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Abstract

Message authentication and key exchange are two of the most basic tasks of cryptography. Solutions
based on public-key infrastructure (PKI) are prevalent. Still, the state of the art in composable security
analysis of PKI-based authentication and key exchange is somewhat unsatisfactory. Specifically, existing
treatments either (a) make the unrealistic assumption that the PKI is accessible only within the confines
of the protocol itself, thus failing to capture real-world PKI-based authentication, or (b) impose often-
unnecessary requirements—such as strong on-line non-transferability—on candidate protocols, thus
ruling out natural candidates.

We give a modular and universally composable analytical framework for PKI-based message au-
thentication and key exchange protocols. This framework guarantees security even when the PKI is
pre-existing and globally available, without being unnecessarily restrictive. Specifically, we model PKI as
a global set-up functionality within the Global UC security model [Canetti et al., TCC 2007] and relax the
ideal authentication and key exchange functionalities accordingly. We then demonstrate the security of
basic signature-based authentication and key exchange protocols. Our modeling makes minimal security
assumptions on the PKI in use; in particular, “knowledge of the secret key” is not needed.
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1 Introduction

Background. Guaranteeing authenticated communication over an unauthenticated medium is a fundamental
task that is widely used in practice. The problem dates to antiquity: classical ciphers, which in their time
were kept in secret, were thus guaranteeing authenticity as well, and even coins were (and are) a form of
authenticated communication: the bearer of forged coins is but an active attacker on the communications link
between the mint and the merchant. Defined, authentication is the task of linking the identity of an actor in a
session (such as the author of a received message) to a longer-lived entity, process, or identity, that exists
beyond the scope of the session or action being verified.

In modern times the demand for authentication has redoubled: every telephone call, every email, every
credit card swipe involves multiple authentications—and is becoming more and more frequent an occurrence.
Furthermore, nearly every cryptographic protocol uses authentication as an assumed ground-layer component;
and even anonymous, public services, which do no user authentication, may still engage in user identification.
Overall, the increasing pervasiveness of technology and Internet connectivity makes more and more people
consumers of authenticity, which increases the demand for practical cryptosystems in general and for
public-key-based cryptosystems in particular.

Public-key-based authentication. Authentication may be done in many different ways, such as biometric
human identification, or via some pre-shared longer-term secret (such as a pre-shard key or a password). In
this work, however, we concentrate on public-key authentication, as put forth in the groundbreaking work
of Diffie and Hellman [DH76]: The parties have no à priori shared secret information or other physical
means for authentication. The only mechanism available for authenticating messages is a globally-accessible
public records database that allows actors to record arbitrary information; each record is made publicly
available and linked to the public identity of the actor who created it. We call this setting the global public-key
infrastructure (PKI) setting.

A simple and frequently-used message authentication protocol in this setting proceeds as follows. For
Alice to send an authenticated message to Bob, Alice signs the message, her and Bob’s identities, and a
session identifier all together (using her private key) and sends the message and the signature to Bob over an
unauthenticated channel. Bob authenticates the message by obtaining Alice’s public key from the PKI and
verifying the signature.

Another, almost equally simple authenticated key exchange protocol is the following: Alice sends to Bob
her Diffie-Hellman message ga, bob responds by sending his Diffie-Hellman message gb, together with ga

and a signature sB = SigBob(ga,gb,‘Alice’). Alice responds by sA = SigAlice(ga,gb,‘Bob’). Both parties
are assumed to have each other’s verification key in advance, and verify the signatures to authenticate. (This
is essentially the ISO 9798-3 key exchange standard.) For sake of illustration, we keep these two simple
protocols, respectively denoted φauth and φke, as running examples throughout this paper. Practical protocols
that use φauth and φke (or close variants thereof) to establish trust in the identity of an interlocutor or in data
payloads are ubiquitous. For instance, they include the TLS standard, chip-and-pin debit cards [EMV11],
end-to-end authentication of email contents [RFC 1847], and many others.

Since these protocols use signatures against a globally-available PKI, and send them in the clear over
world-readable channels, anyone in the system can verify Alice’s and Bob’s signatures, even though they
were intended only for each other. While we recognize this as an inherent property of signatures (namely,
they provide transferable verifiability), in the context of authentication this is merely a side-effect which may
or may not be desirable.

Nonetheless, faithfully analyzing the security of public-key based authentication and key exchange
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protocols turns out to be a difficult problem, mainly due to the intricate interactions among the various
components of the actual protocols, the public-key infrastructure, and the systems they run in.

Modular analysis. In light of the complexity and ubiquity of authentication protocols, it would be desirable
to be able to analyze them in a modular fashion: to abstract out an ideal authentication service for higher-level
protocols to use, such that the security of the higher-level protocols would be independent of the details
of its implementation. This approach allows consumers of authentication to dynamically replace their
authentication implementations—for example, to base authentication on a different setup service or on a
different hard problem—without affecting the security of the higher-level protocol. Conversely, modularity
also encourages reuse of an authentication module by multiple higher-level protocols, discouraging local, ad
hoc implementations.

Several efforts to model public-key based authentication within a composable security framework appear
in the literature. Canetti and Krawczyk [CK01] and Shoup [Sho99] perhaps provide the first such guarantees
in the context of authenticated key exchange, but their modeling of the public key infrastructure is quite
rudimentary and does not allow analyzing the long-term signature and certification module separately from
the rest of the protocol.

Other attempts at composable analysis were made in [CK02] and later in [Can04] within the Universally
Composable (UC) security framework of [Can01]. (The second work is more directly focused at analyzing
the simple φauth.)

However, these works have the following significant drawback: They treat the public-key infrastructure—
namely, the public record with the public information provided by each actor—as a construct that is local
to each specific protocol instance and unavailable for use outside that protocol instance. This modeling is
inadequate for representing the PKI model as envisioned by Diffie and Hellman and used in practice—where
the public information is globally available. Instead, this analysis guarantees security only when each instance
of the analyzed protocol uses its own independent instance of a PKI.

This is the case even if the PKI is modeled as joint to a number of instances of the authentication protocol
in question, and composition is argued via Universal Composition with Joint State (JUC) [CR03]. Indeed,
even there the PKI is modeled not as a global entity but rather as an entity that is local to a specific collection
of instances of some specific protocol.

The works of [MTC13, KMO+14], which are set in the Abstract Cryptography setting of [MR11], have
a similar modeling shortcoming: the public key infrastructure is modeled as local to the protocol instance.
Furthermore, as argued below, this discrepancy is not merely aesthetic; rather, it has real security implications.

Long-lived, global trusted information that is shared among all parties, protocols, and protocol instances
in the system are addressed in the Global UC (GUC) framework [CDPW07]. That framework is similar to the
(“basic”) UC framework, but directly models trusted entities that are globally available throughout the system
regardless of any specific protocol to be analyzed. Authentication protocols with global PKI are analyzed
in [DKSW09, Wal08]. However, these works consider only authentication protocols that provide additional
properties on top of authenticity: only protocols that provide the non-transferability (or, deniability) property
are considered. This leaves us with the following fundamental question:

How to formulate the basic composable security requirements from plain PKI-based authentica-
tion and key exchange protocols? In particular, how to justify signature-based protocols such
as φauth and φke?
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A litmus test: the transferability problem. The discrepancy between the security modeling of [CK02,
Can04, CR03, MTC13, KMO+14] and real implementations of PKI infrastructure is illustrated by the
following issue: while real-life PKI-based authentication is transferable, ideal authentication is not.1

In detail, ideal authentication is defined as a deniable task that leaves “no trace”; it passes a message
from the sender to the receiver, but the receiver is unable to subsequently prove to a third party that the
authentication had in fact happened. In contrast, some PKI-based authentication protocols (and, in particular,
protocol φauth) allow the receiver to obtain a transferable and non-repudiable proof of communication (e.g., a
signature), which can be verified by anyone against the global PKI. Hence, PKI-based authentication protocols
are transferable (non-deniable) whenever the PKI is globally available. Moreover, this transferability gap
is independent of the security model in use. This was formalized by [DKSW09], which proves that no
protocol based on a plain PKI can realize the ideal authentication functionality. Still, in [Can04, CR03,
MTC13, KMO+14], protocol φauth (or variants thereof) securely realize an ideal process that guarantees
non-transferable authentication. (Note that moving to a stronger modeling of PKI, where registering parties
are required to prove knowledge of a secret key associated with the registered public value, does not solve the
problem. Indeed, protocol φauth remains transferable even with such sronger PKI.)

We stress that transferability, or lack thereof, is not the main concern of this work; it only serves an
example of the inadequacy of the current models of composable security in capturing the security requirements
of PKI-based authentication and key exchange.

What about game-based modeling? The above line of reasoning concentrates on models that provide
composable security, more specifically models that define security by way of emulating an ideal process.
Can we avoid the difficulties described above by putting general composability aside and instead using
game-based modeling of authentication and key exchange? This is an interesting research direction. Indeed,
we are not aware of any game-based modeling of authentication and key exchange that directly considers
global PKI that can be used (and abused) by arbitrary other applications.

1.1 Our results

We provide a framework for analyzing security of authentication and key exchange protocols that use a
globally-available PKI. Our framework adequately represents global PKIs. Specifically, we concentrate on
authentication and justifying the security of transferable protocols. To exemplify our framework, we analyze
protocols φke and φauth, which previously could not be justified in a realistic security model. In particular:

1. We model global PKI as a globally-available bulletin-board that provides minimal guarantees of binding
between strings and identities, without requiring or promising any knowledge or secrecy.

