. This tends to confirm the

 0

 20

 40

 60

 80

 100

 0 2 4 6 8 10 12

Fig. 1. Curve exp(0.4717x− 1.1683) fitting the experimental data

relevance of our estimate, at least for relatively small values of b (0 in this case).

Definition 7 For a leading factor equal to 2a3b ' 2t, the Near Optimal Length
corresponds to the integer value ` minimizing∣∣∣2`−1S`(a, b)− 2tdexp(0.4717`− 1.1683)e

∣∣∣.
Indeed, we expect that the average number of different DBC expansions of length
` representing the same integer is close to dexp(0.4717` − 1.1683)e. Heuristi-
cally, we also expect that this redundancy factor multiplied by 2t is equal to
2`−1S`(a, b) for the average optimal length `.

4.3 Applications to Elliptic Curve Cryptography

For a chosen coordinate system representing a point on an elliptic curve and the
corresponding complexities of a doubling, a tripling, and a mixed addition, it is
possible to determine the optimal parameters, i.e. leading factor 2a3b and length
`, which minimize the overall cost of a scalar multiplication with that particular
coordinate system, without compromising the security of the system.

Definition 8 For a given coordinate system and a bit size t, the Near Optimal
Controlled (NOC) DBC method refers to the generation of a Controlled DBC
with Near Optimal Length, which minimizes the costs of a scalar multiplication.

In practice, we first select the bit size t, then consider all the possible pairs (a, b)
such that 2a3b ' 2t. For each pair (a, b), we work out the corresponding Near
Optimal Length `. Then we can compute the overall complexity to perform a
scalar multiplication based on a controlled DBC with leading factor 2a3b and
length `. It is then a matter of selecting the pair (a, b) corresponding to the
lowest complexity overall. See Figure 2 and Tables 2 and 3.

5 Experiments

We have implemented the work described in Section 3 in C++ using NTL 6.0.0 [21]
built on top of GMP 5.1.2 [15]. The approach described in Section 4 is imple-
mented in PARI/GP 2.7.1 [22]. See [8] to access the actual C++ and PARI/GP

implementations. All the programs are executed on a quad core i7-2620 at
2.70Ghz.

5.1 Optimal DBC Search

Given an integer n, the running time of Algorithms 1 and 2 to find the optimal
length of a DBC representing n with a leading factor dividing 2a3b is largely
driven by the length ` of this optimal expansion. It usually takes several minutes
for DBCs of length 14. See Table 1.

Length ` 9 10 11 12 13 14

Time in s 1.08 5.21 28.52 66.38 214.80 757.91

Table 1. Average running times to find an optimal DBC of length `

Considering integers related to π, the longest optimal DBC that we have been
able to compute corresponds to the 69-bit integer 314159265358979323846 with
a leading factor equal to 238319 and length 18. It takes about 22 hours to show
that there is no expansion of length less than or equal to 17 and it takes a bit less
than six hours to return an optimal expansion of length 18 with the early abort
technique mentioned in Section 2.4. Interestingly, the greedy approach returns
a DBC of length 18 so that we can obtain an optimal DBC in no time, in that
particular case.

5.2 Comparison Between Greedy and Near Optimal Length

We have run some tests for sizes 192, 256, 320, 384, 448, and 512 bits. For
each size t, we have considered various leading factors of the form 2a3b ' 2t.
More precisely, we fix a between t/2 and t, compute the corresponding b, and
then compute the average length of the DBCs returned by the greedy method

for 5, 000 random integers. We also compute the Near Optimal Length of a
DBC with leading factor equal to 2a3b, see Definition 7 in Section 4.2. Our
computations indicate that considering controlled DBCs that are 20 to 30%
shorter than those returned by the greedy algorithm should not significantly
reduce the set of integers that can be represented. See Figure 2, which shows a
comparison for size t = 320. The x-coordinate axis corresponds to a between 160
and 315. The y-coordinate axis corresponds to the average length of the DBCs.

