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Abstract. In this paper we introduce new methods for computing constant-time variable-base
point multiplications over the Galbraith-Lin-Scott (GLS) and the Koblitz families of elliptic
curves. Using a left-to-right double-and-add and a right-to-left halve-and-add Montgomery
ladder over a GLS curve, we present some of the fastest timings yet reported in the literature
for point multiplication. In addition, we combine these two procedures to compute a multi-
core protected scalar multiplication. Furthermore, we designed a novel regular τ -adic scalar
expansion for Koblitz curves. As a result, using the regular recoding approach, we set the
speed record for a single-core constant-time point multiplication on standardized binary elliptic
curves at the 128-bit security level.
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1 Introduction

From the cryptographic perspective, one of the most interesting consequences of the Snowden rev-
elations, is the increased awareness about the importance of implementing security protocols that
offer the Perfect Forward Secrecy (PFS) property. The PFS property guarantees that in a given
protocol, none of its past short term session keys can be derived from the long term server’s private
key. One tangible example of this situation is the recent announcement by the Internet Engineering
Task Force that the Transport Layer Security (TLS) protocol version 1.3, will no longer include
cipher suites based on RSA key transport primitives [34]. Instead, the client-server secret key estab-
lishment will be performed via either the Ephemeral Diffie-Hellman or the Elliptic Curve Ephemeral
Diffie-Hellman (ECDHE) methods. Because of the significant performance advantage of the latter
over the former, it is anticipated that in the years to come, ECDHE will be the favorite choice for
establishing a TLS shared secret.

The specifications of all the TLS protocol versions [8–10] include support for prime and binary
field elliptic curve cryptographic primitives. In the case of binary elliptic curves, the TLS protocol
supports a selection of several standardized random curves as well as Koblitz curves [23] at the
80-, 128-, 192- and 256-bit security levels. Koblitz curves allow performance improvements, due to
the availability of the Frobenius automorphism τ . Also, their generation is inherently rigid (in the
SafeCurves sense [2]), where the only degree of freedom in the curve generation process consists in
choosing a suitable prime degree extension m that produces a curve with almost-prime order. This
severely limits the possibility of “1-in-a-million attacks” [35] aiming to reach a weak curve after
testing many random seeds.

Point multiplication is the single most important operation of (hyper) elliptic curve cryptog-
raphy, for that reason, considerable effort has been directed towards achieving fast and compact
software/hardware implementations of it. A major result that has influenced the latest implemen-
tations was found in 2009, when Galbraith, Lin and Scott (GLS), building on a previous technique
introduced by Gallant, Lambert and Vanstone (GLV) [14], constructed efficient endomorphisms for
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a class of elliptic curves defined over the quadratic field Fq2 , where q is a prime number [13]. Taking
advantage of this result, the authors of [13] performed a 128-bit security level point multiplication
that took 326, 000 clock cycles on a 64-bit processor. Since then, a steady stream of algorithmic
and technological advances has translated into a significant reduction in the number of clock cycles
required to compute a (hyper) elliptic curve constant-time variable-base-point multiplication at the
128-bit security level [1, 11, 24, 5, 4, 16, 38].

The authors of [24, 11] targeted a twisted Edwards GLV-GLS curve defined over Fp2 , with p =
2127−5997. That curve is equipped with a degree-4 endomorphism allowing a fast point multiplication
computation that required just 92, 000 clock cycles on an Ivy Bridge processor [11]. Bos et al. [5] and
Bernstein et al. [1], presented an efficient point multiplication on the Kummer surface associated
with the Jacobian of a genus 2 curve defined over a field generated by the prime p = 2127 − 1. Each
iteration of the Montgomery ladder presented in [1] costs roughly 25 field multiplications, which
implemented on a Haswell processor permits to compute a point multiplication in 72, 000 clock
cycles.

In 2014, Oliveira et al. introduced the λ-projective coordinate system that leads to faster binary
field elliptic curve arithmetic [31, 32]. The authors applied that coordinate system into a binary GLS
curve that admits a degree-2 endomorphism and a fast field arithmetic associated with the quadratic
field extension of the binary field F2127 . When implemented on a Haswell processor, this approach
permits to perform one constant-time point multiplication computation in just 60, 000 clock cycles.

Contributions of this paper. This work presents new methods aimed to perform fast constant-
time variable-base-point multiplication computation for both random and Koblitz binary elliptic
curves of the form y2 +xy = x3 +ax2 + b. In the case of random binary elliptic curves, we introduce
a novel right-to-left variant of the classical Montgomery-López-Dahab ladder algorithm presented
in [25], which efficiently adapted the original ladder idea introduced by Peter Montgomery in his
1987 landmark paper [26]. The new variant presented in this work does not require point doublings,
but instead, it uses the efficient point halving operation available on binary elliptic curves. In con-
trast with the algorithm presented in [25] that does not admit the benefit of precomputed tables,
our proposed variant can take advantage of this technique, a feature that could be proved valu-
able for the fixed-base-point multiplication scenario. Moreover, we show that our new right-to-left
Montgomery ladder formulation can be nicely combined with the classical ladder to attain a high
parallel acceleration factor for a constant-time multi-core implementation of the point multiplication
operation. As a second contribution, we present a procedure that adapts the regular scalar recoding
of [21] to the task of producing a regular τ -NAF scalar recoding for Koblitz curves. This approach
has faster precomputation than related recodings [30] and allows us to achieve a speed record for
single-core constant-time point multiplication on standardized binary elliptic curves at the 128-bit
security level.

The remainder of this paper is organized as follows. In Section 2 we give a short description
of the GLS and Koblitz curves, their arithmetic and their security. In Section 3 we present new
variants of the Montgomery ladder for binary elliptic curves. Then, in Section 4, we introduce a
regular τ -NAF recoding amenable for producing protected point multiplication implementations on
Koblitz curves. In Section 5, we present our experimental implementation results and finally, we
draw our conclusions in Section 6.

