
Submitted exclusively to the London Mathematical Society
doi:10.1112/0000/000000

Hyper-and-elliptic-curve cryptography

Daniel J. Bernstein and Tanja Lange

Abstract

This paper introduces “hyper-and-elliptic-curve cryptography”, in which a single high-security
group supports fast genus-2-hyperelliptic-curve formulas for variable-base-point single-scalar
multiplication (e.g., Diffie–Hellman shared-secret computation) and at the same time supports
fast elliptic-curve formulas for fixed-base-point scalar multiplication (e.g., key generation) and
multi-scalar multiplication (e.g., signature verification).
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1. Introduction

We would very much like to see forward secrecy become the norm and hope that our
deployment serves as a demonstration of the practicality of that vision.

—“Protecting data for the long term with forward secrecy”, 22 November 2011 [38]

Forward secrecy is just the latest way in which Twitter is trying to defend and protect
the user’s voice. —“Forward secrecy at Twitter”, 22 November 2013 [31]

The classic Diffie–Hellman protocol [17, Section 3] sets up secure communication channels
between any number of users as follows. Alice has a long-term secret key a and a long-term
public key ga, where g is a standard element of the multiplicative group of a finite field.
Similarly, Bob has a long-term secret key b and a long-term public key gb; Charlie has a long-
term secret key c and a long-term public key gc; etc. Alice and Bob each compute gab, which
they use as a long-term key for secret-key cryptography to efficiently encrypt and authenticate
messages. Alice and Charlie encrypt using gac; Bob and Charlie encrypt using gbc; etc.

This protocol never erases keys, so it does not provide forward secrecy. An attacker who steals
Bob’s computer, after recording all network communication, sees gab and gbc and decrypts
Bob’s past messages, even if Bob has erased all of the messages. Bob cannot stop this attack
by erasing gab and gbc: the attacker simply recomputes gab and gbc from b. Bob cannot erase
b: Bob needs b to compute shared secrets with new users.

The obvious way to provide forward secrecy is to further encrypt messages using an ephemeral
variant of the Diffie–Hellman protocol. Alice and Bob start by setting up a secure channel as
above, using Alice’s long-term public key ga and Bob’s long-term public key gb. Then, for
each message from Alice to Bob, Alice generates a one-time secret key r and sends gr to
Bob through the secure channel; Bob also generates a one-time secret key s and sends gs to
Alice through the secure channel. Alice encrypts the message using grs, sends the ciphertext
C through the secure channel, and throws away r and grs. Bob decrypts the message using
grs and throws away s and grs. An attacker who steals Bob’s computer still has the power to
decrypt the original channel, obtaining gr, gs, and C, but there is no obvious way to recover
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the original message. Of course, the attack compromises the confidentiality and integrity of
future messages, but past messages are still protected.

Notice that the ephemeral Diffie–Hellman protocol has different performance characteristics
from the original protocol. In the original protocol, the dominant computation is a variable-
base exponentiation a, gb 7→ gab: for U users Alice does U variable-base exponentiations gab,
gac, etc. and only one fixed-base exponentiation a 7→ ga. In M runs of the ephemeral protocol,
Alice performs M fixed-base exponentiations r 7→ gr and M variable-base exponentiations
r, gs 7→ grs, so Alice benefits significantly from speedups in either type of exponentiation. One
can consider intermediate possibilities, such as reusing an ephemeral key for several messages,
but forward secrecy is strongest when a key is discarded immediately after its first use.

1.1. Elliptic curves and hyperelliptic curves

Modern cryptography replaces the multiplicative groups in DH with elliptic-curve groups, as
proposed by Miller [40] and independently by Koblitz [36]. This loses an important constant
factor in the number of field operations required for a group operation, but it gains much
more from avoiding index-calculus attacks. Specifically, to achieve a security level around 2128,
elliptic-curve groups use base fields of size around 2256, while multiplicative groups need base
fields of size around 23000. See, e.g., [28].

The recent paper [6] by Bos, Costello, Hisil, and Lauter shows that for high-security DH
one obtains even better performance from a different option: Jacobian groups of hyperelliptic
curves of genus 2. The main advantage of genus 2 over genus 1 is that a much smaller base
field, specifically a field of size around 2128, produces a group of size around 2256 and a security
level around 2128. Reducing the number of bits in the field by a factor of 2 typically produces
a speedup factor around 3, depending on various details of field arithmetic. The disadvantage
of genus 2 is that each group operation requires many more field operations; but for Gaudry’s
[24] Kummer-surface formulas this loss factor is only slightly above 2. Even better, 24% of
Gaudry’s field multiplications are multiplications by curve parameters that can be chosen to
be small; a secure small-parameter genus-2 curve was announced by Gaudry and Schost [27]
after a massive point-counting computation. A further advantage of genus 2, exploited in a very
recent paper [4] by Bernstein, Chuengsatiansup, Lange, and Schwabe, is a synergy between
the structure of Gaudry’s formulas and the availability of vector operations in modern CPUs.

One can speed up genus 1 using “non-constant-time” addition chains. However, non-constant-
time computations are a security problem; see, e.g., the attacks cited in [4, Section 1.2].

One can also speed up genus 1 by applying endomorphisms on suitably chosen curves: e.g.,
rewriting aP as a0P + a1φ(P ) where a0 and a1 have half as many bits as a. See, e.g., [19] and
[44]. Analogous ideas in genus 2 seem less effective; see [7]. However, endomorphisms in this
context are patented, and are thus not helpful for users concerned with the real-world cost of
cryptography. Furthermore, even with this speedup, genus 1 is not as fast as genus 2; see [4].

1.2. Hyperelliptic curves and forward secrecy

The comparison between genus 1 and genus 2 changes when one switches from classic DH to
ephemeral DH. Genus 2 is the speed leader for variable-base scalar multiplication r, sG 7→ rsG,
but genus 1 is the speed leader for fixed-base scalar multiplication r 7→ rG, and for forward
secrecy both operations are important. There is some speedup from variable base to fixed base
in genus 2 (see [6] for a detailed analysis), but there is a much larger speedup in genus 1. We
summarize the relative time required for each operation as follows:

fixed-base genus 1 < fixed-base genus 2 < variable-base genus 2 < variable-base genus 1.

Given this picture, it might seem obvious that one cannot simultaneously take advantage of
the fastest fixed-base operations and the fastest variable-base operations. Choosing genus 2
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means slowing down key generation. Choosing genus 1 means slowing down the computation
of a shared secret.

To resolve this problem we propose using public keys in a group that can be viewed
simultaneously as a genus-1 group and a genus-2 group. More precisely, assume that we have
• an elliptic curve E over Fp2 , specifically (for speed and simplicity) an Fp2-complete

Edwards curve;
• the Jacobian J of a genus-2 hyperelliptic curve over Fp, specifically one supporting a fast

(i.e., small-parameter) Kummer surface; and
• an efficient Fp-isogeny from W to J , where W is the Weil restriction of E from Fp2 to Fp.

Setting up this situation is the main work in this paper. Alice then uses fast elliptic-curve
formulas for fixed-base scalar multiplication to generate a public key rG in E(Fp2) = W (Fp).
Either Alice or Bob applies the isogeny to rG, obtaining an equivalent public key in J(Fp).
Bob then uses fast Kummer-surface formulas to compute a shared secret in J(Fp). We suggest
having Bob apply the isogeny, since uncompressing a compressed elliptic-curve point is simpler
than uncompressing a compressed Kummer-surface point.

Of course, one can also use the dual isogeny to map from J(Fp) back to E(Fp2). However, it
seems natural to start with E(Fp2), since elliptic-curve formulas are very fast for key generation.
The obvious general strategy is to use Edwards coordinates on E(Fp2) for computations where
those formulas are fastest, and to use Kummer coordinates on J(Fp) for computations where
those formulas are fastest, using the isogenies to convert whenever necessary.

Any further evolution of coordinate systems and formulas can of course be integrated into
the same picture. It seems reasonable to speculate that neither genus 1 nor genus 2 will end
up as a clear winner, so the ability to mix genus 1 and genus 2 will remain useful.

1.3. Further applications

Our approach is applicable to many contexts in which different types of scalar multiplication
are mixed; forward secrecy is obviously an important application but there are other
applications. For example, there are safe methods to use a single element of a group of order
approximately 2256 as a long-term public key for both DH and signatures; see, e.g., [29], [45],
and [13]. Using two separate keys, one for DH and one for signatures, means transmitting
both of those keys, and in some settings also transmitting a signature of the DH key under
the signing key; a single key is clearly much more satisfactory. With our techniques, this single
key allows fast genus-1 formulas for key generation, signing, and signature verification while
simultaneously allowing fast genus-2 formulas for DH shared-secret computation. If signing and
signature verification are much more frequent than encryption then the genus-1 operations will
be dominant, but in general one should expect many different levels of balance between the
genus-1 operations and the genus-2 operations.

A further advantage of genus 1 for signature verification is that there are no exceptional
cases in the standard addition law for E(Fp2) when E is an Fp2-complete Edwards curve.
For comparison, all fast genus-2 addition laws in the literature have exceptional cases. Using
genus-1 addition by default, and moving to a genus-2 ladder for shared-secret computation,
means that we avoid all of these exceptional cases.

