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Abstract. We generalize correlation-enhanced power analysis collision
attacks into moments-correlating DPA. The resulting distinguisher is ap-
plicable to the profiled and non-profiled (collision) settings and is able to
exploit information lying in any statistical moment. It also benefits from
a simple rule-of-thumb to estimate its data complexity. Experimental re-
sults show that such a tool allows answering with confidence to some im-
portant questions regarding the design of side-channel countermeasures
(e.g. what is the most informative statistical moment in the leakages of a
threshold implementation). We further argue that moments-correlating
DPA is a natural candidate for leakage detection tests, enjoying the sim-
plicity of correlation power analysis and advanced features for the eval-
uation of higher-order attacks with an easy-to-compute confidence level.

1 Introduction

Context. Correlation-Enhanced Power Analysis Collision Attacks (CEPACA)
have been introduced at CHES 2010 [15]. Such distinguishers bring an interesting
alternative in the side-channel analysis toolbox for two main reasons. First (and
as any collision attack - see [25] and the following works), they trade the usual
requirement of having a (sufficiently accurate) leakage model for the assump-
tion that some of the operations performed in the target implementation leak
according to a similar model. As a result, they may work without a precise under-
standing of this target implementation, which is typically useful in a non-profiled
attack setting. Second, they naturally extend to advanced contexts, where the
side-channel information to extract lies in higher-order statistical moments [13].
As a result, CEPACA have been applied in different scenarios, e.g. timing at-
tacks [17] or implementations protected with different countermeasures [14, 16].

Yet, such attacks also suffer from some limitations. First (and as any collision
attack), the “similar leakage model” requirement may not always be respected
in practice, e.g. in the context of hardware implementations where the target
operations are implemented with different physical resources (possibly affected
by variability [24]), or even in software implementations, due to pipelining ef-
fects [8]. Second, CEPACA essentially correlate statistical moments estimated
for different S-boxes. As a result (and if the similar leakage model requirement
is fulfilled), the value of the correlation coefficient estimated for the correct hy-
pothesis gradually reaches ‘1’ whenever enough samples are used in the attack.
While this is not a problem if the goal of the distinguisher is only to perform



a key recovery, it implies that the value of this correlation coefficient is not in-
formative regarding the complexity of the attacks. In other words, it cannot be
used as an evaluation metric, which is in contrast with the “standard” use of
Pearson’s correlation coefficient in [3]. The latter one can indeed be used as a
worst-case metric under certain conditions discussed in [10] (namely first-order
DPA with a perfect leakage model, essentially) and anyway benefits from a sim-
ple rule-of-thumb to estimate its (not worst-case) data complexity otherwise.

Our contribution. In this paper, we contribute to these two issues by proposing
a neat generalization of CEPACA, next denoted as Moments-Correlating DPA
(MC-DPA). For this purpose, our starting observation is that the correlation of
statistical moments used in CEPACA has a natural counterpart in the context of
profiled attacks, where we can correlate the moments corresponding to a single
S-box estimated twice: first during profiling and then “on-the-fly” during the at-
tack. This brings us to distinguish between Moments-Correlating Profiled DPA
(MCP-DPA) which exploits this observation, and Moments-Correlating Colli-
sion DPA (MCC-DPA), which works as in previous works, by correlating the
moments corresponding to two target operations estimated on-the-fly. Our sec-
ond observation is that one can tweak CEPACA in order to preserve the metric
aspect of Pearson’s correlation coefficient as exploited in standard DPA. For this
purpose, we simply have to replace the correlation of “moments with moments”
by the correlation of “moments with samples”. That is, considering the pro-
filed estimation of the moments in MCP-DPA (resp. the on-the-fly estimation
of these moments for one of the target operations in MCC-DPA) as a model,
and then correlate this model with samples obtained on-the-fly in the attack
phase of MCP-DPA (resp. with samples corresponding to the other operation in
MCC-DPA), possibly squared, cubed, . . . in case of higher-order analyzes.

