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Abstract. The security of HMAC (and more general hash-based MACs)
against state-recovery and universal forgery attacks was very recently
shown to be suboptimal, following a series of surprising results by Leurent
et al. and Peyrin et al.. These results have shown that such powerful
attacks require much less than 2` computations, contradicting the common
belief (where ` denotes the internal state size). In this work, we revisit
and extend these results, with a focus on properties of concrete hash
functions such as a limited message length, and special iteration modes.

We begin by devising the first state-recovery attack on HMAC with
a HAIFA hash function (using a block counter in every compression
function call), with complexity 24`/5. Then, we describe improved trade-
offs between the message length and the complexity of a state-recovery
attack on HMAC. Consequently, we obtain improved attacks on several
HMAC constructions used in practice, in which the hash functions limit
the maximal message length (e.g., SHA-1 and SHA-2). Finally, we present
the first universal forgery attacks, which can be applied with short message
queries to the MAC oracle. In particular, we devise the first universal forgery
attacks applicable to SHA-1 and SHA-2.

Keywords: Hash functions, MAC, HMAC, Merkle-Damg̊ard, HAIFA,
state-recovery attack, universal forgery attack, GOST, Streebog, SHA
family.

1 Introduction

MAC algorithms are an important symmetric cryptography primitive, used to
verify the integrity and authenticity of messages. First, the sender appends to
the message a tag, computed from the message and a key. The receiver can
recompute the tag using the key and reject the message when the computed tag
does not match the received one. The main security requirement of a MAC is the
resistance to existential forgery. Namely, after querying the MAC oracle to obtain
the tags of some carefully chosen messages, it should be hard to forge a valid tag
for a different message.

? Some of the work presented in this paper was done during Dagstuhl Seminar 14021.



One of the most widely used MAC algorithms in practice is HMAC, a MAC
construction using a hash function designed by Bellare, Canetti and Krawczyk in
1996 [4]. The algorithm has been standardized by ANSI, IETF, ISO and NIST,
and is widely deployed to secure internet communications (e.g. SSL, SSH, IPSec).
As these protocols are widely used, the security of HMAC has been extensively
studied, and several security proofs [3,4] show that it gives a secure MAC and a
secure PRF up to the birthday bound (assuming good properties of the underlying
compression function). At the same time, there is a simple existential forgery
attack on any iterative MAC with an `-bit state, with complexity 2`/2, matching
the security proof. Nevertheless, security beyond the birthday bound for stronger
attacks (such as state-recovery and universal forgery) is still an important topic.

Surprisingly, the security of HMAC beyond the birthday bound has not been
thoroughly studied until 2012, when Peyrin and Sasaki described an attack on
HMAC in the related-key setting [18]. Later work focused on single-key security,
and included a paper by Naito, Sasaki, Wang and Yasuda [16], which described
state-recovery attacks with complexity 2`/`. At Asiacrypt 2013, Leurent, Peyrin
and Wang [15] gave state-recovery attacks with complexity 2`/2, closing the
gap with the security proof. More recently, at Eurocrypt 2014, Peyrin and
Wang [19] described a universal forgery attack with complexity as low as 25`/6.
The complexity of the universal forgery attack was further improved to 23`/4

in [8], showing that even this very strong attack is possible with less than 2`

work.

These generic attacks have also been used as a first step to build specific
attacks against HMAC with the concrete hash function Whirlpool [10,9].

These very recent and surprising results show that more work is needed to
better understand the exact security provided by HMAC and hash-based MACs.

1.1 Our results

In this paper, we provide several important contributions to the security analysis
of HMAC and similar hash-based MAC constructions. In particular, we devise
improved attacks when HMAC is used with many popular concrete hash functions,
and in several cases our attacks are the first to be applicable to HMAC with the
given hash function. Some results with concrete instantiations are summarized in
Table 1.

As a first contribution, we focus on the HAIFA [5] mode of operation, used
in many recent designs such as BLAKE [1,2], Skein [7], or Streebog [6]. The
HAIFA construction uses a block counter to tweak the compression functions,
such that they resemble independent random functions, in order to thwart some
narrow-pipe attacks (e.g. the second-preimage attack of Kelsey and Schneier [13]).
Indeed, the recent attacks against HMAC [15,19] use in a very strong way the
assumption that the same compression function is applied to all the message
blocks, and thus they cannot be applied to HAIFA. In this work, we present the
first state-recovery attack on HMAC using these hash functions, whose optimal
complexity is 24`/5.
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Fig. 1. Trade-offs between the message length and the complexity

In an interesting application of our state-recovery attack on HAIFA (given
in Appendix A), we show how to extend it into a key-recovery attack on the
new Russian standard Streebog, recovering the 512-bit key of HMAC-Streebog
with a complexity of 2410. This key recovery attack is similar to the one of [15]
for Merkle-Damg̊ard, and confirms its surprising observation: adding an internal
checksums in a hash function (such as Streebog) weakens the design when used
in HMAC, even for hash functions based on the HAIFA mode.