1.4. Notes regarding terminology

We use the geometric definition of an isogeny as a rational map such that 0 maps to 0, all
geometric fibers (preimage sets of points over the algebraic closure) are finite, and all geometric
fibers are nonempty. (In particular, a constant map from W to J is not an isogeny.) If ι is an
isogeny then ι is defined everywhere and is a group homomorphism. This does not mean that
any particular rational functions defining ι are defined everywhere; recall that a rational map
is, by definition, an equivalence class of almost-everywhere-defined rational functions.
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It is slightly sloppy to refer to “the” Weil restriction. There are actually many different
choices of Weil restrictions, corresponding to different choices of a basis (b0, b1) for Fp2 over Fp:
specifically, the affine part of W is the set of (x0, x1, y0, y1) such that (x0b0 + x1b1, y0b0 + y1b1)
is a point on E. Modifying (b0, b1) produces a linearly isomorphic but not identical variety. If we
were defining and evaluating the efficiency of Fp-algebraic algorithms for computing the rational
maps that appear in this paper then we would need this extra level of mathematical precision;
fortunately, all of the maps that we present are clearly much faster than scalar multiplication,
so a detailed cost evaluation is unnecessary. Related choices do become important in Section 6,
where we choose ∆ and lift the whole picture to Q(

√
∆).

2. Weierstrass to genus-2 Jacobian: efficient isogenies for Scholten curves

We do not claim credit for the fact that one can construct elliptic curves over Fp2 isogenous
(after restriction of scalars) to genus-2 Jacobians over Fp: we reuse a construction published
by Scholten ten years ago in [48]. Scholten credits to Diem the case that E has full 2-torsion
defined over Fp2 , but Scholten’s construction is simpler than Diem’s construction.

Scholten’s goal was to write down hyperelliptic curves that allowed fast point-counting. By
constructing curves so that the Weil restriction W of the elliptic curve from Fp2 to Fp is
isogenous to the Jacobian J of a genus-2 hyperelliptic curve over Fp, Scholten guaranteed that
#J(Fp) = #W (Fp) = #E(Fp2). See [48, Lemma 2.1]. Counting points on elliptic curves is
reasonably fast, producing #E(Fp2) and thus the desired #J(Fp).

The idea of fast point-counting on genus-2 curves by constructive Weil restriction was
introduced by Gaudry, Hess, and Smart in [26], but the constructions in [26] were limited to
characteristic 2; odd characteristic was called “hard” in [26, Section 7.2] and “rather difficult”
in [23, Section 7]. Various odd-characteristic constructions appeared in [14], [15], [48], [51], and
[16]. Special cases with extra small-norm endomorphisms were used in [47] and [21]. Many of
these papers feature “Weil-descent attacks” and “cover attacks” as another application of Weil
restriction, as suggested by Frey in [22]; Weil-descent attacks using Scholten curves appeared
in [2], [41], and [33].

We do claim credit for the idea of using an isogeny to convert keys between E and J , making
cryptography faster. At this point one can and should object that [48, Lemma 2.1] merely
guarantees the existence of an isogeny from W to J ; it does not guarantee the existence of an
efficient isogeny from W to J . For most pairs of isogenous Abelian varieties, the fastest isogenies
known are much slower than scalar multiplication. (This was not an issue for Scholten: any
isogeny, no matter how slow, is adequate to show that #J(Fp) = #W (Fp). It was also not a
serious issue for attack papers such as [2]: the use of J in [2] was for carrying out a Weil-descent
attack against E, and other steps of this attack were much more expensive.) This could be
fatal for our idea of applying an isogeny on demand.

The main challenge addressed in this section is to show that W and J are efficiently
isogenous. We exhibit efficient formulas for an isogeny ι : W → J and efficient formulas for an
isogeny ι′ : J →W , and show that the composition of ι′ and ι is the doubling map. Section 3
explains how we computed these formulas. Sections 4, 5, and 6 tackle additional challenges in
curve construction, with the goal of accelerating group operations in E(Fp2) and in J(Fp).

2.1. Review of the Scholten curves

Fix an odd prime p. Scholten’s construction begins with an elliptic curve E over Fp2

of the form y2 = rx3 + sx2 + spx+ rp, where r, s ∈ Fp2 . Scholten also takes two additional
parameters α, β ∈ Fp2 such that αp+1 = 1, β /∈ Fp, and r(αβp)6 + s(αβp)4β2 + sp(αβp)2β4 +
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rpβ6 6= 0, and observes that

r(α− αβpz)6 + s(α− αβpz)4(1− βz)2 + sp(α− αβpz)2(1− βz)4 + rp(1− βz)6 = ω2f

for some nonzero ω ∈ Fp2 and some monic degree-6 polynomial f ∈ Fp[z]. Scholten proves that
the Jacobian J of the hyperelliptic curve y2 = f(z) over Fp is isogenous to the Weil restriction
W of E.

Note that Scholten has more parameters than necessary: replacing (r, s, α, β) with
(rα3, sα, 1, β) produces an isomorphic elliptic curve and the same hyperelliptic curve. We
therefore simplify the formulas by taking α = 1: from now on

r(1− βpz)6 + s(1− βpz)4(1− βz)2 + sp(1− βpz)2(1− βz)4 + rp(1− βz)6 = ω2f

and r(βp)6 + s(βp)4β2 + sp(βp)2β4 + rpβ6 6= 0.
Scholten showed in [48, Section 3] that all elliptic curves over Fp2 with full 2-torsion are

isogenous to Scholten curves. Any general security problem with the algebraic structure of
Scholten curves would therefore imply serious trouble for ECC over Fp2 .

Note that the characteristic polynomial for J is even, since χJ(t) = χE(t2). This automat-
ically implies twist-security for J : the twist of J has the same number of points as J , even
though J is usually not supersingular. This does not imply twist-security for E.

2.2. A numerical example

We use the following cryptographically strong example as a running example throughout
the paper. Most of our computations used the free Sage [49] computer-algebra system, but
we are not aware of any free software for fast point-counting on elliptic curves over quadratic
extensions of large prime fields, so for point-counting we used the Magma [8] computer-algebra
system.

Define p as the prime 2127 − 309. Note that p ∈ 3 + 4Z; define Fp2 as Fp[i]/(i2 + 1). Define
r = (7 + 4i)2 = 33 + 56i and s = 159 + 56i; note that rp = 33− 56i and sp = 159− 56i. The
elliptic curve y2 = rx3 + sx2 + spx+ rp has 16` points over Fp2 , where ` is the prime number

1809251394333065553493296640760748553649194606010814289531455285792829679923

slightly below 2250, providing roughly 2125 security against conventional discrete-logarithm
attacks. The order of ` in (Z/p)∗ is 12152941675747802266549093122563150387, providing
ample security against index calculus. The prime factorization of the number of points on
the twist of this curve over Fp2 is

22 · 3 · 7 · 48862393571594394667013

· 9001629735747854493654841 · 783508531819706590448910673,

providing roughly 275 security against active twist attacks.
Define β = i and ω = 54570365625747840813365101134244818327. Then β2 = −1, (βp)2 =

−1, and ω2 = −384 in Fp, so r(βp)6 + s(βp)4β2 + sp(βp)2β4 + rpβ6 = −r − s− sp − rp =
−384 = ω2. The Scholten curve with parameters r, s, β is y2 = f(z) with f(z) = z6 + (7/3)z5 −
(7/4)z4 − (14/3)z3 + (7/4)z2 + (7/3)z − 1.

2.3. Explicitly mapping W to J

Figures 2.4 and 2.5 exhibit formulas for our efficient rational map ι from the Weil restriction
of an elliptic curve to the Jacobian of a Scholten curve. See Section 2.6 for a proof that this
rational map is an isogeny.

These formulas assume that the elliptic curve is y2 = rx3 + sx2 + spx+ rp with (r, s) =
(33 + 56i, 159 + 56i) over Fp2 = Fp[i]/(i2 + 1) for some prime p ∈ 3 + 4Z and that β = i; this
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R1 = ZZ
P1.<polyi> = R1[]
R2.<i> = P1.quotient(polyi^2+1)

r,s,b = 33+56*i,159+56*i,i
rp,sp,bp = 33-56*i,159-56*i,-i

ww = R1(r*bp^6+s*bp^4*b^2+sp*bp^2*b^4+rp*b^6)
R2z.<z> = R2[]
wwf = r*(1-bp*z)^6+s*(1-bp*z)^4*(1-b*z)^2+sp*(1-bp*z)^2*(1-b*z)^4+rp*(1-b*z)^6
f = wwf.change_ring(R1) / ww

P1.<X0,X1,Y0,Y1> = R1[]
P2 = P1.change_ring(R2)
X = P2(X0)+P2(X1)*i
Yw = P2(Y0)+P2(Y1)*i
curve = r*X^3+s*X^2+sp*X+rp-ww*Yw^2
curvereal = curve.map_coefficients(lambda u:u[0]).change_ring(R1)
curveimag = curve.map_coefficients(lambda u:u[1]).change_ring(R1)
assumptions = (curvereal,curveimag)*P1

u0num = (240*X0^3*Y0 + 1787*X0^2*X1*Y0 - 1248*X0*X1^2*Y0 - 297*X1^3*Y0 - 224*X0^3*Y1
+ 612*X0^2*X1*Y1 + 1860*X0*X1^2*Y1 - 876*X1^3*Y1 + 2862*X0*X1*Y0 - 1952*X0^2*Y1
+ 744*X0*X1*Y1 + 1952*X1^2*Y1 - 240*X0*Y0 + 535*X1*Y0 - 3232*X0*Y1 + 372*X1*Y1
- 1504*Y1)

u0den = (504*X0^3*Y0 + 1339*X0^2*X1*Y0 - 984*X0*X1^2*Y0 - 745*X1^3*Y0 - 818*X0^3*Y1
+ 1620*X0^2*X1*Y1 + 1266*X0*X1^2*Y1 + 132*X1^3*Y1 - 264*X0^2*Y0 + 3758*X0*X1*Y0
+ 264*X1^2*Y0 - 1358*X0^2*Y1 - 1272*X0*X1*Y1 + 1358*X1^2*Y1 - 2040*X0*Y0 + 1879*X1*Y0
+ 818*X0*Y1 - 2652*X1*Y1 - 1272*Y0 + 1358*Y1)

u1num = 2*Y1*(-56*X0^3 - 33*X0^2*X1 - 56*X0*X1^2 - 33*X1^3 - 56*X0^2 - 66*X0*X1
+ 56*X1^2 + 56*X0 - 93*X1 + 56)

u1den = (56*X0^3*Y0 + 99*X0^2*X1*Y0 - 168*X0*X1^2*Y0 - 33*X1^3*Y0 - 66*X0^3*Y1
+ 224*X0^2*X1*Y1 + 66*X0*X1^2*Y1 + 56*X0^2*Y0 + 318*X0*X1*Y0 - 56*X1^2*Y0
- 126*X0^2*Y1 + 126*X1^2*Y1 - 56*X0*Y0 + 159*X1*Y0 + 66*X0*Y1 - 224*X1*Y1
- 56*Y0 + 126*Y1)

u0 = u0num / u0den
u1 = u1num / u1den

Figure 2.4. Together with Figure 2.5: Formulas for a rational map ι : W → J .

generalizes our example from Section 2.2. The Scholten curve is again y2 = z6 + (7/3)z5 −
(7/4)z4 − (14/3)z3 + (7/4)z2 + (7/3)z − 1 and ω ∈ Fp2 satisfies ω2 = −384.