Do we care? MC-DPA can be viewed as a variant of CEPACA, extended to the
two main side-channel attack settings (namely profiled and non-profiled). Before
entering the details of its instantiation, we want to shortly motivate why such
a variant brings interesting insights for security evaluations, and solves open
problems. We will take the application of CEPACA to the PRESENT thresh-
old implementation of [22] to illustrate our claims. In [13], CEPACA is used to
argue that this threshold implementation is “first-order secure” as expected by
the proofs in [20]. But this argument still depends on the similar leakage model
requirement. The application of MCP-DPA allows getting rid of this assump-
tion. Hence, by comparing MCP-DPA with MCC-DPA, we can also quantify
how much information is lost if the target operations of a collision attack do
not leak according to similar models. Next, an important question regarding
threshold implementations relates to the most informative statistical moment in
their leakage distributions. Being glitch-free, there should be no information in
the first-order moments. But it is unclear whether the best adversarial strategy



is to focus on second- or third-order moments1. As will be shown in Section 3,
answering this question with the information theoretic analysis proposed in [27]
turns out to be uneasy. The metric feature of MC-DPA directly brings a sim-
ple answer, with the most informative moment leading to a higher correlation.
Admittedly, an alternative solution to this problem can be found in the recent
work of Bilgin et al. [1], where (standard DPA and collision-based) attacks of
different orders were launched against a threshold implementation of AES. But
this leads to the last interesting property of MC-DPA. Namely, security evalu-
ations against side-channel attacks should ideally be based on the repetition of
multiple experiments to gain statistical confidence. Yet, the estimation of (e.g.)
a success rate in this context can become too expensive when the attacks’ data
complexity increases (e.g. neither [1] nor [18] computed such a success rate for
their > 1, 000, 000-trace attacks). Thanks to the metric feature of MC-DPA,
we can also use the rule-of-thumb proposed in [9, 26] to approximate the data
complexity based on the squared inverse of Pearson’s correlation estimated for
a single attack (i.e. with much less sampling than by direct estimation).

Wrapping up. MC-DPA brings an interesting complement to the existing liter-
ature on side-channel distinguishers, by extending the applicability of CEPACA
to profiled attacks and evaluation metrics. As a result, we obtain an easy to ma-
nipulate and interpret tool, that directly applies to higher orders and for which
we can estimate the data complexity with limited sampling (without having
to compute a success rate explicitly), i.e. some of the reasons that have made
Correlation Power Analysis (CPA) so popular. In the following, we illustrate
these useful qualities by confirming previous results on threshold implementa-
tions. Namely, we show that the claim of first-order security that was obtained
using CEPACA in [13] extends to a profiled evaluation (with a limited loss of
information, hence confirming that the similar leakage model requirement rea-
sonably holds in this case). We also observe that attacks focusing on second-
order moments are more efficient than attacks focusing on third-order ones for
this implementation (as already found in [1]), and provide a more confident and
quantitative analysis of this fact, thanks to the metric feature of MC-DPA. We
then conclude by showing that MC-DPA is a promising candidate for efficient
leakage detection tests [12], with easy-to-compute confidence level indicators.

Quite naturally, the following discussion also has strong connections with
first- and higher-order CPA, although such a distinguisher was primarily used in
the non-profiled setting so far. In this sense, our work should also be viewed as
a consolidating one, bridging the gaps between the use of Pearson’s correlation
coefficient in various practically-relevant scenarios (namely non-profiled with a-
priori models as in [3], non-profiled collision-based as in [15] and profiled).

1 Especially in the context of hardware implementations manipulating the three shares
in parallel as we consider next, since finding the points-of-interest will be equally
difficult (in terms of time complexity) for second- and third-order attacks in this case.