As a second contribution of this paper, we revisit the results of [15], and give
a formal proof of the conjectures used in its short message attacks. Some of our
proofs are of broad interest, as they give insight into the behavior of classical
collision search algorithms for random functions. These proofs explain for the
first time an interesting phenomenon experimentally observed in several previous
works (such as [17]), namely, that the collisions found by such algorithms are
likely to belong to a restricted set of a surprisingly small size.

Then, based on our proofs, we describe several new algorithms with various
improved trade-offs between the message length and the complexity as shown in
Figure 1. As many concrete hash functions restrict the message size, we obtain
improved attacks in many cases: for instance, we reduce the complexity of a
state-recovery attack against HMAC-SHA-1 from 2120 to 2107 (see Table 1).

Finally, we focus on universal forgery attacks, and devise attacks using
techniques which are different from those of [19]. While the attack of [19] (and its
improvement in [8]) is much more efficient than exhaustive search, it requires, in
an inherent way, querying the MAC oracle with very long messages of about 2`/2

blocks, and thus has limited impact in practice. On the other hand, our attacks
can be efficiently applied with much shorter queries to the MAC oracle, and thus
have many more applications. In particular, we devise the first universal forgery
attack applicable to HMAC with SHA-1 and SHA-2 (see Table 1).



Table 1. Complexity of attacks on HMAC instantiated with some concrete hash
functions. The state size is denoted as `, and the maximum message length as 2s. For
the new results, we give a reference to the Attack number.

State-recovery Universal forgery

Function Mode ` s [15] New [19] New

SHA-1 MD 160 255 2120 2107 (2) N/A 2132 (6)
SHA-224 MD 256 255 2201 2152 (3) N/A N/A
SHA-256 MD 256 255 2201 2152 (3) N/A 2228 (5,6)
SHA-384 MD 512 2118 N/A 2282 (3) N/A N/A
SHA-512 MD 512 2118 2394 2282 (3) N/A 2453 (5,6)
HAVAL MD 256 254 2202 2154 (3) N/A 2229 (5,6)
Whirlpool MD 512 2247 2384 2283 (7) N/A 2446 (5)

BLAKE-256 HAIFA 256 255 N/A 2213 (4) N/A N/A
BLAKE-512 HAIFA 512 2118 N/A 2419 (4) N/A N/A
Skein-512 HAIFA 512 290 N/A 2419 (4) N/A N/A

Key recovery

[15] New

Streebog HAIFA+σ 512 ∞ N/A 2419 (4) N/A 2419 (8)

1.2 Framework of the attacks

In order to recover an internal state, computed by the MAC oracle during the
processing of some message, we use a framework which is similar to the framework
of [15]. Namely, we match states that are computed offline with (unknown) states
that are computed online (during the processing of messages by the MAC oracle).
However, as arbitrary states match with low probability (which does not lead to
efficient attacks), we only match special states, which have a higher probability to
be equal. These special states are the result of iterating random functions using
chains, computed by applying the compression function on a fixed message from
arbitrary initial states. In this paper, we exploit special states of two types, which
were also exploited in [15]: states on which two evaluated chains collide, and
states on which a single chain collides with itself to form a cycle. Additionally,
some of our attacks (and in particular our attacks on HAIFA) use special states
which are a result of the reduction of the image space that occurs when applying
a fixed sequence of random functions.

As described above, after we compute special states both online and offline,
we need to match them in order to recover an online state. However, since the
online states are unknown, the matching cannot be performed directly, and we
are forced to match the nodes indirectly using filters. A filter for a node (state)
is a property that identifies it with high probability, i.e., once the filters of two
nodes match, then the nodes themselves match with high probability. Since
the complexity of the matching steps in a state-recovery attack depend on the
complexity on building a filter for a node and testing a filter on a node, we are



interested in building filters efficiently. In this paper, we use two types of filters:
collision filters (which were also used in [15]) and diamond filters, which exploit
the diamond structure (proposed in [12]) in order to build filters for a large set
of nodes with reduced average complexity. Furthermore, in this paper we use a
novel online construction of the diamond structure via the MAC oracle, whereas
such a structure is typically computed offline. In particular, we show that despite
the fact that the online diamond filter increases the complexity of building the
filter, the complexity of the actual matching phase is significantly reduced, and
gives improved attacks in many cases.

Outline The paper is organized as follows: we begin with a description of HMAC
in Section 2. We then describe and analyze the algorithms we use to compute
special states in Section 3, and the filters we use in our attacks in Section 4.
Next, we present a simple attack against HMAC with a HAIFA hash function in
Section 5, and revisit the results of [15] in Section 6, presenting new trade-offs for
attacks on Merkle-Damg̊ard hash functions. In Section 7, we give more complex
attacks for shorter messages. Finally, in Section 8, we present our universal
forgery attacks with short queries, and conclude in Section 9.

2 HMAC and hash-based MACs

In this paper we study MAC algorithms based on a hash function, such as HMAC.
HMAC is defined using a hash function H as HMAC(K,M) = H(K ⊕ opad ‖
H(K ⊕ ipad ‖M)). More generally, we consider a class of designs represented by
Figure 2, and defined as:

x0 = IK xi+1 = hi(xi,mi) t = g(K,xp, |M |).