The inputs to ι are the coordinates (X0, X1, Y0, Y1) of a point (X0 +X1i, ω(Y0 + Y1i)) on the
elliptic curve. The outputs are the Mumford coordinates (u0, u1, v0, v1) of a point on J ; recall
that the affine part of J is defined by the equation (v1z + v0)2 − f mod z2 + u1z + u0 = 0.
What the figures display is actually a Sage script verifying that (u0, u1, v0, v1) satisfies this
equation. The script takes 25 seconds to run using Sage 6.1.1 on an Intel Xeon E3-1275 v3.

The exceptional cases of these formulas are not obvious without further calculation. One
can see from the monomials appearing in the denominators that the denominators are not
generically 0 over Z, but this does not rule out primes of bad reduction for which the
denominators are always 0. We changed Z[i]/(i2 + 1) to Fp[i]/(i2 + 1) with p = 217 − 1, added
a check that the ideal of assumptions is prime, and ran the script again; this took 3 seconds.
We then changed p to 2127 − 309, removed the primality check (since Sage’s tests for ideal
primality use Singular and are limited to small characteristic), and ran the script again; this
was vastly slower.

See Section 3 for an explanation of how we computed the polynomials that appear in
Figures 2.4 and 2.5. We see no obstacle to computing analogous polynomials given any prime
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v0num = 4*(-3136*X0^5*Y0 - 5544*X0^4*X1*Y0 - 2178*X0^3*X1^2*Y0 - 3696*X0^2*X1^3*Y0
+ 958*X0*X1^4*Y0 + 1848*X1^5*Y0 + 1848*X0^5*Y1 - 5183*X0^4*X1*Y1 - 3696*X0^3*X1^2*Y1
- 6272*X0^2*X1^3*Y1 - 5544*X0*X1^4*Y1 - 1089*X1^5*Y1 + 9472*X0^4*Y0 - 14112*X0^3*X1*Y0
+ 6534*X0^2*X1^2*Y0 - 28896*X0*X1^3*Y0 + 5250*X1^4*Y0 + 8904*X0^4*Y1 + 8316*X0^3*X1*Y1
+ 11088*X0^2*X1^2*Y1 + 128*X0*X1^3*Y1 - 12600*X1^4*Y1 + 44160*X0^3*Y0
- 28560*X0^2*X1*Y0 + 56570*X0*X1^2*Y0 - 35280*X1^3*Y0 + 7056*X0^3*Y1
+ 19078*X0^2*X1*Y1 + 13776*X0*X1^2*Y1 + 31488*X1^3*Y1 + 55808*X0^2*Y0 - 50400*X0*X1*Y0
+ 51458*X1^2*Y0 - 7056*X0^2*Y1 + 8316*X0*X1*Y1 - 21168*X1^2*Y1 + 32704*X0*Y0
- 30408*X1*Y0 - 8904*X0*Y1 + 6337*X1*Y1 + 8448*Y0 - 1848*Y1)

v1num = 4*(-1848*X0^5*Y0 - 3267*X0^4*X1*Y0 + 3696*X0^3*X1^2*Y0 - 10628*X0^2*X1^3*Y0
+ 5544*X0*X1^4*Y0 - 7361*X1^5*Y0 + 5314*X0^5*Y1 - 5544*X0^4*X1*Y1 + 14722*X0^3*X1^2*Y1
- 3696*X0^2*X1^3*Y1 + 9408*X0*X1^4*Y1 + 1848*X1^5*Y1 - 16296*X0^4*Y0 + 8060*X0^3*X1*Y0
+ 33264*X0^2*X1^2*Y0 - 16504*X0*X1^3*Y0 + 5208*X1^4*Y0 + 5378*X0^4*Y1
- 43680*X0^3*X1*Y1 + 31098*X0^2*X1^2*Y1 + 672*X0*X1^3*Y1 + 1156*X1^4*Y1
- 50064*X0^3*Y0 + 14734*X0^2*X1*Y0 + 29232*X0*X1^2*Y0 + 19212*X1^3*Y0 - 6540*X0^3*Y1
- 71568*X0^2*X1*Y1 - 11018*X0*X1^2*Y1 + 7728*X1^3*Y1 - 64176*X0^2*Y0 + 8060*X0*X1*Y0
- 20496*X1^2*Y0 - 3068*X0^2*Y1 - 20832*X0*X1*Y1 - 23794*X1^2*Y1 - 34104*X0*Y0
+ 8253*X1*Y0 + 1226*X0*Y1 + 12600*X1*Y1 - 5544*Y0 - 2310*Y1)

vden = (7492*X0^6 - 18480*X0^5*X1 + 32449*X0^4*X1^2 - 7392*X0^3*X1^3 + 26046*X0^2*X1^4
+ 11088*X0*X1^5 + 1089*X1^6 + 22904*X0^5 - 9744*X0^4*X1 + 4612*X0^3*X1^2
- 65184*X0^2*X1^3 + 14460*X0*X1^4 + 3696*X1^5 + 50688*X0^3*Y0^2 - 86016*X0^2*X1*Y0^2
+ 50688*X0*X1^2*Y0^2 - 86016*X1^3*Y0^2 + 4028*X0^4 + 101472*X0^3*X1 + 21758*X0^2*X1^2
- 114912*X0*X1^3 + 8518*X1^4 - 50688*X0^2*Y0^2 + 172032*X0*X1*Y0^2 + 50688*X1^2*Y0^2
- 45808*X0^3 + 84000*X0^2*X1 + 159476*X0*X1^2 - 70560*X1^3 - 345600*X0*Y0^2
+ 258048*X1*Y0^2 - 30532*X0^2 - 82992*X0*X1 + 113481*X1^2 - 244224*Y0^2 + 22904*X0
- 74256*X1 + 19012)

v0 = v0num / vden
v1 = v1num / vden

G.<U0,U1,V0,V1,f0,f1,f2,f3,f4,f5> = ZZ[]
Gz.<z> = G.fraction_field()[]
jac = ((V1*z+V0)^2 - (z^6+f5*z^5+f4*z^4+f3*z^3+f2*z^2+f1*z+f0)) % (z^2+U1*z+U0)
jac0 = G(jac[0])
jac1 = G(jac[1])

thisjac0 = jac0(u0,u1,v0,v1,f[0],f[1],f[2],f[3],f[4],f[5])
thisjac1 = jac1(u0,u1,v0,v1,f[0],f[1],f[2],f[3],f[4],f[5])
print numerator(thisjac0) in assumptions
print numerator(thisjac1) in assumptions
print not denominator(thisjac0) in assumptions
print not denominator(thisjac1) in assumptions

Figure 2.5. Continuation of Figure 2.4.

p, any shape of Fp2 , and any choices of r, s, β in Section 2.1. Presumably a larger computation
along the same lines would produce a universal formula for ι (with, e.g., the trace of r appearing
in the universal formula at the four positions where 66 appears as a coefficient in Figure 2.4),
incidentally proving that ι does in fact exist in general, but what we actually need is merely
the ability to find ι for whichever curves we decide to use in Section 1.

2.6. Explicitly mapping J to W

Our strategy for proving that ι is an isogeny is to exhibit another rational map ι′ : J →W ,
to symbolically compute ι′ ◦ ι, and to observe that ι′ ◦ ι matches the doubling map on W . All
geometric fibers of the doubling map are nonempty and finite, so the same is true of ι′ and ι.
The map ι takes 0 to 0 (see below), so 0 = 2 · 0 = ι′(ι(0)) = ι′(0), so both ι and ι′ are isogenies.

The fact that ι is an isogeny implies what we actually need in Section 1: namely, ι is a
group homomorphism. In particular, if our explicit rational functions for ι are defined for
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R.<b,bp,r,rp,s,sp,u0,u1,v0,v1> = ZZ[]
Rz.<z> = R[]
ww = r*bp^6+s*bp^4*b^2+sp*bp^2*b^4+rp*b^6
wwf = r*(1-bp*z)^6+s*(1-bp*z)^4*(1-b*z)^2+sp*(1-bp*z)^2*(1-b*z)^4+rp*(1-b*z)^6
jac = (ww*(v1*z+v0)^2 - wwf) % (z^2+u1*z+u0)
assumptions = (jac[0],jac[1])*R

bT = b+bp
bN = b*bp
D = b^2*u0+b*u1+1
Z = (bp-b)*(2*bN*u0+bT*u1+2)*D
Lw = (b^3*(u0*v0+u0*u1*v1-u1^2*v0)+3*b^2*(u0*v1-u1*v0)-3*b*v0-v1)/Z
# implicitly: L = w*Lw
F = 2*bN^2*u0^2+2*bN*bT*u0*u1+(b^2+bp^2)*u1^2-2*(b^2+bp^2-4*bN)*u0+2*bT*u1+2
X = (ww*Lw^2-s)/r - F/D^2
Yw = (bN*bp*(u0*v0+u0*u1*v1-u1^2*v0)+bp*(b+bT)*(u0*v1-u1*v0)-(bp+bT)*v0-v1)/Z-Lw*X
# implicitly: Y = w*Yw

curve = r*X^3+s*X^2+sp*X+rp-ww*Yw^2
denom = r*Z^6
print R(denom*curve) in assumptions
print not denom in assumptions

Figure 2.7. Formulas for a rational map ι′ : J →W .