2. We relax the UC authentication and key exchange functionalities of [CK02, Can04] to be non-deniable.
Our functionalities Fcert-auth and Fcert-ke allow the adversary to obtain “global” certificates on messages
that have the session id of Fcert-auth or Fcert-ke as a prefix. (A global certificate is one that can be verified
by any entity in the system.) In particular, the adversary may obtain a global certificate on the message
to be authenticated. This coupling eliminates the authentication functionality’s deniability, without
affecting authenticity.

We remark that the underlying technical trick in Fcert-auth is reminiscent of the one in the relaxed key
exchange functionality of [DKSW09]. However, there, one needs a PKI that is only partially-global

1We use the terms “transferability” and “deniability” interchangeably, where they refer to properties of message authentication.
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and a very specific non-deniable protocol to realize that functionality. In contrast, our goal in this work
is to analyze basic protocols with a completely-global PKI.

3. We prove security of the natural public-key-based protocols φauth and φke. The protocols require
no setup beyond a bulletin-board and GUC-securely realize the authentication and key exchange
functionalities Fcert-auth and Fcert-ke, respectively.

To the best of our knowledge, this is the first treatment of authentication with a realistic modeling of PKI
as a global construct that can be used by arbitrary protocols.

While we concentrate on protocol φauth and φke for simplicity and clarity, our treatment can be naturally
extended to deal with other PKI-based authentication and key exchange protocols.

Review of UC and GUC. We first briefly review the UC and GUC frameworks. Informally, UC security is
defined via a challenge to distinguish between actual attacks, performed by an adversary A on protocol π and
simulated attacks, performed by a simulator S on protocol φ . The model allows the attacks to be orchestrated
by an environment Z that has an I/O interface to the parties running the challenge protocol (π or φ ) and
is allowed to freely communicate with the attacker (without knowing whether it is A or S). However, the
environment Z is constrained to execute only a single instance of the challenge protocol. In this execution
model, protocol π is said to UC-emulate the protocol φ if for any adversary A attacking a protocol π there
exists a simulator S attacking protocol φ such that no environment can successfully distinguish these two
possible scenarios.

The GUC challenge experiment is similar to the basic UC experiment, only with an unconstrained
environment. In particular, now Z is allowed to invoke and interact with arbitrary protocols, and even
multiple sessions of the challenge protocol. The protocols invoked by Z may share subroutines with
challenge protocol instances. GUC emulation is defined analogously to basic UC emulation. The UC and
GUC frameworks are presented more rigorously in Section 2.

Our methods. We develop a general framework for analyzing PKI-based authentication and key-exchange
protocols. Our framework consists of an ideal message authentication functionality (or ideal key-exchange
functionality) coupled with a long-lived certificates functionality.

For simplicity we concentrate on the authentication protocol. The treatment of the key exchange
protocol is analogous. We formulate an ideal authentication functionality that does not impose unnecessary
requirements (such as deniability) on the implementing protocols. The functionality, denoted Fcert-auth, is
a sender-receiver functionality that on input m from the sender not only delivers m to the receiver but also
allows the adversary to see legitimate signatures on messages of its choice, which Fcert-auth obtains from the
ideal certificates functionality Gcert. (This does not affect Fcert-auth’s authenticity promises since Fcert-auth
delivers the original m to the receiver.) This is done as follows:

The adversary determines the message to be signed and hands it to Fcert-auth; then, Fcert-auth requests
a signature (on behalf of the sender) on the message affixed with the session identifier. The signature
obtained by the adversary is thus tied to a specific Fcert-auth session and cannot be used in other sessions.
Since the signature seen by the adversary is truly generated and can be successfully verified by any entity
in the system, deniability (or, non-transferability) is no longer guaranteed. Nonetheless, the essence of
authentication—binding an action to some long-lived entity—remains guaranteed. It is captured by coupling
Fcert-auth and Gcert: the action bound is authoring the message; the identity bound to is encapsulated by Gcert.

We note that a somewhat similar mechanism is used by [DKSW09] to augment the key exchange
functionality with the secret keys of the parties. However, there the secret keys are made unavailable beyond
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the key exchange protocol, which is the opposite of our purpose here. Indeed, the goal in [DKSW09] is close
to diametrically opposite to the goal of this work: Dodis et al. study deniable protocols, whereas we study
real-life, non-deniable protocols.

We also show that standard EU-CMA signatures together with a globally-available PKI precisely capture
the guarantees provided by Gcert, and can be in its stead. That is:

1. We define a global ideal certificate functionality Gcert that is parametrized by a party identity (PID).
That is, Gcert is willing to provide certificates on chosen messages to any session of that PID. The
verification service is provided to any PID in the system. The authentication functionality Fcert-auth will
provide certificates generated by Gcert to the adversary.

2. To realize Gcert, we define a signing module GΣ, parametrized by a PID, that holds the secret key (of
some signature scheme) and similarly to Gcert is willing to provide signing service to any session of
that PID. Similarly to [CK01], our signing module enables modeling “key knowledge” and “signing
capabilities” separately. Separation of long-term key handling and signing module from session module
is an essential part of security modeling of key-exchange and secure sessions: it preserves security of
sessions even when other sessions using the same public-key are compromised. This was not done
previously in any UC-based framework.

3. We show a GUC-secure realization of ideal certificates Gcert from standard EU-CMA signatures (where
the secret key is kept in the signing module).

We exemplify the usability of our model by analyzing φauth and φke and the signed key exchange protocol
of Diffie-Hellman ISO 9798-3 within it and showing it GUC-realizes Fcert-auth and Fcert-ke, respectively. (The
complete realization of Fcert-auth within our framework is depicted in Figure 1).

To this end, we formalize new composition theorems that allow reduction between global functionalities.
The first theorem (in Section 3) shows that a secure realization of functionality G is sufficient for replacing
any use of G (as a global functionality) with G’s implementation:

Theorem 1.1 (informal statement). Let π be a protocol with access to global functionality G. If a function-
ality F GUC-realizes G, then π using global F GUC-realizes π using global G.

Our second composition theorem presents the necessary conditions, required from a pair of global
functionalities, such that any secure protocol GUC-realizing some task using globally one of the functionalities
would remain equally secure using the other:

Theorem 1.2 (informal statement). Let π and φ be protocols with access to global functionality G. If π

GUC-realizes φ , the functionality F GUC-realizes G and G GUC-realizes F , then π GUC-realizes φ with
access to global functionality F .

Since the operation of replacing one global functionality by another was not considered before, we extend
the definition of GUC-emulation. The extended definition admits not only previous results, but also allows
arguing these theorems formally. Although the composition proof is simple, the terminology is vital for our
analysis.
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Figure 1: A snapshot of an authentication in the system. The signing module together with Gbb is an instantiation
of Gcert. Each party participates in multiple executions of φauth, one per session. Each session may involve a different
interlocutor (not limited to pid1 and pid2). The bulletin-board Gbb is shared with many other protocols executing in the
system. The parties also obtain signatures from their local signing module instances upon demand.

1.2 Related work

Due to the fundamentality of the problem, there been a vast line of works on secure authentication and its
equivalent problem of key exchange. PKI-based authentication can be examined from three different angels:
the composability guarantees of the model, the modeling of the PKI, and the deniability guarantees of the
ideal authentication. We concentrate on composable settings, where the authentication (or key exchange)
maintains its security guarantees when used as a component in building complex protocols.

UC-based models. Many works [CK02, FAK08, CG10, AF10] analyze key agreement and key exchange
protocols in the UC framework. However, like [Can04], they also model the PKI as local to the protocol
instance. Another line of works in UC prohibit honest participants from engaging in multiple sessions
concurrently [LBdM07, BLdMT09] or assume password-based security and erasures [DF12]. Likewise, here
the PKI modeling does not allow external protocols to access the PKI.

Dodis et al. [DKSW09, Wal08] study deniable authentication in a GUC setting. They prove it impossible
to securely realize standard message authentication in GUC with merely a standard PKI. To overcome this
impossibility result, they present a non-transferable authentication protocol based on symmetric keys. The
symmetric keys are obtained from a non-standard PKI. However, their protocol has two drawbacks: Its
security proof requires a strong PKI (namely, key registration with proof of knowledge of the secret key)
and their protocol is somewhat less efficient than φauth. Most importantly, that framework cannot be used to
justify the security of φauth as a basic authentication protocol.

The Abstract Cryptography (AC) model. Maurer et al. [MTC13] implement authenticated channels in
the Abstract Cryptography setting of [MR11]. Their construction is composable, uses the canonical signature-
based authentication protocol (φauth) and assumes a standard PKI. Still, similarly to Canetti [Can04], these
works treat the PKI as a local functionality that services only a single instance of an authentication protocol.
Indeed, their abstraction of an authentication channel is deniable, while their protocol is PKI-based.

Kohlweiss et al. [KMO+14] study the TLS protocol in the same setting and analyze three key exchange
modes of TLS. Of them, one uses symmetric keys and two use a standard PKI. However, as with [Can04] and
[MTC13], their PKI is private to the protocol. Thus, their modeling does not adequately capture global PKIs.
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Game-based models. The work of [CK01] develops a game-based framework for analyzing the key
exchange problem;. Later, [BFS+13] proposed a framework with stronger composability guarantees to enable
analysis of the TLS protocol. However, both frameworks allow only limited composition and model the PKI
as a setup inaccessible by other protocols.