The message processing updates an internal state of size `, starting from a
key-dependant value IK , and the output is produced with a key-dependant
finalization function g. In particular, we note that the state update does not
depend on the key. Our description covers HMAC [4], Sandwich-MAC [22] and
envelope-MAC [21] with any common hash function. The hash function can use
the message length in the finalization process, which is a common practice, and
the rounds function can depend on a block counter, as in the HAIFA mode. If
the hash function uses the plain Merkle-Damg̊ard mode, the round functions hi
are all identical (this is the model of previous attacks [15,19]).

In this work, we assume that the tag length n is larger than `, so that collision
in the tag result from collisions in the internal state with very high probability.
This greatly simplifies the description of the attacks, and does not restrict the
scope of our results. Indeed from a function MAC1(K,M) with an output of n bits,
we can build a function MAC2(K,M) with a 2n-bit output by appending message
blocks [0] and [1] to M , as MAC2(K,M) = MAC1(K,M ‖ [0]) ‖ MAC1(K,M ‖ [1]).
Our attacks applied to MAC2 can immediately be turned to attacks on MAC1.
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3 Description and Analysis of Collision Search
Algorithms

In this section, we describe and analyze the collision search algorithms which
are used in our state-recovery attacks in order to compute special states. We
then analyze these algorithms and prove the conjectures of [15]. Lemma 1 proves
the first conjecture, while Lemma 3 proves the second conjecture. We also give
further results in Appendix A.

3.1 Collision search algorithms

We use standard collision search algorithms, which evaluate chains starting from
arbitrary points. Namely, a chain −→x starts from x0, and is constructed iteratively
by the equation xi = fi(xi−1) up to i = 2s for a fixed value of s ≤ `/2. We
consider two different types of collisions between two chains −→x and −→y : free-offset
collisions (xi = yj for any i, j, with all the fi’s being equal), and same-offset
collisions (xi = yi).



Free-offset collision search. When searching offline for collisions in iterations
of a fixed random function f , we evaluate 2t chains starting from arbitrary points,
and extended to length 2s for s ≤ `/2.

Assuming that 2t · 2t+s ≤ 2` (i.e., 2t+ s ≤ `), then each of the chains is not
expected to collide with more than one other chain in the structure. This implies
that the structure contains a total of about 2t+s distinct points, and (according to
the birthday paradox) we expect it to contain a total of 2c = 22(t+s)−` collisions.
We can easily recover all of these collisions in O(2t+s) = O(2(c+`)/2) time by
storing all the evaluated points and checking for collisions in memory.

We note that we can reduce the memory requirements of the algorithm by
using the parallel collision search algorithm of van Oorschot and Wiener [17].
However, in this paper, we generally focus on time complexity and do not try to
optimize the memory complexity of our attacks.

Same-offset collision search. While free-offset collisions are the most general
form of collisions, they cannot always be efficiently detected and exploited by our
attacks. In particular, they cannot be efficiently detected in queries to the online
oracle (as a collision between messages of different lengths would lead to different
values after the finalization function). Furthermore, if the hash function uses the
HAIFA iteration mode, it is also not clear how to exploit free-offset collisions
offline, as the colliding chains do not merge after the collision (and thus we do
not have any easily detectable non-random property).

In the cases above, we are forced to only use collisions that occur at the
same-offset. When computing 2t chains of length 2s (for t not too large), a pair
of chains collide at a fixed offset i with probability 2−`, and thus a pair of chains
collide with probability 2s−`. As we have 22t pairs of chains, we expect to find
about 22t+s−` fixed-offset collisions.

Locating collisions online. Online collisions are detected by sorting and comparing
the tags obtained by querying the MAC oracle with chains of a fixed length 2s.
If we find two massages such that MAC(M) = MAC(M ′), we can easily compute
the message prefix that gives the (unknown) collision state, as described in [15].
Namely, if we denote by M|i the i-block prefix of M , then we find the smallest i
such that MAC(M|i) = MAC(M ′|i) using binary search. This algorithm queries the

MAC oracle with O(s) messages of length O(2s), and thus the time complexity of
locating a collision online is s · 2s = Õ(2s).

3.2 Analysis of the collision search algorithms

In this section, we provide useful lemmas regarding the collision search algo-
rithms described above. These lemmas are used in order to estimate the collision
probability of special states that are calculated by our attacks and thus to bound
their complexity. Lemmas 1 and 2 can generally be considered as common knowl-
edge in the field, and their proofs are given in Appendix A. Perhaps, the most
interesting results in this section are lemmas 3 and 4. These lemmas show that
the probability that our collision search algorithms reach the same collision twice



from different arbitrary starting points, is perhaps higher than one would expect.
This phenomenon was already observed in previous works such as [17], but to
the best of our knowledge, this is the first time that this lemma is formally
proven. As the proof of lemma 4 is very similar to that of lemma 3, it is given in
Appendix A.