P,Q, P +Q ∈W (Fp) then they produce ι(P ), ι(Q), ι(P +Q) = ι(P ) + ι(Q) respectively in
J(Fp). One can directly prove this fact by a straightforward computation without any reference
to the theory of isogenies. If we were applying ι to non-random inputs then we would need
a complete system of formulas, supplementing our rational functions with further formulas to
handle exceptional cases.

Figure 2.7 exhibits formulas for ι′. These formulas are stated in more generality than our
formulas for ι: they apply to all of the curves reviewed in Section 2.1. Section 3 explains how we
computed these formulas. The inputs to ι′ are Mumford coordinates (u0, u1, v0, v1) for a point
on J , and the outputs are four coordinates for a point on W . The script actually produces
(X,Y ) using arithmetic over Fp2 and verifies that (X,Y ) satisfies the curve equation for E;
there is no need to give separate names to the four W coordinates that correspond to (X,Y ).
The script takes 170 seconds to run.

The exceptional cases of these formulas are clear from inspection, since all denominators
are given in factored form as products of constants and linear functions. Specifically, there are
divisions by β2u0 + βu1 + 1, by 2ββpu0 + (βp + β)u1 + 2, and by the nonzero constants r and
βp − β.

Figure 2.8 is a Sage script verifying that applying ι to a generic point P on W , and ι′ to the
result, produces exactly 2P . The script takes 78 seconds for p = 217 − 1; it is much slower for
p = 2127 − 309 and for Z.

The only remaining step is to check that ι(0) = 0. One tedious approach is to replace X0 +
X1i and Y0 + Y1i by (X0 +X1i)/(Z0 + Z1i) and (Y0 + Y1i)/(Z0 + Z1i) in Figures 2.4 and 2.5,
multiply numerators and denominators by appropriate powers of Z0 + Z1i, and substitute
Y0 + Y1i = 1, obtaining rational functions defined on a patch of W that includes 0; similarly
shift the patch of J to include 0; and then observe by substitution that 0 maps to 0. We avoid
the shifts of formulas by taking three specific affine points P,Q, P +Q for which the original
formulas are defined and checking that ι(P ) + ι(Q) = ι(P +Q). Doubling is the composition
of ι′ and ι, so it is also the composition of Q 7→ ι′(Q+ ι(0)) and P 7→ ι(P )− ι(0); the second
map P 7→ ι(P )− ι(0) is now forced to be an isogeny, so it is a group homomorphism, so
ι(P +Q) = ι(P ) + ι(Q)− ι(0).
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p = 2^17-1
# p = 0 for generic

if p:
R1 = GF(p)
P1.<polyi> = R1[]
R2.<i> = GF(p^2,name=’i’,modulus=polyi^2+1)

else:
R1 = ZZ
P1.<polyi> = R1[]
R2.<i> = P1.quotient(polyi^2+1)

r,s,b = 33+56*i,159+56*i,i
rp,sp,bp = 33-56*i,159-56*i,-i

ww = R1(r*bp^6+s*bp^4*b^2+sp*bp^2*b^4+rp*b^6)
R2z.<z> = R2[]
wwf = r*(1-bp*z)^6+s*(1-bp*z)^4*(1-b*z)^2+sp*(1-bp*z)^2*(1-b*z)^4+rp*(1-b*z)^6
f = wwf.change_ring(R1) / ww

P2.<X0,X1,Y0,Y1> = R2[]
X = X0+X1*i
Yw = Y0+Y1*i
curve = r*X^3+s*X^2+sp*X+rp-ww*Yw^2
if p:
curvereal = curve.map_coefficients(lambda u:u.polynomial()[0])
curveimag = curve.map_coefficients(lambda u:u.polynomial()[1])

else:
curvereal = curve.map_coefficients(lambda u:u[0])
curveimag = curve.map_coefficients(lambda u:u[1])

assumptions = (curvereal,curveimag)*P2
if p > 0 and p < 2^20: # unimplemented for large p in Sage (via Singular)
print assumptions.is_prime()

# Weierstrass doubling:
Xorig = X
Yworig = Yw
la = (3*r*Xorig^2+2*s*Xorig+sp)/(2*ww*Yworig)
Xdbl = (ww*la^2-s)/r - 2*Xorig
Ywdbl = la*(Xorig-Xdbl) - Yworig

# isogeny from W to J:
u0num = (240*X0^3*Y0 + 1787*X0^2*X1*Y0 - 1248*X0*X1^2*Y0 - 297*X1^3*Y0 - 224*X0^3*Y1
+ 612*X0^2*X1*Y1 + 1860*X0*X1^2*Y1 - 876*X1^3*Y1 + 2862*X0*X1*Y0 - 1952*X0^2*Y1
+ 744*X0*X1*Y1 + 1952*X1^2*Y1 - 240*X0*Y0 + 535*X1*Y0 - 3232*X0*Y1 + 372*X1*Y1
- 1504*Y1)

u0den = (504*X0^3*Y0 + 1339*X0^2*X1*Y0 - 984*X0*X1^2*Y0 - 745*X1^3*Y0 - 818*X0^3*Y1
+ 1620*X0^2*X1*Y1 + 1266*X0*X1^2*Y1 + 132*X1^3*Y1 - 264*X0^2*Y0 + 3758*X0*X1*Y0
+ 264*X1^2*Y0 - 1358*X0^2*Y1 - 1272*X0*X1*Y1 + 1358*X1^2*Y1 - 2040*X0*Y0 + 1879*X1*Y0
+ 818*X0*Y1 - 2652*X1*Y1 - 1272*Y0 + 1358*Y1)

u1num = 2*Y1*(-56*X0^3 - 33*X0^2*X1 - 56*X0*X1^2 - 33*X1^3 - 56*X0^2 - 66*X0*X1
+ 56*X1^2 + 56*X0 - 93*X1 + 56)

Figure 2.8. Together with Figure 2.9: Verification that doubling on W matches the composition of
ι′ : J →W and ι : W → J .

3. Finding efficient isogenies

We now discuss various algorithmic issues that arose in finding ι and ι′, i.e., computing (not
evaluating!) the polynomials that appear in Figures 2.4, 2.5, and 2.7. We emphasize here that
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u1den = (56*X0^3*Y0 + 99*X0^2*X1*Y0 - 168*X0*X1^2*Y0 - 33*X1^3*Y0 - 66*X0^3*Y1
+ 224*X0^2*X1*Y1 + 66*X0*X1^2*Y1 + 56*X0^2*Y0 + 318*X0*X1*Y0 - 56*X1^2*Y0
- 126*X0^2*Y1 + 126*X1^2*Y1 - 56*X0*Y0 + 159*X1*Y0 + 66*X0*Y1 - 224*X1*Y1
- 56*Y0 + 126*Y1)

u0 = u0num / u0den
u1 = u1num / u1den
v0num = 4*(-3136*X0^5*Y0 - 5544*X0^4*X1*Y0 - 2178*X0^3*X1^2*Y0 - 3696*X0^2*X1^3*Y0

+ 958*X0*X1^4*Y0 + 1848*X1^5*Y0 + 1848*X0^5*Y1 - 5183*X0^4*X1*Y1 - 3696*X0^3*X1^2*Y1
- 6272*X0^2*X1^3*Y1 - 5544*X0*X1^4*Y1 - 1089*X1^5*Y1 + 9472*X0^4*Y0 - 14112*X0^3*X1*Y0
+ 6534*X0^2*X1^2*Y0 - 28896*X0*X1^3*Y0 + 5250*X1^4*Y0 + 8904*X0^4*Y1 + 8316*X0^3*X1*Y1
+ 11088*X0^2*X1^2*Y1 + 128*X0*X1^3*Y1 - 12600*X1^4*Y1 + 44160*X0^3*Y0
- 28560*X0^2*X1*Y0 + 56570*X0*X1^2*Y0 - 35280*X1^3*Y0 + 7056*X0^3*Y1
+ 19078*X0^2*X1*Y1 + 13776*X0*X1^2*Y1 + 31488*X1^3*Y1 + 55808*X0^2*Y0 - 50400*X0*X1*Y0
+ 51458*X1^2*Y0 - 7056*X0^2*Y1 + 8316*X0*X1*Y1 - 21168*X1^2*Y1 + 32704*X0*Y0
- 30408*X1*Y0 - 8904*X0*Y1 + 6337*X1*Y1 + 8448*Y0 - 1848*Y1)

v1num = 4*(-1848*X0^5*Y0 - 3267*X0^4*X1*Y0 + 3696*X0^3*X1^2*Y0 - 10628*X0^2*X1^3*Y0
+ 5544*X0*X1^4*Y0 - 7361*X1^5*Y0 + 5314*X0^5*Y1 - 5544*X0^4*X1*Y1 + 14722*X0^3*X1^2*Y1
- 3696*X0^2*X1^3*Y1 + 9408*X0*X1^4*Y1 + 1848*X1^5*Y1 - 16296*X0^4*Y0 + 8060*X0^3*X1*Y0
+ 33264*X0^2*X1^2*Y0 - 16504*X0*X1^3*Y0 + 5208*X1^4*Y0 + 5378*X0^4*Y1
- 43680*X0^3*X1*Y1 + 31098*X0^2*X1^2*Y1 + 672*X0*X1^3*Y1 + 1156*X1^4*Y1
- 50064*X0^3*Y0 + 14734*X0^2*X1*Y0 + 29232*X0*X1^2*Y0 + 19212*X1^3*Y0 - 6540*X0^3*Y1
- 71568*X0^2*X1*Y1 - 11018*X0*X1^2*Y1 + 7728*X1^3*Y1 - 64176*X0^2*Y0 + 8060*X0*X1*Y0
- 20496*X1^2*Y0 - 3068*X0^2*Y1 - 20832*X0*X1*Y1 - 23794*X1^2*Y1 - 34104*X0*Y0
+ 8253*X1*Y0 + 1226*X0*Y1 + 12600*X1*Y1 - 5544*Y0 - 2310*Y1)

