
X

Optimal Contracts for Outsourced Computation

Viet Pham, MHR. Khouzani, Carlos Cid, Royal Holloway University of London
{viet.pham.2010,arman.khouzani,carlos.cid}@rhul.ac.uk

While expensive cryptographically verifiable computation aims at defeating malicious agents, many civil

purposes of outsourced computation tolerate a weaker notion of security, i.e., “lazy-but-honest” contrac-
tors. Targeting this type of agents, we develop optimal contracts for outsourcing of computational tasks

via appropriate use of rewards, punishments, auditing rate, and “redundancy”. Our contracts provably

minimize the expense of the outsourcer (principal) while guaranteeing correct computation. Furthermore,
we incorporate practical restrictions of the maximum enforceable fine, limited and/or costly auditing, and

bounded budget of the outsourcer. By examining the optimal contracts, we provide insights on how resources

should be utilized when auditing capacity and enforceability are limited. Finally, we present a light-weight
cryptographic implementation of the contracts and discuss a comparison across different implementations

of auditing in outsourced computation.

Key Words and Phrases: Outsourced Computing, Moral Hazard, Optimization, Game Theory

ACM Reference Format:
Viet Pham, MHR Khouzani and Carlos Cid, 2014. Optimal contracts designed for outsourcing of computa-
tional tasks via appropriate use of rewards, punishments, auditing rate, and redundancy scheme. ACM X,
X, Article X (February 2014), 27 pages.

1. INTRODUCTION
The idea of outsourcing complex computation tasks has been proposed and imple-
mented in a variety of applications. Research projects involving complex analysis on a
huge multitude of data have utilized parallel processing of their computations on the
processors of millions of volunteering Internet users. These include search for extra-
terrestrial life (SETI@Home), investigation of protein folding and computational drug
design (Folding@Home and Rosetta@home). Businesses from different sections includ-
ing finance, energy infrastructure, mining and commodities transport, technology and
innovation [Fullbright 2011] have also realized the benefits of outsourcing their data
and computation, and “moving to the cloud”. The cloud, as a dedicated infrastructure
with specialized man-force and powerful computing capabilities, along with the ability
to pool demands from different clients and dynamic assignment of the resources can
reduce the cost of computation. On the other hand, the outsourcer is also relieved from
the dedicated investment in its computing infrastructure and in addition, has the total
flexibility of pay-per-use paradigm, to flex on or to flex-off services effortlessly [Full-
bright 2011]. The growing trend of outsourced computing have made possible small
virtualized computers and smart devices with powerful computational power, with ap-
plications in critical mission scenarios as well as everyday use.

In all of these scenarios, there is a concern for the outsourcer (client) about the cor-
rectness of the returned results. The provider of computation services (the servers)
have an economic incentive to return guessed results as opposed to performing the
computation completely and honestly, and thereby save on the computation work.
Hence, to make this paradigm viable and guarantee soundness of the results, there
must be an auditing mechanism in place. The auditing, however, is not free: it either
creates computational overhead for the client, the server, or both. The auditing can be
done by the outsourcer itself or through a trusted third party for a fee, say, through re-
computation. Alternatively, a redundancy scheme can be employed in which the same
job is outsourced to multiple servers and the results are checked against each other.

X:2 V. Pham et al.

Irrespective of the auditing mechanism, the outsourcer can set an extremely large
fine for detected wrong results, and make cheating theoretically impossible even for
the lowest probability of cheat detection. However, in practice, an extremely large fine
is a non-credible threat. A more reasonable assumption is a cap on the maximum en-
forceable fine, with the special interesting case where the cap is zero. In this paper
we provide a concrete and general approach based on Principal-Agent modelling from
game theory to optimal contract designs for outsourcing from the client (principal)
to the servers (agents). Specifically, we assume a general maximum enforceable fine,
maximum budget, and costly and/or limited auditing rate. We formulate the utilities
of both the principal and the agents, as well as essential constraints that guarantee
honest computation (incentive compatibility) along with their acceptance of the offer
(participation). This allows us to effectively and systematically compute the optimal
contract such that the principal’s expense is minimized. Our work hence provides a
benchmark enabling meaningful comparison among different deployments of compu-
tation outsourcing.

The paper is structured as follows: In Section 2, we briefly overview previous re-
sults in relation to our approach and describe our contributions. This is followed by
a detailed motivation of our contract model in Section 3, along with descriptions of
important constraints that make the problem non-trivial. In Section 4, we compute
optimal contracts involving only one agent, and explore related improvements. In Sec-
tion 5, we allow the principal to also potentially outsource the same task to multiple
non-colluding agents as an alternative means of auditing and develop optimal hybrid
contracts. We further establish the global optimality of our hybrid two-agent contracts
among all possible contracts involving any number of non-colluding agents with re-
spect to the notion of Nash Equilibria. In Section 6, we comment on cryptographic
implementation of our contracts, i.e., how to enforce the terms and policies in an au-
tomated way. We also briefly discuss and contrast different techniques of auditing be-
sides simple recomputation. Finally, in Section 7, we conclude the paper with a sum-
mary of the results and remark on some potential future directions.

2. RELATED WORKS
A line of research is focused on designing reliable verification techniques for outsourc-
ing of special-purpose computations. For instance, [Wang et al. 2011] investigates out-
sourcing of linear optimizations. Other notable examples are queries on outsourced
databases, including typical queries [Atallah et al. 2008; Chen et al. 2008] and aggre-
gation [Yi et al. 2009]. Their main paradigm is for the querier to rely on trusted infor-
mation directly given by the data owner (outsourcer) to verify the results returned by
the servers.

Verification methods for general-purpose computing also appear in several remark-
able works. In [Monrose et al. 1999] verification is performed by re-executing parts of
the computation. A variation is presented in [Canetti et al. 2011] in which the authors
utilize redundancy over multiple agents, assuming that at least one of them is hon-
est. Outsourced computation has also caught attraction in cryptographic research: in
a seminal work, the authors of [Gennaro et al. 2010] formally define verifiable com-
putation and give a non-interactive solution. Their solution uses Yao’s garbled circuits
to represent the computation and homomorphic encryption to hide such circuits from
the agents. More efficient but interactive solutions that use probabilistically-checkable
proofs (PCPs) have since been developed such as PEPPER [Setty et al. 2012a] and GIN-
GER [Setty et al. 2012b].

Incentive-based solutions such as [Belenkiy et al. 2008; Nix and Kantarcioglu 2012]
have studied contracts that the outsourcer may offer to the agents and through a com-
bination of auditing, fines and rewards, honest computation is enforced. All of these

Optimal Contracts for Outsourced Computation X:3

verification techniques are, however, costly in terms of computation, memory, incen-
tive rewards, etc., either to the prover or the verifier, or both. For example, the scheme
in [Monrose et al. 1999] requires partial re-execution of the tasks, and the verifica-
tion in [Canetti et al. 2011] incurs cost in the redundancy of the number of computing
agents. Also, efficient protocols like PEPPER still incurs a cost in the order of m3 [Setty
et al. 2012a] on the principal, where m is the size of the problem. The cost of employ-
ing verifiable computing across these different schemes hence raises the important
question of how to use them economically, especially when there is a flexibility in pa-
rameters that govern the overall cost to the outsourcer. Motivated by this question,
we abstract the verification techniques as an auditing tool with a exogenous cost and
provide incentive-based contracts that minimize the expected cost of the principal. Our
model can be applied to any special-purpose or generic verification scheme. Our con-
tributions generalize the results in [Belenkiy et al. 2008; Nix and Kantarcioglu 2012]
by (1) extending the feasibility of honesty enforcing schemes for any bound on the
enforceable fines and any auditing capacity; (2) explicitly accounting for the cost of au-
diting and treating the auditing rate as one of the choice variables; and (3) providing
optimal contract that minimize the aggregate cost of the principal as a combination
of incentive payments and auditing costs. In short, our work explicitly extends both
applicability and efficiency of incentive-based solutions based on a general abstraction
of the verification method employed.

3. PROBLEM DEFINITION: GENERAL SETUP
In this section, we describe the general setting of the problem and basic assumptions
behind our model. A list of the main notations is provided in Table I for reference.

The outsourcer, which we refer to as the principal1 has a deterministic computation
task to be executed to obtain the output (result). Instead of executing the task itself,
the principal hires a set of agents2 to do this. The principal aims to enforce fully honest
computation of the task through setting a contract, involving rewards, auditing, and
punishments (fines).

The principal and the agents are each selfish non-cooperative expected utility max-
imizers. Initially, we assume that everybody is risk-neutral, i.e., they have no strict
preference between their expected utility and their utility of expected reward, and
hence [Gintis 2009, ch.2.4], their utilities are linear function of the costs (with nega-
tive sign) and the rewards (with positive sign). Moreover, we assume that agents are
“lazy but not malicious”, that is, they do not have any interest in potentially report-
ing dishonest computations other than saving in their computation cost. Suppose the
range and the probability distribution of the computation result is known. Generating
a guessed output according to this distribution has zero computation cost and accuracy
probability of q0 (which can be negligibly small if the range of the output is large). For
the sake of generality, as in [Belenkiy et al. 2008], suppose each agent also has access
to a private and independent tricky algorithm Alg that generates the correct output
with probability q1, where q0 < q1 < 1, at the cost of c(q1) ≥ c(q0) = 0. The cost of
honest computation is c(1), which is strictly greater than c(q1). To enforce honesty of
the agents, the principal audits the returned result with probability λ. We assume that
auditing is perfect, i.e., if the output is indeed correct, the audit definitely confirms it
(no “false positives”), and if the output is incorrect, the audit surely detects it (no “false
negatives”). In the most basic contract, the principal decides on an auditing rate λ, sets

1Also called the boss [Belenkiy et al. 2008], master [Christoforou et al. 2013], outsourcer [Carbunar and
Tripunitara 2012], client [Gennaro et al. 2010], data owner [Nix and Kantarcioglu 2012], etc.
2Also referred to as the workers, servers, clouds, or contractors.

X:4 V. Pham et al.

a penalty (fine) f for detected erroneous answers and reward r otherwise. What makes
the problem non-trivial is the following list of observations:

(1) Costly detectability of cheating: that auditing all of the results is either infeasible or
undesirable. Regarding the infeasibility, suppose that in the long run the principal
has a continuous demand (e.g. the Folding@Home project) of tasks awaiting com-
putation, appearing at a rate ρ tasks per unit time. Also, suppose that each audit
takes the principal ν machine cycles, and the computation capacity of the principal’s
machine is κ cycles per unit time. Then the maximum feasible rate of verification is
κ
νρ .3 Moreover, auditing (e.g. through re-computation) may be costly as it will con-
sume the computation power of the principal’s machine and slow it down, or it will
require obtaining additional hardware. The principal chooses the probability of au-
diting of a task λ ∈ [0,Λ], where 0 < Λ ≤ 1 is associated with the computational
capacity of the principal. The principal incurs the cost Γ(λ) which is non-decreasing
in λ. For simplicity of exposition, we assume a linear relation: Γ(λ) = γλ for a given
γ ≥ 0. An alternative to the occasional redoing of the whole computation by the
principal can be using a third-party cloud that is highly reliable but costly (with per
access cost of γ). For this scenario, the maximum auditing rate Λ is one, i.e., all of
the tasks could be audited, albeit at an excessive cost.