2 Moments-Correlating DPA

Notations. We illustrate the attack with the key addition and S-box operations
found in most block ciphers. For this purpose, let us denote a plaintext byte as x,
a key byte as k, a key addition as y = x⊕k, the execution of a b-bit S-box S as z =
S(x⊕k), and the leakage trace generated by this S-box computation as z = S(x⊕
k) lz. We further use E(.) for the expectation operator. MC-DPA makes use of
statistical moments that we specify as follows. Let X be a (univariate) random
variable. The dth-order raw statistical moments are defined asMd

x = E(Xd), with
µx = E(X) the mean. The dth-order central moments are defined as CMd

x =

E
(

(X − µ)
d
)

, with σ2
x = E

(
(X − µ)

2
)

the variance. The dth-order standardized

moments are defined as SMd
x = E

((
X−µ
σ

)d)
, with γx = E

((
X−µ
σ

)3
)

the

skewness and δx = E

((
X−µ
σ

)4
)

the kurtosis. Eventually, we use ρ(X,Y ) for

Pearson’s correlation coefficient, add the hat operator for estimations.

2.1 Moments-Correlating Profiled DPA

Let lx,k be an N -element vector of leakage traces corresponding to N intermedi-
ate values z = S(x⊕k) lz, e.g. [l0, l16, l51, . . .], µ̄x,k be the N -element vector of
the corresponding (estimated) mean values, e.g. [µ̂0, µ̂16, µ̂51, . . .], σ̄

2
x,k, γ̄x,k, δ̄x,k

and Md
x,k, CMd

x,k, SMd
x,k be similar vectors for the variance, skewness, kurtosis

and dth-order (raw, central, standardized) moments. We denote the estimation
of one of those vectors from an Np-element vector of profiling leakage traces lpx,k
as (e.g. for the dth-order raw moments): M̂d

x,k ← lpx,k. MCP-DPA will select the
key candidate according to (again for the raw moments):

k̃ = argmax
k∗

ρ̂(M̂d
x,k∗ , (l

t
x,k)d),

where M̂d
x,k∗ is the dth-order (estimated) statistical moment vector permuted

according to a key hypothesis k∗, and ltx,k is an Nt-element vector of test traces. If
a central or standardized moment is used, the second argument in the correlation

coefficient will be replaced by (ltx,k − µ̄x,k)d and (
ltx,k−µ̄x,k

σ̄x,k
)d, respectively.

2.2 Moments-Correlating Collision DPA

The previous attack requires a profiling step to estimate the 2b statistical mo-
ments corresponding to the leakage of the target intermediate values z = S(x⊕k).
In a non-profiled scenario, an alternative is to target a pair of S-box computa-
tions, e.g. z0 = S(x0⊕ k0) lz0 and z1 = S(x1⊕ k1) lz1 , to estimate these 2b

moments for the first S-box “on-the-fly”, i.e. M̂d
x0,k0

← ltx0,k0
, and to correlate

the moment vector with the leakage samples corresponding to the second S-box



permuted according to a value ∆ added to the key, i.e. ltx1,k1⊕∆. MCC-DPA will
select the value of ∆ according to (again for the raw moments):

∆̃ = argmax
∆

ρ̂(M̂d
x0,k0 , (l

t
x1,k1⊕∆)d).

As mentioned in introduction, this attack can be viewed as a tweaked CEPACA,
where the adversary would compute the correlation between two vectors of sta-
tistical moments, i.e. ρ̂(M̂d

x0,k0
, M̂d

x1,k1⊕∆). The main advantage of this tweak is
that while the value of the correlation coefficient in CEPACA gradually tends
to ‘1’ when the number of test traces increases (if the S-boxes leak according
to the same leakage function), it is now dependent on the “informativeness” of
the statistical moment exploited in the attack (essentially because we correlate
moments with samples, rather than moments with moments). As a result (and
compared to CEPACA), the MCC-DPA described in this subsection additionally
provides a metric to quantify the number of measurements needed to perform a
key recovery with a given success rate (directly derived from [9, 10, 26])2:

Nsr = c · 1

(ρ̂(M̂d
x0,k0

, (ltx1,k1⊕∆)d)2
, (1)

where c is a constant that depends on the number of hypotheses in the attack
(i.e. 2b) and the target success rate. A similar formula can be used for MCP-DPA.
By running such tools for different orders d, cryptographic designers directly get
insights about the origin of the weaknesses in their implementations.