vden = (7492*X0^6 - 18480*X0^5*X1 + 32449*X0^4*X1^2 - 7392*X0^3*X1^3 + 26046*X0^2*X1^4
+ 11088*X0*X1^5 + 1089*X1^6 + 22904*X0^5 - 9744*X0^4*X1 + 4612*X0^3*X1^2
- 65184*X0^2*X1^3 + 14460*X0*X1^4 + 3696*X1^5 + 50688*X0^3*Y0^2 - 86016*X0^2*X1*Y0^2
+ 50688*X0*X1^2*Y0^2 - 86016*X1^3*Y0^2 + 4028*X0^4 + 101472*X0^3*X1 + 21758*X0^2*X1^2
- 114912*X0*X1^3 + 8518*X1^4 - 50688*X0^2*Y0^2 + 172032*X0*X1*Y0^2 + 50688*X1^2*Y0^2
- 45808*X0^3 + 84000*X0^2*X1 + 159476*X0*X1^2 - 70560*X1^3 - 345600*X0*Y0^2
+ 258048*X1*Y0^2 - 30532*X0^2 - 82992*X0*X1 + 113481*X1^2 - 244224*Y0^2 + 22904*X0
- 74256*X1 + 19012)

v0 = v0num / vden
v1 = v1num / vden

# isogeny from J to W:
bT = b+bp
bN = b*bp
D = b^2*u0+b*u1+1
Z = (bp-b)*(2*bN*u0+bT*u1+2)*D
Lw = (b^3*(u0*v0+u0*u1*v1-u1^2*v0)+3*b^2*(u0*v1-u1*v0)-3*b*v0-v1)/Z
F = 2*bN^2*u0^2+2*bN*bT*u0*u1+(b^2+bp^2)*u1^2-2*(b^2+bp^2-4*bN)*u0+2*bT*u1+2
X = (ww*Lw^2-s)/r - F/D^2
Yw = (bN*bp*(u0*v0+u0*u1*v1-u1^2*v0)+bp*(b+bT)*(u0*v1-u1*v0)-(bp+bT)*v0-v1)/Z-Lw*X

Xequal = X - Xdbl
Ywequal = Yw - Ywdbl
print numerator(Xequal) in assumptions
print numerator(Ywequal) in assumptions
print not denominator(Xequal) in assumptions
print not denominator(Ywequal) in assumptions

Figure 2.9. Continuation of Figure 2.8.

finding and verifying are not the same task. By separating these tasks we accelerated both
tasks: we were free to take, and did take, many unproven steps in finding ι and ι′.
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3.1. The covering map

Define a rational map φ from the hyperelliptic curve H : y2 = f(z) to the elliptic curve E :
y2 = rx3 + sx2 + spx+ rp, namely φ(z, y) = (x2, ωy/(1− βz)3) where x = (1− βpz)/(1− βz).
To see that this works, observe that ω2f(z)/(1− βz)6 = rx6 + sx4 + spx2 + rp by definition
of f . The map φ, modulo notation, appeared in Scholten’s proof of [48, Lemma 2.1].

Next define a rational map φ2 from H ×H to W as follows: map (P1, P2) to the sum φ(P1) +
φ(P2) on E, and then to the coordinates of the sum in W . These coordinates are symmetric
between P1 and P2, so φ2 must factor as a composition of the standard map H ×H → J and
some rational map ι′ : J →W .

Of course, a rational map from J to W is not necessarily an isogeny. The map might shift
0 to something nonzero (which would not be a disaster for us), or it might lose one or two
dimensions (which would be a disaster). On the other hand, it is at least intuitively clear that
0 maps to 0, since φ(z,−y) = −φ(z, y). Furthermore, if #E(Fp2) has a large prime divisor (not
far below p2), as often happens, then one expects a “random” size-p subset S of E(Fp2) to
have S + S covering a considerable fraction of E(Fp2), while any drop of dimension would make
#ι′(J(Fp)) much smaller than #W (Fp) = #E(Fp2) for large p. Not all subsets are “random”
(for example, p consecutive multiples of a generator have only 2p− 1 sums), but the algebraic
constraints on φ(H) seem unlikely to produce such behavior. So it is reasonable to hope that
ι′ is an isogeny.

3.2. The hard approach

At this point the conventional analysis of isogenies would continue by carrying out various
time-consuming computations:
• Prove that ι′ really is an isogeny. The main work here is analyzing the fibers of ι′ via the

fibers of φ2.
• Deduce that, for various positive integers d, multiplication by d on W can be expressed

as ι′ ◦ ι, and multiplication by d on J can be expressed as ι ◦ ι′, where ι is an isogeny.
Figure out the smallest possible d by comparing the structure of the fibers of ι′ to the
group structure of J .

• Compute explicit formulas for ι′ as follows. Start with generic points P1 = (z1, y1) and
P2 = (z2, y2) on H, i.e., the points (z1, y1) and (z2, y2) on H over Fp(z1, z2)[y1, y2]/(y21 −
f(z1), y22 − f(z2)). Compose the definition of φ with the addition formulas on E to obtain
φ(P1) + φ(P2) as explicit rational functions in z1, z2, y1, y2. Eliminate z1, z2, y1, y2 in favor
of the Mumford coordinates u0 = z1z2, u1 = −z1 − z2, v1 = (y2 − y1)/(z2 − z1), v0 = y1 −
v1z1.
• Observe that these explicit formulas for ι′ involve many terms. Search for simpler formulas,

presumably accelerating evaluation of ι′ and also accelerating the rest of the analysis, by
strategically exploiting equations satisfied by the Mumford coordinates. See [42] for a
systematic “rational simplification” algorithm; see [30] for the first use of this algorithm
to simplify elliptic-curve formulas.
• View d(u0, u1, v0, v1) = ι(ι′(u0, u1, v0, v1)), or the analogous equation on W , as a system

of equations for the dual isogeny ι. Solve these equations somehow.
One could carry out this type of analysis for specific choices of the parameters p, r, s, β,
obtaining formulas for ι′ and ι for those parameters, which is what we actually need.
Alternatively, with more computation, one could leave the parameters as variables, obtaining
general formulas for ι′ and ι and then specializing the formulas upon demand.

One way to map P ∈W to J is to compute all the preimages of P under φ, compute the
sum of the preimages, and then take the trace of the sum. This “norm-conorm” map is studied
in, e.g., [26, Section 3], [14, Section 3], and [2, Section 2.1]. One can show, starting from the
fact that ι′ is an isogeny, that applying ι′ to the trace produces exactly 2P , so this map is
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exactly ι, and d = 2. One can obtain explicit formulas for this map from explicit formulas for
addition on J , and one can then search for simpler formulas as above.

3.3. The easy approach

We take a different, much easier, approach to compute formulas for ι′. We fix parameters,
take random points (z1, y1), (z2, y2) ∈ H(Fp), compute the corresponding Mumford coordinates
u0, u1, v0, v1 in Fp (skipping the degenerate case z1 = z2), and compute φ(z1, y1) + φ(z2, y2)
as two coordinates in Fp2 , i.e., four coordinates in Fp. This computation tells us a specific
value of ι′ for a specific input (u0, u1, v0, v1); this linearly constrains the coefficients in the
numerator and denominator of each coordinate of ι′. Taking more random points gives us
more linear constraints. For each coordinate we guess a limit on the degree (or a more refined
set of monomials) for the smallest possible numerator and denominator; take significantly more
points than monomials; and solve the resulting system of linear equations. If there are enough
points then all nonzero solutions will define the same rational map, and if the guess was correct
then this rational map must be ι′.

The same idea easily produces ι. We start by guessing that d = 2 will work, i.e., that we will
be able to find ι with 2(u0, u1, v0, v1) = ι(ι′(u0, u1, v0, v1)). For random points (z1, y1), (z2, y2) ∈
H(Fp), we compute (u0, u1, v0, v1) and ι′(u0, u1, v0, v1) as above, and also double (u0, u1, v0, v1)
on J (skipping degenerate cases) to obtain 2(u0, u1, v0, v1). This tells us an input-output pair
for ι, and thus linearly constrains the coefficients in the numerator and denominator of each
coordinate of ι.

Of course, this does not prove that the formulas that we obtain are the same as the ι′ and
ι defined in this section. It is conceivable that our formulas were amazingly lucky, matching ι′

and ι on many random points, while the real ι′ and ι escaped detection by requiring monomials
of higher degree than the monomials in our computation. One response is that, having verified
(see Section 2.6) that our formulas are in fact efficient dual isogenies, we can simply use these
formulas, and no longer need this section’s definition of a possibly different function ι′. A
different response is to verify symbolically that the functions are in fact the same. Figure 3.4
does exactly this; the script takes 24 seconds to run.

The interpolation strategy described in this section can be viewed as a way to simplify
formulas for ι′ (and ι). We emphasize, however, that the input to interpolation does not need
to be a formula for ι′; it can be any method of computing enough input-output pairs for ι′. This
is what lets us skip all of the intermediate computations in Fp(z1, z2)[y1, y2]/(y21 − f(z1), y22 −
f(z2)). We also comment that, even though all we need is to be able to compute ι′ and ι
efficiently for specific curve parameters, one can also interpolate generic formulas that work for
arbitrary parameters. This is what we did for ι′, producing the extra generality of Figure 2.7
compared to Figures 2.4 and 2.5.