Lemma 1. Let s ≤ `/2 be a non-negative integer. Let f1, f2, . . . , f2s be a sequence
of random functions over the set of 2` elements, and gi , fi ◦ . . . ◦ f2 ◦ f1
(with the fi being either all identical, or independently distributed). Then, the
images of two arbitrary inputs to g2s collide with probability of about 2s−`, i.e.
Prx,y [g2s(x) = g2s(y)] = Θ(2s−`).

Lemma 2. Let f1, f2, . . . , f2s be a sequence of random functions, then the image
of the function g2s , f2s ◦ . . . ◦ f2 ◦ f1 contains at most Õ(2`−s) points.

Lemma 3. Let x̂ and ŷ be two random collisions (same-offset or free-offset)
found by a collision search algorithm using chains of length 2s, with a fixed `-bit
function f such that s < `/2. Then Pr [x̂ = ŷ] = Θ(22s−`).

Proof. First, we note that we generally have 4 cases to analyze, according to
whether x̂ and ŷ were found using a free-offset, or a same-offset collision search
algorithm. However, the number of cases can be easily reduced to 3, as we have
2 symmetric cases, where one collision is free-offset, and the other is same-offset.
In this proof, we assume that x̂ is a same-offset collision and ŷ is a free-offset
collision (this is the configuration used in our attacks). However, the proof can
easily be adapted to the 2 other different settings.

We denote the starting points of the chains which collide on x̂ by (x0, x
′
0),

and the actual corresponding colliding points of the chains by (xi, x
′
i), and thus

f(xi) = f(x′i) = x̂. In the following, we assume that 0.25 ·2s ≤ i ≤ 0.75 ·2s, which
occurs with probability about 1/2 since the offset of the collision x̂ is roughly
uniformly distributed in the interval [0, 2s].3 This can be shown using Lemma 1,
as increasing the length of the chains, increases the collision probability by the
same multiplicative factor.

Fixing (x0, x
′
0), we now calculate the probability that 2 chains of length 2s,

starting from arbitrary points (y0, y
′
0), collide on x̂. This occurs if y0, y1, . . . , y2s−i

collides with x0, x1, . . . , xi, and y′0, y
′
1, . . . , y

′
2s−i collides with x′0, x

′
1, . . . , x

′
i (or

vise-versa), which happens with probability Θ(22(2s−`)) (assuming 0.25 · 2s ≤
i ≤ 0.75 · 2s, all chains are of length Θ(2s)). This lower bounds the collision
probability on x̂ by Ω(22(2s−`)). At the same time, the collision on x̂ is also upper
bounded by O(22(2s−`)), as all 4 chains are of length O(2s). We conclude that
the collision probability on x̂ is Θ(22(2s−`)).

On the other hand, the probability that the chains starting from (y0, y
′
0) collide

on any point is Θ(22s−`). Assuming that the collision search algorithm evaluates
2t chains such that 2t + s ≤ `, then each evaluated chain is not expected to
collide with more than one different chain, and the pairs of chains can essentially
be analyzed independently.

3 The assumption simplifies the proof of the lower bound on the collision probability.



We denote by A the event that the chains starting from (y0, y
′
0) collide

on x̂, and by B the event that the chains starting from (y0, y
′
0) collide. We

are interested in calculating the conditional probability Pr[A|B], and we have
Pr[A|B] = Pr[A

⋂
B]/Pr[B] = Pr[A]/Pr[B] = Θ(22(2s−`)−(2s−`)) = Θ(22s−`),

as required. ut

Lemma 4. Let x̂ and ŷ be two arbitrary same-offset collisions found, respectively,
at offsets i and j by a collision search algorithm using chains of fixed length 2s, with
independent `-bit functions fi, such that s < `/2. Then Pr [(x̂, i) = (ŷ, j)] =
Θ(2s−`). Furthermore, given that i = j, we have Pr [x̂ = ŷ] = Θ(22s−`).

4 Filters

We describe the two types of filters that we use in our attacks in order to match
(known) states computed offline with unknown states computed online.

4.1 Collision filters

A simple filter that we use in some of our attacks was also used in the previous
work of [15]. We build a collision filter ([b], [b′]) for a state x offline by finding
message blocks ([b], [b′]) such that the states, obtained after processing these
blocks from x, collide. In order to build this filter, we find a collision in the
underlying hash function by evaluating its compression function for about 2`/2

different messages blocks from the state x. In order to test this filter online on
the unknown node x′ obtained after processing a message m′, we simply check
whether the tags of m′ ‖ [b] and m′ ‖ [b′] collide. As the tags of m′ ‖ [b] and m′ ‖ [b′]
collide with probability 2−n < 2−` if the state obtained after processing m′ is
not x, we can conclude that the collision filter identifies the state x with high
probability.

The complexity of building a collision filter offline is O(2`/2). Testing the
filter online requires querying the MAC oracle with m′ ‖ [b] and m′ ‖ [b′], and
assuming that the length of m′ is 2s

′
, then it requires O(2s

′
) time.