Other models. Kidron and Lindell [KL07] study impossibility results in a number of public-key models.
However, none of the considered public-key models are in a global setting, and thus do not address the issue
at hand. Barak et al. [BCL+05] study what notion of security is achievable in a PKI-less setting. Their work
does not address the setting of global PKI.

Invisible adaptive attacks. Nielsen and Strefler [NS14] point out a weakness in definitions of security
in the GUC model, called invisible adaptive attacks and propose a general way to fix the weakness. We
demonstrate in Section 6 that our protocols satisfy even that stronger definition.

2 Overview of Generalized UC Security

To provide the proper setting for the authentication, we now review the original UC [Can01, Can00] (referred
to as basic UC) and Generalized UC [CDPW07] frameworks.2 We will focus on the notion of protocol
emulation, wherein the objective of a protocol π is to imitate another protocol φ . In this work, the entities
and protocols we consider are polynomial-time bounded Interactive Turing Machines, in the sense detailed
in [Can01].

The Basic UC Framework. At a very high level, the intuition behind security in the basic UC framework
is that any adversary A attacking a protocol π should learn no more information than could have been
obtained via the use of a simulator S attacking protocol φ . Furthermore, we would like this guarantee to
hold even if φ were to be used as a subroutine in arbitrary other protocols that may be running concurrently
in the networked environment and after we substitute π for φ in all the instances where it is invoked. This
requirement is captured by a challenge to distinguish between actual attacks on protocol φ and simulated
attacks on protocol π . In the model, attacks are executed by an environment Z that also controls the inputs
and outputs to the parties running the challenge protocol. The environment Z is constrained to execute only a
single instance of the challenge protocol. In addition, the environment Z is allowed to interact freely with the
attacker (without knowing whether it is A or S). At the end of the experiment, the environment Z is tasked
with distinguishing between adversarial attacks perpetrated by A on the challenge protocol π , and attack
simulations conducted by S with protocol φ acting as the challenge protocol instead. If no environment can
successfully distinguish these two possible scenarios, then protocol π is said to UC-emulate the protocol φ .

Balanced environments. In order to keep the notion of protocol emulation from being unnecessarily
restrictive, we consider only environments where the amount of resources given to the adversary (namely, the
length of the adversary’s input) is at least some fixed polynomial fraction of the amount of resources given to
all protocols in the system. From now on, we only consider environments that are balanced.

2We relate to the 2013 version of [Can00] and explicitly mention in the text the relevant differences from previous versions.
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Definition 2.1 (UC-emulation). Let π and φ be multi-party protocols. We say that π UC-emulates φ if for
any adversary A there exists an adversary S such that for any (constrained) environment Z , we have:

EXECπ,A,Z ≈ EXECφ ,S,Z

Defining protocol execution this way is sufficient to capture the entire range of network activity that is
observable by the challenge protocol but may be under adversarial control. Therefore, the UC framework
admits a very strong composition theorem, which guarantees that arbitrary instances of φ that may be running
in the network can be safely substituted with any protocol π that UC-emulates it. More formally,

Definition 2.2 (Subroutine-respecting protocols; [Can00]). We say that a protocol π is subroutine-
respecting if the following properties hold with respect to every instance of π in any execution of any
protocol ρ that makes subroutine calls to π:

1. No ITI which is a subsidiary of this instance passes inputs or outputs to an ITI which is not a party or
subsidiary of this instance.

2. At first activation, each ITI that is currently a subsidiary of this instance, or will ever become one,
sends a special message to the adversary, notifying it of its own code and identity, as well as the code π

and SID of this instance. We call this requirement subroutine publicness.3

Theorem 2.3 (UC-Composition). Let ρ ,π and φ be protocols such that ρ makes subroutine calls to φ . If π

UC-emulates φ and both π and φ are subroutine-respecting, then protocol ρπ/φ UC-emulates protocol ρ .

The Generalized UC Framework. As mentioned above, the environment Z in the basic UC experiment
is unable to invoke protocols that share state in any way with the challenge protocol. In many scenarios, the
challenge protocol produces information that is shared by other network protocol sessions. For example,
protocols may share information via a global setup such as a public Common Reference String (CRS) or a
standard Public Key Infrastructure (PKI) The basic UC framework discussed above does not address this kind
of shared state; moreover, the UC composition theorem does not hold for non-subroutine-respecting protocols
(i.e., protocols that share state information with other protocol sessions). Still, we would like to analyze
such protocols in a modular way. To overcome this limitation, [CDPW07] propose the Generalized UC
(GUC) framework. The GUC challenge experiment is similar to the basic UC experiment, only with an
unconstrained environment. In particular, now Z is allowed to invoke and interact with arbitrary protocols,
and even multiple sessions of the challenge protocol. Some of the protocol sessions invoked by Z may
even share state information with challenge protocol sessions, and indeed, those protocol sessions might
provide Z with information related to the challenge protocol instances that it would have been unable to
obtain otherwise. To distinguish this from the basic UC experiment, we denote the output of an unconstrained
environment Z , running with an adversary A and a challenge protocol π in the GUC protocol execution
experiment, by GEXECπ,A,Z . GUC emulation is defined analogously to the definition of basic UC emulation
outlined above:

Definition 2.4 (GUC-emulation). Let π and φ be multi-party protocols. We say that π GUC-emulates φ if
for any adversary A there exists an adversary S such that for any (unconstrained) environment Z , we have:

GEXECπ,A,Z ≈ GEXECφ ,S,Z .

3 While natural, these properties are necessary for Theorem 2.6 and the composition to go through. The reader is referred
to [Can00] for further details.
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The External-subroutine UC Framework. The great generality provided by the GUC framework also
raises difficulties in proving security of protocols in it. Observing real scenarios, it turns out to be sufficient
to model shared state information via the use of “shared functionalities”, which are simply functionalities
that may interact with more than one protocol session (such as the PKI functionality). For clarity, we
distinguish the notation for shared functionalities by adding a bar. We call a protocol π that only shares
state information via a single global functionality Ḡ a Ḡ-subroutine respecting protocol (Definition 2.2 is
extended to allow communication with Ḡ). Moreover, a Ḡ-externally constrained environment is subject to
the same constraints as the environment in the basic UC framework, only it is additionally allowed to invoke
a single ITI that runs the code of Ḡ. Thus, any state information that will be shared by the challenge protocol
must be shared via calls to Ḡ (i.e., challenge protocols are Ḡ-subroutine respecting), and the environment
is specifically allowed to access Ḡ. Although Z is once again constrained to invoking a single instance of
the challenge protocol, it is now possible for Z to internally mimic the behavior of multiple sessions of the
challenge protocol, or other arbitrary network protocols, by making use of calls to Ḡ wherever shared state
information is required. We allow the environment direct access to shared state information. This security
notion is called External-subroutine UC (EUC) security. The EUC-security notion collapses to UC-security
for subroutine-respecting protocols (Definition 2.2).

Given a Ḡ-subroutine respecting protocol π , we denote the output of the environment in the EUC protocol
experiment by EXECπ,Ḡ,D,Z . The EUC-emulation definition presented here is an extension of the emulation
definition appearing in [CDPW07]. The new definition allows a protocol π to emulate φ using a different
shared functionality than φ uses. More formally,

Definition 2.5 (EUC-emulation). Let π and φ be multi-party protocols, where π is F̄ -subroutine respecting
and φ is Ḡ-subroutine respecting. We say that π EUC-emulates φ if for any adversary A there exists a
adversary S such that for any F̄-externally constrained environment Z , we have:

EXECπ,F̄ ,D,Z ≈ EXECφ ,Ḡ,S,Z .

Note that a F̄ -subroutine respecting π communicates with the global functionality F̄ (similarly, φ with Ḡ).
We remark that, in the underlying model, the substitution of Ḡ for F̄ is done by changing the control function
(so that messages addressed to F̄ are implicitly delivered to Ḡ instead), in a similar manner to the changes
effected thereto when substituting φ for π in UC or GUC.

Ideal protocols ([Can01, Can00]). Let F be an ideal functionality and sid be its session ID. The ideal
protocol IDEALF for F is defined as follows: Whenever a dummy party is activated with input v, it writes v
onto the input tape of the ideal functionality F(sid,⊥) (recall that this message includes the extended identity of
the calling ITI). Messages delivered by the adversaries, including corruption messages, are ignored. Whenever
a dummy party receives a value v from F on its subroutine output tape, it writes this value on the subroutine
output tape of an ITI instructed by F . Specifying the output destination enables an ideal functionality F
to communicate with another (shared) ideal functionality Q̄ via the dummy party. Such functionality F is
called Q̄-subroutine respecting functionality. We say that a functionality F EUC-realizes an functionality G
if IDEALF EUC-emulates IDEALG . GUC-realization is defined analogously.

Since the class of Ḡ-subroutine respecting protocols captures a broad range of real-life protocols, we
focus our attention on those. For this class of protocols, [CDPW07] shows that GUC-emulation is equivalent
to EUC-emulation.