2 Mathematical background

2.1 Quadratic field arithmetic

A binary extension field Fq, q = 2m, can be constructed by taking an degree-m polynomial f(x) ∈
F2[x] irreducible over F2, where the field elements in Fq are the set of binary polynomials of degree
less than m. Quadratic extensions of a binary extension field can be built using a degree two monic



polynomial g(u) ∈ Fq[u] irreducible over Fq. In this case, the field Fq2 is isomorphic to Fq[u]/(g(u))
and its elements can be represented as a0 + a1u, with a0, a1 ∈ Fq. Operations in the quadratic
extension are performed coefficient-wise. For instance, the multiplication of two elements a, b ∈ Fq2
is computed at the cost of three multiplications in the base field using the customary Karatsuba
formulation,

a · b = (a0 + a1u) · (b0 + b1u) (1)

= (a0b0 + a1b1) + (a0b0 + a1b1 + (a0 + a1) · (b0 + b1))u,

with a0, a1, b0, b1 ∈ Fq.
In [31, 32], the authors developed an efficient software library for the field F2m and its quadratic

extension F22m , with m = 127, generated by means of the irreducible trinomials f(x) = x127+x63+1
and g(u) = u2 + u+ 1, respectively. The computational cost of the field arithmetic in the quadratic
extension field gets significantly reduced by using that towering approach. To be more concrete, let
M and m denote the cost of one field multiplication over Fq2 and Fq, respectively. The execution
of the arithmetic library of [32] on the Sandy Bridge and Haswell microprocessors yields a ratio
M/m of just 2.23 and 1.51, respectively. These experimental results are considerably better than
the theoretical ratio M/m = 3 that one could expect from the Karatsuba formulation of Eq (1).
The aforementioned performance speedup can be explained from the fact that the towering field
approach permits a much better usage of the processor’s pipelined execution unit, which potentially
can improve the speed of one 64-bit carry-less multiplication3 from 7 clock cycles to the maximum
achievable throughput of just 2 clock cycles [12].

2.2 GLS binary elliptic curves

Let Ea,b(Fq2) denote the additive abelian group formed by the point at infinity O and the set of
affine points P = (x, y) with x, y ∈ Fq2 that satisfy the ordinary binary elliptic curve equation given
as,

E : y2 + xy = x3 + ax2 + b, (2)

defined over Fq2=22m , with a ∈ Fq2 and b ∈ F∗q2 . Let #Ea,b(Fq2) denote the size of the group

Ea,b(Fq2), and let us assume that Ea,b(Fq2) includes a subgroup 〈P 〉 of prime order r.
The point multiplication operation, denoted by Q = kP , corresponds to adding P to itself k− 1

times, with k ∈ [0, r − 1]. The average cost of computing kP by a random n-bit scalar k using the
traditional double-and-add method is about nD+ n

2A, where D and A are the cost of doubling and
adding a point, respectively. If the elliptic curve E of Eq. (2) is equipped with a non-trivial efficiently
computable endomorphism ψ such that ψ(P ) = δP ∈ 〈P 〉, for some δ ∈ [2, r − 2]. Then the point
multiplication can be computed à la GLV as,

Q = kP = k1P + k2ψ(P ) = k1P + k2 · δP,

where the subscalars |k1|, |k2| ≈ n/2, can be found by solving a closest vector problem in a lattice [13].
Having split the scalar k into two parts, the computation of kP = k1P + k2ψ(P ) can be performed
by applying simultaneous multiple point multiplication techniques [18] that translates into a saving
of half of the doublings required by the execution of a single point multiplication kP .

Inspired by the GLS technique of [13], Hankerson, Karabina and Menezes presented in [17] a
family of binary GLS curves defined over the field Fq2 , with q = 2m, which admits a two-dimensional
endomorphism. This endomorphism can be computed at the inexpensive cost of just three additions
in Fq. Furthermore, by carefully choosing the elliptic curve parameters a, b of Eq. (2), the authors
of [17] showed that it is possible to find members of that family of GLS curves with an almost-prime
group order of the form #Ea,b(Fq2) = hr, with h = 2 and where r is a (2m− 1)-bit prime number.

3 corresponding to the Intel’s PCLMULQDQ instruction.



Security of GLS curves Given a point Q ∈ 〈P 〉, the Elliptic Curve Discrete Logarithm Problem
(ECDLP) consists of finding the unique integer k ∈ [0, r − 1] such that Q = kP. To the best of our
knowledge, the most powerful attack for solving the ECDLP on binary elliptic curves was presented

in [33] (see also [20, 36]), with an associated computational complexity of O(2c·m
2/3 logm), where

c < 2, and where m is a prime number. This is worse than generic algorithms with time complexity
O(2m/2) for all prime field extensions m less than N = 2000, a bound that is well above the range
used for performing elliptic curve cryptography [33]. On the other hand, since the elliptic curve
of Eq. (2) is defined over a quadratic extension of the field Fq, the generalized Gaudry-Hess-Smart
(gGHS) attack [15, 19] to solve the ECDLP on the curve E, applies. To prevent this attack, it suffices
to verify that the constant b of Ea,b(Fq2) is not weak. Nevertheless, the probability that a randomly
selected b ∈ F∗q is a weak parameter, is negligibly small [17].

2.3 Koblitz curves

A Koblitz curve, also known as an anomalous binary curve or subfield curve, is defined as the set
of affine points P = (x, y) ∈ Fq × Fq, q = 2m, that satisfy the Weierstraß equation Ea : y2 + xy =
x3 + ax2 + 1, a ∈ {0, 1}, together with a point at infinity denoted by O. In λ-affine coordinates,
where the points are represented as P = (x, λ = x + y

x ), x 6= 0, the λ-affine form of the above
equation becomes [32], (λ2 + λ+ a)x2 = x4 + 1. A Koblitz curve forms an abelian group denoted as
Ea(F2m) of order 2(2− a)r, for an odd prime r, where its group law is defined by the point addition
operation.