3 Simulated Experiments

One of the goals of MC-DPA is to provide an easy-to-manipulate tool for the de-
tection of the most informative statistical moments, e.g. in threshold implemen-
tations. In this section, we take advantage of a simulated case-study to analyze
this problem in a well-controlled environment, and detail why it is challenging.
For this purpose, we will consider the following three types of leakage samples:

lu1
z = HW(z) +N,

lm2
z = HW(z ⊕m) + HW(m) +N,

lmf
z = HW(z ⊕m) + HW(m) + f × HW(z) +N,

where HW is the Hamming weight function and N is a Gaussian random noise
with variance σ2

n. lu1
z typically corresponds to the (first-order) leakage of an un-

protected implementation. lm2
z typically corresponds to the (second-order) leak-

age of a masked implementation. lmf
z typically correspond to the (first- and

second-order) leakage of a masked implementation with a first-order flaw (e.g.
due to glitches [11]). We additionally use a parameter f to capture the fact

2 This formula has been recently refined by Fei et al. [7] and Thillard et al. [29], at
CHES 2012 and CHES 2013, respectively. We keep its older version for simplicity.



that this first-order flaw may have a smaller amplitude than the second-order
signal. Note that we do not claim that this setting strictly corresponds to any
physical implementation. We just use it to put forward intuitions regarding the
most informative moments in side-channel attacks. In order to analyze these dif-
ferent leakage scenarios, we will perform the information theoretic analysis put
forward in [27] and first applied to masked implementations in [28]. This implies
computing the following mutual information metric:

I(K;L,X) = H[K]−
∑
k∈K

Pr[k]
∑
x∈X

Pr[x]
∑
l∈L

Pr[l|k, x] · log2 Pr[k|x, l], (2)

where L is the random variable corresponding to leakage samples l, that we
replace by Lu1

z , Lm2
z or Lmf

z depending on whether we consider an unprotected,
masked or flawed masked simulated implementation3. We ran this information
theoretic analysis (for b = 8, f = 0.2) in function of the noise variance and
report our results in the left part of Figure 1, from which we observe that:

1. All curves start by a plateau region, where the noise is small compared to
the difference between the leakage values (here, Hamming weights).

2. As the noise increases, the slope of the curves reveals the security order of the
implementations, e.g. -1 (resp. -2) for the unprotected (resp. masked) one.

3. For the masked S-box with first-order flaw, the information theoretic curve
first follows the masked one, and then becomes parallel to the unprotected
one for large noise levels. This indicates that second-order (resp. first-order)
moments are more informative for low (resp. large) noise levels.

These experiments recall the fundamental masking equation “order of the sta-
tistical moment to estimate + measurement noise variance = security level”,
first hinted by Chari et al. [4]. While they indeed put forward that (depending
on the noise level), one or another statistical moment may be more informative,
such information theoretic curves are still limited in exhibiting exactly the noise
threshold where the most informative moment changes. This is because an in-
formation theoretic analysis captures the worst-case adversary exploiting all the
statistical moments jointly (i.e. the full distribution). As a result, the intuition
regarding the orders is only revealed in the slopes of these curves. So while we
can reasonably assume that the noise threshold we are looking for lies approx-
imately where the dashed (red) and dotted (black) curves in the left part of
Figure 1 separate (i.e. close to σ2

n = 101), a strict decision is hard to take here.
Besides, and maybe more importantly, any analysis of an actual chip will be
done for a single noise level (i.e. corresponds to a single point in the information
theoretic curves), and therefore will not exhibit any slope. Interestingly, this is
exactly where MC-DPA will come in handy. Indeed, by launching such attacks

3 In our simulated setting, we assume that the adversary’s model exactly corresponds
to the true leakage function. In the case of masked implementations, it implies sum-
ming over all the m’s and computing Pr[k|x, l] as

∑
m Pr[l|x, l,m] ·Pr[m]. Hence this

metric strictly corresponds to the (worst-case) mutual information (vs. the perceived
information when this condition does not hold, as discussed in [24]).