 0

 20

 40

 60

 80

 100

 120

 160 180 200 220 240 260 280 300 320

Greedy
Controlled

Fig. 2. Comparison between the average length of the DBCs returned by the
greedy method and the Near Optimal Length for size 320 bits

5.3 Scalar Multiplication

In this part, we are interested in the potential savings introduced by our new
scalar multiplication framework described in Section 4, in particular using the
notion of Near Optimal Controlled DBC, see Definition 8.
In the following, we select the Inverted Edwards coordinate system [4] for a curve
defined over a large prime field Fp. This system offers a very fast doubling and a
reasonably cheap mixed addition and tripling [2]. More precisely, the respective
costs of a doubling, mixed addition, and tripling are 3M + 4S, 8M + S, and
9M + 4S, where M and S stand respectively for a multiplication and a squaring
in Fp. To allow easy comparisons and as customary, we assume that S = 0.8M.
Until now, computing [n]P for a random n, in Inverted Edwards coordinates
with a DBC was not really worth it. Indeed, only the greedy method was fast

enough to return a DBC in a reasonable time and the overall savings obtained
were marginal with respect to the NAF, whose recoding can be achieved much
faster. With the NAF, we perform t doublings and approximately t/3 mixed
additions in order to compute [n]P where n is of size t bits.
In Table 2, we display the parameters, costs, and speedups corresponding to
different methods, for various sizes between 192 and 512. First, we consider the
Near Optimal Controlled DBC approach, then the greedy method, and finally the
NAF. LF stands for the leading factor and ` is the length of the corresponding
expansion. The costs are expressed in terms of the number of multiplications
needed to compute [n]P but do not take into account the effort to produce each
expansion. Regarding the NOC DBC, we determine for each size the optimal
leading factor 2a3b and corresponding Near Optimal Length ` minimizing the
costs of the scalar multiplication, as explained in Section 5.2. Similarly, for the
greedy approach we rely on the computations of Section 5.2.

NOC Greedy NAF Speedups

Size LF ` Cost LF1 `1 Cost1 LF2 `2 Cost2 S1 S2

192 2151326 37 1570.20 2116348 44.63 1688.74 2192 64.00 1744.80 7.02% 10.01%

256 2198337 48 2092.60 2153365 58.73 2249.62 2256 85.33 2329.33 6.98% 10.16%

320 2260338 62 2612.40 2180389 70.80 2816.04 2320 106.67 2913.87 7.23% 10.35%

384 2297355 71 3128.40 22173106 84.74 3375.51 2384 128.00 3498.40 7.32% 10.58%

448 2369350 86 3645.80 22543123 98.73 3935.42 2448 149.33 4082.93 7.36% 10.71%

512 2406367 95 4161.80 22863143 112.07 4495.22 2512 170.67 4667.47 7.42% 10.83%

Table 2. Theoretical comparison between NOC, greedy, and NAF methods

To validate these theoretical results, we have developed an implementation in C++

using NTL 6.0.0 [21] built on top of GMP 5.1.2 [15]. The program is compiled
and executed on a quad core i7-2620 at 2.70Ghz. For t = 192, 256, 320, 384,
448, and 512, we generate a random prime number pt having bit size t. For each
pt, we then create a total of 100 curves of the form

E : x2 + y2 = c2(1 + dx2y2)

defined over Fpt , where c and d are small random values. For each curve E, we
determine a random point P on E. Next, we select 100 random scalars in the
interval [0, pt − 1]. The corresponding NAF and greedy DBC expansions with
a leading factor as in Table 2 are then computed for each scalar. For each t,
we also directly create 100 random DBC expansions of length ` returned by
the controlled DBC approach. Since we only want to assess the efficiency of the
scalar multiplication, our only constraint is to generate a DBC with the specified

length ` and leading factor as in Table 2. In practice, the method used to generate
the expansions should be thoroughly designed and analyzed to ensure that the
integers that are produced are uniformly distributed. This will be the object of
some future work.
The experiments confirm the theoretical complexity analysis provided in Ta-
ble 2, especially regarding S2. The discrepancy between the theoretical and the
experimental values of S1 can be explained by a ratio M/S that is closer to 0.95
in NTL rather than 0.8 as initially assumed.
See Table 3 for actual timings. Note that the respective times necessary to com-
pute the expansions for each method are not counted.