Theorem 2.6 ([CDPW07]). Let G be some ideal functionality and let π and φ be Ḡ-subroutine respecting
protocols. Then π GUC-emulates φ , if and only if π EUC-emulates φ .
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Although it is not stated in [CDPW07], subroutine publicness of φ , as described in Definition 2.2, is
necessary for the equivalence to hold.

As a special case, if the challenge protocol does not share any state information (i.e., it is subroutine-
respecting according to [Can01]), then Theorem 2.6 states that GUC- and UC-security are equivalent.

3 The Global Functionality Composition Theorem

Suppose a protocol ρ uses another protocol φ as a subroutine. Global UC [CDPW07] shows that we can
replace the use of φ with any protocol π that GUC-emulates it. This replacement maintains the security of
the composed protocol, even if both the calling protocol ρ and the subroutine protocol (φ or π) have access
to the same instance of a global ideal functionality. However, it is unknown whether it is safe to replace the
global functionality with something “equivalent”. Such a replacement would be useful, for example, for
designing protocols using an efficient signatures scheme (with keys that can be used concurrently by any
other protocols) and analyzing their security using an ideal signatures functionality.

In this section we provide a new composition theorem that handles security of global functionality
replacement. Informally, the theorem states that a protocol that shares state via a global functionality Ḡ
remains secure if we replace this functionality with a different (presumably weaker) global functionality F̄ ,
provided that F is a secure implementation of G. The theorem holds even if the global functionalities share
state via a third global functionality. (In Section 4, this theorem is used to substitute an ideal certification
functionality, which shares state via a global PKI functionality, by EU-CMA signatures.)

Theorem 3.1 (Generalized Functionality Composition). Let G,F be Q̄-subroutine respecting functionali-
ties, for some ideal functionality Q. Let π be a Ḡ-subroutine respecting protocol. If F EUC-realizes G, then
πF̄/Ḡ GUC-emulates π .

Proof. We denote by π and π ′ the protocols π Ḡ and πF̄/Ḡ respectively. We first prove that π ′ EUC-emulates
π and then show that GUC-emulation follows. We make use of an equivalent formulation of emulation
with respect to dummy adversaries. Thus, denoting the dummy adversary by D, we wish to construct an
adversary S such that:

EXECπ ′,F̄ ,D,Z ≈ EXECπ,Ḡ,S,Z

for any (F̄ ,Q̄)-constrained environment Z . Since F EUC-realizes G there is an adversary SF such that

EXECF ,Q̄,D,ZF
≈ EXECG,Q̄,SF ,ZF

(1)

for any Q̄-constrained environment ZF . That is, SF expects to interact with G and Q̄, and translates it to
mimic the action of the corresponding execution of F and Q̄ from the viewpoint of any environment ZF . We
present and analyze S . (We note that the construction of S and the proof of its validity are reminiscent of the
treatment in in [CDPW07]. Still, the context is quite different.) The construction idea is to internally run a
single copy SF to mimic all the calls to F and route all relevant messages through this adversary. In addition,
the adversary S behaves as follows:

1. forwarding all messages intended for F̄ sent by the environment Z to its internal simulation of SF , as
well as forwarding any messages from SF back to Z as appropriate.

2. forwarding all other messages sent by the environment Z to the external participants of π or to Q̄, as
well as forwarding any incoming messages from π and Q̄ (and other protocols in the system) back
to Z as appropriate.
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Figure 2: The simulator S and the distinguishing environment Ẑ constructed in the proof.

3. forwarding all messages of SF to the functionality Ḡ and back, as appropriate. This is done using the
subroutine publicness property, as explained in Definition 2.2).

A graphical description of S can be found in Figure 2(a).
In order to prove that S satisfies the required, we perform a standard proof by contradiction. Assume

there exists an environment Z capable of distinguishing the interaction with S and π from the interaction
with D and π ′. We show how to construct an environment Ẑ such that

EXECπ,Ḡ,S,Z = EXECG,Q̄,SF ,Ẑ

and
EXECπ ′,F̄ ,D,Z = EXECF ,Q̄,D,Ẑ .

The environment Ẑ will internally run Z and behave as follows: Any message from Z to F is forwarded
to the external adversary. Any output from the external adversary is forwarded back to Z . Any other message
from Z is internally simulated. That is, Ẑ internally executes the dummy adversary D and honestly simulates
any uncorrupted entity in the execution (i.e., parties of π and parties of other protocols). Whenever an
internally simulated honest party provides an input to F or Q̄, the environment Ẑ forwards it externally and
the response is forwarded back to the internal honest party. Eventually, the environment Ẑ outputs whatever
Z outputs. The environment Ẑ is depicted in Figure 2(b).

It follows from the construction that if the external adversary is D then Z interacts with the dummy
adversary D, the protocol π ′ and functionality F . If the external adversary is SF then Z interacts with D
where all of its accesses to F are replaced with accesses to G via SF . This is exactly the execution of Z with
the adversary S and the protocol π with access to G. Hence, existence of such distinguishing environment Z
contradicts Equation (1) as desired.

Note that the components of S (i.e., the dummy adversary D and simulator SF ) can handle multiple
instances of π and therefore S can simulate π ′ with unconstrained environment as well. In other words,

GEXECπ ′,D,Z ≈ GEXECπ,S,Z .
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for any unconstrained environment Z .

Informally, secure realization allows replacing any use of an idealized task by an implementation of the
task, in a localized manner (that is, without having to consider the rest of the system). In particular, if a
protocol π securely implements another protocol φ , where Ḡ exists in the system, then we intuitively expect
π to continue to securely implement φ after we replace Ḡ with some F̄ that securely implements Ḡ. However,
this intuition is misleading. Consider, for example, some functionality F and let G be as F but with extra
capabilities granted to the adversary. The functionality F (trivially) securely implements G, since it is a
restriction of G. However, the simulation of π might be such that it uses the extra adversarial capabilities
given him by Ḡ. Thus, once we replace Ḡ with F̄ the simulation becomes invalid, and moreover, the extra
capabilities might be essential to the simulation ability. This hints that in order for the intuition to hold,
it must be the case that F̄ and Ḡ must have “similar” adversarial interfaces. This is formally captured as
follows:

Theorem 3.2. Let G, F be Q̄-subroutine respecting functionalities, for some ideal functionality Q. Let π , φ

be Ḡ-subroutine respecting protocols. If the following holds:

1. π GUC-emulates φ .

2. F EUC-realizes G and vice versa.

Then πF̄/Ḡ GUC-emulates φ F̄/Ḡ .

Proof. The theorem fully follows from Theorem 3.1. We denote by π and φ the protocols π Ḡ and φ Ḡ

respectively. More formally, by Theorem 3.1 and Item (2.) we obtain that πF̄/Ḡ GUC-emulates π . Combining
this with Item (1.) we obtain that πF̄/Ḡ GUC-emulates φ . Next, using again Theorem 3.1 with Item (2.) we
infer that φ GUC-emulates φ F̄/Ḡ and conclude that πF̄/Ḡ GUC-emulates φ F̄/Ḡ as desired.

Such composition enables the GUC-framework to offer full modularity in analyzing protocols.

4 Secure Authentication using Signatures

As discussed in the introduction, the standard authentication functionality Fauth is unimplementable in a
GUC setting with fully global PKI since it requires non-transferability (deniability). However, this de jure
impossibility does not prevent people from using digital signatures in day-to-day communications to achieve
an authentication guarantee.

In this section, we bridge the gap between practical and provably secure authentication. We show that
the classic, signature-based authentication protocol implements (transferable) authentication using standard
public key infrastructure (PKI). That is, we formalize the “Authentication via signatures” paradigm in a GUC
setting and present a functionality which encapsulates it.

This has two benefits: it allows for analyzing in the modular setting of GUC real-life protocols that use
digital signatures as a building block, and it increases the trust in the signature-based authentication protocol
by proving it secure under GUC’s strong composition operation.

The proof details are similar to [Can04]; however, the formulation and analysis are done in the GUC
framework. Section 4.1 presents a formulation of the ideal certification and ideal signature functionality, and
shows their equivalence. Section 4.2 shows that EU-CMA signatures provide the same security guarantees
as ideal signatures. Section 4.3 presents and implements the relaxed, non-deniable message authentication
functionality.
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Global Functionality Ḡbb

Report: Upon receiving a message (Register,v) from party P, send (Registered,P,v) to the adversary;
upon receiving ok from the adversary, and if this is the first request from P, then record the
pair (P,v). Otherwise, ignore the new message.

Retrieve: Upon receiving a message (Retrieve,Pi) from some party Pj (or the adversary S), generate a
public delayed output (Retrieve,Pi,v) to Pj, where v =⊥ if no record (Pi,v) exists.

Figure 3: The bulletin-board certificate authority (CA) functionality. Any ITI can register a single key that would be
associated with its identity. Any ITI in the system can request the key of any other ITI.

4.1 Signatures and certificates

We formulate a global ideal functionality, Ḡcert, that provides ideal binding of messages to party identities.
Then, we present a protocol that realizes Ḡcert given the classical Fsig and a public bulletin-board Ḡbb. The
key difference in our setting is that Ḡcert is accessible at any time, by any party, no matter which protocols
it participates in. Another important difference from previous formulations is that the public key lives in a
global bulletin-board, to capture the fact that a principal has a single keypair (“secret”) which she uses in
multiple protocols. We start by presenting Ḡbb and Ḡcert. For simplicity of exposition, we present the protocol
as an ideal functionality called Ḡcwk.