We actually deviated slightly from the strategy stated above: rather than interpolating
formulas for ι′, we interpolated formulas for certain intermediate results that obviously play an
important role in ι′ and that remain visible in Figure 2.7. Specifically, F/D2 = x21 + x22 where
xi = (1− βpzi)/(1− βzi), and L is the slope in the usual Weierstrass-curve addition formulas.

4. Jacobian to Kummer

In Section 2 we constructed efficient isogenies between W and J , where W is the Weil
restriction of an elliptic curve from Fp2 to Fp and J is the Jacobian of a hyperelliptic curve
y2 = f(z) in Scholten form over Fp.

We now restrict the choice of hyperelliptic curve to improve the efficiency of scalar
multiplication in J(Fp). Specifically, in this section, we force the corresponding Kummer surface
K to be defined over Fp, allowing the action of Z on the group J(Fp) to be computed via
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R.<r,s,w,b,bp,u0,u1,v0,v1,z1,z2,y1,y2> = ZZ[]
assumptions = (u0-z1*z2,u1+z1+z2,v1*(z1-z2)-(y1-y2),y1-v1*z1-v0)*R

x1 = (1-bp*z1)/(1-b*z1)
x2 = (1-bp*z2)/(1-b*z2)
sumxin = r*x1^2+r*x2^2
la = (r*w*y1/(1-b*z1)^3-r*w*y2/(1-b*z2)^3)/(r*x1^2-r*x2^2)
x3 = (la^2-s-sumxin)/r
y3 = la*(x1^2-x3)-w*y1/(1-b*z1)^3

ww = w*w
bT = b+bp
bN = b*bp
D = b^2*u0+b*u1+1
Z = (bp-b)*(2*bN*u0+bT*u1+2)*D
Lw = (b^3*(u0*v0+u0*u1*v1-u1^2*v0)+3*b^2*(u0*v1-u1*v0)-3*b*v0-v1)/Z
L = w*Lw
F = 2*bN^2*u0^2+2*bN*bT*u0*u1+(b^2+bp^2)*u1^2-2*(b^2+bp^2-4*bN)*u0+2*bT*u1+2
X = (ww*Lw^2-s)/r - F/D^2
Yw = (bN*bp*(u0*v0+u0*u1*v1-u1^2*v0)+bp*(b+bT)*(u0*v1-u1*v0)-(bp+bT)*v0-v1)/Z-Lw*X
Y = w*Yw

denom = Z*(z2-z1)*(bp-b)*(1-b*z2)*(1-b*z1)*(2*b*bp*z1*z2-(b+bp)*(z1+z2)+2)
print R(denom*(la-L)) in assumptions
print R(denom^2*(sumxin-r*F/D^2)) in assumptions
print R(r*denom^2*(x3-X)) in assumptions
check = r*denom^3*y3-r*denom^3*Y
# R(check) segfaults
print denominator(check) == 1
print R(numerator(check)) in assumptions
print not r*denom^3 in assumptions

Figure 3.4. Verification that the formulas in Figure 2.7 map a generic element of J with affine part
(P1) + (P2) to φ(P1) + φ(P2).

Gaudry’s highly efficient formulas for the action of Z on the Z-set K(Fp), i.e., for the standard
scalar-multiplication function Z×K(Fp)→ K(Fp). See Section 6 for further curve constraints
that save time inside Gaudry’s formulas.

4.1. Constraints on f

We reject Scholten’s sextic polynomial f unless it splits completely over Fp. Rather than
testing this we construct f in a way that enforces it; see Section 4.2.

Once we have an f that splits, we convert the Scholten curve to twisted Rosenhain form
δy2 = x(x− 1)(x− λ)(x− µ)(x− ν) over Fp, by defining z as a linear fractional transformation
of x that moves three roots of f in z to 0, 1,∞ in x. This transformation of curves induces
a transformation of the Jacobians. Note that there are many choices of three roots and thus
many choices of Rosenhain curve.

Explicitly, write three distinct roots of f in the form T12/T22, (T11 + T12)/(T21 + T22),
T11/T21. Define g(x) = (T21x+ T22)6f((T11x+ T12)/(T21x+ T22)). Then g is a polynomial of
degree 5 with distinct roots 0, 1, λ, µ, ν; i.e., δg = x(x− 1)(x− λ)(x− µ)(x− ν) for some δ. If
(z, Y ) is a point on the Scholten curve Y 2 = f(z) and z 6= T11/T21 then (x, Y (T21x+ T22)3)
is a point on the twisted Rosenhain curve δy2 = x(x− 1)(x− λ)(x− µ)(x− ν), where x =
(T22z − T12)/(−T21z + T11). The interpolation approach of Section 3 efficiently computes
formulas for the corresponding map between Jacobians.
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We then obtain the Kummer surface corresponding to (λ, µ, ν) as in [6, full version,
Section 5.2]: compute d2 = 1, c2 = ±

√
λµ/ν, b2 =

√
µ(µ− 1)(λ− ν)/(ν(ν − 1)(λ− µ)), and

a2 = b2c2ν/µ. We reject (λ, µ, ν) if these two square roots are not in Fp. Note that there are
six choices of (λ, µ, ν) for each Rosenhain curve.

We also check the “genericity conditions” hypothesized by [25]. Specifically, we check that
the quantities a2d2 − b2c2, a2c2 − b2d2, a2b2 − c2d2, A2 = a2 + b2 + c2 + d2, B2 = a2 + b2 −
c2 − d2, C2 = a2 − b2 + c2 − d2, D2 = a2 − b2 − c2 + d2 are nonzero. This ensures that the
denominators are nonzero in the quantities E,F,G,H appearing below. (The conditions stated
in [25] are that A,B,C,D are nonzero and that various theta constants θ5, θ6, θ7, θ8, θ9, θ10 are
all nonzero when (θ1 : θ2 : θ3 : θ4) = (a : b : c : d). The formula θ25θ

2
6 = θ21θ

2
4 − θ22θ23 shows that

if θ5 = 0 or θ6 = 0 then a2d2 − b2c2 = 0; similar comments apply to θ27θ
2
9 = θ21θ

2
3 − θ22θ24 and

θ28θ
2
10 = θ21θ

2
2 − θ23θ24.)

Beware that the reverse formulas for λ, µ, ν in terms of a, b, c, d, A,B,C,D in [6, full version,
Section 5.2] are correct for our definitions of A,B,C,D but incorrect for the definitions of
A,B,C,D in [6]. Further warnings regarding formulas in the literature appear in Section 4.4.

This procedure forces J to have full 2-torsion. Consequently the group order #J(Fp) is
divisible by 16. For cryptographic purposes we need a large prime in the group order; we
restrict attention to the simplest case, namely groups of order 16` where ` is a large prime.
Our numerical example in Section 2.2 shows that this case does occur; we return to this example
in Section 4.3.

4.2. Scholten Jacobians with full 2-torsion

By hypothesis y2 = rx3 + sx2 + spx+ rp is elliptic. Consequently r 6= 0, and the cubic
rx3 + sx2 + spx+ rp factors over an extension of Fp as r(x− ρ1)(x− ρ2)(x− ρ3) for distinct
ρ1, ρ2, ρ3. The product −rρ1ρ2ρ3 equals rp so all of ρ1, ρ2, ρ3 are nonzero. Choose a square root√
ρj of each ρj in a suitable extension of Fp.
Now assume that the Jacobian of Scholten’s hyperelliptic curve has full 2-torsion defined

over Fp, i.e., that there are 6 distinct roots in Fp of the degree-6 polynomial

r(1− βpz)6 + s(1− βpz)4(1− βz)2 + sp(1− βpz)2(1− βz)4 + rp(1− βz)6

= r((1− βpz)2 − ρ1(1− βz)2)((1− βpz)2 − ρ2(1− βz)2)((1− βpz)2 − ρ3(1− βz)2).

This polynomial visibly splits into linear factors of the form (1− βpz ±√ρj(1− βz)), so each
(1±√ρj)/(βp ± β√ρj) must be in Fp; in other words, each

√
ρj has the form (1− βpζ)/(1−

βζ) for some ζ ∈ Fp. This implies
√
ρj ∈ Fp2 and

√
ρj

p = (1− βζ)/(1− βpζ) = 1/
√
ρj ; i.e.,

each
√
ρj has norm 1.

Conversely, take any three norm-1 elements
√
ρ1,
√
ρ2,
√
ρ3 ∈ Fp2 with distinct squares. The

product −ρ1ρ2ρ3 has norm 1 and thus can be written as rp/r for some r ∈ F∗p2 , for example for
r = i(

√
ρ1
√
ρ2
√
ρ3)p. Define s = −r(ρ1 + ρ2 + ρ3); then rx3 + sx2 + spx+ rp = r(x− ρ1)(x−

ρ2)(x− ρ3) so y2 = rx3 + sx2 + spx+ rp is elliptic. Choose any β ∈ Fp2 such that β /∈ Fp and
βp−1 6= ±√ρj . The ratio (1±√ρj)/(βp ± β√ρj) has conjugate (1± 1/

√
ρj)/(β ± βp/

√
ρj) =

(
√
ρj ± 1)/(β

√
ρj ± βp) = (1±√ρj)/(βp ± β√ρj) and is thus in Fp. There are six such ratios,

all distinct since z 7→ (1− βpz)/(1− βz) maps them to ±√ρj , and each of these ratios is a
root of Scholten’s degree-6 polynomial.