NOC Greedy NAF Speedups

Size Time in ms Time in ms Time in ms S1 S2

192 0.822 0.861 0.939 4.58% 12.49%

256 1.444 1.531 1.642 5.73% 12.08%

320 2.446 2.584 2.766 5.35% 11.58%

384 3.511 3.703 3.960 5.17% 11.33%

448 5.088 5.392 5.729 5.65% 11.20%

512 6.569 6.982 7.408 5.91% 11.32%

Table 3. Comparison of running times of NOC, greedy, and NAF methods

6 Conclusion and Future Work

In this article, we have introduced new techniques to compute an optimal DBC
representing a given integer. The algorithms that we have developed allow to
tackle sizes of around 60 to 70 bits in a reasonable time.
We have also developed a new way to produce DBCs, namely the controlled DBC
approach, which allows to directly create a DBC expansion instead of selecting an
integer and converting it to DBC format. This idea raises a few issues regarding
the choice of parameters, in particular the length of the expansion.
We use heuristics to estimate the average length of an optimal DBC expansion
representing an integer of a certain bit size with a given leading factor. This
estimate is based on the enumeration of the DBCs with given parameters and
the expected number of different optimal DBCs representing the same integer.
For a given size and coordinate system, these heuristics allow to determine the
optimal parameters, i.e. leading factor and length, which minimize the overall
costs of a scalar multiplication of that size. This gives rise to the concept of Near
Optimal Controlled DBC. Our experiments show speedups for this approach in

excess of 10% over the NAF and of about 5% over the greedy method. Those
computations do not take into account the time necessary to produce the ex-
pansions. So the interest of this new method is even greater as the expansions
do not have to be computed unlike for the greedy and NAF methods.
In future, we aim at studying the redundancy of DBCs more accurately in order
to find an upper bound on the number of DBCs of a certain length, representing
an integer of a certain size.
Also, given a leading factor, once we have an estimate of the length of the expan-
sion, the problem remains to actually create random controlled DBC expansions,
such that the corresponding integers are uniformly distributed.
This question is not addressed in the present paper and will be the object of
some future work.

7 Acknowledgments

The author would like to thank the GAATI group and the Department of Math-
ematics of the University of French Polynesia for hosting him while this research
was carried out.

References

Numbers in curly brackets at the end specify the pages where the citations occur.

1. R. M. Avanzi, H. Cohen, C. Doche, G. Frey, T. Lange, K. Nguyen, and F. Ver-
cauteren. Handbook of Elliptic and Hyperelliptic Curve Cryptography. Discrete
Mathematics and its Applications (Boca Raton). Chapman & Hall/CRC, Boca
Raton, FL, 2005. {2}

2. D. J. Bernstein and T. Lange. Explicit-formulas database.
See http://www.hyperelliptic.org/EFD/. {16}

3. D. J. Bernstein and T. Lange. Faster addition and doubling on elliptic curves. In
Advances in Cryptology – Asiacrypt 2007, volume 4833 of Lecture Notes in Comput.
Sci., pages 29–50, Berlin, 2007. Springer. {2}

4. D. J. Bernstein and T. Lange. Inverted Edwards Coordinates. In Applied Algebra,
Algebraic Algorithms and Error-Correcting Codes – AAECC 2007, volume 4851 of
Lecture Notes in Comput. Sci., pages 20–27, Berlin, 2007. Springer. {16}