Frobenius map. Since their introduction in [23], Koblitz curves were extensively studied for their
additional structure that allows, in principle, a performance speedup in the point multiplication
computation. The Frobenius map τ : Ea(Fq) → Ea(Fq) defined by τ(O) = O, τ(x, y) = (x2, y2),
is a curve automorphism satisfying (τ2 + 2)P = µτ(P ) for µ = (−1)1−a and all P ∈ Ea(Fq).
By solving the equation τ2 + 2 = µτ , the Frobenius map can be seen as the complex number

τ = µ+
√
−7

2 . Notice that in λ-coordinates the Frobenius map action remains the same, because,

τ(x, λ) = (x2, λ2) = (x2, x2 + y2

x2 ), which corresponds to the λ-representation of τ(x, y). Let Z[τ ] be
the ring of polynomials in τ with coefficients in Z. Since the Frobenius map is highly efficient, as long
as it is possible to convert an integer scalar k to its τ -representation k =

∑l−1
i=0 uiτ

i, its action can
be exploited in a point multiplication computation by adding multiples uiτ

i(P ), with uiτ
i ∈ Z[τ ].

Solinas [37] proposed exactly that, namely, a τ -adic scalar recoding analogous to the signed digit
scalar Non-Adjacent Form representation.

Security of Koblitz curves From the security point of view, it has been argued that the availability
of additional structure in the form of endomorphisms can be a potential threat to the hardness of
elliptic curve discrete logarithms [3], but limitations observed in approaches based on isogeny walks
is evidence contrariwise [22]. Furthermore, the generation of Koblitz curves satisfy by definition
the rigidity property. Constant-time compact implementations for Koblitz curves are also easily
obtained by specializing the Montgomery-López-Dahab ladder algorithm [25] for b = 1, although
we show below that this is not the most efficient constant-time implementation strategy possible.
Another practical advantage is the adoption of Koblitz curves by several standards bodies [27],
which guarantee interoperability and availability of implementations in many hardware and software
platforms.

3 New Montgomery ladder variants

This Section presents algorithms for computing the scalar multiplication through the Montgomery
ladder method. Here, we let P be a point in a binary elliptic curve of prime order r > 2 and k a
scalar of bit length n. Our objective is to compute Q = kP .



Algorithm 1 Left-to-right Montgomery ladder [26]

Input: P = (x, y), k = (1, kn−2, . . . , k1, k0)
Output: Q = kP
1: R0 ← P ; R1 ← 2P ;
2: for i = n− 2 downto 0 do
3: if ki = 1 then
4: R0 ← R0 +R1; R1 ← 2R1

5: else
6: R1 ← R0 +R1; R0 ← 2R0

7: end if
8: end for
9: return Q = R0

Algorithm 1 describes the classical left-to-right Montgomery ladder approach for point multipli-
cation [26], whose key algorithmic idea is based on the following observation. Given a base point P
and two input points R0 and R1, such that their difference, R0−R1 = P, is known, the x-coordinates
of the points, 2R0, 2R1 and R0 +R1, are fully determined by the x-coordinates of P, R0 and R1.

More than one decade after its original proposal in [26], López and Dahab presented in [25]
an optimized version of the Montgomery ladder, which was specifically crafted for the efficient
computation of point multiplication on ordinary binary elliptic curves. In this scenario, compact
formulae for the point addition and point doubling operations of Algorithm 1 can be derived from
the following result.

Lemma 1 ([25]). Let P = (x, y), R1 = (x1, y1), and R0 = (x0, y0) be elliptic curve points, and
assume that R1 − R0 = P, and x0 6= 0. Then, the x-coordinate of the point (R0 + R1), x3, can be
computed in terms of x0, x1, and x as follows,

x3 =

{
x+ x0·x1

(x0+x1)
2 R0 6= ±R1

x20 + b
x2
0

R0 = R1

(3)

Moreover, the y-coordinate of R0 can be expressed in terms of P, and the x-coordinates of R0, R1

as,
y0 = x−1(x0 + x)

[
(x0 + x)(x1 + x) + x2 + y

]
+ y (4)

Let us denote the projective representation of the points R0, R1 and R0+R1, without considering
their y-coordinates as, R0 = (X0,−, Z0) R1 = (X1,−, Z1) and R0 +R1 = (X3,−, Z3). Then, for the
case R0 = R1, Lemma 1 implies, {

X3 = X4
0 + b · Z4

0

Z3 = X2
0 · Z2

0

(5)

Furthermore, for the case R0 6= ±R1, one has that,{
Z3 = (X0 · Z1 +X1 · Z0)

2

X3 = x · Z3 + (X0 · Z1) · (X1 · Z0)
(6)

From Equations (5) and (6) it follows that the computational cost of each ladder step in Algo-
rithm 1 is of 5 multiplications, 1 multiplication by the curve b-constant, 4 or 5 squarings4 and 3
additions over the binary extension field where the elliptic curve has been defined.

In the rest of this Section, we will present a novel right-to-left formulation of the classical Mont-
gomery ladder.

4 Either b = 1 or
√
b is precomputed. Formula (5) can also be computed as Z3 = (X0 · Z0)2 and X3 =

(X2
0 +
√
b · Z2

0 )2



3.1 Right-to-left double-and-add Montgomery-LD ladder

Algorithm 2 presents a right-to-left version of the classical Montgomery ladder procedure. At the
end of the i-th iteration, the points in the variables R0, R1 are, R0 = 2i+1P, and R1 = `P + P

2 , where
` is the integer represented by the i rightmost bits of the scalar k. The variable R2 maintains the
relationship, R2 = R0 − R1 from the initialization (step 1), until the execution of the last iteration
of the main loop (steps 2-9). This comes from the fact that at each iteration, if ki = 1, then the
difference R0 −R1 remains unchanged. If otherwise, ki = 0, then both R2 and R0 are updated with
their respective original values plus R0, which ensures that R2 = R0−R1, still holds. Notice however
that, although the difference R2 = R0 −R1, is known, it may vary throughout the iterations.