4.3. A numerical example, continued

As a generalization of the example in Section 2.2, take p ∈ 3 + 4Z with Fp2 = Fp[i]/(i2 + 1),
assume p > 13, and take

√
ρ1 = i,

√
ρ2 = (3 + 4i)/5, and

√
ρ3 = (5 + 12i)/13. The product

−ρ1ρ2ρ3 = −(2047 + 3696i)/4225 then has the form rp/r for, e.g., r = 33 + 56i. Define s =
−r(ρ1 + ρ2 + ρ3) = 159 + 56i. This is how we constructed the pair (r, s) in Section 2.2. Our
choice β = i has βp−1 = −1, avoiding ±√ρj .
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This structure forces the polynomial f in Section 2.2 to split over Fp: specifically, z6 +
(7/3)z5 − (7/4)z4 − (14/3)z3 + (7/4)z2 + (7/3)z − 1 has roots 1 and −1 via

√
ρ1, roots 1/2

and −2 via
√
ρ2, and roots 2/3 and −3/2 via

√
ρ3.

The linear fractional transformation z 7→ 5(1− z)/(2 + z) takes 1, 1/2,−2,−1, 2/3,−3/2
to 0, 1,∞, λ, µ, ν respectively, where λ = 10, µ = 5/8, ν = 25. The ratio λµ/ν is a square,
namely 1/22, and the ratio µ(µ− 1)(λ− ν)/(ν(ν − 1)(λ− µ)) is a square, namely 1/402.
Taking positive signs for the square roots produces (a2, b2, c2, d2) = (1/2, 1/40, 1/2, 1)
and (A2, B2, C2, D2) = (81/40,−39/40,−1/40, 39/40); we scale these to (20, 1, 20, 40) and
(81,−39,−1, 39) respectively. The differences a2b2 − c2d2, a2c2 − b2d2, a2d2 − b2c2 are nonzero.

4.4. Explicit maps from the Jacobian to the Kummer surface

It is not easy to find correct formulas in the literature for the standard rational map from
a Jacobian J of a genus-2 hyperelliptic curve to a Kummer surface K. The conventional view
arises from expressing J (in Mumford coordinates) and K (a particular quartic surface with
various symmetries) in terms of 16 different Riemann theta functions and then solving for the
coordinates of one in terms of the other; but this involves a huge thicket of theta formulas,
with many opportunities for errors. For example:

• The formula for θ47 + θ49 in [25, page 262] is incorrect: it needs to be negated.
• The formula for v20 in [12, page 1206] is incorrect: the second minus sign needs to be a

plus, as pointed out in [6].
• The definitions of A,B,C,D in [6, Section 5.1] are incorrect for the stated parameter

relationship between J and K: they need to be replaced by A2, B2, C2, D2. On the other
hand, the definitions are consistent with some other formulas in [6], so those other formulas
also need to be modified.

We need to actually compute this map, rather than merely to write papers about it, so we
need correct formulas. To avoid errors we present in Figure 4.5 a Sage script verifying our
formulas for this map. We have also put considerable effort into simplifying these formulas,
eliminating unnecessary detours through theta functions. The script takes 70 seconds to run,
and the formulas have bad reduction only at 2.

Computer-algebra scripts for “Kummer surface” formulas have been published before: see
the web site [20] accompanying the book [10] by Cassels and Flynn. However, the “Kummer
surface” K ′ in [10] and [20] is much less efficient than the highly symmetric Kummer surface
K used in [11], [25], [12], [6], [4], and this paper. (We question the use of the terminology
“Kummer surface” for K ′; we speculate that Kummer would have been horrified to have his
name attached to K ′.) Both K and K ′ are isomorphic to J/{±1} and therefore to each other,
but the choice of coordinates is critical for performance, and there is no reason to think that
finding formulas for this isomorphism from K ′ to K would be easier than finding formulas for
the map from J to K.

Our script starts with a generic point (u0, u1, v0, v1) in Mumford coordinates on the Jacobian
of a twisted Rosenhain curve δY 2 = X(X − 1)(X − λ)(X − µ)(X − ν) with 0, 1, λ, µ, ν distinct.
Recall, as in Section 2, that the affine part of the Jacobian is defined by the equation

δ(v1X + v0)2 −X(X − 1)(X − λ)(X − µ)(X − ν) mod X2 + u1X + u0 = 0.

The script computes particular linear combinations x, y, z, t of u20, u0u
2
1, v0v1, u0, 1, u1, u0u1, u

2
1,

and verifies that (x : y : z : t) satisfies the Kummer-surface equation

4E2xyzt = (F (xt+ yz) +G(xz + yt) +H(xy + zt)− (x2 + y2 + z2 + t2))2,
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assuming certain relationships between the Kummer-surface parameters E,F,G,H and the
Rosenhain-curve parameters λ, µ, ν. The assumptions are

λ =
b2d2

a2c2
, F =

a4 − b4 − c4 + d4

a2d2 − b2c2
, A2 = a2 + b2 + c2 + d2,

µ =
c2(AB + CD)

d2(AB − CD)
, G =

a4 − b4 + c4 − d4

a2c2 − b2d2
, B2 = a2 + b2 − c2 − d2,

ν =
a2(AB + CD)

b2(AB − CD)
, H =

a4 + b4 − c4 − d4

a2b2 − c2d2
, C2 = a2 − b2 + c2 − d2,

E =
abcdA2B2C2D2

(a2d2 − b2c2)(a2c2 − b2d2)(a2b2 − c2d2)
, D2 = a2 − b2 − c2 + d2.

The formulas above were typed by hand; readers are encouraged to instead consult Figure 4.5
for the original computer-verified formulas, including the details of the linear combinations.

Since the map does not use v0 and v1 except as v0v1, it does not distinguish−(u0, u1, v0, v1) =
(u0, u1,−v0,−v1) from (u0, u1, v0, v1). With more work one can verify that a generic output
point (x : y : z : t) has exactly two preimages, but we do not actually need this fact. For
example, it would not be a problem if the map were actually doubling on J followed by the
standard map from J/{±1} to K, since this would still act as a nonzero Z-set morphism from
the order-` subgroup of J(Fp) to the corresponding subset of K(Fp). Given any particular
curve we check that a generator of the order-` subgroup maps to a nonzero element of K(Fp).

4.6. Explicit maps from the Kummer surface to the Jacobian

We do not report similarly optimized computer-verified formulas for computing preimages
of the map in Figure 4.5. These preimages are not needed in Section 1. However, we briefly
comment on such computations for applications that might need them.

A rational map cannot compute the preimages in J for a given element of K: the choice
between two preimages is determined by a sign choice in a square root. This square root is,
however, unnecessary for an application that actually wants to compute P 7→ nP on J . There
is a rational map that produces nP in J given P in J and the images of nP, (n+ 1)P in K,
and Gaudry’s formulas naturally compute (n+ 1)P for free while computing nP . See [43] for
the analogous genus-1 case.

5. Weierstrass to Edwards: genus-1 efficiency and simplicity

Recall from Section 4 that we construct a group J(Fp) having order 16` where ` is a large
prime. This also forces the group W (Fp) = E(Fp2) to have order 16`. This in turn forces
E(Fp2) to have at least one point of order 4, and thus to be expressible as an Edwards curve.
Computer experiments suggest that this procedure actually forces the order-16 subgroup of
E(Fp2) to have shape (Z/4)× (Z/4), which we do not consider optimal, but in a moment we
will force the shape to be what we actually want.

To simplify elliptic-curve arithmetic we apply further 2-isogenies to obtain a complete
Edwards curve; the 2-isogenies change the structure of the order-16 subgroups but act as group
isomorphisms between the order-` subgroups. Specifically, starting from Legendre form y2 =
(x− r0)(x− r1)(x− r2), we shift x by either r0 or r1 or r2 to obtain y2 = x(x− s1)(x− s2),
which is 2-isogenous to ȳ2 = x̄3 + 2(s1 + s2)x̄2 + (s1 − s2)2x̄, which in turn is birationally
equivalent to the twisted Edwards curve 4s1x

2 + y2 = 1 + 4s2x
2y2, as in [3, Theorem 5.1].

The 2-isogeny here is (x, y) 7→ (x̄, ȳ) = (y2/x2, y(s1s2 − x2)/x2), with dual (x̄, ȳ) 7→ (x, y) =
(ȳ2/(4x̄2), ȳ((s1 − s2)2 − x̄2)/(8x̄2)).
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R.<u0,u1,v0,v1,la,mu,nu,A,B,C,D,a,b,c,d,twist> = ZZ[]
Rz.<z> = R.fraction_field()[]
jac = (twist*(v1*z+v0)^2 - z*(z-1)*(z-la)*(z-mu)*(z-nu)) % (z^2+u1*z+u0)

assumptions = (
A^2-(a^2+b^2+c^2+d^2),
B^2-(a^2+b^2-c^2-d^2),
C^2-(a^2-b^2+c^2-d^2),
D^2-(a^2-b^2-c^2+d^2),
a^2*c^2-la*b^2*d^2,
mu*d^2*(A*B-C*D)-c^2*(A*B+C*D),
nu*b^2*(A*B-C*D)-a^2*(A*B+C*D),
R(jac[0]),R(jac[1])