Fig. 1. Left: information theoretic analysis of unprotected, masked and flawed masked
implementation. Right: MCP-DPA metric for the flawed masked implementations.

for different statistical moments, we can obtain intuition about their respective
informativeness. For illustration, we launched such attacks against the flawed
masked implementations, with first- and (central) second-order moments. The
results in the right part of Figure 1 now clearly allow distinguishing for which
noise level the first-order moments become more informative, and indeed confirm
the previous intuitions (i.e. the threshold is close to σ2

n = 101). Furthermore, this
information is obtained by comparing the correlation coefficient values for each
noise level independently, so could be applied to an actual chip as well.

Summarizing, these simulated experiments show that MC-DPA provide an
easy answer to the question of what is the most informative moment in a leaking
implementation. To the best of our knowledge, it could not be obtained with
previous distinguishers or metrics (the only known alternative would have been
to compute success rates directly, i.e. a significantly more intensive task).

4 Measured Experiments

For the practical experiments, we considered a threshold implementation of the
PRESENT cipher [2]. Our design is the same as Profile 2 in [22] which is based
on a serialized architecture. Following the minimum settings of threshold im-
plementations, all intermediate values of the cipher are represented by three
Boolean shares, and we exploit the 2-stage masked S-box described in [20]. As
described in Figure 2, the shared S-box input (y1, y2, y3) – where y = y1⊕y2⊕y3

– is first given to the G function, stored in the middle registers and then given
to the F function which makes the shared S-box output as (z1, z2, z3) – where
z1 ⊕ z2 ⊕ z3 = z := S(y). This process is repeated for the 16 S-boxes as repre-
sented on the figure, where the state is stored in shift registers which provide
the S-box inputs nibble-by-nibble. We have also taken the same implementation
platform as the one of [13] and [15], i.e. a Xilinx Virtex-II Pro FPGA embedded
on SASEBO [19]. The leakage traces are collected by means of a LeCroy digital
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Fig. 2. Architecture of the target design of PRESENT threshold implementation.

oscilloscope and a differential probe monitoring the voltage drop by a 1 Ω resis-
tor placed at internal Vdd path of the target FPGA. The sampling rate was set
to 1 GS/s and the target FPGA clock was driven at a frequency of 3 MHz.

4.1 PRNG off

As a preliminary, we analyzed a setting where the PRNG was switched off (i.e.
with all the masks stuck to ‘0’ during the measurements). We expect first-order
leakages to be detectable by both MCP-DPA and MCC-DPA in this case. For
this purpose, we collected 100, 000 traces, one of which is shown in the top part
of Figure 3, where we can observe that each trace covers 6 clock cycles linked to
the full computation of 5 S-boxes on 5 key-whitened plaintext nibbles.

Starting with MCP-DPA, we targeted the 7th nibble corresponding to plain-
text x7 and key k7, and used Np = 50, 000 traces for profiling the first-order

moments M̂1
x7,k7

. Since the PRESENT S-box is bijective and the initial key

whitening is linear, by permuting the vector M̂1
x7,k7

we obtain the estimated

moments M̂1
x7,k∗7

for all other possible key nibbles k∗7 . Then, we used another

Nt = 50, 000 traces to compute their correlation with the samples ltx7,k7
, and

applied this process to each time sample independently. Since b = 4 in this case,
we obtained 16 correlation curves depicted in the middle part of Figure 3, where
the curve corresponding to the correct key hypothesis is plotted in black.