Algorithm 2 Montgomery-LD double-and-add scalar multiplication (right-to-left)

Input: P = (x, y), k = (kn−1, kn−2, . . . , k1, k0)
Output: Q = kP
1: R0 ← P ; R1 ← P

2
; R2 ← P

2
= (R0 −R1);

2: for i = 0 to n− 1 do
3: if ki = 1 then
4: R1 ← R1 +R0;
5: else
6: R2 ← R2 +R0;
7: end if
8: R0 ← 2R0;
9: end for

10: return Q = R1 − P
2

As stated in Lemma 1, the point additions of steps 4 and 6 in Algorithm 2 can be computed using
the x-coordinates of the points R0, R1 and R2, according to the following analysis. If ki = 1, then the
x-coordinate of R0 +R1 is a function of the x-coordinates of R0, R1 and R2, because R2 = R0−R1.
If ki = 0, the x-coordinate of R2 + R0 is a function of the x-coordinates of the points R0, R1 and
R2, because R0 − R2 = R0 − (R0 − R1) = R1. Hence, considering the projective representation of
the points R0 = (X0,−, Z0), R1 = (X1,−, Z1), R2 = (X2,−, Z2) and R0 +R1 = (X3,−, Z3), where
all the y-coordinates are ignored, and assuming R0 6= ±R1, we have,

T = (X0 · Z1 +X1 · Z0)2

Z3 = Z2 · T
X3 = X2 · T + Z2 · (X0 · Z1) · (X1 · Z0)

(7)

From Equations (5) and (7), it follows that the computational cost of each ladder step in Algorithm 2
is of 7 multiplications, 1 multiplication by the curve b-constant, 4 or 5 squarings and 3 additions
over the binary field where the elliptic curve lies.

Although conceptually simple, the above method has several algorithmic and practical shortcom-
ings. The most important one is the difficulty to recover, at the end of the algorithm, the y-coordinate
of R1, as in none of the available points (R0, R1 and R2) the corresponding y-coordinate is known.
This may force the decision to use complete projective formulae for the point addition and doubling
operations of steps 4, 6 and 8, which would be costly. Finally, we stress that to guarantee that
the case R0 = R2 will never occur, it is sufficient to initialize R1 with P

2 , and perform an affine
subtraction at the end of the main loop (step 10).

In the following subsection we present a halve-and-add right-to-left Montgomery ladder algorithm
that alleviates the above shortcomings and still achieves a competitive performance.



3.2 Right-To-Left halve-and-add Montgomery-LD ladder

Algorithm 3 Montgomery-López-Dahab halve-and-add (right-to-left)

Input: P = (x, y), k′ = (k′n−1, k
′
n−2, . . . , k

′
1, k
′
0)

Output: Q = kP
1: Precomputation: x(Pi), where Pi = P

2i
, for i = 0, . . . , n

2: R1 ← Pn; R2 ← Pn;
3: for i = 0 to n− 1 do
4: R0 ← Pn−1−i;
5: if k′i = 1 then
6: R1 ← R0 +R1;
7: else
8: R2 ← R0 +R2;
9: end if

10: end for
11: R1 ← R1 − Pn
12: return R1

Algorithm 3 presents a right-to-left Montgomery ladder procedure similar to Algorithm 2, but
in this case, all the point doubling operations are substituted with point halvings. A left-to-right
approach using halve-and-add with Montgomery ladder was published in [29], however, this method
requires one inversion per iteration, which degrades its efficiency due to the cost of this operation.

As in any halve-and-add procedure, an initial step before performing the actual computation
consists of processing the scalar k such that it can be equivalently represented with negative pow-
ers of two. To this end, one first computes k′ ≡ 2n−1k mod r, with n = |r|. This implies that,
k ≡

∑n
i=1 k

′
n−i/2

i−1 mod r and therefore, kP =
∑n
i=1 k

′
n−i(

1
2i−1P ). Then, in the first step of Al-

gorithm 3, n halvings of the base point P are computed. We stress that all the precomputed points
Pi = P

2i , for i = 0, . . . , n can be stored in affine coordinates. In fact, just the x-coordinate of each one
of the above n points must be stored (with the sole exception of the point Pn, whose y-coordinate
is also computed and stored).

As in the preceding algorithm notice that at the end of the i-th iteration, the points in the
variables R0, R1 are, R0 = P

2n−i−1 , and R1 = `P +Pn, where in this case ` is the integer represented

as, ` =
i∑

j=0

k′j
2n−j mod r. Notice also that the variable R2 maintains the relationship, R2 = R0 − R1,

until the execution of the last iteration of the main loop (steps 3-10). This comes from the fact that
at each iteration, if ki = 1, then the difference R0 − R1 remains unchanged. If otherwise, ki = 0,
then both R2 and R0 are updated with their respective original values plus R0, which ensures that
R2 = R0 −R1, still holds.

Since at every iteration, the values of the points R0, R1 and R0−R1, are all known, the compact
point addition formula (7) can be used. In practice, this is also possible because the y-coordinate of
the output point kP can be readily recovered using Equation 4, along with the point 2P . Moreover,
since the points in the precomputed table were generated using affine coordinates, it turns out that
the z-coordinate of the point R0 is always 1 for all the iterations of the main loop. This simplifies
(7) as, 

T = (X0 · Z1 +X1)2

Z3 = Z2 · T
X3 = X2 · T + Z2 · (X0 · Z1) · (X1)

(8)



Hence, the computational cost per iteration of Algorithm 3 is of 5 multiplications, 1 squaring, 2
additions and one point halving over the binary field where the elliptic curve lies.