)*R

U = a^2*b^2-c^2*d^2
I = (a^2*d^2-b^2*c^2)*(a^2*c^2-b^2*d^2)*U
E = a*b*c*d*A^2*B^2*C^2*D^2 / I
F = (a^4-b^4-c^4+d^4) / (a^2*d^2-b^2*c^2)
G = (a^4-b^4+c^4-d^4) / (a^2*c^2-b^2*d^2)
H = (a^4+b^4-c^4-d^4) / U
X0 = c^2*(a^2*b^2*c^2+a^4*d^2+b^4*d^2-2*c^4*d^2-d^6)*nu/(U*d^4) -a^2*c^2/(b^2*d^2)
Y0 = a^2*c^2*(a^4*c^2+b^4*c^2-c^6+a^2*b^2*d^2-2*c^2*d^4)*nu/(U*b^2*d^4)-a^4*c^4/(b^4*d^4)
Z0 = c^2*(2*a^4*b^2+b^6-b^2*c^4-a^2*c^2*d^2-b^2*d^4)*nu/(U*b^2*d^2)-a^2*c^2/(b^2*d^2)
T0 = c^4*(a^6+2*a^2*b^4-a^2*c^4-b^2*c^2*d^2-a^2*d^4)*nu/(U*b^2*d^4)-a^4*c^4/(b^4*d^4)
X1 = 2*nu + nu*b^2*c^2/(a^2*d^2) + 2*a^2*c^2/(b^2*d^2) + 1
Y1 = nu + 2*nu*b^2*c^2/(a^2*d^2) + a^2*c^2/(b^2*d^2) + 2
Z1 = nu + 2*nu*b^2*c^2/(a^2*d^2) + 2*a^2*c^2/(b^2*d^2) + 1
T1 = 2*nu + nu*b^2*c^2/(a^2*d^2) + a^2*c^2/(b^2*d^2) + 2
V = a^4*b^4*c^4+a^4*b^4*d^4-a^4*c^4*d^4-b^4*c^4*d^4+2*a^2*b^2*c^2*d^2*H*U
s = u0^2-2*u0*u1^2-2*twist*v0*v1-(nu*V/(U*a^2*b^2*d^4))*u0+(nu*H*a^2/b^2-a^4/b^4)*c^4/d^4
x = a^2*(s+X0*u1-X1*u0*u1+nu*(b^2*c^2/(a^2*d^2))*u1^2)
y = b^2*(s+Y0*u1-Y1*u0*u1+nu*(a^2*c^2/(b^2*d^2))*u1^2)
z = c^2*(s+Z0*u1-Z1*u0*u1+nu*u1^2)
t = d^2*(s+T0*u1-T1*u0*u1+nu*(c^4/d^4)*u1^2)

x = R(a^2*b^4*d^4*U*x)
y = R(a^2*b^4*d^4*U*y)
z = R(a^2*b^4*d^4*U*z)
t = R(a^2*b^4*d^4*U*t)
EI = R(E*I)
FI = R(F*I)
GI = R(G*I)
HI = R(H*I)
C = 4*EI^2*x*y*z*t-(FI*(x*t+y*z)+GI*(x*z+y*t)+HI*(x*y+z*t)-I*(x^2+y^2+z^2+t^2))^2
print 4*C in assumptions

Figure 4.5. Formulas to map the Jacobian of a Rosenhain curve to a Kummer surface, assuming
certain relationships between the surface parameters and the curve parameters.

In the example below we use a chain of two 2-isogenies followed by the birational equivalence.
These isogenies replace (Z/4)× (Z/4) first with (Z/8)× (Z/2) and then with Z/16. For
background on the underlying “volcano” structure see, e.g., [50].

5.1. A numerical example, part III

Consider again the example in Section 2.2, with p = 2127 − 309, i2 = −1, r = 33 + 56i, and
s = 159 + 56i. We convert the elliptic curve y2 = rx3 + sx2 + spx+ rp over Fp2 to a complete
Edwards curve as follows.
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Substitute y = ȳ/r and x = x̄/r, obtaining the isomorphic curve ȳ2 = x̄3 + sx̄2 + rspx̄+
r2rp, i.e., ȳ2 = (x̄+ (63 + 16i))(x̄+ (63− 16i))(x̄+ (33 + 56i)).

Substitute ȳ = y and x̄ = x− 63− 16i, obtaining y2 = x(x− 32i)(x− 30 + 40i). Apply the
standard 2-isogeny to ȳ2 = x̄3 + (60− 16i)x̄2 + (−4284− 4320i)x̄, which (for p = 2127 − 309)
factors as ȳ2 = x̄(x̄− s1)(x̄− s2) where s1, s2 are respectively

46536864834038954165589742269544735976 + 30530588958352369234918076907249897409i,

123604318626430277566097561446339369383 + 139610594502116862496769226808634208026i.

Substitute ȳ = y and x̄ = x+ s1, obtaining y2 = x(x+ s1)(x+ s1 − s2). Apply the standard
2-isogeny to ȳ2 = x̄3 + 2(s2 − 2s1)x̄2 + s22x̄ and the standard birational equivalence to the
twisted Edwards curve −4s1x

2 + y2 = 1 + 4(s2 − s1)x2y2. This is a complete twisted Edwards
curve since 4(s2 − s1) is not a square while −4s1 is a square, specifically t2 where t is

96704807938744354407241087425328236719 + 23268432417019477082794871134772368011i.

Finally substitute y = ȳ and x = x̄/t to obtain the complete Edwards curve x̄2 + ȳ2 = 1 +
dx̄2ȳ2 with d = 4(s2 − s1)/t2. We double-checked that the points on this curve form a cyclic
group of order 16`: we used the Edwards addition law to compute 16P and 8`P for random
points P until we found a generator.

6. The search for small parameters

Gaudry and Schost [27] used more than 1000000 CPU hours to count points on many genus-
2 curves with small parameters; eventually they found a secure twist-secure curve. Specifically,
the quantities a2, b2, c2, d2 in Section 4 (and therefore also A2, B2, C2, D2) are small integers
for the Gaudry–Schost surface. The importance of this condition, as mentioned in Section 1,
is that many of the multiplications in Gaudry’s K(Fp) formulas are multiplications by these
parameters. The Gaudry–Schost surface was used for the speed records in [6] and [4].

Scholten curves allow much faster point-counting; recall from Section 2 that this was
Scholten’s motivation. However, Scholten curves are quite rare among hyperelliptic curves.
The easiest way to see this (as in [23]) is to classify varieties by their number of rational
points: the number of points on a uniform random genus-2 Jacobian over Fp is well distributed
over a range of Θ(p3/2) integers, while the number of points on an elliptic curve over Fp2 is
limited to a range of Θ(p) integers.

From these statistics one might guess that asymptotically there do not exist any Scholten
curves over Fp whose parameters a2, b2, c2, d2 are integers bounded by (log p)O(1), or even by
po(1). In other words, one might guess that searching through small integer parameters will
take a very long time to find a Scholten curve, never mind a secure Scholten curve. Presumably
there still exist a2, b2, c2, d2 much smaller than average, saving time, but the existence of a fast
cryptosystem is of no use if we cannot find the cryptosystem.

However, as the reader can see from our numerical example, these guesses are incorrect.
The curve y2 = z6 + (7/3)z5 − (7/4)z4 − (14/3)z3 + (7/4)z2 + (7/3)z − 1 is a Scholten curve
over Fp for every large p ∈ 3 + 4Z and nevertheless has very small Kummer-surface parameters
(20 : 1 : 20 : 40). It is reasonable to conjecture that this example is a secure Scholten curve for
a considerable fraction of all p, often also a twist-secure Scholten curve.

To explain what is going on in this example we generalize the concept of Scholten curves
to any degree-2 Galois field extension K ⊂ L: i.e., any degree-2 field extension K ⊂ L with an
order-2 automorphism x 7→ x of L having fixed field K. Scholten’s case is K = Fq, L = Fq2 ,
and x = xq, where q is an odd prime power. The point of our generalization is to allow K = Q,
for example with L = Q[i]/(i2 + 1) and i = −i.
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We define a Scholten curve in this generality as a hyperelliptic curve

y2 =
r(1− βz)6 + s(1− βz)4(1− βz)2 + s(1− βz)2(1− βz)4 + r(1− βz)6

rβ6 + sβ4β2 + sβ2β4 + rβ6

assuming that the denominator is nonzero, that y2 = rx3 + sx2 + sx+ r is elliptic (note that
this prevents the field characteristic from being 2), and that r, s, β ∈ L with β /∈ K. This
hyperelliptic curve is defined over K.

Any such hyperelliptic curve over K = Q with L = Q(
√

∆) can be reduced to a Scholten
curve over Fp modulo half of all primes p: specifically, almost all primes p for which ∆ is not
a square in Fp. The only reason we say “almost” is that a few bad primes p can make the
reduction fail, for example by reducing the elliptic curve to a non-elliptic curve.

Our numerical example
√
ρ1 = i,

√
ρ2 = (3 + 4i)/5,

√
ρ3 = (5 + 12i)/13, r = 33 + 56i, s =

159 + 56i, β = i illustrates that there are Scholten curves over Q whose Jacobians also have
Kummer surfaces defined over Q. (As in Section 4.4, we write “Kummer surface” only for the
traditional highly symmetric Kummer surfaces, allowing use of Gaudry’s efficient formulas from
[25].) The resulting Kummer-surface parameters a2, b2, c2, d2 are constants: they do not grow
with p. What we are doing here is viewing the entire hyper-and-elliptic picture for Fp(

√
∆)

over Fp as a reduction modulo p of a generic hyper-and-elliptic picture for Q(
√

∆) over Q,
with conjugation

√
∆ 7→ −

√
∆ as a p-independent view of the pth-power Frobenius map used

by Scholten.
We scanned through various other norm-1 elements

√
ρ1,
√
ρ2,
√
ρ3 ∈ Q(i), together with

choices of permutations of the 6 roots of f , and quickly found many further cases in which
λµ/ν and µ(µ− 1)(λ− ν)/(ν(ν − 1)(λ− µ)) are squares in Q. For example,

y2 = (x+ 7/4)(x− 4/7)(x+ 17/7)(x− 7/17)(x+ 37/16)(x− 16/37)

is a Scholten curve for r = 8648575− 15615600i, s = −40209279− 33245520i, and β = i,
corresponding to (a2 : b2 : c2 : d2) = (6137, 833, 2275, 2275). Having many such examples means
that one can find secure small-parameter Kummer-compatible Scholten curves for any desired
prime p ∈ 3 + 4Z. (Further characterization of the solution set might allow even faster
enumeration of solutions but of course would not save time in point-counting.) Presumably
there are also many solutions for other quadratic extensions of Q, although Q(i) is adequate
for, e.g., the very convenient prime p = 2127 − 1.
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