5. V. S. Dimitrov and T. Cooklev. Hybrid Algorithm for the Computation of the
Matrix Polynomial I + A + · · · + AN−1. IEEE Trans. on Circuits and Systems,
42(7):377–380, 1995. {2}

6. V. S. Dimitrov, L. Imbert, and P. K. Mishra. Efficient and Secure Elliptic Curve
Point Multiplication Using Double-Base Chains. In Advances in Cryptology – Asi-
acrypt 2005, volume 3788 of Lecture Notes in Comput. Sci., pages 59–78. Springer,
2005. {2, 3}

7. V. S. Dimitrov, G. A. Jullien, and W. C. Miller. An Algorithm for Modular
Exponentiation. Information Processing Letters, 66(3):155–159, 1998. {2}

8. C. Doche. C++ and PARI/GP implementations to compute optimal and enu-
merate Double-Base Chains. See http://www.comp.mq.edu.au/~doche. {8, 10,
15}

http://www.hyperelliptic.org/EFD/
http://www.comp.mq.edu.au/~doche

9. C. Doche and L. Habsieger. A Tree-Based Approach for Computing Double-
Base Chains. In Information Security and Privacy, 13th Australasian Confer-
ence, ACISP 2008, volume 5107 of Lecture Notes in Comput. Sci., pages 433–446.
Springer, 2008. {3}

10. C. Doche and L. Imbert. Extended Double-Base Number System with applica-
tions to Elliptic Curve Cryptography. In Advances in Cryptology - Proceedings
of Indocrypt 2006, volume 4329 of Lecture Notes in Comput. Sci., pages 335–348,
Berlin, 2006. Springer. {3}

11. C. Doche, D. R. Kohel, and F. Sica. Double-Base Number System for Multi-
scalar Multiplications. In Advances in Cryptology – Eurocrypt 2009, volume 5479
of Lecture Notes in Comput. Sci., pages 502–517. Springer, 2009. {3}

12. C. Doche and D. Sutantyo. New and Improved Methods to Analyze and Compute
Double-Scalar Multiplications. IEEE Trans. Comput., 63(1):230–242, 2014. {3}

13. H. M. Edwards. A normal form for elliptic curves. Bull. Amer. Math. Soc. (N.S.),
44(3):393–422 (electronic), 2007. {2}

14. P. Erdős and J. H. Loxton. Some problems in partitio numerorum. J. Austral.
Math. Soc. Ser. A, 27(3):319–331, 1979. {4}

15. Free Software Foundation. GNU Multiple Precision Library. {15, 17}
16. D. Hankerson, A. J. Menezes, and S. A. Vanstone. Guide to Elliptic Curve Cryp-

tography. Springer, Berlin, 2003. {2}
17. L. Imbert and F. Philippe. Strictly chained (p, q)-ary partitions. Contrib. Discrete

Math., 5(2):119–136, 2010. {4}
18. T. Lou, X. Sun, and C. Tartary. Bounds and Trade-offs for Double-Base Number

Systems. Information Processing Letters, 111(10):488–493, 2011. {3}
19. F. Morain and J. Olivos. Speeding up the Computations on an Elliptic Curve using

Addition-Subtraction Chains. Inform. Theor. Appl., 24:531–543, 1990. {2}
20. G. Reitwiesner. Binary arithmetic. Adv. Comput., 1:231–308, 1962. {2}
21. V. Shoup. NTL: A Library for doing Number Theory. {15, 17}
22. The PARI Group, Bordeaux. PARI/GP, version 2.7.1, 2014. {15}
23. L. C. Washington. Elliptic Curves. Discrete Mathematics and its Applications

(Boca Raton). Chapman & Hall/CRC, Boca Raton, FL, 2003. Number theory and
cryptography. {2}

	On the Enumeration of Double-Base Chains with Applications to Elliptic Curve Cryptography
	Christophe Doche