The bulletin board functionality. The global bulletin board functionality, Ḡbb, is presented in Figure 3.
The bulletin board accepts only the first registered value, and does not allow to modify or delete it.4 The
bulletin board is authenticated in a sense that it records the value along with the identity of the publisher, but
does not perform any checks on the registered value; it simply publicly records the value. Nonetheless, as we
will show later, the present minimal formulation suffices for authentication.

The certification functionality. The ideal certification functionality, Ḡcert, is presented in Figure 4. The
session ID names a distinguished principal, the ‘signer’. The functionality provides direct binding between a
message and the identity of the signer. (In contrast, Fsig, which appears in Figure 5, binds a message only
to a verification key.) Using common terminology, this corresponds to providing signatures accompanied
by “certificates” that bind the verification process to the signer’s identity. The functionality generates a
key for each new signer; however, the key is used only to register in the bulletin-board. That is, neither
signing nor verification is done with respect to this key. Verification (and signing) requests are processed
only if the signer is registered in the bulletin-board, however, they are indifferent to the registered value.
Lastly, corrupted signers are allowed to dictate the verification result. We note that Ḡcert is a Ḡbb-subroutine
respecting functionality as defined in Section 2.

We model the certificate authority in a simplistic way, by associating each Ḡcert with an owner PID, and
providing certificates to any session of the owner. A more sophisticated modeling could have the certificate
authority provide certificates according to some policy provided by the owner. For example, policies that

4Multiple keys per party are not needed for our construction, and hence we don’t complicate the functionality by allowing them.
Furthermore, Claim 4.1 would not hold if they were allowed. (It would still be possible to realize Fcert-auth, but not by going through
certificates.)
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Global Functionality Ḡpid
cert

Parameterized by a party identity pid, global functionality Ḡpid
cert proceeds as follows:

Signature Generation: Upon receiving a value (Sign,sid,m) from Ppid do:

(a) Verify that sid = (pid,sid′) for some sid′. If not, then ignore the request.

(b) If this is the first request then do:

(i) If Ppid is honest then generate a verification key (i.e., run the Key Generation procedure
described in Figure 5). Upon receiving (Verification Key,sid,v) from the adversary, send
(Register,pid,v) to Ḡbb (done via an output to Ppid).

(ii) Else, check that Ppid is registered in the Ḡbb (i.e., send (Retrieve,pid) and verifying that
v 6=⊥). If not, then ignore the request.

(c) Send (Sign,sid,m) to the adversary. Upon receiving (Signature,sid,m,σ) from the adver-
sary, verify that no entry (m,σ ,0) is recorded. If it is, then output an error message to Ppid.
Else, output (Signature,sid,m,σ) to Ppid, and record the entry (m,σ ,1).

Signature Verification: Upon receiving a value (Verify,sid,m,σ) from some party P, where sid =
(pid,sid′) for some sid′, check whether a pair (pid,v) is recorded. If not, send (Retrieve,pid)
to Ḡbb, and obtain a response (Retrieve,pid,v). If v = ⊥ then output (Verified,sid,m,0). Else,
record (pid,v) and hand (Verify,sid,m,σ) to the adversary. Upon receiving (Verified,sid,m,φ)
from the adversary do:

(a) If (m,σ ,b′) is recorded then set f = b′.

(b) Else, if the signer is not corrupted, and no entry (m,σ ′,1) for any σ ′ is recorded, then set
f = 0 and record the entry (m,σ ,0).

(c) Else, set f = φ , and record the entry (m,σ ,φ).

Output (Verified,sid,m, f ) to P.

Corruption: Upon receiving a value (Corrupt,sid) from the adversary, if sid = (pid,sid′) mark the
party Ppid as corrupt.

Figure 4: The certification functionality. The certification functionality is parametrized by a party identity, referred to
as the owner, and allows only that party to sign messages. The functionality generates a key for the owner when the
first signing request arrives. This is done to advertise that party’s existence; neither signature nor verification is done
with respect to that key.
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allow sessions of other PIDs to generate certificates would capture a more refined notion of trust (“delegated
signers”).

The certification with keys functionality. The functionality is a different presentation of the protocol in
[Can04]; it is used to realize the certification functionality. For an uncorrupted party it offers the capabilities
of signing a message (reserved for the owner PID) and verifying a signature. It also captures the ways
in which a corrupted party may deviate: as a signer, a corrupted party may refrain from registering the
generated key in the bulletin-board, and as a verifier it may request verification of messages with respect to
keys of its choice (instead of the key registered in the bulletin-board). The only difference between the two
formulations is the inability of a corrupted signer to generate a signing key without providing a message to be
signed. Nonetheless, the capabilities of the attacker with respect to the formulations are equivalent. A formal
description appears in Figure 6. We note that Ḡcwk is a Ḡbb-subroutine respecting functionality, as defined in
Section 2.

Claim 4.1. The functionality Gcwk EUC-realizes functionality Gcert and vice versa, with respect to adaptive
corruptions.

Proof. First we observe that as long as verification requests are done with the actual verification key, the
functionalities are equivalent. To handle the other scenarios, we use the simulator’s ability to postpone
signature requests of corrupted signers up to the verification moment.

We begin by showing that Gcwk GUC-realizes functionality Gcert. The simulation here is even simpler than
in [Can04] due to the existence of Ḡbb also in the ideal execution. We make use of an equivalent formulation
of GUC-emulation with respect to dummy adversaries. Thus, denoting the dummy adversary by D, we wish
to construct an adversary S such that:

GEXECGcwk,D,Z ≈ GEXECGcert,S,Z (2)

The adversary S is specified as follows. For signature generation, if the signer is honest then behave as the
dummy adversary D. That is, any output of Gcert and Ḡbb is forwarded to Z and any input of Z is forwarded
to Gcert or Ḡbb, in an appropriate manner. It also records the generated key v. If the signer is corrupted,
S behaves as follows: for the first sign request it verifies that the signer is registered in Ḡbb (if not it ignores
the sign request) and simulates the key generation procedure. After recording the generated key v it simulates
the signature generation process, without involving Gcert, and records the tuple (m,σ ,v,1) where σ is the
signature chosen by Z (except when a record (m,σ ,v,0) exists, in which case it outputs an error message).
Note that Gcert does not receive any sign requests from a corrupted signer during the simulation of signature
generation. Signing using Gcert is postponed, and executed only if a verification request is received for this
record.

For signature verification, we simulate differently depending on the integrity of the signer and the key
used by the verifier. If the signer is honest and some uncorrupted party makes a verification request (or a
corrupted party that is using the key registered in Ḡbb) then do the following:

(a) behave as a dummy adversary D in the retrieve process (if executed).

(b) Once (Verify,sid,m,σ) received, append the verification key, which is recorded in Ḡbb, and forward
it to to the environment Z . The response of Z is forwarded back to Gcert. If in the output f = 0 then
record (m,σ ,v′,0).
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Global Functionality Fpid
sig

Parameterized by a party identity pid, functionality Fpid
sig proceeds as follows:

Key Generation: Upon receiving a value (KeyGen,sid) from some party Ppid verify that this is the
first request and sid = (pid,sid′) for some sid′. If not, then ignore the request. Else, hand
(KeyGen,sid) to the adversary. Upon receiving (Verification Key,sid,v) from the adversary, output
(Verification Key,sid,v) to Ppid.

Signature Generation: Upon receiving a value (Sign,sid,m) from Ppid, verify that sid = (pid,sid′)
for some sid′. If not, then ignore the request. Else, send (Sign,sid,m) to the adversary. Upon
receiving (Signature,sid,m,σ) from the adversary, verify that no entry (m,σ ,v,0) is recorded. If
it is, then output an error message to Ppid and halt. Else, output (Signature,sid,m,σ) to Ppid, and
record the entry (m,σ ,v,1).

Signature Verification: Upon receiving a value (Verify,sid,m,σ ,v′) from party P, where sid =
(pid,sid′) for some sid′ verify that a pair (pid,v) is recorded. If not, output (Verified,sid,m,0)
to P. Else, hand (Verify,sid,m,σ ,v′) to the adversary. Upon receiving (Verified,sid,m,φ) from
the adversary do:

(a) If v′ = v and the entry (m,σ ,v,1) is recorded, then set f = 1. (This condition guarantees
completeness: If the verification key v’ is the registered one and σ is a legitimately generated
signature for m, then the verification succeeds.)

(b) Else, if v′ = v, the signer is not corrupted, and no entry (m,σ ′,v,1) for any σ ′ is recorded,
then set f = 0 and record the entry (m,σ ,v,0). (This condition guarantees unforgeability: If
v′ is the registered one, the signer is not corrupted, and never signed m, then the verification
fails.)

(c) Else, if there is an entry (m,σ ,v′, f ′) recorded, then let f = f ′. (This condition guarantees
consistency: All verification requests with identical parameters will result in the same
answer.)

(d) Else, let f = φ and record the entry (m,σ ,v′,φ)

Output (Verified,sid,m, f ) to P.

Corruption: Upon receiving a value (Corrupt,sid) from the adversary, if sid = (pid,sid′) then mark
the party Ppid as corrupt.