4.2 Diamond filters

In order to build filters for 2t nodes, we can build a collision filter for each one of
them separately, requiring a total of O(2t+`/2) time. However, this process can
be optimized using the diamond structure, introduced by Kelsey and Kohno in
the herding attack [12]. We now recall the details of this construction.

The diamond structure is built from a set of 2t states xi, constructing a set
of messages mi of length O(t), such that iterating the compression function from
any state xi using message mi leads to a fixed final state y. The structure is built
in O(t) iterations, where each iteration processes a layer of nodes, and outputs a
smaller layer to be processed by the next iteration. This process terminates once
the layer contains only one node, which is denoted by y.



Starting from the first layer with 2t points, we evaluate the compression
function from each point xi with about 2(`−t)/2 random message blocks. This
gives a total of about 2(`+t)/2 random values, and we expect them to contain
about 2t collisions. Each collision allows to match two different values xi, xj and
to send them to a common value in the next layer, such that its size is reduced
to about 1/2. The message mi for a state xi is constructed by concatenating the
O(t) message blocks on its path leading to y. According to the detailed analysis
of [14], the time complexity of building the structure is is Θ(2(`+t)/2).

x0
x1
x2
x3
x4
x5
x6
x7

Once we finish building the diamond structure, we construct a standard
collision filter for the final node y, using some message blocks ([b], [b′]). Thus,
building a diamond filter offline for 2t states requires O(2(`+t)/2) time, which is
faster than the O(2t+`/2) time required to build a collision filter for each node
separately.

In order to test the filter for a state xi (in the first layer of the diamond
structure), on the unknown node x′ obtained after processing a message m′

online, we simply check whether the tags of m′ ‖mi ‖ [b] and m′ ‖mi ‖ |[b′] collide.
Assuming that the length of m′ is 2s

′
, then the online test requires O(t + 2s

′
)

time.

Online diamond filter. A novel observation that we use in this paper, is that
in some attacks it is more efficient to build the diamond structure online by calling
the MAC oracle. Namely, we construct a diamond structure for the set of 2t states
xi, where (the unknown) xi is a result of querying the MAC oracle with a message
Mi. Note the online construction is indeed possible, as the construction algorithm
does not explicitly require the value of xi, but rather builds the corresponding
mi by testing for collisions between the states (which can be detected according
to collisions in the corresponding tags). However, testing for collisions online
requires that all the messages Mi, for which we build the online diamond filter,
are of the same length. Assuming that the messages Mi are of length 2s, this
construction requires O(2s+(t+`)/2) calls to the compression function.

In order to test the filter for an unknown online state xi, on a known state x′,
we simply evaluate the compression function from x′ on mi ‖ [b] and mi ‖ |[b′], and
check whether the resulting two states are equal. Thus, the offline test requires
O(t) time.

5 Internal state-recovery for NMAC and HMAC with HAIFA

In this section, we describe the first internal state-recovery attack applicable to
HAIFA (which can also be used as a distinguishing-H attack). Our optimized



attack has a complexity of Õ(2`−s) using messages of length 2s, but this only
applies with s ≤ `/5; the lowest complexity we can reach is 24`/5. We note
that attacks against HAIFA can also be used to attack a Merkle-Damg̊ard hash
function; this gives more freedom in the queried messages by removing the need
for long series of identical blocks as in [15].

In this attack, we fix a long sequence of random functions in order to reduce
the entropy of the image states, based on Lemma 1. We then use an online
diamond structure to match the states computed online with states that are
compute offline. The detailed attack is as follows:

Attack 1: State-recovery attack against HMAC with HAIFA

Complexity Õ(2`−s), with s ≤ `/5 (min: 24`/5)

1. (online) Fix a message C of length 2s. Query the oracle with 2u messages
Mi = [i] ‖ C. Build an online diamond filter for the set of unknown
states X, obtained after Mi.

2. (offline) Starting from 2t arbitrary starting points, iterate the compres-
sion function with the fixed message C.

3. (offline) Test each image point x′, obtained in Step 2, against each of
the unknown states of X. If a match is found, then with high probability
the state reached after the corresponding Mi is x′.

Ik
1 2s

2u

[i] C

Online structure

2s

2t $

C

Offline structure

We detect a match between the grey points ( ) using the diamond test built online.

Complexity analysis. In Step 3, we match the set X of size 2u (implicitly
computed during Step 1), and a set of size 2t (computed during Step 2). We
compare 2t+u pairs of points, and each pair collides with probability 2s−` ac-
cording to Lemma 1. Therefore, the attack is successful with high probability if
t+ u ≥ `− s. We now assume that t = `− s− u, and evaluate the complexity of
each step of the attack:

Step 1: 2s+u/2+`/2 Step 2: 2s+t = 2`−u Step 3: 2t+u · u = 2`−s · u

The lowest complexity is reached when all the steps of the attack have the same
complexity, with s = `/5. More generally, we assume that s ≤ `/5 and we set
u = s. This give an attack with complexity Õ(2`−s) since s + u/2 + `/2 =
3s/2 + `/2 ≤ 4`/5 ≤ `− s.