A similar treatment was applied to MCC-DPA, for which we targeted the
7th and 8th nibbles. In this case, we estimated the moments for the first nibble,
used the samples of the second one to compute the correlation, and targeted the
difference ∆7,8 = k7⊕ k8. The corresponding S-box computations are computed
consecutively in our implementation, with an interval of one clock cycle, i.e. 333
sample points. Therefore, the leakage traces lt8,k8 are shifted by 333 sample points

to the left in order to be aligned with the estimated moments M̂1
x7,k7

. This time

we used a single set of 50, 000 traces to estimate the moments M̂1
x7,k7

and their
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Fig. 3. Experiments with PRNG off (Np=Nt=50k traces). Top: leakage trace. Middle:
MCP-DPA with first-order moments. Bottom: MCC-DPA with first-order moments.

correlation with ltx8,k8
. By permuting ltx8,k8

according to ∆7,8 and estimating

the correlation coefficient between M̂1
x7,k7

and ltx8,k8⊕∆7,8
for each sample point

independently, we obtained the results shown in bottom part of Figure 3.

These results lead to the following observations. First, both MCP-DPA and
MCC-DPA are successful in recovering k7 and ∆7,8, respectively. It indicates
that (as expected) the threshold implementation has well identified first-order
leakages when masks are stuck to ‘0’. Next, the leakages are spread over three
clock cycles for MCP-DPA, which can be explained by the architecture of Fig-
ure 2. Namely, when the plaintext nibble x7 appears at the last stage of the
state shift register, it is XORed with the corresponding key nibble and given to
the G function. This happens at the second clock cycle of the trace shown in the
top of Figure 3. At the next clock cycle, the middle register stores G(x7 ⊕ k7)
which then appears at the input of the F function. Eventually, F(G(x7 ⊕ k7)) is
saved in the first stage of the state shift register during the third clock cycle, at
the same time the F function’s input changes to G(x8 ⊕ k8). Since the leakages
of sequential circuits usually depend on the transition between two consecutive
states, observing some key dependencies in three states in a row is reasonable.
Interestingly, we see that the situation slightly differs in the case of MCC-DPA.
But this can also be explained by the target design. Namely, although there is
a single S-box implemented, the key addition corresponding to plaintext nibbles
x7 and x8 are not the same. Moreover, the controlling signals at the correspond-
ing two clock cycles are not exactly the same either. The combination of these
effects justifies the difference between the MCP-DPA and MCC-DPA curves.



One last question remains to investigate. That is, MCP-DPA theoretically
allows to select different values for Np and Nt. It leads to the problem of choos-
ing these values adequately. We answered this question by running MCP-DPA
and MCC-DPA in function of Nt and Np according to two strategies4. In the
balanced strategy, we always use Np = Nt. In the unbalanced strategy, we set
Np to some arbitrary values. As illustrated in Appendix, Figures 5 and 6, the
balanced strategy is usually sufficient to obtain well estimated moments (which
was expected since the estimation of these moments is essentially what will be
done in the online phase as well, by correlating them with samples raised to some
power d). Besides, the figures confirm the rule-of-thumb for estimating the at-
tacks data complexity (since the data complexities of MCP-DPA and MCC-DPA
are similar, as the value of their correlation coefficient in Figure 3).

4.2 PRNG on

Quite naturally, the most interesting setting for threshold implementations is
when the PRNG outputs uniformly random shares. This time we collected
20, 000, 000 traces for our experiments to examine the efficiency of our proposed
attacks. Similar to the case of PRNG off, we used the first half of the traces for
moment estimation and the next 10, 000, 000 traces for correlation estimation
in MCP-DPA, and a single set of 10, 000, 000 traces to perform both tasks in
MCC-DPA. We started by running a first-order MCP-DPA for which the result
is shown in the top part of Figure 4. As expected – theoretically proven by [20]
and confirmed by [13] – the attack is not successful supporting the effectiveness
of the threshold implementation scheme to prevent first-order leakages.