(2) Limited enforceability of the fines: The problem of verifiable computing could become
trivial if there is no bound on the fine that can be practically levied on a wrongdoer:
as long as there is even a tiniest probability of detection, then the principal can
make the expected utility of the smallest likelihood of cheating become negative by
setting the fine for erroneous results large enough. The issue with this argument is
that such a fine may be extremely large and hence, become an incredible threat, in
that, if the cheating of an agent is indeed caught, the fine is practically or legally
non-collectable. Thus, existence (feasibility) results of honesty enforcement that rely
on choosing a “large enough” fine are rather straightforward and uninteresting. In
particular, such approaches leave unanswered the question of whether honest com-
putation is still attainable for a bounded enforceable fine below their prescriptive
threshold. Moreover, such results do not provide a good metric of comparison be-
tween alternative incentive schemes, or across different choices of parameters for a
particular scheme. We will explicitly introduce F ≥ 0 in our model to represent the
maximum enforceable fine and obtain the optimal contracts subject to f ≤ F . This
can be the “security deposit”, prepaid by the agent to the principal, that is collectible
upon a provable detection of an erroneous result. A special case of interest is F = 0,
i.e., when the only means of punishment is refusal to pay the reward.

(3) Limited budget: As with the maximum enforceable fine to make it a credible threat,
the maximum instantaneous “budget” of the principal leads to a bound on the re-
ward to make it a credible promise. Let the maximum instantaneous payable re-
ward by the principal be R. Thus, we require: r ≤ R.

4. CONTRACTS FOR SINGLE AGENT
In this section, we consider the case where the contract is designed for and proposed
to only one computing agent. We provide the optimal contract for the basic model in

3Note that even when the principal is verifying at full capacity, it should not pick the next immediate task
to verify after finishing the previous one, since it may create a “learnable” pattern of audited tasks, which
the agent can use to only be honest when computing them. This however can be avoided if the principal
picks uniformly randomly tasks at the rate of κ

νρ
and store them in a queue. However, the practical buffer

has a storage limit. Consequently, the maximum feasible auditing rate with no essential pattern is strictly
less than the full capacity rate κ

νρ
.

Optimal Contracts for Outsourced Computation X:5

Table I: List of main notations
parameter definition

λ probability of auditing an outsourced computation by the principal
Λ the physical upper-bound on λ
γ cost of auditing (incurred by the principal)
q probability of a correct computation by the agent
q0 the correctness probability of a random guess from the output space
c(q) the expected cost of computation to an agent for the correctness level of q
c(1), c cost of an honest computation to an agent
f fine collected from agent upon detection of an erroneous computation
F the maximum enforceable fine
r reward to the agent for an unaudited or audited and correct computation
R the maximum feasible reward
z the reserve utility (a.k.a., fallback utility or aspiration) of the agent
H auxiliary coefficient defined as c(1) + z (§4)
K auxiliary coefficient defined as (c(1)− c(q1))/(1− q1) (§4)
C the expected cost of the contract to the principal
α probability of using two agents for the same computation (§5.1)
F0 auxiliary coefficient defined as c/Λ− c (Proposition 5.1, §5.1)
F1 auxiliary coefficient defined as c[c− γ]+/[2γ − c]+ (Proposition 5.1, §5.1)

subsection 4.1. In subsection 4.2, we investigate what happens if the risk-neutrality as-
sumption of the agents is relaxed. Next in subsection 4.3, we comment on moderating
against using tricky algorithms and clever guesses. Subsequently, in subsection 4.4, we
discuss the optimal choice of the principal in the light of the optimal contracts thereto-
fore developed. We close the case of single-agent in subsection 4.5 by generalising our
results to contracts in which the principal is allowed to reward unaudited and verified
tasks potentially differently. In Section 5, we will investigate the multi-agent case.

The action of the agent, given the parameters of the contract set by the principal,
is first whether to accept it, and if so, which (probabilistic) algorithm to choose for
computation of the assigned task. Since a naive random guess is correct with proba-
bility q0, we assume that the agent’s algorithm is correct with probability q ∈ [q0, 1].
Let uA denote the expected utility of the agent after accepting the contract. With cor-
rectness probability of q, the agent is caught (and fined) with probability (1 − q)λ.
Hence, uA is composed of expected reward [1− (1− q)λ]r, minus the expected cost com-
posed of the cost c(q) of the agent’s algorithm and the expected fines (1− q)λf . Hence:
uA(q) = [1 − (1 − q)λ]r − c(q) − (1 − q)λf . The agent may be able to achieve the same
level of correcness, i.e., q, with different randomizations between the tricky algorithm
Alg, the honest algorithm and random (naive) guessing. It is sraigtforward to make the
following observation: For any q, the best c(q) is achieved as follows:

a) If [c(1)− c(q1)]/(1− q1) > c(1)/(1− q0), then: c(q) =

{
Lq0,q1(q) q0 ≤ q ≤ q1

Lq1,1(q) q1 ≤ q ≤ 1
;

b) If [c(1)− c(q1)]/(1− q1) < c(1)/(1− q0), then: c(q) = Lq0,1(q), where in both cases,

Lx,y(z) := c(x) +
c(y)− c(x)

y − x
(z − x), i.e., the linear combination of the costs of the

corresponding two end points.

Note that in case-(b), the risk-neutral agent would never use Alg, since the cost of using
it can be undercut (in expected value) by randomizing between honest computation and
random guessing. Hence, we only consider case-(a) for now and revisit case-(b) in §4.3.

X:6 V. Pham et al.

4.1. Optimum Contract for a Single Agent
The principal chooses the contract by setting the rate of auditing and reward and pun-
ishment values, in order to maximize its own utility and ensure fully honest computa-
tion. Hence, the reward and punishments, r and f , should be chosen such that honest
computation is the optimal course of action for the agent, if the contract is accepted.
This means ensuring: 1 = arg maxuA(q). Following the Principal-Agent modelling in
game theory (e.g. [Gintis 2009, ch.7] or [Rasmusen 1994, ch.6]), we will refer to this as
the incentive compatibility constraint. For case (a), this becomes:

uA(1) = r − c(1) ≥ uA(q1) = [1− (1− q1)λ]r − c(q1)− (1− q1)λf (1)

The agent accepts the contract if its expected utility is larger than its reserve utility,
z ≥ 0.4 Given incentive compatibility, this participation constraint is hence:5

uA(1) = r − c(1) ≥ z. (2)

The principal wants to get away with the least reward and auditing rate. Therefore, the
optimal contract for the single agent reduces to solution of the following optimization:

min
r,f,λ
C := r + γλ (3a)

s.t. r ≤ R, 0 ≤ f ≤ F, 0 ≤ λ ≤ Λ, (3b)
r ≥ H, rλ+ fλ ≥ K (3c)

where (3c) is derived from (1) and (2) in which we have used the auxiliary coefficients
H := c(1) + z and K := [c(1)− c(q1)]/(1− q1) for brevity. Then (proof in Appendix-A):

PROPOSITION 4.1. With the parameters given in Table I, the contract that enforces
honest computation and is accepted by the agent, and minimizes the cost of the principal
is by setting f∗ = F and choosing λ∗, r∗ as given by the following:6

γ ≤ K

Λ2
:

[
K

Λ
−H]+ ≤ F : λ∗ =

K

H + F
, r∗ = H, C∗ = H +

γK

H + F

[
K

Λ
−R]+ ≤ F < [

K

Λ
−H]+ : λ∗ = Λ, r∗ =

K

Λ
− F, C∗ =

K

Λ
+ γΛ− F

γ >
K

Λ2
:

[
√
Kγ −H]+ ≤ F : λ∗ =

K

H + F
, r∗ = H, C∗ = H +

γK

H + F

[
√
Kγ −R]+ ≤ F < [

√
Kγ −H]+ : λ∗ =

√
K

γ
, r∗ =

√
Kγ − F, C∗ = 2

√
Kγ − F

[
K

Λ
−R]+ ≤ F < [

√
Kγ −R]+ : λ∗ =

K

R+ F
, r∗ = R, C∗ = R+

γK

R+ F

For F < [KΛ − R]+, the optimization is infeasible, i.e., there is no honesty-enforcing
contract that is also accepted by the agent.

Discussion. The first observation is that the optimal contract should fully utilize the
maximum enforceable fine and punish at no less than F . For large values of enforce-
able fines, we note that r∗ is at H, the minimum value to ensure participation, and

4The reserve utility (also referred to as the fall-back utility or aspiration wage) is the minimum utility that
the agent aspires to attain or can obtain from other offers. Naturally, z ≥ 0. Note that an implicit assumption
here is that the agent is replaceable by any other agent with the same fall-back utility, i.e., there are many
agents available with the same reserve utility. Without this assumption, the agent has negotiation power by
refusing the contract knowing that it cannot be replaced. Alternatively, z can be thought as to (exogenously)
capture the negotiation power of the agents. This is an assumption we make throughout the paper.
5Participation constraint is sometimes also called Individual Rationality constraint.
6The notation x+ := max{0, x}.

Optimal Contracts for Outsourced Computation X:7

0 200 400 600 800 1,000

0.4

0.6

0.8

1

λ∗

r∗

infeasible

Maximum enforceable fine (F)

Fig. 1: Change of contract parameters r∗, λ∗ w.r.t. the maximum enforceable fine F
(Prop. 4.1, case of γ > K

Λ2), where K = 450, γ = 1200, Λ = 0.7, and c = 400.

limF→∞ λ∗ = 0, which yields limF→∞ C∗ = H. These are compatible with intuition as a
huge fine implies that honesty can be enforced with minimum compensation and mi-
nuscule rate of inspection. When auditing is cheap (γ ≤ K/Λ2), increasing the auditing
rate is the better option to compensate for lower values of F to maintain incentive com-
patibility (honest computation). This is unless the auditing rate is at its maximum Λ,
in which case, reward must increase above H to maintain incentive compatibility and
compensate for the low value of F . Note that in this case, the participation constraint
is not active and is satisfied with a slack, while the incentive compatibility constraint
is satisfied tightly. For yet lower values of enforceable fine F , even maximum reward
r = R and auditing rate λ = Λ might not impose a strong enough threat against cheat-
ing, hence the infeasibility region. When auditing is expensive (γ > K/Λ2), in order to
retain incentive compatibility in the situation of very low fine F , the principal should
increase reward, and only consider more frequent auditing if the reward budget R has
been reached. Fig. 1 depicts the optimal parameters of the contract versus the maxi-
mum enforceable fine for the latter case (γ > K/Λ2).