Figure 5: The basic signature functionality [Can04]. The signature functionality is parametrized by a party identity
and allows only this party to generate a key and sign messages. The owner can generate only a single key and sign
only with respect to this key. Verifying a signature is done with respect to the signing key generated by the signature
functionality. The functionality accepts verification requests from any ITI in the system. The signature functionality lets
the adversary determine the signing key, the legitimate signatures, and the results of verifications that use an incorrect
key or a different signature. When the signer is corrupted, the functionality allows the verification process to succeed,
even if the message was never signed.
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Global functionality Ḡpid
cwk for realizing Ḡcert

The functionality Ḡpid
cwk internally runs the code of Fsig and proceeds as follows:

Signature Generation: Upon receiving a value (Sign,sid,m) from Ppid, do:

(a) Verify that sid = (pid,sid′) for some sid′. If not, then ignore the request. (That is, verify that
it is the legitimate signer for this sid.)

(b) If this is the first request then do:

(i) If Ppid is corrupted, then verify that Ppid is registered in Ḡbb (otherwise, then ignore the
request).

(ii) Generate a verification key, i.e., send (KeyGen,sid) to Fsig. Upon receiving
(Verification Key,sid,v), send (Register,pid,v) to Ḡbb (done via an output to Ppid).

(c) Send (Sign,sid,m) to Fsig. Upon receiving (Signature,sid,m,σ) from Fsig, output
(Signature,sid,m,σ) to Ppid.

Signature Verification: Upon receiving a value (Verify,sid,m,σ), where sid = (pid,sid′) for some sid′,
check whether a pair (pid,v) is recorded. If not, send (Retrieve,pid) to Ḡbb, and obtain a response
(Retrieve,pid,v). If v = ⊥ then output (Verified,sid,m,0). Else record (pid,v). Next, send
(Verify,sid,m,σ ,v) to Fsig, and output the response (Verified,sid,m, f ).

Corrupted Signature Verification: Upon receiving a value (Verify,sid,m,σ ,v′) from the adversary,
where sid = (pid,sid′) for some sid′, send (Verify,sid,m,σ ,v′) to Fsig, and output the response
(Verified,sid,m, f ).

Corruption: Upon receiving a value (Corrupt,sid) from the adversary, forward it to Fsig.

Figure 6: The certification with keys functionality. The functionality Ḡcwk is parametrized by a party identity and
internally executes the code of the basic signature functionality Fsig. The functionality does not allow generating a key
without signing a message. Key generation is done internally by the functionality. Note that keys of corrupted parties
registered with Ḡbb do not have to match the keys generated by Fsig.
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For corrupted signer, upon receiving a verification request from a honest verifier (or a corrupted verifier that
is using the key registered in Ḡbb) do the following:

(a) behave as a dummy adversary D in the retrieve process (if executed).

(b) if a record (m,σ ,v′,1) exists, where v′ is the key registered in Ḡbb, forward a sign request on m to Gcert,
pick σ to be the signature and delete the record.

(c) behave exactly as in the honest signer honest verifier scenario to emulate the communication with Z .
That is, append the verification key, which is recorded in Ḡbb, and forward it to to the environment Z .
The response of Z is forwarded back to Gcert.

In case a verification request is made with a key that does not match the key registered in Ḡbb, independently of
the signer’s integrity, then simulate the verification process by giving Z the appropriate (Verify,sid,m,σ ,v′′)
and obtaining its response φ . Next, if the tuple (m,σ ,v′′,b′) is recorded, set φ = b′, else record (m,σ ,v′′,φ).
In any case, output (Verified,sid,m,φ). It is important to note that verification requests with v′′ 6= v are
simulated without involving Gcert.

Since the simulator does nor perform any cheating, the simulation is perfect. That is, the environment Z’s
view of an interaction with S and Gcert is distributed identically to its view of an interaction with parties
running protocol Gcwk in the Ḡbb-hybrid model, even if Z is computationally unbounded.

Now we show the other direction: Gcert GUC-realizes functionality Gcwk. Signature generation for a
honest signer is simulated by behaving as a dummy adversary D. If the signer is corrupted, we forward the
signing request to Gcwk and pick the key for Fsig to be the key registered in Ḡbb. In the verification process,
as before, retrieve is simulated by behaving as a dummy adversary. Upon receiving (Verify,sid,m,σ ,v)
from Gcwk, the simulator drops v and forwards the modified message to Z . The response (Verified,sid,m,φ)
of Z is forwarded to Gcwk. Note that the simulator ensures that the key in Ḡbb is the same as the key registered
in Fsig. Therefore, all simulated verification requests are made with respect to the correct key, and hence
answered exactly as in the real execution. This follows from the functionalities being identical when the
verification is done with the key recorded in Fsig.

4.2 Using EU-CMA signatures for certification

[Can04] shows that realizing Fsig is equivalent to being EU-CMA secure (existential unforgeability against
chosen message attacks; [GMR88]). However, his theorem does not apply to a setting where the keys are
reused by arbitrary protocols. This section extends the connection between ideal signatures and EU-CMA
security to the GUC setting. We first briefly restate the [GMR88] notion and show its equivalence to Ḡcwk.

A signature scheme is a triple of PPT algorithms Σ = (gen,sig,ver), where sig may maintain local state
between activations.

Definition 4.2 ([GMR88]). A signature scheme Σ = (gen,sig,ver) is called EU-CMA if the following
properties hold for any negligible function ν and all large enough values of the security parameter κ .
Completeness: For any message m, Pr

[
(s,v)← gen(1κ);σ ← sig(s,m);0← ver(m,σ ,v)

]
< ν(κ).

Consistency: For any m, the probability that gen(1κ) generates (s,v) and ver(m,σ ,v) generates two different
outputs in two independent invocations is smaller than ν(κ).
Unforgeability: For any PPT forger F,

Pr[(s,v)← gen(1κ);(m,σ)← Fsig(s,·)(v);1← ver(m,σ ,v) and F never asked sig to sign m]< ν(κ).
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Hash-then-sign. In practice, protocols often authenticate messages by signing a collision-resistant hash
value of the message, as opposed to signing the message directly. This is done for efficiency (the hash value
is constant-sized whereas the message payload may be arbitrarily large) but does not affect authenticity
guarantees, so we omit it from our modeling for simplicity.

We briefly restate the reason why hashing messages before signing does not affect authenticity (the
binding of messages to the verification key). Let Σ = (gen,sig,ver) be an EU-CMA signature scheme and
h←H be a collision-resistant hash function (drawn from an ensembleH), and consider the signature scheme
Σ′h = (gen′,sig′,ver′) defined by gen′ = gen, sig′(s,m) := sig

(
s,h(m)

)
, and ver′(m,σ ,v) := ver

(
h(m),σ ,v

)
.

Then Σ′h is complete and consistent because the range of h is a subset of the message space of Σ; and Σ′h can
also be shown to be unforgeable, since Σ is unforgeable and h is deterministic and collision-resistant. Thus,
Σ′h is also EU-CMA.

Signing module. To capture re-usability of keys within different protocols, we describe a signing module
that accepts sign requests from its owner PID. This module can be thought of as a local service process,
physically running on some local machine, providing signing service to all authorized processes on this
machine. This is formally described as an ideal functionality, denoted Ḡpid

Σ
, parametrized by a signature

scheme Σ = (gen,sig,ver) and some party ID. The keys’ re-usability is modeled by having the functionality
be shared among different SIDs, as long as they are owned by the same PID. That is, the functionality Ḡpid

Σ
is

a “local” subroutine of this PID and is not accessible by anyone else. Formal description appears in Figure 7.
The signing module separates the signing capability from secret key knowledge, and hence allows greater

flexibility in terms of corruptions. Corrupting the module captures the scenario of complete privacy loss;
corrupting a principal in a single session that uses the module captures a weaker privacy loss, allowing the
adversary to sign some messages but not arbitrary messages. In particular, corrupting a session that uses the
module does not provide the adversary with the secret key or with the ability to sign messages of other SIDs.
The signing module could be generalized to be selective about which sign requests it honors (for example, as
a function of the session id and message contents). For our purpose, it suffices to consider the basic module.

To our knowledge, this is the first modeling of authentication in a composable setting to feature SID-wise
corruption; prior works used PID-wise corruptions exclusively.

The equivalence. A signature scheme Σ = (gen,sig,ver) may be translated into a per-PID protocol π
pid
Σ

that “locally” uses Gpid
Σ

. This protocol localizes the signing/verification process and reduces trust in the setup.
That is, it is no longer required to trust a global, accessible by many parties, signing functionality; instead,
each party can trust merely his local signing module, which is running on his computer.

The protocol π
pid
Σ

proceeds as follows:

(a) When party P receives an input (Sign,sid,m), it verifies that sid = (P,sid′) for some sid′. If not, it
ignores the input. Next, it forwards (Sign,sid,m) to Gpid

Σ
. It obtains a verification key v and a signature σ

on message m. If no key is registered, then forward v to Gbb and outputs (Signature,sid,m,σ).

(b) When party P receives an input (Verify, ŝid,m,σ), where ŝid = (p̂id,sid′), it checks whether a pair
(p̂id,v) is recorded. If not, send (Retrieve, p̂id) to Gbb and obtain a response (Retrieve, p̂id,v). If v =⊥
then output (Verified, ŝid,m,0). Else record (p̂id,v). Next output

(
Verified, ŝid,m,ver(m,σ ,v)

)
.