GLS Endomorphism The efficient computable endomorphism provided by the GLS curves can
be used to implement the 2-GLV method on the Algorithm 3. As a result, only n/2 point halving
operations must be computed. Besides the speed improvement, the 2-GLV method reduces to a half
the number of precomputed points that must be stored.

3.3 Multi-core Montgomery ladder

As proposed in [38], by properly recoding the scalar, one can efficiently compute the scalar multipli-
cation in a multi-core environment. Specifically, given a scalar k of size n, we fix a constant t which
establishes how many scalar bits will be processed by the double-and-add, and by the halve-and-add
procedures. This is accomplished by computing, k′ = 2tk mod r, which yields,

k =
k′0
2t

+
k′1

2t−1
+ · · ·+

k′t−1
21︸ ︷︷ ︸

halve−and−add

+
k′t
20

+ 21k′t+1 + 22k′t+2 + · · ·+ 2(n−1)−tk′n−1︸ ︷︷ ︸
double−and−add

In a two-core setting, it is straightforward to combine the left-to-right and right-to-left Mont-
gomery ladder procedures of Algorithms 1 and 3, and distribute them to both cores. In this scenario,
the number of necessary pre-computed halved points reduces to ∼ n

4 . In a four-core platform, we can
apply the GLS endomorphism to the left-to-right Montgomery ladder (Algorithm 1). Even though
the GLV technique is ineffective for the classical Montgomery algorithm (due to the fact that we
cannot share the point doublings between the base point and its endomorphism), the method per-
mits an efficient splitting of the algorithm workload into two cores. In this way, one can use the first
two cores for computing t-digits of the GLV subscalars k1 and k2 by means of Algorithm 3, while
we allocate the other two cores to compute the rest of the scalar’s bits using Algorithm 1, as shown
in Algorithm 6 (see Appendix A).

3.4 Cost comparison of Montgomery ladder variants

Table 1 shows the computational costs associated to the Montgomery ladder variants described in
this Section. The constants t2 and t4 represent the values of the parameter t chosen for the two- and
four-core implementations, respectively.5 All Montgomery ladder algorithms require a basic post-
computation cost to retrieve the y-coordinate, which demands ten multiplications, one squaring
and one inversion. Due to the application of the GLV technique, the Montgomery-LD-2-GLV halve-
and-add version (corresponding to Algorithm 3), requires some few extra operations, namely, the
subtraction of a point and the addition of two accumulators, which is performed using the López-
Dahab (LD) projective coordinate formulae. In the end, one extra inversion is needed to convert the
point representation from LD-projective coordinates to affine coordinates.

In the case of the parallel versions, the overhead is given by the post-computation done in one
single core. The exact costs are mainly determined by the accumulator additions that are performed
via full and mixed LD-projective formulae. In all of the timings reported in Section 5, we consider
the LD-projective to affine coordinate transformation cost.

5 In our implementations (see subsection 5.3 below), the values used for the parameters t2 and t4 ranged
from 53 to 55.



Table 1. Montgomery-LD algorithms cost comparison. In this table, M,Ma,Mb, S, I denote the follow-
ing field operations: multiplication, multiplication by the curve a-constant, multiplication by the curve
b-constant, squaring and inversion. The point halving operation is denoted by H.

Method Cost
1
-c
o
re

Alg. 1: Montgomery-LD
(double-and-add, left-to-right)

pre/post 10M + 1S + 1I
sc. mult. n(5M + 1Mb + 4S)

Alg. 3: Montgomery-LD-2-GLV
(halve-and-add, right-to-left)

pre/post 48M + 1Ma + 13S + 3I
sc. mult. (n

2
+ 1)H + n(5M + 1S)

2
-c
o
re

Montgomery-LD-2-GLV
(double-and-add, left-to-right)

core I
pre/post 25M + 1Ma + 5S + 2I
sc. mult. (n− t2)(5M + 1Mb + 4S)

Montgomery-LD-2-GLV
(halve-and-add, right-to-left)

core II
pre/post 46M + 2Ma + 12S + 2I
sc. mult. ( t2

2
+ 1)H + t2(5M + 1S)

Overhead 15M + 5S + 1I

4
-c
o
re

Montgomery-LD-2-GLV
(double-and-add, left-to-right)

cores pre/post 10M + 1S + 1I
I & II sc. mult. (n

2
− t4)(5M + 1Mb + 4S)

Montgomery-LD-2-GLV
(halve-and-add, right-to-left)

cores pre/post 16M + 1Ma + 4S + 1I
III & IV sc. mult. ( t4

2
+ 1)H + t4(5M + 1S)

Overhead 34M + 1Ma + 12S + 1I

4 A novel regular τ -adic approach

4.1 Recoding in τ -adic form

The recoding approach proposed by Solinas finds an element ρ ∈ Z[τ ], of as small norm as possible,
such that ρ ≡ k (mod τm−1

τ−1 ). A τ -adic expansion with average non-zero density 1
3 can be obtained by

repeatedly dividing ρ by τ and assigning the remainders to the digits ui to obtain k =
∑i=l−1
i=0 uiτ

i.
An alternative approach that does not involve multi-precision divisions, is to compute an element
ρ′ = k partmod (mod τm−1

τ−1 ) by performing a partial reduction procedure [37]. A width-w τ -NAF

expansion with non-zero density 1
w+1 , where at most one of any w consecutive coefficients is non-zero,

can also be obtained by repeatedly dividing ρ′ by τw and assigning the remainders to the digit set
{0,±α1,±α3, . . . ,±α2w−1−1}, for αi = i mod τw. Under reasonable assumptions, this window-based
recoding has length l ≤ m+ 1 [37].