Note that the infeasible region does not necessarily exist. Specifically, when the prin-
cipal’s instantaneous budget R is larger than K/Λ, then there is always a feasible con-
tract. Then even for F = 0, i.e., no enforceable fine, a contract that enforces honest
computing is feasible, albeit by using high values of reward and/or auditing rate. In
such cases, the principal “punishes” audited erroneous computations only through not
rewarding the agent. From the proof, however, it becomes clear that honesty cannot be
enforced with zero auditing rate, and consequently, the case of Λ = 0 trivially leads to
infeasibility. Moreover, to satisfy the participation constraint at all, R has to be at least
as large as H. Hence, for R < H, likewise, there exists no feasible contract for any F .
The proof also shows that except for the special case of γ = 0, the optimal contract has
the feature that it is unique.

Figures 2a and 2b depict the change in the structure of the optimal contract versus
varying auditing cost γ and the maximum auditing capacity, respectively. From Fig. 2a,
we can see that for larger values of γ, the optimal contract utilizes lower values of in-
spection rate λ∗ while using higher values of reward r to enforce honest computation.
This transition progress culminates when the payment reaches its threshold R, af-
ter which the contract remains unchanged. In contrast, Fig. 2b shows how increasing
the maximum auditing capacity affects the optimal contract in the opposite trend: as
the principal is more capable of auditing, it should consider more frequent auditing
and lessen the reward for honest computation. The payment, however, can never be
lowered below H to maintain participation.

X:8 V. Pham et al.

0 500 1,000 1,500 2,000 2,500
0.4

0.6

0.8

1

λ∗

r∗

Auditing cost (γ)

(a)

0.6 0.7 0.8 0.9
0.4

0.6

0.8

λ

r

Auditing capacity (Λ)

(b)

Fig. 2: Optimal contract parameters w.r.t (a) the auditing cost γ, with K = 450, Λ = 0.8,
c = 400, and (b) auditing capacity Λ, with K = 450, γ = 450, c = 450.

4.2. A Risk-Averse Agent
So far, we modelled the agent as risk-neutral, i.e., one that is indifferent between its
expected utility and utility of expectation, leading to a linear utility function. However,
empirically, individuals tend to show risk-aversion regarding decisions that affect their
income. By definition, (strict) risk aversion is (strict) preference of expected utility over
utility of expectation. Following Jensen’s inequality, this is equivalent to assuming a
(strictly) concave utility function (ref. e.g. [Gintis 2009, ch.2.4]). We have the following
simple but re-assuring result:

PROPOSITION 4.2. The optimal contract given in Proposition 4.1 developed for a
risk-neutral agent stays feasible for any risk-averse agent as well.

The proof is provided in Appendix-B. Note that even though the feasibility of our con-
tract is guaranteed, its optimality might no longer hold. This is because a lower value
of fine and/or rewards could potentially maintain incentive compatibility, as intuitively,
cheating with a chance of getting caught can be seen as a lottery. However, because
the level of risk-averseness of an agent is unknown, we argue that it is best practice
to design the optimal contract for the worst case with respect to risk, i.e., risk neutral-
ity. Specially, if a contract is designed assuming a particular degree of risk-aversion
of the agent but the agent turns out to be less risk-averse than assumed, then the
incentive-compatibility for honest computation may be violated, failing the principal’s
intolerance of erroneous computations. Accordingly, for the rest of the paper, we will
retain risk-neutrality for agents.

4.3. Mitigating clever guesses
An inherent problem of outsourced computation is that a (not always) correctly guessed
output is indistinguishable from an honestly computed one. For instance, consider the
question of whether a large natural number is a prime: the deterministic guess of “no”
is most likely correct. Also, since the principal might not know the exact cost and suc-
cess probability of potential guessing algorithms, it is hard to design a contract that
enforces honesty. Therefore, the principal may prefer to avoid identifying the parame-
ters of guessing algorithms altogether.

One way to mitigate the possibility of “clever” guesses is to enlarge the output range
by requiring the agent to return not just the final computation output, but also snap-
shots of intermediate steps of the computing process [Belenkiy et al. 2008]. This will
reduce the correctness probability of a naive guess down to q0 = negl. Moreover, requir-

Optimal Contracts for Outsourced Computation X:9

ing snapshots of the intermediate steps makes guessing of the correct output more
costly. Let c(q1) be the cost of a tricky algorithm that tries to produce the expanded
output with the intermediate steps of the honest computation, where it succeeds with
probability q1. We make the assumption that now c(q1) > q1c(1), so that any guessing
algorithm with cost c(q1) can be replaced with a randomization between naive guess
(with weight 1− q1) and honest computation (with weight q1). Thus, for incentive com-
patibility, we only need to make sure that the agent’s utility from honest computation
is better than a naive guess that succeeds with negligible probability q0 = negl. To
avoid distraction in our analysis, we assume q0 = 0, as the results can easily be real-
ized for q0 = negl. Our simplified constraints for the contract become:

participation : r ≥ c(1) + z, incentive compatibility : r ≥ 1

λ
c(1)− f. (4)

Comparing to the constraints in (3c), this translates to changing K to c(1). This in turn
implies that the new incentive compatibility constraint requires a strictly lower fine
value. Intuitively, as guessing becomes more difficult, cheating becomes less attractive
and hence can be deterred with a smaller fine. Hereafter, we assume that the princi-
pal is employing this technique and use the above incentive compatibility constraint.
Moreover, for simplicity of exposition, we assume that the reserve utility z is zero, and
hence H becomes c(1), which we will abbreviate as c.

4.4. Optimal Choice for the Principal
So far we have considered auditing as a blackbox and only included its cost and capac-
ity into the model. However, when auditing is via redoing the computation (at the cost
of γ) it might be optimal for the principal to not offer any contract at all. Indeed, when
Λ = 1, the principal can potentially audit all computations by redoing them. Specifi-
cally, if the optimal contract costs C∗ ≥ γ, then it is optimal for the principal to do the
computation itself, as that only costs γΛ = γ. In case Λ < 1, the principal cannot do
all the computations, and must outsource a portion of it. Interestingly, the following
proposition establishes that the principal’s optimal choice is either to not outsource at
all, or fully outsource its computation.

PROPOSITION 4.3. Consider the case where auditing is through redoing the compu-
tation. Let x be the probability that the principal computes the tasks itself. Then, either
x∗ = 0 and the optimal contract is as per Proposition 4.1, or x∗ = Λ = 1 and there
should be no outsourcing.

The proof is in Appendix-C. The proposition has this important corollary:

COROLLARY 4.4. When Λ < 1, the optimal choice for the principal is to use the
optimal contact given by Proposition 4.1. When Λ = 1, the optimal choice of the principal
is to compare the expected cost achieved by the optimal contract in Proposition 4.1 (for
the value of maximum enforceable fine at hand) against γ, and accordingly decide to
outsource or independently compute all of the tasks.

4.5. Optimal Contract for a Single Agent: Two-Level Reward
In our contracts so far, verified correct results and unaudited results are rewarded
identically at r. Suppose, alternatively, that the principal rewards r0 for accepted but
not audited results and r1 for corroborated correct answers, and as before, penalizes
f for detected wrong computations. This way, the principal may hope to save signif-
icantly by, for example, not paying for unaudited computations. The new incentive
compatibility and participation constraints are: (1−λ)r0 +λr1− c ≥ (1−λ)r0−λf and
(1−λ)r0 +λr1−c ≥ 0, respectively. The optimization of (3) for a contract with two-level

X:10 V. Pham et al.

reward changes to:

min
r0,r1,f,γ

C := r1λ+ r0(1− λ) + γλ

s.t. r0, r1 ≤ R, f ≤ F, 0 ≤ λ ≤ Λ, r1λ+ r0(1− λ) ≥ c, r1 ≥
c

λ
− f.

PROPOSITION 4.5. For F ≥ [c/Λ − R]+, the optimal single-agent contract for two-
level rewarding is given as: f∗ = F , λ∗ = c/(F +R), r∗1 = R, r∗0 = Fc/(R− c+ F),
C∗ = c (1 + (γ + c−R)/(F +R)). For F < [c/Λ−R]+, the contract is infeasible.

The proof is similar to that of Proposition 4.1, and is omitted for brevity.

Discussion of the two level reward contract. First, note that there is no improvement
in terms of the infeasibility region compared with the single-level reward contract.
However, the achieved cost is always better. This was to be expected as the single-level
rewarding can be thought of as a special case of two-level. However, the behaviour of
the optimal contract now does not depend on the value of the auditing cost γ. This is
where the strength of the two-level rewarding lies: for high values of γ, the two-level
contract increasingly outperforms the single reward-level contract.

Note that the optimal reward for audited and correct results r1 is at the principal’s
maximum budget R irrespective of the value of F . The value of reward for unaudited
results r0 is always strictly less than c, i.e., the cost of honest computation (and hence
strictly less than r1 as well). The value of r0, unlike r1, depends on F : For higher val-
ues of maximum enforceable fine, in fact somewhat unexpectedly, the optimal contract
chooses increasing values of reward r∗0 . Still intuitively, a larger threat allows less ne-
cessity for auditing, and thus the contract starts to behave as a “lottery”, in which the
low-chance “winner” receives r∗1 = R and the “loser” r0 < c < R.

5. OPTIMAL CONTRACTS FOR MULTIPLE AGENTS
When there are more than one agent available, the set of possible contracts gets ex-
tended. Specifically, as e.g. [Belenkiy et al. 2008] and [Nix and Kantarcioglu 2012]
discuss, the principal has the option of submitting the same task to multiple agents
and comparing the outcomes. We will refer to this option as the redundancy scheme. If
the returned results do not match, it is clear that at least one agent is cheating. Fur-
thermore, as [Nix and Kantarcioglu 2012] assumes, if the agents are non-colluding,
and returning the intermediate steps along with the computation result is required,
then the probability that the results produced by cheating will be the same will be neg-
ligible, which we again assume to be zero (for simplicity). Hence, the returned results
are correct if and only if they are the same.

In the next subsection, we develop optimal contracts considering two agents. Subse-
quently, we establish the global optimality of two-agent contracts among any number
of agents with respect to the notion of Nash Equilibrium.

5.1. Optimal Contracts for Two Agents
Consider the case that there are two agents available: agent 1 and 2. As in the single-
agent case, consider a principal that has a computation task and a maximum auditing
rate of Λ. Then, in general, a principal can use a hybrid scheme: it may choose to send
the same job to both of the agents sometimes, and to one randomly selected agents the
rest of the time. Sending the same task to two agents provides a definite verification,
however, at the cost of paying twice the reward, since both agents must be rewarded
for honest computation. Hence, an optimal choice of redundancy scheme is not imme-
diately clear, even less so if this schemes is randomized with just choosing one agent

Optimal Contracts for Outsourced Computation X:11

and doing independent audits. In this section, we investigate optimal contracts among
all hybrid schemes.