6 New Tradeoffs for Merkle-Damg̊ard

In this section, we revisit the results of [15], and give more flexible tradeoffs for
various message lengths.

6.1 Trade-off based on iteration chains

In this attack, we match special states obtained using collision, based on Lemma 3.
This attack extends the original tradeoff of [15] by using two improved techniques:
first, while [15] used a fixed-offset offline collision search, we use a more general,
free-offset offline collision search, which enables us to find collisions more efficiently.
Second, while [15] used collision filters, we use a more efficient diamond filter.

Attack 2: Chain-based trade-off for HMAC with Merkle-Damg̊ard

Complexity O(2`−s), with s ≤ `/3 (min: 22`/3)

1. (offline) Use free-offset collision search from 2`−2s starting points with
chains of length 2s, and find 2c collisions (denoted by the set X̂).

2. (offline) Build a diamond filter for the points in X̂.
3. (online) Query the oracle with 2t messages Mi = [i] ‖ [0]2

s

. Sort the
tags, and locate 1 collision.

4. (online) Use a binary search to find the message prefix giving the
unknown online collision state ŷ.

5. (online) Match the unknown online state ŷ with each offline state in
X̂ using the diamond filter. If a match with x̂ ∈ X̂ is found, then with
very high probability ŷ = x̂.

2s

2`−2s

{2c collisions}

$

[0]∗

Offline structure

Ik
2s1

2t

[i] {1 collision}[0]∗

Online structure

We generate collisions offline using free-offset collision search, build a diamond
filter for the collision points ( ), and recover the state of an online collision.

Complexity analysis. In Step 1, we use free-offset collision search with 2`−2s

starting points and chains of length 2s, and thus according to Section 3.1, we
find 2`−2s collisions (i.e. c = `− 2s). Furthermore, according to Lemma 3, ŷ ∈ X̂
with high probability, in which case the attack succeeds.

In Step 3, we use fixed-offset collision search with 2t starting points and chains
of length 2s, and thus according to Section 3.1, we find 22t+s−` collisions. As we
require one collision, we have t = (`− s)/2. We now compute the complexity of



each step of the attack:

Step 1: 2`/2+c/2 = 2`−s Step 2: 2`/2+c/2 = 2`−s

Step 3: 2t+s = 2(`+s)/2 Step 4: s · 2s

Step 5: 2c+s = 2(`+s)/2

With s ≤ `/3, we have (` + s)/2 ≤ 2/3 · ` ≤ ` − s, and the complexity of the
attack is O(2`−s).

6.2 Trade-off based on cycles

We also generalize the cycle-based state-recovery attack of [15], which uses
messages of length 2`/2 and has a complexity of 2`/2. Our attack uses (potentially)
shorter messages of length 2s for s ≤ `/2, and has a complexity of 22`−3s. The
full attack and its analysis is given in Appendix B.

7 Shorter Message Attacks

In this section, we describe more complex attacks that can reach a tradeoff of
2`−2s, for relatively small values of s. These attacks are useful in cases where the
message length of the underlying hash function is very restricted (e.g. the SHA-2

family). In order to reach a complexity of 2`−2s, we combine the idea of building
filters in the online phase with lemmas 3 and 4.

In the case of Merkle-Damg̊ard with identical compression functions, we reach
a complexity of 2`−2s for s ≤ `/8, i.e. the optimal complexity of this attack is
23/4·`. With the HAIFA mode of operation, we reach a complexity of 2`−2s for
s ≤ `/10 i.e. the optimal complexity of 24/5·`, matching the optimal complexity
of the attack of Section 5.

7.1 Merkle-Damg̊ard

Attack 3: Short message attack for HMAC with Merkle-Damg̊ard

Complexity Õ(2`−2s), with s ≤ `/8 (min: 23`/4)

1. (online) Query the oracle with 2u messages Mi = [i] ‖ [0]2
s

, and locate
2c1 collisions.

2. (online) For each collision (i, j), use a binary search to find the distance
(offset) µij from the starting point to the collision, and denote the
(unknown) state reach after Mi (or Mj) by yij .
Denote the set of all yij (containing about 2c1 states) by Y . Build an
online diamond filter for all the states in Y .

3. (offline) Run a free-offset collision search algorithm from 2t starting
points with chains of length 2s, and locate 2c2 collisions.



4. (offline) For each offline collision x̂, match its iterates with all points
yij ∈ Y : iterate the compression function with a zero message starting
from x̂ (up to 2s times), and match iterate 2s − µij (i.e., f2

s−µij (x̂))
with yij using the diamond filter. If a match is found, then with high
probability yij = f2

s−µij (x̂).

Ik
2s1

2u

[i]
{2c1 collisions}[0]∗

Online structure

2t

2s

{2c2 collisions}

$

[0]∗

Offline structure

We generate collisions and build a diamond filter online, and match them with
collisions found offline.

Complexity analysis. Using similar analysis to Section 6.1, we have c1 =
2u+ s− ` (as a pair of chains collide at the same offset with probability 2s−`,
and we have 22u such pairs) and c2 = 2t + 2s − `. The attack succeeds if the
sets of collisions found online and offline intersect. According to Lemma 3, this
occurs with high probability if c1 + c2 ≥ ` − 2s. In the following, we assume
c1 + c2 = `− 2s.