In this section, a regular recoding version of the (width-w) τ -NAF expansion is derived. The
security advantages of such recoding are the predictable length and locations of non-zero digits
in the expansion. This eliminates any side-channel information that an attacker could possibly
collect regarding the operation executed at any iteration of the scalar multiplication algorithm (point
doubling/Frobenius map or point addition). As long as querying a precomputed table of points to
select the second operand of a point addition takes constant time, the resulting algorithm should be
resistant against any timing-based side-channel attacks.

Let us first consider the integer recoding proposed by Joye and Tunstall [21]. They observed that
any odd integer i in the interval [0, 2w) can be written as i = 2w−1 + (−(2w−1 − i)). Repeatedly
dividing an odd n-bit integer k− ((k mod 2w)− 2w−1) by 2w−1 maintains the parity and assigns the
remainders to the digit set {±1, . . . ,±(2w−1− 1)}, producing an expansion of length d1 + n

w−1 ] with

non-zero density 1
w−1 . Our solution for the problem of finding a regular τ -adic expansion employs

the same intuition as explained next.
Let φw : Z[t] → Z2m be a surjective ring homomorphism induced by τ 7→ tw, for t2w + 2 ≡

µtw (mod 2w), with kernel {α ∈ Z[τ ] : τw divides α}. An element i = i0 + i1τ from Z[τ ] with
odd integers i0, i1 ∈ [0, 2w) satisfies the analogous property φw(i) = 2w−1 + (−(2w−1 − φw(i))).
Repeated division of (r0 +r1τ)−(((r0 +r1τ) mod τw)−τw−1) by τw−1, correspondingly of φw(ρ′) =
(r0 + r1tw) − ((r0 + r1tw mod 2w) − 2w−1) by 2w−1, obtains remainders that belong to the set



{0,±α1,±α3, . . . ,±α2w−1−1}. The resulting expansion has always length d1 + m+2
w−1 e and non-zero

density 1
w−1 . Algorithm 4 presents the recoding process for any w ≥ 2. The resulting recoding

can also be seen as an adaption of the SPA-resistant recoding of [30], mapping to the digit set
{0,±α1,±α3, . . . ,±α2w−1−1} instead of integers. While the non-zero densities are very similar, our
scheme provides a performance benefit in the precomputation step, since the Frobenius map is
usually faster than point doubling and preserves affine coordinates and consequently faster point
additions.

Algorithm 4 Regular width-w τ -recoding for n-bit scalar

Input: w, tw, αu = βu + γuτ for u = {±1,±3,±5, . . . ,±2w−1 − 1}, ρ = r0 + r1τ ∈ Z[τ ] with odd r0, r1

Output: ρ =

d n+2
w−1

e∑
i=0

uiτ
i(w−1)

1: for i← 0 to d n+2
w−1
e - 1 do

2: if w = 2 then
3: ui ← ((r0 − 2r1) mod 4)− 2
4: r0 ← r0 − ui
5: else
6: u← (r0 + r1tw mod 2w)− 2w−1

7: if u > 0 then s← 1 else s← −1
8: r0 ← r0 − sβu, r1 ← r1 − sγu, ui ← αu
9: end if

10: for j ← 0 to (w − 2) do
11: t← r0, r0 ← µr0/2, r1 ← −t/2
12: end for
13: end for

14: if r0 6= 0 and r1 6= 1 then
15: ui ← r0 + r1τ, i← i+ 1
16: else
17: if r1 6= 0 then
18: ui ← r1, i← i+ 1
19: else
20: ui ← r0, i← i+ 1
21: end if
22: end if

4.2 Left-to-right regular approach

Algorithm 5 presents a complete description of a regular scalar multiplication approach that uses as
a building block the regular width-w τ -recoding recoding procedure just described.

For benchmarking purposes we also included a baseline implementation of the customary Mont-
gomery López-Dahab ladder. This allows easier comparisons with related work and permits to eval-
uate the impact of incomplete reduction in the field arithmetic performance (cf. subsection 5.2).

5 Implementation issues and results

In this Section, we discuss several implementation issues. We also present our experimental results
and we compare them against state-of-the-art protected point multiplication implementations at the
128-bit security level.

5.1 Mechanisms to achieve a constant-time GLS-Montgomery ladder implementation

To protect the previously described algorithms against timing attacks, we observed the following
precautions,

Branchless code The main loop, the pre- and post-computation phases are implemented by a com-
pletely branch-free code.



Algorithm 5 Protected scalar multiplication

Input: P = (x, λ), k ∈ Z, width w
Output: Q = kP
1: Compute ρ′ = r0 + r1τ = k partmod (mod τm−1

τ−1
)

2: if 2|r0 then r′0 = r0 + 1
3: if 2|r1 then r′1 = r1 + 1

4: Compute width-w length-l regular τ -adic of r′0 + r′1τ as
∑d n+3

w−1
e

i=0 uiτ
i(w−1) (Alg. 4)

5: for i ∈ {1, . . . , 2w−1 − 1} do
6: Compute Pu = αuP
7:
8: Q← O
9: for i = l − 1 downto 0 do

10: Q← τw−1(Q)
11: Perform a linear pass to recover Pui

12: Q← Q+ Pui

13: end for
14: return Q = Q− (r′0 − r0)P − (r′1 − r1)τ(P ).

Data veiling To guarantee a constant memory access pattern in the main loop of the Montgomery
ladder algorithms, we proposed an efficient data veiling method, as described in Algorithm 7 of
Appendix B. Algorithm 7 evaluates the actual and the previous scalar bits to decide whether the
variables containing the Montgomery-LD accumulators values should or should not be masked. This
strategy saves a considerable portion of the computational effort associated to Algorithm 1 of [4].

Field arithmetic Two of the base field arithmetic operations over Fq were implemented through
look-up tables, namely, the half-trace and the multiplicative inverse operations. The half-trace is
used to perform the point halving primitive, which is required in the pre-computation phase of the
Montgomery-LD halve-and-add algorithm. The multiplicative inverse is one of the operations in the
y-coordinate retrieval procedure, at the end of the Montgomery ladder algorithms. Also, whenever
post-computational additions are necessary, inverses must be performed to convert a point from
LD-projective to affine coordinates.