Besides lack of collusion, we assume the agents do not communicate either. There-
fore, on the event that any of the agents receives a task, it has no information about
the busy/idle state of the other agent. The action of each agent is selection between
honest computation, which we represent by H , and cheating, which we denote by C .
Since the agents have no information about the state of the other agent, the set of their
(pure) strategies and actions are the same.

The expected utility of each agent depends in part on the action of itself and of
the other agent. Let uA(a1, a2) represent the utility of agent 1 when it chooses action
a1 and agent 2 chooses a2, where a1, a2 ∈ {H ,C }. The principal wants to enforce
honest computation with probability one. If uA(H ,H) ≥ uA(C ,H), then given that
agent 2 is going to be computing honestly, agent 1 will prefer to do the same too, and
due to symmetry, likewise for agent 2. In the game theoretic lingo, this means that
(H ,H) is a (Nash) equilibrium. If, further, uA(H ,C) ≥ uA(C ,C), then (H ,H) will
be the dominant (Nash) equilibrium, i.e., honest computation is the preferred action
irrespective of the action of the other agent.

The principal utilizes the redundancy scheme with probability α or employs only one
of the agents (selected equally likely)7 with probability 1 − α. If the principal chooses
only one agent, then it audits it with probability ρ. Since auditing only occurs when
a single agent receives the task, the likelihood λ that the task will ever be audited is
ρ(1−α). As in the single-agent single-reward scenario, if only one agent is selected, the
agent is rewarded r if there is no indication of wrongdoing, and is punished f if audited
and caught wrong. When the redundancy scheme is selected and the returned results
are equal, both agents are rewarded r. Otherwise, the principal performs an indepen-
dent audit with probability β. When the results are different but the auditing does not
occur, the principal has no way of identifying a culprit and treats them equally: both
are fined at f . When the results are different and the auditing is done, then the cheat-
ing agent(s) are fined at f , but if one of the agents is right, then that agent is rewarded
at the maximum value: R.8 With the model so described, the expected utilities of an
agent are computed as follows:9

uA(H ,H) =r − c, uA(C ,H) =(1− α− λ)r/2− (α+ λ/2)f.

Hence, the condition uA(H ,H) ≥ uA(C ,H) becomes: r ≥ (1 + α)c/(λ+ 2α)− f . Sub-
ject to making (H ,H) an equilibrium, the contract is accepted if the expected utility
of it to the agents is above their reserve utility, which we assume here too to be zero
for simplicity: r − c ≥ 0. Then the expected cost of the contract to the principal is:

C = 2rα+ γλ+ r(1− α) = (1 + α)r + γλ.

The principal chooses λ, α, f , r, β such that honest computation is enforced, the con-
tract is accepted, and the expected cost of the principal is minimized. λ and α must
satisfy the structural condition 0 ≤ α ≤ 1, 0 ≤ λ ≤ Λ and α + λ ≤ 1. The instanta-
neous budget of the principal imposes r ≤ R if α = 0, and 2r ≤ R if α > 0. We assume
R ≥ 2c, since otherwise, the principal can never employ both of the agents without
violating its instantaneous budget constraint, and hence, the problem reduces to the

7We will formally show through the proof of proposition 5.3 that equal randomization is the best option.
Intuitively, this removes any information that the agents may infer upon receiving a task.
8Note that this extra auditing threat of β > 0 is only instilled to make (C ,C) (both agents cheating) a
non-equilibrium if the goal is to make (H ,H) the dominant Nash.
9Since the only information state to an agent is whether it receives the job, the ex-ante and ex-post analysis,
i.e., before and after reception of the task, become equivalent. We present the ex-ante view for simplicity.

X:12 V. Pham et al.

single agent problem. Then, the budget constraint simplifies to r ≤ R/2. Therefore, the
optimal contracts for two agents that make (H ,H) an equilibrium are solutions of
the optimization problem of:

min
r,f,α,λ

r(1 + α) + γλ subject to:

r ≤ R/2, f ≤ F, 0 ≤ λ ≤ Λ, λ ≤ 1− α, α ≥ 0, r ≥ c, r ≥ c(1 + α)

λ+ 2α
− f.

To make (H ,H) the (unique) dominant Nash equilibrium, the principal should also
ensure: u(H ,C) ≥ u(C ,C), where:

u(H ,C) =(1− α)r/2 + αβR− α(1− β)f − c, u(C ,C) =(1− α− λ)r/2− (α+ λ/2)f.

If the principal manages to make (H ,H) a dominant Nash equilibrium, then the
value of β does not directly affect the expected cost of contract. However, for the
threat of the auditing when the results are dissimilar to be credible, the principal
must have enough free auditing capacity left. Hence, we must have: λ + αβ ≤ Λ. To
attain the lowest cost contracts, the principal should set αβ at its minimum possible
value. u(H ,C) ≥ u(C ,C) implies: αβ ≥ [c(1 + α)− λ(r + f)]/(2R+ 2f).

PROPOSITION 5.1. Let F0 = c/Λ − c and F1 = c[c − γ]+/[2γ − c]+,10 the optimal
one-level reward two-agent contract that makes (H ,H) a Nash equilibrium is:

F1 ≤ F : f∗ = F, α∗ =
c

2F + c
, λ∗ = 0, r∗ = c, C∗ = c(1 +

c

2F + c
)

F0 ≤ F < F1 : f∗ = F, α∗ = 0, λ∗ =
c

c+ F
, r∗ = c, C∗ = c(1 +

γ

F + c
)

F < min(F0, F1) : f∗ = F, α∗ =
c− Λ(c+ F)

c+ 2F
, λ∗ = Λ, r∗ = c, C∗ =

c(c+ F)(2− Λ)

c+ 2F
+ γΛ

For Λ = 1, (H ,H) is moreover the dominant Nash equilibrium.

COROLLARY 5.2. If auditing is more expensive than the cost of honest computation
(γ ≥ c), the optimal contract only uses the redundancy scheme. When γ ≤ c/2, either
there is no redundancy scheme (α = 0) or the whole auditing capacity is used (λ∗ = Λ).

The first part of the corollary is quite intuitive: when γ > c, any instance of outsourcing
to a single agent and performing independent auditing can be replaced by the redun-
dancy scheme (job duplication) and strictly lower the cost by γ − c.

Further Discussion. First, note that in our optimal two-agent contract, as long as
R ≥ 2c, there is no infeasible region: there is always a contract that makes (H ,H) an
equilibrium. Moreover, the payment to any of the agents is never more than the cost
of honest computation. Fig. 3a provides a pictorial representation of the proposition
where c/2 < γ < c and Λ = 0.5. When the enforceable fine is large, the redundancy
scheme is preferable. This is despite the fact that the redundancy scheme is more
expensive than auditing: it costs an extra c as opposed to γ < c. In other words, for
high values of fine, the redundancy scheme is a more effective threat against cheating
than independent auditing. When F is less than F1, the independent auditing becomes
the preferred method. For lower values of F , when the auditing capacity is all used up,
the redundancy scheme is added to compensate for the low value of fine to maintain
incentive compatibility. Fig. 3b depicts the effect of auditing capacity, Λ, on the optimal
contract where c/2 < γ < c. When Λ = 0, redundancy scheme is the only means to
enforce honest computation. If furthermore no fine can be enforced (F = 0), then α = 1:

10We adopt the convention that x/0 = +∞ for x > 0.

Optimal Contracts for Outsourced Computation X:13

0 500 1,000
0

0.2

0.4

α∗

λ∗

Maximum enforceable fine (F)

(a)

0 0.2 0.4 0.6 0.8
0

0.2

0.4

0.6

0.8

α∗(F = 1)

α∗(F = 50)

α∗(F = 150)

ρ∗(F = 1)
ρ∗(F = 50)

ρ∗(F =150)

Auditing capacity (Λ)

(b)

Fig. 3: Optimal contract (where c = 400, γ = 250) w.r.t. (a) max. enforceable fine F
(Λ = 0.5); and (b) auditing capacity Λ (F1 = 600). Recall ρ = λ

1−α is the conditional
probability of auditing given the job is assigned to a single agent.

the job should be always duplicated. As Λ increases, there is a gradual transition from
using redundancy scheme to independent auditing (F < F1).

5.2. Global Optimality of Two-Agent Contracts
In developing the optimal contracts for two-agent case, we made a few critical assump-
tions: (a) the independent auditing is perfect; (b) the agents are non-colluding and non-
communicating; (c) the range of intermediate steps is large enough that the probability
of any two guessed results to be same, or the guessed result to be the correct result,
is negligible; and (d) the agents are lazy but not malicious. It turns out that these
assumptions are sufficient to warrant global optimality of two-agent contracts among
contracts that engage any number of agents in the following notion:

PROPOSITION 5.3. The contract that hires at most two agents and chooses its terms
according to proposition 5.1, is globally optimal, that is, it achieves the least cost to
the principal among all contracts that employ any number of agents and aim to make
honest computation a Nash Equilibrium.

The proof is provided in Appendix-D. The above proposition shows that our contract
for two agents is not just a special case solution of multiple agents, but it is indeed
the solution involving any number of agents. In other words, given the stipulated as-
sumptions, there is no advantage ever in hiring more than two agents. Incidentally, the
proof also shows that the best contracts makes the probability of any of the agents to
be hired equal. This makes intuitive sense, as unequal probability of task assignment
creates some “information” which the agents can potentially exploit to their benefit,
and to the detriment of the principal.

6. CONTRACT IMPLEMENTATION
For completeness of the solutions, in this section we discuss notable technical concerns
on the implementation of our contracts.

6.1. Intermediate steps and hash functions
As we discussed in Section 4.3, the use of intermediate steps as part of the output
would prevent trivial/clever guessing. However, the data representing intermediate
steps could be large and thus cumbersome for transmission. [Belenkiy et al. 2008]
proposes the use of cryptographic hash as a sufficient representation of intermediate

X:14 V. Pham et al.

steps: Instead of sending a large amount of data detailing these steps, the agent can
only send the cryptographic hash of such data. On receiving the agent’s hash hA, the
principal repeats the computation, and computes its own hash hP from the intermedi-
ate steps, then verifies that hA = hP .

Informally, the use of hash function is considered secure if it is unlikely that the
agent can come up with the correct hash without knowing the correct intermediate
steps. The authors in [Belenkiy et al. 2008] require such hash function to be a “random
oracle”, i.e., a function mapping in which each output is chosen uniformly randomly re-
gardless of the input. While this is a sufficient condition, the notion of random oracle
is rather impractical, and also an overkill. Indeed, we argue that for this purpose of
hash checking, it is necessary and sufficient that the hash function is either “collision
resistant” or “one-way”, that is, it should be difficult to either find two different mes-
sages with the same hash, or find a message that corresponds to a particularly chosen
hash value.