We then performed MCP-DPA and MCC-DPA with second-order central
moments and third-order standardized moments. As illustrated on the figure,
we observe that the investigated leakages contain information in both moments.
Yet, a number of interesting additional observations can be made. First, and
compared to the previous section, we see that MCP-DPA is slightly more effi-
cient than MCC-DPA in exploiting them. While a precise reasoning about this
fact seems uneasy, we conjecture that it relates to the similar leakage model
requirement that becomes more sensitive as the order of the statistical moment
exploited increases. Next, we can confirm that second-order moments are more
informative, as previously reported in [1]. Compared to this reference, we gain a
more quantitative statement about the respective informativeness of these mo-
ments, since the corresponding correlation coefficients obtained (e.g. for MCP-
DPA) are respectively worth 4 · 10−3 and 1.5 · 10−3. This corresponds to a ratio
between the data complexity of the corresponding attacks of approximatively
( 4

1.5 )2 ≈ 7.11. This result is also well in line with our simulated analyzes, since
lower-order moments should always become more informative as the noise in-
creases – and FPGAs are noisy platforms in general. Eventually, we see that

4 Of course, the experiment is artificial for MCC-DPA, since the same number of Nt

traces is used for moment estimation and correlation estimation in this case. We just
ran experiments with Np traces for the moment estimation for completeness.
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Fig. 4. Experiments with PRNG on (Np=Nt=10M traces). Top: MCP-DPA with first-
order moments. Middle Up: MCP-DPA with 2nd-order central moments. Middle: MCC-
DPA with 2nd-order central moments. Middle Down: MCP-DPA with 3rd-order stan-
dardized moments. Bottom: MCC-DPA with 3rd-order standardized moments.

only a single clock cycle leads to significant information when the PRNG is run-
ning, which means that the leakage related to the G function dominates in this
case. We confirmed these observations by running the attacks according to the
balanced and unbalanced strategies in Appendix, Figures 7 to 10.

5 Recycling CEPACA to gain confidence

The previous sections put forward that MC-DPA is a natural extension of
CEPACA, which can deal with profiled and non-profiled (collision-based) at-
tack scenarios, and preserves the “metric” feature of CPA. By exploiting these
potentialities, we could confirm previous results on threshold implementations



and make our analyzes more precise. In this section, we want to conclude by
arguing why MC-DPA consequently makes an interesting candidate for leakage
detection tests, such as the T-test and MI-tests discussed in [12].

In this context, the usual tradeoff is between the efficiency and the genericity
of the tests. For example, T-tests are primarily designed for the detection of
univariate leakages in unprotected devices, and are extremely efficient in such
cases. By contrast, MI-tests are able to capture more general dependencies, but
are usually more data consuming. In this respect, we first observe that a moment-
based approach as we suggest brings a possible compromise between these two
solutions. Admittedly, T-tests could also be applied to squared, cubed, . . . traces
– which makes them viable options to capture the leakage of protected imple-
mentations as well. Yet, MC-DPA brings two additional advantages, as we now
detail. First, it naturally applies to the detection of multi-class leakages (while
T-tests primarily focus on the two-class cases). Second, a fundamental question
whenever performing a leakage detection is to determine whether the conclu-
sions were obtained with sufficient confidence. A standard approach for answer-
ing this question is to perform cross-validation, which was recently suggested
as an important part of leakage certification procedures [6]. Yet, this comes at
the cost of additional data and time requirements. Interestingly, we show next
that CEPACA can be recycled in order to efficiently gain some easy-to-compute
confidence level. For this purpose, we just observe that while the value of the
correlation coefficient produced by such attacks should gradually tend to ‘1’ as
the number of samples used in the attack/evaluation increases, the fact that this
correlation is close to ‘1’ indeed indicates that the estimations are confident. As
a result, we can simply complement the previous MCP-DPA and MCC-DPA by
computing the Moments against Moments Profiled Correlation (MMPC) and
Moments against Moments Collision Correlation (MMCC), defined as follows:

MMPC = ρ̂(M̂d
x,k∗ , M̂

d
x,k), MMCC = ρ̂(M̂d

x0,k0 , M̂
d
x1,k1⊕∆).