Although we are aware of the existence of protocols that consider the base point as a secret
information [6], in which case one could not consider that our software provides protection against
timing attacks, in the vast majority of protocols, the base point is public. Consequently, any attacks
aimed at the two field operations mentioned above would be pointless.

5.2 Mechanisms to achieve a constant-time Koblitz implementation

Implementing Algorithm 5 in constant time needs some care, since all of its building blocks must be
implemented in constant time.

Finite field arithmetic. Modern implementations of finite field arithmetic can make extensive use
of vector registers, removing timing variances due to the cache hierarchy. For our illustrative im-
plementation of curve NIST-K283, we closely follow the arithmetic described in Bluhm-Gueron [4],
adopting the incomplete reduction improvement proposed by Negre-Robert [28].

Integer recoding. All the branches in Algorithm 4 need to be eliminated by conditional execu-
tion statements to protect leakage of the scalar k. Moreover, to remove the remaining sign-related
branches, multiple precision integer arithmetic must be implemented in complement of two. If two
constants, say βu, γu, are stored in a precomputed table, then they need to be recovered by a linear
pass across the table in constant time. Finally, the partial reduction step producing ρ′ must also be



implemented in constant time by removing all of its branches. Notice that the requirement for r0, r1
to be odd is not a problem, since partial reduction can be modified to always result in odd inte-
gers, with a possible correction at the end of the scalar multiplication by performing a (protected)
conditional subtraction of points (line 14 of Algorithm 5).

5.3 Results

Our implementation was mainly designed for the Intel Haswell processor family, which supports
vectorial sets such as SSE and AVX, a carry-less multiplication and some bit manipulation instruc-
tions. The programming was done in C with the support of assembly inline code. The compilation
was performed via GCC version 4.7.3 with the flags -m64 -march=core-avx2 -mtune=core-avx2

-O3 -fomit-frame-pointer -funroll-loops. Finally, the timings were collected on an Intel Core
i7-4700MQ, with the Turbo Boost and Hyperthreading features disabled6.

Table 2 presents the experimental timings obtained for the most prominent building blocks
required for computing the point multiplication operation on the GLS and Koblitz binary elliptic
curves.

Table 2. Timings (in clock cycles) for the elliptic curve operations in the Intel Haswell platform.

Elliptic curve
operation

GLS E/F2254

cycles op/M1

Halving 184 4.181
Montgomery-LD D&A (left-to-right) Addition (Eq. (6)) 161 3.659

Montgomery-LD H&A (right-to-right) Addition (Eq. (8)) 199 4.522
Montgomery-LD Doubling7 (Eq. (5)) 95 2.159

Elliptic curve
operation

Koblitz E/F2283

cycles op/M1

Frobenius 70 1.235
Integer τ -adic recoding (Alg. 4) (w = 5) 8,900 156.863

Point addition 602 10.588
1 Ratio to multiplication.

We present in Table 3 a comparison of our timings against a selection of state-of-the-art imple-
mentations of the point multiplication operation on binary and prime elliptic curves. Due to the
Montgomery-LD point doubling efficiency, which costs 49% less than a point halving, the GLS-
Montgomery-LD-double-and-add achieved the fastest timing in the one-core setting, with 70,800
clock cycles. This is 13% faster than the performance obtained by the GLS-Montgomery-LD-halve-
and-add algorithm. In the known-base point setting, we can ignore the GLS-Montgomery-LD-halve-
and-add pre-computation expenses associated with its table of halved points. In that case, we can
compute the scalar multiplication in an estimated time of 44,600 clock cycles using a table of just
4128 bytes.

Furthermore, the GLS-Montgomery-LD-halve-and-add is crucial for implementing the multi-core
versions of the Montgomery ladder. When compared with our one-core double-and-add implemen-
tation, Table 3 reports a speedup of 1.36 and 2.03 in our two- and four-core Montgomery ladder
versions, respectively. Here, besides the overhead costs commented in Section 3, we can clearly

6 We intend to submit our software to the ECRYPT Benchmarking of Cryptographic Systems (eBACS)
SUPERCOP toolkit in the near future.

7 The flexibility for finding a curve b-constant, provided by the GLS curves, allow us to have a small
√
b

(see Appendix C). As a consequence, we used the Eq. (5) alternative formula.



perceive the usual multicore management penalty. Finally, we observe that our GLS-Montgomery-
LD-double-and-add surpasses by 48%, 40% and 2% the Montgomery ladder implementations of [4]
(Random), [4] (Koblitz) and [1], respectively.

As for our Koblitz implementations, the fast τ endomorphism allows us to have a regular-recoding
implementation that outperforms a standard Montgomery ladder for Koblitz curves by 18%. In
addition, our fastest Koblitz code surpasses by 16% the recent implementation reported in [4] 8.
Finally, note that, in spite of the fact that the τ endomorphism is 26% faster than the Montgomery-
LD point doubling, the superior efficiency of the GLS quadratic field arithmetic produces faster
results for the GLS Montgomery ladder algorithms.

Table 3. Timings (in clock cycles) for 128-bit level scalar multiplication with timing-attack resistance in
the Intel Ivy Bridge (I) and Haswell (H) architectures.