Lastly, note that the process of hashing the intermediate steps may itself carry a
considerable cost as well. For instance, if the computation task itself is to hash a large
string, then the cost of hashing the intermediate steps (if the same hash function is
used) would be at least as much as computation cost. Therefore, either the use of hash
function on intermediate steps must be negligible compared to that of the original
computation task, or the extra cost of hashing must enter the contract model.

6.2. Enforcing contract policies
With regards to legal enforcement of the contract, it is necessary that behaviours of
contract participants are observable and verifiable. Actions such as “assigning a job” or
“paying a reward” are of this type. However, probabilistic behaviours, e.g., “employing
two agents with probability α”, are usually unverifiable. Our contracts unfortunately
rely on these probabilistic actions of the principal as explicitly stated in the terms
and policies for auditing, task duplication and/or rewarding (the latter in two-level
reward contracts of §4.5). It is critical to ensure (by both ends) that the principal in
reality sticks to such actions, for two reasons: Firstly, the principal must establish to
the agents its compliance to the contract so as to make the threats credible. Secondly,
the agent needs an assurance that the principal cannot deviate from the contract and
thus take away some of its benefits (in two-level rewarding). Without an appropriate
security measure, this is usually not possible, e.g., the fact that the principal does not
audit tells little about whether its auditing probability is indeed λ = 0.3 or λ = 0.6. This
important contract implementation issue has not been discussed in previous works.

In Fig. 4, we propose a communication protocol between the principal and two agents
that resolves this problem. Particularly, our security objective is to make sure that the
principal gains negligible benefit by deviating from its prescribed behaviour as stated
in the contract. To fulfil this objective, we rely on the fact that the contract can be
legally enforced by an authority (e.g., a court), and thus punishment on the principal’s
cheating is guaranteed if there is enough evidence for the accusation. What remains is
to ensure that agents can prove the principal’s deviation (from the contract) whenever
the principal benefits from doing so. Note that the principal may still deviate without
additional benefit, which might be difficult to discover.

The main idea behind the protocol is to engage the agents into influencing the
principal’s probabilistic actions, as opposed to letting the principal to decide its ac-
tions alone. We allow each agent i to initiate a tuple of uniformly random nonces
〈Ni, N (α)

i , N
(β)
i , N

(λ)
i 〉, each of which seeds a probabilistic part of the principal’s action.

11Here the worst possible cost (including what has been spent) is max(2r, r + γ), and it could either be
distributed to the agents, or paid to the court as fine.

Optimal Contracts for Outsourced Computation X:15

Protocol ContractProtocol

Requirement. A (non-interactive) commitment scheme (Setup,Commit,Open)
and a trusted third party TTP. An optimal contract 〈r, f, α, β, λ〉, a computation
task J, and a security parameter k > 0.
Preparation. The contract is signed by all parties with an additional term: if
the principal is caught deviating from the below protocol, it must pay the worst
possible cost 11. TTP generates CK from Setup(k) and gives it to the principal
(P), agent 1 (A1) and agent 2 (A2).
Protocol. (1) A1: generates N1, N

(α)
1 , N

(β)
1 , N

(λ)
1 ←r {0, 1}k, computes (c∗1, d

∗
1) =

CommitCK(N1||N (α)
1 ||N

(β)
1 ||N

(λ)
1), then sends c∗1 to P .

(2) A2: generates N2, N
(α)
2 , N

(β)
2 , N

(λ)
2 ←r {0, 1}k, computes (c∗2, d

∗
2) = CommitCK(

N2||N (α)
2 ||N

(β)
2 ||N

(λ)
2), then sends c∗2 to P .

(3) P : sends (c∗1, c
∗
2) to both A1 and A2.

(4) A1: sends d∗1 to P .
(5) A2: sends d∗2 to P .

(6) P : if N
(α)
1 ⊕N(α)

2

2k
≤ α, then the job is sent to both, otherwise, it is sent to agent

Ai, where i = (N1 ⊕N2)(mod 2) + 1. Results are sent back accordingly.

(7) P : if only one agent is hired, then the result is audited if N
(λ)
1 ⊕N(λ)

2

2k
≤ λ

1−α .
If two agents are hired, then when results are different, they are audited if
N

(β)
1 ⊕N(β)

2

2k
≤ β.

(8) P : sends (d∗1, d
∗
2) to both A1 and A2.

Fig. 4: Communication protocol for the contract

For example, N (λ)
i are used to decide whether the principal will audit. The correspond-

ing nonces from the two tuples are xor-ed together to preserve uniform randomness, in
case one of the agents does not generate the nonces properly. Also, since we assume no
collusion, agents do not communicate directly, and hence must give the nonces to the
principal. Therefore, the only way for the agents to be sure that the principal treats the
nonces properly is for them to also obtain these nonces (via the principal) from each
other, and contrast against the observed principal’s action. Using cryptographic com-
mitments, we make sure that the principal cannot meaningfully modify agents’ nonces
before forwarding them, i.e., so that it can later deviate without being detected. After
the computation results are returned, the principal securely reveals to the agents the
behaviour it was expected to follow, then proceeds to rewarding/punishing the agents
based on the returned results.

In addition, extra measures must be employed to ensure that legal enforcement is
possible, i.e., all evidences must be verifiable. This can be accomplished with a sig-
nature scheme (KeyGen,Sign,Verify) which is existentially unforgeable under chosen
message attacks. Each participant in the contract will be assigned (by a trusted third
party) a public-private key pair generated using KeyGen, and must use its private key
to sign every one of its sending messages. That way, supplying the conversation along
with its signatures is sufficient for legal purposes. Our protocol can easily be adapted
for single-agent contracts, in which the principal also plays the role of one agent. The

X:16 V. Pham et al.

Table II: Examples of cost model for verification techniques

recomp. Yao’s[Gennaro
et al. 2010]

PEPPER[Setty
et al. 2012a]

Traces[Monrose
et al. 1999]

Quin[Canetti
et al. 2011]

Principal |f | |f()| · |Encfull| |π(f)| · |Encadd| |f | log |f |

Agent(s) |f | |BC(f)| · |Encfull| |π(f)| · |Encadd| |f | 2|f |

| |: size of the problem f(): output of f
BC: boolean-circuit representation π: PCP representation
Encfull (resp. Encadd): An operation of fully (resp. additive) homomorphic encryption

correctness and security of the protocol are informally stated as follows, which are
formalised and proved in the appendix.

PROPOSITION 6.1. Suppose that ContractProtocol is followed honestly by all partic-
ipants, then the principal’s behaviour is negligibly different from the contract’s specifi-
cation, i.e., 〈r, f, α, β, λ〉.

PROPOSITION 6.2. Suppose all participants in ContractProtocol are PPT algo-
rithms. Suppose that (Setup,Commit,Open) is a secure non-malleable commitment
scheme, and that contract terms can be legally enforced and that both agents are honest,
then for any PPT principal that deviates from ContractProtocol, it receives additionally
negligible payoff, given that the job is assigned to at least one agent.

6.3. Modelling auditing/verification techniques
We mention from the beginning that our optimal contract does not replace rigorous ver-
ification techniques, but in fact relies on them as abstract auditing tools. It thus serves
as a framework to not just study the economics of these techniques, but also compare
and contrast among them. However, to fit our model, it is essential that the decision
to audit must be hidden from the agent(s). For example, consider auditing using the
scheme in [Gennaro et al. 2010]. Because it requires some preparation before the com-
putation, the agent would know in advance whether an audit will happen, and thus
probabilistic auditing is meaningless. As a workaround, we assume that this scheme
is always active, but the principal would decide (with probability λ) whether to invoke
the Verify step which costs O(m · poly(k)), where m is the size of the Boolean circuit
representing the computation, and poly(k) is some polynomial in a security parameter
k > 0. That way the agent would be oblivious to whether the audit will happen. For a
comparison, we have listed in Table II the cost model of some of the general-purpose
verification methods in our literature review. It suggests that re-computation and re-
dundancy are still enormously less expensive than notable cryptographic solutions.

7. CONCLUSION
In this paper, we provided an incentive-analysis of outsourced computation involving
non-malicious but selfish utility-maximizing computing agents. We designed contracts
that provably minimize the expected cost of the outsourcer while ensuring that com-
puting parties accept the contracts and return correct results. We incorporated impor-
tant featured inspired by real world restrictions, notably, that the outsourcing party
can only levy a restricted fine on dishonest agents – since the solution becomes triv-
ial if unrealistic, unlimited fines are allowed – and that auditing can be costly and/or
limited. We allowed partial outsourcing, direct auditing and auditing through redun-
dancy, i.e., employing multiple agents and comparing the results, and optimized the
utility of the outsourcer among all hybrid possibilities.

Optimal Contracts for Outsourced Computation X:17

We observed that outsourcing all or none of the tasks is optimal (and not partial
outsourcing). We showed that when the enforceable fine is restricted, achieving honest
computation may still be feasible by appropriately increasing the reward above the
sheer cost of honest computation. We demonstrated that when auditing is more expen-
sive than the cost of honest computation, redundancy scheme is always the preferred
method, and when the auditing cost is less than half of the cost of honest computation,
independent auditing is preferable. When the cost of auditing is between half and the
full cost of honest computation, the preferred method depends on the maximum en-
forceable fine: for large enforceable fines, redundancy scheme is preferred despite the
fact that it is more expensive “per use” than independent auditing, since owing to its
higher effectiveness, it can be used more sparingly. We established the global optimal-
ity of contracts involving at most two agents among any arbitrary number of agents as
far as implementing honesty as a Nash Equilibrium is aimed for. Finally, we presented
a light-weight cryptographic implementation of our contracts that provided mutual af-
firmation on proper execution of the agreed terms and conditions.

An interesting problem for future research is dynamic contracts that either learn the
hidden parameters of the utilities of agents or re-act to global changes in the computa-
tion costs and re-adjust the terms of contracts accordingly. Designing optimal contracts
that are also resilient against collusions and/or communication between agents is also
an interesting subject of future investigation.

REFERENCES

ATALLAH, M. J., CHO, Y., AND KUNDU, A. 2008. Efficient data authentication in an
environment of untrusted third-party distributors. In IEEE ICDE.

BAZARAA, M. S., SHERALI, H. D., AND SHETTY, C. M. 2013. Nonlinear programming:
theory and algorithms. John Wiley & Sons.

BELENKIY, M., CHASE, M., ERWAY, C. C., JANNOTTI, J., KÜPÇÜ, A., AND LYSYAN-
SKAYA, A. 2008. Incentivizing outsourced computation. In NetEcon. ACM.

CANETTI, R., RIVA, B., AND ROTHBLUM, G. N. 2011. Practical delegation of compu-
tation using multiple servers. In ACM CCS.