In the case of a collision-based attack, a low MMCC value could still indicate
that the similar leakage model requirement is not fulfilled. But when applied
to MCP-DPA, a large value of the MMPC criteria ensures that the estimates
used in the evaluation are good. For illustration and in order to confirm our ex-
periments, we computed this criteria for our MCP-DPA evaluations of Figure 4
and observed that both for the second- and third-order moments, it was larger
than 90% (hence confirming that our evaluations were confident). In general, and
since this criteria shares the same meaning for any order d, it could be set as a
goal to reach if comparisons between different evaluations have to be performed.
Putting things together, we see that MC-DPA combines several advantages for
side-channel leakage-detection and evaluation. Namely, it applies to any order
d and can be implemented very efficiently, enjoying an intuitive rule-of-thumb
to estimate the attacks data complexity with limited sampling. Furthermore,
it directly comes with a way to quantify the confidence in the analyzes per-
formed. Summarizing, it combines the advantages that have made CPA one of
the most popular side-channel distinguishers and extends their applicability to



new settings (namely profiled attacks, non-profiled attacks and leakage detec-
tion). Admittedly, its profiled version remains suboptimal compared to template
attacks [5], but we believe it brings an interesting complement to such standard
tools, either to be launched as a preliminary experiment, or in order to answer
questions that template attacks cannot (e.g. the “most informative moment”
question that we investigated for our threshold implementation in Section 4).
Besides, MCP-DPA could be as efficient as template attacks in certain condi-
tions (e.g. information lying in a single statistical moment). Note finally that the
experiments in this work considered univariate side-channel attacks as a mean-
ingful case-study. But the proposed tools could naturally be extended to the
multivariate setting as well, by using mixed statistical moments.
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Device Leak Information? An a priori Statistical Power Analysis of Leakage Detec-
tion Tests. In Kazue Sako and Palash Sarkar, editors, ASIACRYPT (1), volume
8269 of Lecture Notes in Computer Science, pages 486–505. Springer, 2013.

13. Amir Moradi. Statistical Tools Flavor Side-Channel Collision Attacks. In David
Pointcheval and Thomas Johansson, editors, EUROCRYPT, volume 7237 of Lec-
ture Notes in Computer Science, pages 428–445. Springer, 2012.

14. Amir Moradi and Oliver Mischke. How Far Should Theory Be from Practice? -
Evaluation of a Countermeasure. In Prouff and Schaumont [23], pages 92–106.

15. Amir Moradi, Oliver Mischke, and Thomas Eisenbarth. Correlation-Enhanced
Power Analysis Collision Attack. In Stefan Mangard and François-Xavier Stan-
daert, editors, CHES, volume 6225 of Lecture Notes in Computer Science, pages
125–139. Springer, 2010.

16. Amir Moradi, Oliver Mischke, and Christof Paar. Practical evaluation of DPA
countermeasures on reconfigurable hardware. In HOST, pages 154–160. IEEE
Computer Society, 2011.

17. Amir Moradi, Oliver Mischke, and Christof Paar. One Attack to Rule Them All:
Collision Timing Attack versus 42 AES ASIC Cores. IEEE Trans. Computers,
62(9):1786–1798, 2013.

18. Amir Moradi, Axel Poschmann, San Ling, Christof Paar, and Huaxiong Wang.
Pushing the Limits: A Very Compact and a Threshold Implementation of AES. In
Paterson [21], pages 69–88.

19. Morita Tech. Side-channel Attack Standard Evaluation Board (SASEBO). http:

//www.morita-tech.co.jp/SAKURA/en/index.html.
20. Svetla Nikova, Vincent Rijmen, and Martin Schläffer. Secure Hardware Implemen-
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Fig. 5. PRNG off: MCP-DPA with first-order moments.
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Fig. 6. PRNG off: MCC-DPA with first-order moments.
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Fig. 7. PRNG on: MCP-DPA with second-order central moments.
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Fig. 8. PRNG on: MCC-DPA with second-order central moments.
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Fig. 9. PRNG on: MCP-DPA with third-order normalized moments.
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Fig. 10. PRNG on: MCC-DPA with third-order normalized moments.