Method Cycles Arch

S
ta

te
-o
f-
th

e
-a
rt

im
p
le
m
e
n
ta

ti
o
n
s

Montgomery-DJB-chain (prime) [7] 148,000 I
Random-Montgomery-LD ladder (binary) [4] 135,000 H
Genus-2-Kummer (prime) [5] 122,000 I
Koblitz-Montgomery-LD ladder (binary) [4] 118,000 H
Twisted-Edwards-4-GLV (prime) [11] 92,000 I
Genus-2-Kummer Montgomery ladder (prime) [1] 72,200 H
GLS-2-GLV double-and-add (binary, λ) [32] 60,000 H

O
u
r
W

o
rk

Koblitz-Montgomery-LD double-and-add (left-to-right) 122,000 H
Koblitz-regular τ -and-add (left-to-right, w = 5) 99,000 H
GLS-Montgomery-LD-2-GLV halve-and-add (Algorithm 3) 80,800 H
GLS-Montgomery-LD double-and-add (Algorithm 1) 70,800 H
2-core GLS-Montgomery-LD-2-GLV halve-and-add/double-and-add 52,000 H
4-core GLS-Montgomery-LD-2-GLV halve-and-add/double-and-add
(Algorithm 6)

34,800 H

6 Conclusion

We presented several algorithms that permit to compute a constant-time high-security point multipli-
cation operation over two families of binary elliptic curves, namely, the GLS and the Koblitz curves.
Although this work was completely focused on a high-end desk computation of the variable-base
point multiplication, the possibility of applying Algorithm 3 to the fixed-base point multiplication
setting is highly appealing since that procedure requires a comparatively small pre-computed table
of roughly 2n · (n + 1) bits for computing a point multiplication at the n-bit security level. The
above combined with the Montgomery ladder unique feature of performing all the computations
using only two point coordinates, should be attractive for deployments of public key cryptography
on constrained computing environments.
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A Multi-core Montgomery ladder

Here we present the four-core GLS-Montgomery-LD ladder algorithm. Given t4 the integer constant
that establishes the workload of each algorithm, P ∈ E(Fq2), and the scalar k represented as k1+k2 ·δ
using the GLS-GLV method, cores I and II are both responsible for computing bn2 c − t4 bits of the
subscalars k1 and k2 using the Montgomery-LD double-and-add method. In turn, the cores III and
IV , both compute t4 bits of k1 and k2 with the Montgomery-LD halve-and-add algorithm. In the
end, on a single core, it is necessary to add all the accumulators Qi, for i = 0 . . . 3.

Algorithm 6 Parallel Montgomery ladder scalar multiplication (four-core)

Input: P ∈ E(Fq2), scalar k of bit length n, integer constant t4
Output: Q = kP
k′ ← 2t4k
Represent k′ = k′1 + k′2λ, where ψ(P ) = λP

{Initialization}
R0 ← O, R1 ← P
for i = dn

2
e downto t4 do

b← k′1,i ∈ {0, 1}
R1−b ← R1−b +Rb
Rb ← 2Rb

end for
Q0 ← R0

{Barrier} Core I

{Initialization}
R0 ← O, R1 ← P
for i = dn

2
e downto t4 do

b← k′2,i ∈ {0, 1}
R1−b ← R1−b +Rb
Rb ← 2Rb

end for
Q1 ← R0

{Barrier} Core II

{Precomputation}
for i = 1 downto t4 + 1 do

Pi ← P
2i

end for
{Initialization}
R1 ← Pt4+1, R2 ← Pt4+1

for i = 0 downto t4 − 1 do
R0 ← Pt4−i
b← k′1,i ∈ {0, 1}
R2−b ← R2−b +R0

end for
Q2 ← R1 − Pt4+1

{Barrier} Core III

{Precomputation}
for i = 1 downto t4 + 1 do

Pi ← P
2i

end for
{Initialization}
R1 ← Pt4+1, R2 ← Pt4+1

for i = 0 downto t4 − 1 do
R0 ← Pt4−i
b← k′2,i ∈ {0, 1}
R2−b ← R2−b +R0

end for
Q3 ← R1 − Pt4+1

{Barrier} Core IV

return Q = Q0 +Q2 + ψ(Q1 +Q3)



B Memory access pattern

The following data veiling algorithm ensures a fixed memory access pattern for all Montgomery-LD
ladder algorithms. Given the two Montgomery-LD ladder accumulators A and B, and the scalar
k = (kn−1, kn−2, . . . k0), this method allows us, in the beginning of the i-th main loop iteration, to
use the bits ki−1 and ki to decide if A and B will or will not be swapped. As a result, it is not
necessary to reapply the procedure at the end of the i-th iteration.

Algorithm 7 Data veiling algorithm

Input: Scalar digits ki and ki−1, Montgomery-LD ladder accumulators A and B
Output: Montgomery-LD ladder accumulators A and B
mask ← 0− (ki−1 ⊕ ki)
tmp← A⊕B
tmp← tmp ∧mask
A← A⊕ tmp
B ← B ⊕ tmp
return A,B

C GLS elliptic curve parameters

For achieving a greater benefit from the multiplication by the b-constant in the Montgomery-LD
doubling formula

X3 = X0
4 + bZ0

4 = (X0
2 +
√
bZ0

2)2

we carefully selected a GLS curve with a 64-bit b-parameter square-root. As a result, we saved two
carry-less multiplication and a dozen of SSE instructions per field multiplication. Next, we describe
the parameters, as polynomials represented in hexadecimal, for our GLS curve Ea,b/Fq2 : y2 + xy =
x3 + ax2 + b.

– a = u

– b = 0x54045144410401544101540540515101

–
√
b = 0xE2DA921E91E38DD1

The 253-bit prime order r of the main subgroup of Ea,b/Fq2 is,

r =0x1FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFA6B89E49D3FECD828CA8D66BF4B88ED5.

The base point P = (x, y) of order r used in this work is,

x =0x4A21A3666CF9CAEBD812FA19DF9A3380 +

0x358D7917D6E9B5A7550B1B083BC299F3 · u

y =0x6690CB7B914B7C4018E7475D9C2B1C13 +

0x2AD4E15A695FD54011BA179D5F4B44FC · u.

Finally, the towering of our field Fq ∼= F2[x]/(f(x)) and its quadratic extension Fq2 ∼= Fq[u]/(g(x))
is constructed by means of the irreducible trinomials f(x) = x127 + x63 + 1 and g(u) = u2 + u+ 1.