We show:
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Functionality Ḡpid
Σ

Parameterized by a security parameter κ , a key generation and sign functions gen and sign respectively,
global functionality Ḡpid

Σ
proceeds thusly when running with party Ppid:

Signature Generation: Upon receiving a value (Sign,sid,m) from Ppid, do:

(a) Verify that sid = (pid,sid′) for some sid′. If not, then ignore the request.

(b) If this is the first request run (s,v)← gen(1κ), record (s,v).
In any case, output (Signature,sid,m,sig(s,m),v).

Corruption-module: Upon receiving a value Corrupt-module from the adversary, output s if recorded,
otherwise ignore.

Figure 7: The signing module. The functionality Ḡpid
Σ

is parametrized by a party identity and some signature scheme.
The functionality generates a signing and verification keypair. The signing key is kept inside ḠΣ and used to handle
signing requests. The verification key is given outside, similarly to Ḡcwk.

Claim 4.3. Let Σ = (gen,sig,ver) be a signature scheme. If Σ is EU-CMA, then π
pid
Σ

EUC-realizes Gpid
cwk with

respect to adaptive corruptions.

Proof. Note that here GΣ is a subroutine of πΣ and not a global functionality that exists in the simulator’s
world. Let Σ = (gen,sig,ver) be some EU-CMA signature scheme. Assume that π

pid
Σ

does not realize Gpid
cwk,

i.e., for any ideal-process adversary S there exists an environment Z that can tell whether it is interacting with
Gpid

cwk and S in the ideal process, or with π
pid
Σ

and the dummy adversary D in the real-life model. We show
that Σ violates Definition 4.2. Since Z succeeds for any S, it also succeeds for the following “generic” S.
The constructed S directly communicates with Z; then:

(a) Whenever S receives a message (KeyGen,sid) from Gpid
cwk, it does: If sid is not of the form

(pid,sid′), then S ignores this request. Otherwise, S runs (s,v)← gen(1k), records s, and returns
(Verification Key,sid,v) to Gpid

cwk.

(b) Whenever S receives a message (Sign,sid,m) from Gpid
cwk, if there is a recorded signing key s, then

S computes σ = gen(s,m), and hands (Signature,sid,m,σ) back to Gpid
cwk. Otherwise, it does nothing.

(c) Whenever S receives (Verify,sid,m,σ ,v) from Gpid
cwk, it returns (Verified,sid,m,φ) where

φ = ver(m,σ ,v).

(d) When Z requests to Corrupt-module, then S reveals the signing key s.

We show that Σ is not EU-CMA secure. Assume that scheme Σ is both complete and consistent (otherwise
the theorem is proven). We demonstrate that it is not unforgeable, by constructing a forger F . This is done as
follows. F runs a simulated copy of Z , and simulates for Z an interaction with S in the ideal process for Gcwk
(where F plays the role of both S and Gcwk for Z). However, in the first activation, instead of running gen to
obtain the keys (s,v), F hands Z the public verification key v in F’s input. Instead of running the signing
algorithm to obtain σ = gen(s,m), F asks its oracle to sign m and obtains the signature σ . Whenever
the simulated Z activates some uncorrupted party with input (Verify,sid,m,σ ,v), F checks whether (m,σ)
constitutes a forgery (i.e., whether m was never signed before and gen(v,m,σ) = 1). If (m,σ) is a forgery,
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then F outputs that pair and halts. Else it continues the simulation. If Z asks to corrupt the module then F
halts with a failure output.

We analyze the success probability of F . Let B denote the event that, in a run of πΣ with Z with
sid = (pid,sid′), the signer S generates a public key v, and some party is activated with a verification request
(Verify,sid,m,σ ,v), where gen(m,σ ,v) = 1, and S is uncorrupted and never signed m. Since Σ is complete
and consistent, we have that as long as event B does not occur, Z’s view of an interaction with πΣ is
statistically close to its view of an interaction with S and Gcwk in the ideal process. (The views may differ in
case of a completeness or consistency error, but these happen only with negligible probability.) However, we
are guaranteed that Z distinguishes with non-negligible probability between the interaction with πΣ and the
interaction with S and Gcwk. Thus we are guaranteed that, when Z interacts with πΣ, event B occurs with
non-negligible probability. It remains to observe that, from the point of view of Z , the interaction with the
forger F looks the same as an interaction in the real-life model with πΣ. Thus, we are guaranteed that event B
will occur with non-negligible probability. Notice that event B can occur only before the signer S is corrupted.
This means that whenever event B occurs, F outputs a successful forgery.

4.3 Defining and realizing non-deniable message authentication

This section shows that the most basic PKI, i.e., bulletin-board, suffices for secure authentication, even if
the keys are reused in other arbitrary protocols. This is similar to the last step of [Can04]’s construction,
except that we use a weaker authentication functionality—one that lets the adversary obtain a signature of the
‘authentication transaction’—to capture non-deniability. (The signature serves as a transferable ‘proof of
transaction’.)

We first formulate a non-deniable ideal authentication functionalityFcert-auth. The non-deniability property
is obtained via the usage of ideal certificates. Then, we show that the classic signature-based authentication
protocol (presented in Figure 9) GUC-securely realizes this relaxed authentication functionality. Finally,
using the composition theorem and the results of Sections 4.1 and 4.2, we obtain an authentication protocol
using merely existentially-unforgeable signatures and a global bulletin-board.

On capturing transferability. Since the essence of transferability is that “anyone” may become convinced
of the message that was authenticated, one might attempt to capture transferability by having Fauth disclose to
any principal in the system, upon request, that an authentication took place; the identities of the originator and
recipient; and the contents of the authenticated message. This modeling allows any principal in the system
to become convinced in the contents of the authenticated message and the identities of its originator and
recipient. However, this modeling of authentication poses unnecessary requirements on the implementing
protocol, such as supporting inquiries by third parties in an authenticated manner.

The non-deniable authentication functionality. The functionality Fcert-auth, presented in Figure 8, is a
non-deniable version of the authentication functionality of [Can04]. The non-deniability of the functionality
is captured by allowing the adversary to request signatures on messages affixed with Fcert-auth’s session id
(SID). Including the SID in the signed message binds the signature to the execution at hand, and prevents
the adversary from reusing the signatures in other sessions. Later, any entity can verify this signature and
be convinced that this message was indeed sent from S to R. Our Fcert-auth is a Ḡcert-subroutine-respecting
functionality. We highlight that the signature provided during the authentication process includes the identity
of the intended recipient and the session identifier. This has two consequences: it does not guarantee the
receiver deniability since it allows to publicly verify not only that a specific message was sent by some ITI,
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Functionality Fcert-auth

(a) Upon receiving an input (Send,S,R,sid,m) from ITI S, output (Sent,S,R,sid,m) to the adversary,
and, after a delay, provide the same output to R and halt.

(b) Upon receiving a value (Corrupt,sid) from the adversary, mark S as corrupted.

(c) Upon receiving a value (Corrupt-send,sid,m′) from the adversary, if S is marked as corrupted and
an output was not yet delivered to R, then output (Sent,S,R,sid,m′) to R and halt.

(d) Upon receiving (External-info,S,R,sid,m′) from the adversary, if an output was not yet delivered
to R, then output

(
Sign,(S,(R,sid)),(m′,sid,R)

)
to ḠS

cert (on behalf of S) and forward the response
to the adversary.

(e) Upon receiving (Corrupt-sign,sid,m′) from the adversary, if S is marked as corrupted then output(
Sign,(S,R,sid),(m′,sid,R)

)
to Ḡcert and forward the response to the adversary.

Figure 8: The non-deniable authentication functionality. The adversarial ability to obtain legitimate signatures on
messages of its choice makes the authentication non-deniable. Signatures are obtained by instructing the dummy party
S to communicate with Ḡcert.

Protocol φauth for realizing Fcert-auth

(a) Upon receiving an input (Send,A,B,sid,m), party A sets sid′ = (A,B,sid), sets m′ = (m,sid,B),
sends (Sign,sid′,m′) to Ḡcert, obtains the response (Signature,sid′,m′,σ), and sends (sid,A,m,σ)
to B.

(b) Upon receiving (sid,A,m,σ), party B sets sid′ = (A,B,sid), sets m′ = (m,sid,B), sends
(Verify,sid′,m′,σ) to Ḡcert, and obtains a response (Verified,sid′,m′, f ). If f = 1 then B outputs
(Sent,A,B,sid,m) and halts. Else B halts with no output.

Figure 9: The signature-based authentication protocol.

but also the intended recipient’s identity; and it also prevents the adversary from relaying signatures between
different sessions. The authentication functionality enables a corrupted sender to produce many signature on
messages of its choice. This enables corrupting parties without corrupting their signing module. One could
define, and realize by a similar protocol, a receiver-deniable version of Fcert-auth. However, receiver-deniable
authentication enables the adversary to reroute messages to a destination of its choice.

Claim 4.4. The protocol φauth GUC-emulates functionality Fcert-auth with respect to adaptive corruptions.

Proof. The proof here is simpler than the proof of [Can04] due to having the certificate functionality in both
the ideal and real executions.
LetD be the dummy adversary that interacts with parties running φauth in the Ḡcert-hybrid model. We construct
an ideal-process adversary (simulator) S such that the view of any environment Z from an interaction with D
and φauth is distributed identically to its view of an interaction with S in the ideal process for Fcert-auth. The
simulator S proceeds as follows.