CARBUNAR, B. AND TRIPUNITARA, M. V. 2012. Payments for outsourced computa-
tions. IEEE Transactions on Parallel and Distributed Systems 23, 2.

CHEN, H., MA, X., HSU, W., LI, N., AND WANG, Q. 2008. Access control friendly query
verification for outsourced data publishing. In ESORICS.

CHRISTOFOROU, E., ANTA, A. F., GEORGIOU, C., MOSTEIRO, M. A., AND SÁNCHEZ,
A. 2013. Applying the dynamics of evolution to achieve reliability in master–worker
computing. Concurrency and Computation: Practice and Experience.

FULLBRIGHT, N. R. 2011. Outsourcing in a brave new world: An international survey
of current outsourcing practice and trends. Tech. rep.

GENNARO, R., GENTRY, C., AND PARNO, B. 2010. Non-interactive verifiable comput-
ing: Outsourcing computation to untrusted workers. In CRYPTO. Springer.

GINTIS, H. 2009. Game Theory Evolving: A Problem-Centered Introduction to Model-
ing Strategic Interaction. Princeton University Press.

MONROSE, F., WYCKOFF, P., AND RUBIN, A. D. 1999. Distributed execution with
remote audit. In NDSS.

NIX, R. AND KANTARCIOGLU, M. 2012. Contractual agreement design for enforcing
honesty in cloud outsourcing. In GameSec. Springer.

RASMUSEN, E. 1994. Games and information: an introduction to game theory.
SETTY, S., MCPHERSON, R., BLUMBERG, A. J., AND WALFISH, M. 2012a. Making

argument systems for outsourced computation practical (sometimes). In NDSS.
SETTY, S., VU, V., PANPALIA, N., BRAUN, B., BLUMBERG, A. J., AND WALFISH, M.

X:18 V. Pham et al.

2012b. Taking proof-based verified computation a few steps closer to practicality. In
USENIX Security.

WANG, C., REN, K., AND WANG, J. 2011. Secure and practical outsourcing of linear
programming in cloud computing. In INFOCOM, 2011.

YI, K., LI, F., CORMODE, G., HADJIELEFTHERIOU, M., KOLLIOS, G., AND SRIVAS-
TAVA, D. 2009. Small synopses for group-by query verification on outsourced data
streams. ACM TODS.

APPENDIX
A. PROOF OF PROPOSITION 4.1
We present the proof for the case of γ > 0. The case of γ = 0 follows more simply.
For simplicity, let us fix a feasible fine and compute the solution in terms of f . In the
end, we will show that f = F is indeed optimal.12 We will ignore the constraint of
λ ≥ 0 since it is strictly implied by the constraints in (3c) (the incentive compatibility).
Furthermore, r ≥ H implies r > 0.

We use the Karush-Kuhn-Tucker (KKT) conditions [Bazaraa et al. 2013] to solve
the above nonlinear (non-convex) programming.13 Note that our cost and constraint
functions are all continuously differentiable. We first use the Mangasarian–Fromovitz
constraint qualification (MFCQ) to establish that any minimum must satisfy the KKT
conditions, i.e., KKT are necessary conditions of optimality. In the absence of equality
constraints, the MFCQ condition means that the gradients of the active inequality
constraints are positive-linearly independent at optimum points.

In the special case of R = H, the constraints r ≥ H and r ≤ R imply r = H = R,
and hence, the optimization problem can be rewritten with only λ as a variable, which
is simple to analyse. When R > H, only one of the constraints r − R ≤ 0 and H − r ≤
0 is ever active. We will investigate them one at a time. The gradients of the other
inequality constraints r−R ≤ 0, λ−Λ ≤ 0 and K − rλ− fλ ≤ 0 are respectively: (1, 0),
(0, 1) and (−λ,−r − f). Note that only for f = K/Λ−R, the last three inequalities can
be all active. For this case, the domain of feasible solutions reduces to the singleton
point of r = R, λ = Λ. For f < K/Λ − R, no feasible solution exists. For all other
cases, at most two of the constraints are active at a time, whose gradients can never be
linearly dependent: (1, 0) and (0, 1) are clearly linearly independent, and both elements
of (−λ,−r − f) are strictly negative, hence it is linearly independent from each of the
other two. Now, consider the H − r ≤ 0 constraint whose gradient is (−1, 0). Note that
three of the constraints may be simultaneously active, but their gradient will not be
positive-linearly dependent, because both elements of (−λ,−r−f) are strictly negative.
Hence, the MFCQ normality condition holds.

To systematically obtain the KKT conditions, we introduce the dual multipliers µ1,
µ2, µ3 and µ4, and transform the problem in (3) as follows:

min
r,f,λ,µi

C̄ = r + γλ+ µ1(r −R)+µ2(λ− Λ) + µ3(H − r) + µ4(K − fλ− rλ)

s.t.: primary feasibility: r ≤ R, λ ≤ Λ, r ≥ H, rλ+ fλ ≥ K (7a)
duality feasibility: µ1, µ2, µ3, µ4 ≥ 0, (7b)

complementary slackness: µ1(r −R) = 0, µ2(λ− Λ) = 0, (7c)

12Alternatively, the following simple argument shows from the beginning that f must be at its maximum
value F : Note that the principal can increase the auditing rate λ, or reward r or the fine f in order to
enforce the incentive compatibility constraint. Of these three variables, only increasing the fine is costless
to the principal.
13The nonconvexity arises due to the second inequality in (3c).

Optimal Contracts for Outsourced Computation X:19

µ3(H − r) = 0, µ4(K − fλ− rλ) = 0. (7d)

The first order conditions of optimality are:

∂C̄
∂r

= 0⇔ µ4λ = 1 + µ1 − µ3,
∂C̄
∂λ

= 0⇔ µ4r = γ + µ2 − fµ4. (8)

The full solution as in the proposition with F replaced by f is now derived by straight-
forward investigation of the above conditions. The proof then concludes by noting that
the cost such found is strictly decreasing in f , and hence f∗ = F .

B. PROOF OF PROPOSITION 4.2
The only two constraints in the optimal contract that may change are the incentive
compatibility and participation: (1), (2). The new participation constraint is: u(r− c) ≥
u(z). Due to the increasing property of u(·), this new constraints translates back to
r − c ≥ z, hence no change here.

For analysing the new incentive-compatibility constraint, let us represent the mixed
action of the agent by L(x, y, 1 − x − y) which means making a random guess with
probability x, using the tricky algorithm with probability y, and doing the honest
computation with probability 1 − x − y. With a slight abuse of notation, let X[L] be
the random variable representing the utility of the agent given its mixed action L.
Then the risk-neutral incentive compatibility constraint as given in (1) is ensuring
that EX[L(0, 0, 1)] ≥ EX[L(x, y, 1 − x − y)]. Because u(·) is increasing, this inequality
implies: u (EX[L(0, 0, 1)]) ≥ u (EX[L(x, y, 1− x− y)]). Further, following Jensen’s in-
equality, since u is concave, u (EX[L(x, y, 1− x− y)]) ≥ Eu (X[L(x, y, 1− x− y)]). Note
that X[L(0, 0, 1)] is a deterministic random variable (specifically, payoff of r − c(1) w.p.
one). Hence: u (EX[L(x, y, 1− x− y)]) = Eu (X[L(x, y, 1− x− y)]). Therefore, we have
shown that (1) implies: Eu (X[L(x, y, 1− x− y)]) ≥ Eu (X[L(x, y, 1− x− y)]), which is
the incentive compatibility constraint for a risk-averse agent.

C. PROOF OF PROPOSITION 4.3
Let y represent the probability that the task is outsourced to the agent and the prin-
cipal audits it. For a general choice of x ∈ [0,Λ], the expected cost of the principal
is C = r(1 − x) + γ(x + y). The new incentive compatibility for honest computation
(given the agent receives the task) is: r − c ≥ r(1−x−y)

1−x − fy
1−x ⇔ r ≥ c(1−x)

y − f. An
optimal contract is thus a solution of minr,f,x,y C := r(1 − x) + γ(x + y) subject to:
r ≤ R, f ≤ F, 0 ≤ x, y ≤ Λ, x + y ≤ Λ, r ≥ c, r ≥ c(1−x)

y − f . The rest of the proof
follows similar to that of Proposition 4.1.

D. PROOF OF PROPOSITION 5.3
PROOF. First, we provide an argument that if the optimal contract indeed assigns

a task to more than one agent, then it does not benefit from hiring them agents in
a “sequential” manner. Next, we prove that two-agent contract is the best solution
among all “non-sequential” contracts by converting any given contract to a two-agent
contract and improving the cost of the outsourcer.

Suppose that the optimal contract hired the agents sequentially for a given task.
If in the first step, more than one agent is hired, then there are two possibilities:
either (a) the returned results are the same, in which case, the computation is correct
and there is no point in hiring any more agents and any subsequent steps; or (b) the
returned results are different, which means that at least one of the agents has not
computed the task correctly, in which case, all of the agents can be punished which
includes the wrongdoer, and hence there is no need for any subsequent steps. If in the

X:20 V. Pham et al.

first step only one agent is assigned the task, there are again two possibilities: (a) the
agent is audited, in which case the principal unequivocally knows whether cheating
has occurred and hence, there is no need for subsequent steps; or (b) the returned
result is not audited. In the latter case, the agents that are hired in the next immediate
step can be combined with the single agent hired in the first step and thought of as
they are all hired in a the step. Then, the argument for multiple agents in the first step
can be applied to remove the need for any subsequent steps. Therefore, any optimal
contract is either non-sequential or can be converted to a non-sequential one.

Now, let λj be the (unconditional) probability that agent j is independently audited.
Also let pji be the (conditional) probability that agent j receives the task if i agents are
assigned. The expected cost of the contract to the principal is the following:

C = r

N∑
i=2

iαi + r(1−
N∑
i=1

αi) + γ

N∑
j=1

λj = r

N∑
i=2

(i− 1)αi + r + γ

N∑
j=1

λj

Let ϕj be the probability that agent j receives the task. Then: ϕj =
∑N
i=2 pjiαi +

pj1(1 −
∑N
i=2 αi). The expected utility of agent j for honest computation given that

it has received the message, and given that the rest of the agents are honest, is sim-
ply r − c. Now, let us define ψj to be the probability that agent j is rewarded given
its strategy is to cheat. Given the honesty of all other agents, agent j is rewarded
only if it is the only one that is assigned the task and it is not audited on. This gives:
ψj = pj1(1−

∑N
i=2 αi)− λj . Therefore, the expected utility of agent j for cheating given

it is assigned the task and all other agents are honest is rψj/ϕj−f(ϕj−ψj)/ϕj . Hence,
the incentive compatibility constraint, i.e., uj(H ,H) ≥ uj(C ,H) with H represent-
ing the honest strategy of other N − 1 agents, becomes: r ≥ ϕj

ϕj − ψj
c − f . Taking into

account the incentive compatibility of all of the agent, we have:

r ≥ max
j

∑N
i=2 pjiαi + pj1(1−

∑N
i=2 αi)∑N

i=2 pjiαi + λj

The participation constraint given that the honesty of all agents is established is sim-
ply r − c ≥ 0. Thus, the optimal contract is given by the following optimization:

min
αi,λj ,pji,r,f

C = r

N∑
i=2

(i− 1)αi + r + γ

N∑
j=1

λj

s.t. Nr ≤ R, f ≤ F, λj , pj1, αi ≥ 0, λj ≤ (1−
N∑
i=2

αi)pj1,

N∑
j=1

pji = 1 ∀i,
N∑
j=1

λj +

N∑
i=2

αi ≤ 1,

N∑
j=1

λj ≤ Λ, r ≥ max
j

∑N
i=2 pjiαi + pj1(1−

∑N
i=2 αi)∑N

i=2 pjiαi + λj
, r − c ≥ 0.