Step 1: 2u+s = 2s/2+c1/2+`/2 Step 2: 2s+c1/2+`/2 = 2`−c2/2

Step 3: 2t+s = 2`/2+c2/2 Step 4: 2c2+s + 2c1+c2 · c1 = 2c2+s + 2`−2s · c1

The best tradeoffs are achieved by balancing steps 2 and 3, i.e. with c2 = `/2.
This reduces the complexity to:

Step 1: 23`/4−s/2 Step 2: 23`/4

Step 3: 23`/4 Step 4: 2`/2+s + 2`−2s · `/2

With s ≤ `/8, we have `/2 +s ≤ 5`/8 and 3`/4 ≤ `−2s; therefore the complexity
of the attack is Õ(2`−2s).

7.2 HAIFA

Since the attack is very similar to the previous attack on Merkle-Damg̊ard, we
only specify the differences between the attacks.

Attack 4: Short message attack for HMAC with HAIFA

Complexity Õ(2`−2s), with s ≤ `/10 (min: 24`/5)

• In Step 1 of Attack 3, we fix an arbitrary suffix C of length 2s, and use
Mi = [i] ‖ C.



• Correspondingly, in Step 3, we use a fixed-offset collision search by
iterating the compression function with C from 2t starting points.

• In Step 4, we match each offline collision x̂, only with online collisions
that occur at the same offset as x̂. Thus, for each x̂, we test only the
end point of its chain (at offset 2s) with the corresponding states in Y .
Note that each x̂ is matched with 2c1 · 2−s states in Y on average.

Ik
2s1

2u

[i]
{2c1 collisions}C

2t

2s

{2c2 collisions}

$

C

Offline structureOnline structure

We generate collisions and build an online diamond filter, and match them with
offline collisions using the collision offset as a first filter.

Analysis. The attack succeeds in case there is a match between the set of
collisions detected online and offline, that occurs at the same offset. According
to Lemma 4, this match occurs with high probability when c1 + c2 ≥ `− s, and
thus we assume that c1 + c2 = `− s.

Complexity analysis. Similar to the analysis of the previous attacks, we have
c1 = 2u+ s− ` and c2 = 2t+ s− `.

Step 1: 2u+s = 2s/2+c1/2+`/2 Step 2: 2s+c1/2+`/2 = 2`−c2/2+s/2

Step 3: 2s+t = 2s/2+c2/2+`/2 Step 4: 2c1+c2−s · u = 2`−2s · u

The best tradeoffs are achieved by balancing steps 2 and 3, i.e. with c2 = `/2.
This reduces the complexity to:

Step 1: 23`/4 Step 2: 23`/4+s/2 Step 3: 23`/4+s/2 Step 4: 2`−2s · 3`/4

With s ≤ `/10, we have 3`/4 + s/2 ≤ 4`/5 ≤ `− 2s; therefore the complexity of
the attack is Õ(2`−2s).

8 Universal Forgery Attacks with Short Queries

We now revisit the universal forgery attack of Peyrin and Wang [19]. In this
attack, the adversary receives a challenge message of length 2t at the beginning of
the game, and interacts with the oracle in order to predict the tag of the challenge.
The attack of [19] has two phases, where in the first phase, the adversary recovers
the internal state of the MAC at some step during the computation on the
challenge. In the second phase, the adversary uses a second-preimage attack on
long messages in order to generate a different message with the same tag as the
challenge.



The main draw back of the attack of Peyrin and Wang (as well as its recent
improvement [8]) is that its first phase uses very long queries to the MAC oracle,
regardless of the length of the challenge. In this section, we use the tools developed
in this paper to devise two universal forgery attacks which use shorter queries
to the MAC oracle. Our first universal forgery attack has a complexity of 2`−t for
t ≤ `/7, using queries to the MAC oracle of length of at most 22t (which is much
smaller than 2`/2 for any t ≤ `/7). Thus, the optimal complexity of this attack
is 26`/7, obtained with a challenge of length at least 2`/7. Our second universal
forgery attack has a complexity of only 2`−t/2. However, it is applicable for any
t ≤ 2`/5, using queries to the MAC oracle of length of at most 2t. Thus, this attack
has an improved optimal complexity of 24`/5, which is obtained with a challenge
of length at least 22`/5.

In order to devise our attacks, we construct different state-recovery algorithms
than the one used in [19], but reuse its second phase (i.e., the second-preimage
attack) in both of the attacks. Thus, in the following, we concentrate of the
state-recovery algorithms, and note that since the complexity of the second phase
of the attack is 2`−t for any value of t, it does not add a significant factor to the
time complexity.

8.1 A universal forgery attack based on the reduction of the
image-set size

Directly matching the 2t states of the challenge message with some states evalu-
ated offline is too expensive. Thus, we first reduce the number of nodes we match
by computing and matching the images of the states under iterations of a fixed
function. After matching the images, we can efficiently match and recover on the
states of the challenge message.