Simulating the sender. When an uncorrupted party A is activated with input (Send,sid,B), S obtains
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this value from Fcert-auth. Then, S replies with (External-info,A,B,sid,m) and behaves as D in the interaction
with Ḡcert. That is, S forwards to Z the message

(
Sign,(A,B,sid),(m,sid,B)

)
from Ḡcert, and forwards back

to Ḡcert the obtained signature σ . Next, S hands Z the message (sid,A,m,s) sent from A to B. If the sender is
corrupted, then all that S has to do is to behave as the dummy party D in the interaction with Ḡcert.

Simulating the verifier. When Z instructs to deliver a message (sid,A, m̄,σ) to an uncorrupted party B,
S first sends

(
Verify,(A,B,sid),(m̄,sid,B),σ

)
to Ḡcert. If Ḡcert outputs

(
Verified,(A,B,sid),(m̄,sid,B),

σ , f = 1
)

then do the following: if the sender is honest, then allow Fcert-auth to deliver the message which
was sent in the ideal process to B. If the sender is corrupted, then forward (Corrupt-send,sid, m̄) to Fcert-auth.
In case f = 0 do nothing.

It is readily seen that the combined view of Z and D in an execution of φauth is distributed identically
to the combined view of Z and S in the ideal process. Indeed, the only case where the two views may
potentially differ is if the receiver obtains (Verified,sid′,m′,σ , f = 1) from Fcert-auth for an incoming message
(sid,A,m,σ), while A is honest and never sent this message. However, if A never sent (sid,A,m,σ), then the
message m′ = (m,sid,B) was never signed by Ḡcert with session id (A,B,sid); thus, according to the logic
of Ḡcert, B would always obtain (Verified,sid′,m′,σ , f = 0) from Ḡcert.

Now we are ready to fully instantiate the ideal functionalities used for authentication. The resulting
authentication protocol is the signature protocol used in practice, which is depicted in Figure 1 along with the
minimal PKI required for this task.

Corollary 4.5. If EU-CMA signatures exist then protocol φ
π̄Σ/Ḡcert
auth GUC-realizes functionality Fcert-auth with

respect to adaptive corruptions.

Proof. By combining Claim 4.1 with Theorem 4.3 we manage to reduce the security of Gcert to the security
of πΣ. This allows us to combine Claim 4.4 with Theorem 3.1 and conclude that φauth GUC-realize Fcert-auth
where φauth uses π̄Σ with ḠΣ instead of Ḡcert.

5 Non-deniable Key Exchange

We present a non-deniable key exchange functionality Fcert-ke and show that the classic signed-Diffie-Hellman
protocol φke (see ISO 9798-3, [CK01]), presented in Figure 11, realizes it.

The non-deniable key exchange functionality. The functionality, presented in Figure 10, is a key ex-
change functionality coupled with Ḡcert, similarly to Fcert-auth. The main difference between our functionality
and [DKSW09] is that we do not guarantee mutual authentication. That is, Fcert-ke allows a party to have a
key also if the other party aborted before establishing a shared key.

Claim 5.1. Under the Decisional Diffie-Hellman (DDH) assumption, the protocol φke GUC-emulates
functionality Fcert-ke with respect to adaptive corruptions.

Proof. Let p,q,g be as in φke and let D = {gz}z∈Z?
q
. We construct a simulator S that simulates the execution

of the protocol with the dummy adversary D and environment Z . The simulation of uncorrupted parties is
done by honestly executing the protocol. That is, the simulator honestly generates the share of the secret key,
and obtain the necessary certificates via Ḡcert of the appropriate party. Once the simulation reaches the output
step of party A, the simulator provides Fcert-ke with (setkey,sid,S,R,k′) where k′ is set to be the simulated
key. More formally,
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(a) The simulator samples x $← Zq and outputs (sid,A,α = gx) to Z as if it was sent by A.

(b) Upon receiving (sid,A,α ′) from Z as a message to be delivered to {0,1} (recall that the channels
are unauthenticated and hence Z can instruct D to deliver a different message instead). S samples

y $← Zq, sets sid′ =
(
A,(B,sid)

)
, sets m′ = (α ′,β = gy,sid,A,B), and sends (External-info,B,sid′,m′)

to Fcert-ke, obtains the response (Signature,sid′,m′,σB), sends (sid,B,β ,σB) to Z as if this message
was sent by B.

(c) Upon receiving (sid,B,β ′,σ ′B) from Z , the simulator verifies the signature on m′ = (α,β ′,sid,A,B)
by sending an appropriate input to ḠB

cert, If the signature is not verified, the simulation of A stops.
Otherwise, it sends (External-info,B,sid′,m′) to Fcert-ke, obtains the response (Signature,sid′,m′,σA),
outputs (sid,A,σA) to Z; it also computes the key k′ = (β ′)x, give input (setkey,sid,A,B,k′) to Fcert-ke,
and instructs Fcert-ke to give output to A.

(d) Upon receiving (sid,A,σ ′A) the simulator verifies the signature on m′ = (α ′,β ,sid,A,B) by sending an
appropriate input to ḠA

cert. If the signature is not verified, the simulator halts. Otherwise, it instructs
Fcert-ke to give output to B.

Upon corruption, the simulator reveals the secret information (if any) associated with the simulated
transcript of the newly corrupted party. More concretely, if the environment requests to corrupt party A or
party B before A outputs the key, then S , reveals the share x or the simulated key k′ respectively; in any other
case, it reveals the secret key k provided to it by Fcert-ke.

The analysis of S considers three possible scenarios:

(a) No corruption case: correctness can be violated by Z only with negligible probability. That is, the
only way to have parties in the real execution output different keys is by forging a signature, which can
happen negligibly often. In the ideal execution, correctness always holds and thence indistinguishability
follows. Conditioned on Z not forging any signature, the view of Z in the real execution consists of
{gx,gy,gxy} while in the simulated execution the view is {gx,gy,gr} for random r. If Z can distinguish
the two executions with non negligible advantage, then we can construct an adversary A that internally
run Z and breaks the DDH assumption.

(b) Corruption after A produced an output: this is similar to the no corruption case. After party A
produced an output, there is no secret information available (it is erased beforehand) and hence
indistinguishability follows as in no corruption case.

(c) Corruption before A produced an output: in both executions the outputted key is distributed identically,
since in the ideal execution the uncorrupted party is honestly simulated and the output is set to be the
simulated key. Moreover, the secret share x of A (revealed in case Z requests to corrupt party A after
the first message is send) is distributed identically in both executions.

6 Capturing Invisible Adaptive Attacks

Recently, Nielsen and Strefler [NS14] introduced a concept called Invisible Adaptive Attacks (IAA) that
the GUC framework fails to capture and showed how to immune the GUC model from such attacks, for
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Functionality Fcert-ke

The functionality Fcert-ke parametrized by a domain D proceeds as follows:

(a) Upon receiving message of the form (keyexchange,sid,S,R) from some ITI S, if this is the first
activation, set k =⊥ and send (keyexchange,sid,S,R) to S. (Otherwise, ignore the message).

(b) Upon receiving a value (Corrupt,sid,P) from S, mark P ∈ {S,R} as corrupted and output k to S.

(c) Upon receiving a message of the form (setkey,sid,S,R,k′) from the adversary, if either S or R is

corrupt, then set key k = k′, else set k $← D. Output a delayed message (setkey,sid,S,R,k) to S
and R and halt.

(d) Upon receiving (External-info,P,sid,m′) from the adversary, where P ∈ {S,R}, if k 6=⊥ and an
output was not yet delivered to either party, output

(
Sign,(P,(P′,sid)),(m′,sid,P)

)
to ḠP

cert (where
P′ is the other party), and forward the response to the adversary.

(e) Upon receiving (Corrupt-sign,sid,P,m′) from the adversary, where P ∈ {S,R}, if P is marked as
corrupted then output

(
Sign,(P,(P′,sid)),(m′,sid,P)

)
to ḠP

cert and forward the response to the
adversary.

Figure 10: The non-deniable key exchange functionality Fcert-ke. The functionality allows the adversary to request
signatures on messages of its choice, together with the session and parties id. This behavior is allowed as long as the
key it not outputted, to prevent the functionality from being used beyond the lifetime of the protocol.

CRS-style setup assumptions. An IAA is an attack wherein a protocol behave insecurely with respect to some
specific values of the global setup, but continues to behave securely under other values of the setup. Since the
setup is long-lived and fixed for the lifetime of the system, such protocols should be rejected by the security
definition. However, at present, the security definition accepts such protocols, since it examines candidate
protocols’ behavior only with respect to the average case of the setup-generating algorithm.

The approach of [NS14] is to consider worst case security, i.e., guarantee security with respect to any
setup. This is incorporated in the GUC model by letting the environment pick the random coins the setup (e.g.
a CRS) uses. For our protocols, IAA security boils down to letting the environment determine the random
coins of Ḡpid

Σ
. This additional power does not influence the security and the analysis of φauth and φke, since

the only possible way to distinguish ideal from real is to forge a signature. However, since the environment is
oblivious to the secret keys, its forging ability remains negligible and security continues to hold.
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cert, obtains the response (Signature,sid′,m′,σA), sends (sid,A,σA) to B;
computes the key k = β x; erases x; and outputs (setkey,sid,A,B,k) and halts. Else A halts with
no output.

(d) Upon receiving (sid,A,σA), party B sends (Verify,sid′,m′,σA) to ḠA
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