Now, suppose there is a claimed solution in which αi > 0 for at least one i ∈ {3, . . . , N}.
In what follows we construct an alternative solution that improves the cost to the
principal in which αi = 0 for all 3 ≤ i ≤ N . Consider this alternative contract:

α̂2 =

N∑
i=2

αi, α̂i = 0 ∀i ≥ 3, λ̂j =

N∑
k=1

λk/N, p̂ji = 1/N ∀i, j, r̂ = r, f̂ = f.

Optimal Contracts for Outsourced Computation X:21

First, we show that given the feasibility of the claimed contract, this alternative con-
tract is also feasible, and subsequently, establish the improvement in the achieved
cost. The only non-trivial constraint to check for feasibility of the above contract is the
incentive compatibility constraint:

r ≥
1
N

∑N
i=2 αi + 1

N (1−
∑N
i=2 αi)/N

1
N

∑N
i=2 αi + 1

N

∑N
j=1 λj

=
1∑N

i=2 αi +
∑N
j=1 λj

(9)

From the feasibility of the claimed contract, we have:

r ≥ max
j

∑N
i=2 pjiαi + pj1(1−

∑N
i=2 αi)∑N

i=2 pjiαi + λj
⇒ r ≥

∑N
j=1

(∑N
i=2 pjiαi + pj1(1−

∑N
i=2 αi)

)
∑N
j=1

(∑N
i=2 pjiαi + λj

)
=

(∑N
i=2

∑N
j=1 pjiαi +

∑N
j=1 pj1(1−

∑N
i=2 αi)

)
(∑N

i=2

∑N
j=1 pjiαi +

∑N
j=1 λj

) =

∑N
i=2 αi + (1−

∑N
i=2 αi)∑N

i=2 αi +
∑N
j=1 λj

which gives (9). This establishes that the new solution is also feasible. In the first line
of the above argument, we used the following simple lemma:

LEMMA D.1. If we have a ≥ maxj∈J
bj
cj

where cj > 0 for all j ∈ J , then a ≥
∑
j∈J bj∑
j∈J cj

.

Now: Ĉ = r̂
∑N
i=2(i− 1)α̂i + r̂ + γλ̂ = r

∑N
i=2 αi + r + γ

∑N
j=1 λj ≤ r

∑N
i=2(i− 1)αi + r +

γ
∑N
j=1 λj = C.

E. PROOF OF PROPOSITION 6.1
PROOF. This result is rather straightforward. We notice that the principal’s be-

haviour is driven by the nonces, as indicated in step 6 and 7 of ContractProtocol. Since
the nonces are generated uniformly randomly from {0, 1}k, the xor-ed version of the
nonces (e.g., N (α)

1 ⊕N (α)
2) are also uniformly random. It is then easy to verify that the

probabilistic behaviour of the principal is statistically indistinguishable from the con-
tract specification. For example, considering the decision of whether one or two agents
are employed, with X is the random variable in that X = 2 with probability α, then

|Pr[
N

(α)
1 ⊕N (α)

2

2k
≤ α]− Pr[X = 2]| = |Pr[

N ←r {0, 1}k

2k
≤ α]− α| = | bα2kc

2k
− α| ≤ 1

2k
(10)

Other parts of the behaviour can be proved similarly.

F. PROOF OF PROPOSITION 6.2
PROOF. Before proceeding with the proof, let us formalise the statement of the

proposition, particularly focusing on the notions of “behaviour”, “deviation”, “caught”.
Firstly, the behaviour of the principal is characterised by how it plans to act (and will
eventually do so) in implementing the contract. A plan of action for the principal essen-
tially captures the principal’s choices for all possible decision-making situations which
might arise while executing the contract. For convenience we denote the set of all pos-
sible plans as Ω, which also contains an element ⊥ representing an invalid plan. The
principal P is supposed to pick a plan ω ∈ Ω according a contract-specific probability
distribution ∆(Ω), but the agents do not know if P actually follows this distribution,
or a different one to its eventual benefit.

X:22 V. Pham et al.

As a result, we decide to let such a plan be picked by the agents rather than the
principal. The protocol for “picking plan” should satisfy the following properties:

— Correctness: Honest execution of the protocol must ensure that the plan is picked
according ∆(Ω).

— Hiding: Before the contract is executed, the agents must know nothing about the
picked plan.

— Revealing: After the contract is executed, there must be a secure way for the plan to
be revealed to the agents.

— No cheating: Suppose that the agents execute the protocol honestly, then by deviating
from it the principal does receive any better benefit.

While the need for correctness is clear, we note that the hiding property guarantees
our original assumption that the agents do not know the principal’s behaviour until
they have carried out and returned the computation. Finally, the revealing and no
cheating properties facilitate detection of the principal’s deviation and/or assurance
that such deviation is not beneficial. Informally, detection of deviation is a process
in which an agent contrasts what it obverses as the principal’s behaviour against a
plan ω ∈ Ω that was picked by the agents. An inconsistency between the plan and the
observed behaviour would indicate to that agent of the principal’s deviation.

Next, we define B to be the set of possible observable behaviours, along with consis-
tency relations ∼1 and ∼2 (for A1 and A2 respectively), such that ω ∼i b⇔ b ∼i ω for all
pairs (ω, b) ∈ Ω×B and i = 1, 2. Here an observable behaviour is a collection of actions
that could be easily and costlessly reproduced (in front of the judges) for verification.
For example, the action of assigning a job to an agent, or giving a reward (shown in
the bank statement) are observable.

Finally, in order to capture the principal’s benefit from deviation, we need to define
its utility for each outcome of the contract execution. Essentially this utility is a func-
tion uP : Ω2 × (B2 \ {(∅, ∅)}) → R, in which a tuple (ω1, ω2, b1, b2) ∈ Ω2 × B2 indicates
the agents’ views on the chosen plan (i.e., ω1 and ω2), and the principal’s chosen be-
haviours regarding each agent (i.e., b1 and b2). Here ∅ denotes the fact that an agent is
not employed, and hence (∅, ∅) should be excluded, since in that case the principal will
need to form a new contract (possibly with different agents).

Our solution relies heavily on commitments, and hence can be described by a tuple
(S, C,D) of setup, commit, and decommit algorithms. Formal security definition of the
above requirements is:

Definition F.1. A secure contract implementation mechanism for ∆(Ω), B, ∼1, ∼2,
and uP : Ω2 × (B2 \ {(∅, ∅)})→ R is a tuple of PPT algorithms (S, C,D) such that:

— Correctness: given the following experiments

Prot(∆(Ω), k) : Ideal(∆(Ω)) :

CK← S(k) ω ← ∆(Ω)

(c1, d1)← CCK(∆(Ω)) b1 ←R {b ∈ B|b ∼1 ω}
(c2, d2)← CCK(∆(Ω)) b2 ←R {b ∈ B|b ∼2 ω}
(ω, b1, b2)← DCK(c1, d1, c2, d2) return(ω, b1, b2)

return(ω, b1, b2)

it must hold that Prot(∆(Ω), k) and Ideal(∆(Ω)) are statistically indistinguishable,
i.e.,

sup
o∈Ω×B2

|Pr[o← Prot(∆(Ω), k)]− Pr[o← Ideal(∆(Ω))]| ≤ ε(k)

Optimal Contracts for Outsourced Computation X:23

— Hiding: for every PPT algorithm A = (A1, A2) (curious agent), there exists a PPT
algorithm A∗ = (A∗1, A

∗
2) satisfying:

Pr

[
CK← S(k); (c, d)← CCK(∆(Ω)); (c′, d′,m)← A1(∆(Ω),CK);ω ←
A2(c,m,∆(Ω),CK); (ω′, b1, b2)← DCK(c, d, c′, d′) :⊥6= ω = ω′

]
− Pr

[
CK← S(k); (c, d)← CCK(∆(Ω)); (c′, d′,m)← A∗1(∆(Ω),CK);

ω∗ ← A∗2(m,∆(Ω),CK); (ω′, b1, b2)← DCK(c, d, c′, d′) :⊥6= ω∗ = ω′

]
≤ ε(k) (11)

— Revealing: for every PPT algorithm P (cheating principal) we have

Pr

[
CK← S(k); (c, d)← CCK(∆(Ω)); (c′, d1, d2)← P (c, d,∆(Ω),CK); (ω1, ·, ·)←

DCK(c, d, c′, d1); (ω2, ·, ·)← DCK(c, d, c′, d2) : ω1 6= ω2 ∧ ω1, ω2 6=⊥

]
14 ≤ ε(k)

(12)

— No cheating: given the following experiment
Real(∆(Ω), k, P) :

CK← S(k)

(c1, d1)← CCK(∆(Ω))

(c2, d2)← CCK(∆(Ω))

(c′1, c
′
2)← P (c1, c2)

if c′1 = c2 ∨ c′2 = c1 return (⊥,⊥, ∅, ∅)15

(d′1, d
′
2, b1, b2)← P (c1, d1, c2, d2)

(ω1, ·, ·)← DCK(c1, d1, c
′
2, d
′
2)

(ω2, ·, ·)← DCK(c′1, d
′
1, c2, d2)

return(ω1, ω2, b1, b2)

it must hold that for all PPT algorithm P (cheating principal)
E[uP (ω1, ω2, b1, b2)|(ω1, ω2, b1, b2)← Real(∆(Ω), k, P); (b1, b2) 6= (∅, ∅)]
− E[uP (ω, ω, b1, b2)|(ω, b1, b2)← Prot(∆(Ω), k); (b1, b2) 6= (∅, ∅)] ≤ ε(k) (13)

The next step before constructing a protocol that satisfies the above definition is to
formalise Ω, B, ∼1, ∼2, and uP . The set of possible plans can be described as

Ω = {A1, A2} × {audit, reward} ∩ {(A1, A2, reward)} × {audit, punish all} ∩ {⊥}.
In other words, a plan must specify the employed agent(s), as well as what to do when
the results are returned. The {audit, punish all} option for two-agent employment spec-
ifies the principal’s action when conflicting results are returned. Also for convenience
we put reward alongside two-agent employment to indicate that when identical results
are returned, the reward is blindly given to the agents. Note that in each plan we do
not consider reward and punishment values, because these figures are set out clearly
in the contract. As a result, we will also not consider them in the observable behaviour,
as below:

B = {A1, A2} × {audit, reward} ∩ {∅}
Our construction of B relies on the assumption that the acts of auditing and blind re-
warding are distinguishable and verifiable to the agents. Note that we do not consider

14The · symbol indicates an irrelevant output which we omit for simplification.
15This is to prevent the cheating principal P to return a commitment back to an agent, pretending that it
comes from another one, as that would clearly nullify all the seeds for selecting ωi ∈ Ω.

X:24 V. Pham et al.

punish all because this cannot happen when both agents perform honest computation.
Next, the consistency relations follow straightforwardly, i.e., for all b ∈ B and ω ∈ Ω:

b ∼i ω ⇐⇒ ω ∼i b⇐⇒
{
b = ∅ ∧ Ai does not appear in ω

b 6= ∅ ∧ ∀t appears in b, t appears in ω

Evidently, such definition of consistency implies that for any ω ∈ Ω and for any i ∈
{1, 2}, there is only one b ∈ B such that b ∼i ω. Finally, the principal’s utility is captured
in the following:

rP (ω1, ω2, b1, b2) = (b1 = ∅ ? 0 : −r) + (b2 = ∅ ? 0 : −r)16 (14)
cP (ω1, ω2, b1, b2) = (audit appears in b1 ? γ : 0) + (audit appears in b2 ? γ : 0) (15)

uP (ω1, ω2, b1, b2) =

{
min(−2r,−r − γ) if b1 6∼1 ω1 ∨ b2 6∼2 ω2,

rP (ω1, ω2, b1, b2) + cP (ω1, ω2, b1, b2) otherwise.
(16)

To prove that ContractProtocol satisfies the above security definition with regard to Ω,
B, ∼1, ∼2, and uP we first convert it into the tuple (S, C,D), utilising the commitment
scheme (Setup,Commit,Open):

proc S(k) : proc DCK(c1, d1, c2, d2) :

CK← Setup(k) c′i||〈αi, βi, λi〉 ← parse(ci) for i ∈ {1, 2}
return(CK) if 〈α1, β1, λ1〉 6= 〈α2, β2, λ2〉 return (⊥, ∅, ∅)

if OpenCK(c′i, di) = ⊥, i ∈ {1, 2} return {⊥, ∅, ∅}

Ni||N (α)
i ||N

(β)
i ||N

(α)
i ← OpenCK(c′i, di) for i ∈ {1, 2}

proc CCK(∆(Ω)) : a = (N1 ⊕N2)(mod 2) = 0 ? A1 : A2

〈α, β, λ〉 ← ∆(Ω) b = (N
(λ)
1 ⊕N (λ)

2)/2k ≤ λ/(1− α) ? audit : reward

(N,N (α), N (β), N (α))←r {0, 1}k if (N
(α)
1 ⊕N (α)

2)/2k ≤ α :

(c, d) = CommitCK(N ||N (α)||N (β)||N (λ)) a = (A1, A2, reward)

return(c||〈α, β, λ〉, d) b = (N
(β)
1 ⊕N (β)

2)/2k ≤ β ? audit : punish all

bi ←R {b ∈ B : b ∼i (a, b)}, for i ∈ {1, 2}
return((a, b), b1, b2)

We prove that this protocol satisfies our desired security properties:

(1) Correctness. This has been proved in Proposition 6.1.
(2) Hiding. We assume that there exists a PPT algorithm A such that no PPT al-

gorithm A∗ can preserve (11) and construct an adversary A′ against the hiding
property of the commitment scheme. First, given the existence of A = (A1, A2),
let A∗ = (A1, A∗2) such that A∗2(m,∆(Ω),CK) = A2(c||〈α, β, γ〉,m,∆(Ω),CK), where
(c, d)← CommitCK(04k). The fact that (11) does not hold thus implies

Pr

[
CK← S(k); (c, d)← CCK(∆(Ω)); (c′, d′,m)← A1(∆(Ω),CK);ω ←
A2(c,m,∆(Ω),CK); (ω′, b1, b2)← DCK(c, d, c′, d′) :⊥6= ω = ω′

]
− Pr

[
CK← S(k); (c, d)← CCK(∆(Ω)); (c′, d′,m)← A1(∆(Ω),CK); (c∗, d∗)← CommitCK(04k);

ω∗ ← A2(c∗||〈α, β, γ〉,m,∆(Ω),CK); (ω′, b1, b2)← DCK(c, d, c′, d′) :⊥6= ω∗ = ω′

]
> ε (17)

16The C-like operator bool ? a : b gives value a if bool = true and b otherwise.

Optimal Contracts for Outsourced Computation X:25

As a result, the attacker A′ against the commitment scheme proceeds as follows:

proc AttackCommitHiding :

CK← Setup(k)

(c, d)← CCK(∆(Ω))

m∗0 ← OpenCK(c, d)

m1 ← 04k

(c′, d′,m)← A1(∆(Ω),CK)

(ω, ·, ·)← D(c, d, c′, d′)

b←r {0, 1}
(c∗, d∗)← CommitCK(mb)

ω′ ← A2(c∗,m,∆(Ω),CK)

b′ = (ω = ω′ ? 0 : 1)

return b = b′

Denote (17) in short as p − q > ε we notice that when b = 0, A2’s view of
AttackCommitHiding experiment is identical to the experiment associated with p.
Thus, in that case Pr[ω = ω′] = p. Similarly, when b = 1 we have Pr[ω 6= ω′] = 1− q.
Therefore,

Pr[AttackCommitHiding = true] = Pr[b = 0, b′ = 0] + Pr[b = 1, b′ = 1]

= Pr[b = 0] Pr[b′ = 0|b = 0] + Pr[b = 1] Pr[b′ = 1|b = 1]

=
1

2
p+

1

2
(1− q)

>
1

2
(q + ε) +

1

2
(1− q) =

1

2
+

1

2
ε

This thus proves that the hiding property of the commitment scheme is broken,
which contradicts with our assumption on its security.

(3) Revealing. Similar to the previous proof, we show that an attacker P on this prop-
erty can be used to construct an attacker P ′ on the binding property of the commit-
ment scheme. The proof, however, is rather straightforward:

proc AttackCommitBinding :

CK← Setup(k)

(c||〈α, β, λ〉, d)← CCK(∆(Ω))

(c′||〈α′, β′, λ′〉, d1, d2)← P (c,∆(Ω),CK)

m1 ← OpenCK(c′, d1)

m2 ← OpenCK(c′, d2)

return (m1 6= m2 ∧m1,m2 6=⊥) ? true : false
By looking at the construction of D we notice that, ω1, ω2 6=⊥ from the experiment
in (12) implies m1,m2 6=⊥. Similarly, the correctness of the commitment scheme
guarantees that ω1 6= ω2 implies m1 6= m2. Thus, if P succeeds in breaking the
revealing property with non-negligible chance, then AttackCommitBinding returns
true with the same probability, i.e., the binding property of the commitment scheme
is broken.

X:26 V. Pham et al.

(4) No cheating. Let ∆(Ω) be the distribution of Ω induced by 〈α, β, λ〉, it is not difficult
to see that
E[uP (ω, ω, b1, b2)|(ω, b1, b2)← Prot(∆(Ω), k); (b1, b2) 6= (∅, ∅)] = −r(1 + α)− γλ+ ε′(k)

(18)
Then, recall from information theory that if a is uniform in {0, 1}x, and b is chosen
with unknown but independent distribution from {0, 1}x then a ⊕ b is uniform in
{0, 1}x. We notice that since the commitment scheme is secure and non-malleable,
c1 and c2 give P negligible advantage in creating c′1 and c′2. Thus, the construction
of D suggests that ω1 and ω2 in experiment Real(∆(Ω), k, P) both have the same
distribution ∆(Ω). Moreover, we either have ω1 = ω2, or that they are statistically
independent, i.e.,

sup
x∈Ω

sup
y,y′∈Ω

|Pr[ω1 = x|ω2 = y]− Pr[ω1 = x|ω2 = y′]| ≤ ε(k)

sup
y∈Ω

sup
x,x′∈Ω

|Pr[ω2 = y|ω1 = x]− Pr[ω2 = y|ω1 = x′]| ≤ ε(k)

Clearly, the former occurs when the principal is honest, i.e., it forwards the mes-
sages between agents. This gives expected utility

−r(1 + α)− γλ+ ε1(k) (19)
where ε′′(k) is a negligible function. The latter occurs when P modifies at least one
of the commitments. Note that from the definition of uP , the principal would not
produce (b1, b2) such that ∅ ∼1 ω1 and ∅ ∼2 ω2, because then its utility is the worst.
Thus, the situations in which P must produce (b1, b2) = (∅, ∅) is when ω1 = (A2, ·)
and ω2 = (A1, ·). It is easy to see that these altogether occur with probability

Pr[ω1 = (A2, ·), ω2 = (A1, ·)] = Pr[ω1 = (A2, ·)] Pr[ω2 = (A1, ·)] + ε2(k)

=
1

2
(1− α) · 1

2
(1− α) + ε3(k)

=
1

4
(1− α)2 + ε3(k)

Similarly, we also have

Pr[ωi = (A3−i, ·)] =
1

2
(1− α) + ε4(k)

Pr[ωi = (Ai, audit)] =
1

2
(1− α)

λ

1− α
=

1

2
λ+ ε5(k)

Pr[ωi = (Ai, reward)] =
1

2
(1− α)(1− λ

1− α
) =

1

2
(1− α− λ) + ε6(k)

Pr[ωi = ((A1, A2, reward), ·)] = α+ ε7(k)

The expected utility of the principal is thus
E[uP (ω1, ω2, b1, b2)|(ω1, ω2, b1, b2)← Real(∆(Ω), k, P); (b1, b2) 6= (∅, ∅)]

=
∑

(ω1,ω2,b1,b2)6=(·,·,∅,∅)

Pr[ω1, ω2, b1, b2]uP (ω1, ω2, b1, b2)

1− Pr[ω1 = (A2, ·), ω2 = (A1, ·)]

=
∑

(ω1,ω2,b1,b2)6=(·,·,∅,∅)

Pr[ω1] Pr[ω2]uP (ω1, ω2, b1, b2)

1− (1− α)2/4
+ ε8(k)

= −4(r + 3rα+ γλ)

(3− α)(1 + α)
+ ε9(k)

Optimal Contracts for Outsourced Computation X:27

< −r(1 + α)− γλ+ ε9(k)

This thus concludes the no-cheating property.