We denote the challenge message as C, and the first κ blocks of C as C|κ.
The details of the first phase of the attack are as follows.

Attack 5: Universal forgery attack based on the reduction of the
image-set size (first phase)
Complexity Õ(2`−t), with t ≤ `/7 (min: 26`/7)

1. (online) Build a collision filter for the last (unknown) state z obtained
during the computation of MAC(C).

2. (online) Query the oracle with 2t messages Mi = C|i ‖ [0]2
2t−i. Denote

the set of (unknown) final states of the chains by Y . Build a diamond
filter for all states in Y .

3. (offline) Compute a structure of chains containing a total of 2`−t points.
Each chain is extended to a maximal length of 22t+1, or until it collides
with a previous chain. Consider the set X of the 22t final states of all
the chains. According to Lemma 2, this set contains (no more than)

about 2`−2t distinct points, as all the points are in the image of f2
2t

.



4. (offline) Match all the points x ∈ X with the 2t points in Y . For each
match between x ∈ X and an online state in Y (obtained using Mi),
restart the chains that merge into x, in order to locate all the points at
a (backward) distance of 22t − i from x. Denoted this set by Cand(x).

5. (offline) Test the candidates: for each x′ ∈ Cand(x), compute the state
obtained by following the last 2t − i blocks of the challenge message,
and match this state with z using the collision filter. When a match is
found, the state obtained after C|i is x′ with high probability.

Ik
2t 22t

2t
C

Online structure Offline structure

22t 22t

{2`−t points}
{2`−2t points}

We efficiently detect a match between the challenge points ( ) and the first part
of the offline structure, by first matching X ( ) and Y ( ).

Analysis. The structure of Step 3 contains 2`−t points, and thus according to
the birthday paradox, it covers one of the 2t points of the challenge with high
probability. In this case, the attack will successfully recover the state of the
covered point with high probability, as we essentially have in the offline set X
almost all 2`−2t images of f2

2t

(including the image of the covered point).

As X contains almost all 2`−2t images of f2
2t

, we expect a match for every
point in Y in Step 3 (a total of 2t matches). In order to calculate the expected size
of Cand(x) in Step 5, we first calculate the expected number of the endpoints of
the chains computed in Step 3 of the attack. As the chains are of length of 22t+1,
we expect that after evaluating the first 2`−4t chains, a constant fraction of the
chains will not collide with any other chain, and thus we have (at least) about
2`−4t endpoints. Since the structure contains a total of 2`−t points, each endpoint
is a root of a tree of average size of (at most) 2`−t−(`−4t) = 23t. This gives about
23t−2t = 2t candidates nodes Cand(x) at a fixed (backwards) distance (note that
each x′ ∈ Cand(x) is extended with a message of length about 2t, according to
the challenge).

Complexity.

Step 1: 2`/2+t Step 2: 22t+t/2+`/2 = 2`/2+5t/2

Step 3: 2`−t Step 4: t · 2`−t

Step 5: 23t



With t ≤ `/7, we have `/2 + 5t/2 ≤ 6`/7 ≤ ` − t; the complexity of the first
phase of the universal forgery attack is Õ(2`−t), and as the second phase has a
similar complexity, this is also the complexity of the full attack.

8.2 A universal forgery attack based on collisions

In this attack, we devise a different algorithm which recovers one of the states
computed during the execution of the challenge message. The main idea here is
to find collisions between chains evaluated online, and directly match them with
collisions obtained offline. This is different from the previous algorithm, which
matched the endpoints of the chains, rather than nodes on which the collisions
occur. Once the collisions are matched, similarly to the previous algorithm, we
obtain a small set of candidate nodes, which we match with the actual challenge
nodes.

Attack 6: Universal forgery attack based on collisions (first phase)

Complexity O(2`−t/2), with t ≤ 2`/5 (min: 24`/5)

1. (online) Query the oracle with 2t messages Mi = C|i ‖ [0]2
t+1−i, and

sort the tags.
2. (online) Execute state-recovery Attack 2 using messages of length
min(2t, 2`/3), and denote by W a message of length 2t whose last
computed state is recovered.a

3. (online) Query the oracle with 2v messages Wj = W ‖ [j]‖02
t−1, sort the

tags, and locate 2c collisions with the tags computed using the messages
Mi. For each collision of tags between Mi and Wj , find the first collision
point using binary search (note that the state of the collision is known,
as the state obtained after processing W is known). Store all the collision
states x̂ij in a sorted list, each one next to its distance dij from C|i.

4. (offline) Compute a structure of chains containing a total of 2`−c points.
Each chain is extended to a maximal length of 2t+1, or until it collides
with a previous chain.

5. (offline) For each offline point in the structure y which collides with an
online collision x̂ij (i.e., y = x̂ij), retrieve candidate points Cand(y) for
the state obtained after processing C|i. This is done by computing the
dij-preimage points of y in the structure (i.e., the points which are at
distance dij backwards from y). Assume that for each y = x̂ij , we have
an average of 2u candidate points, and thus we have a total of at most
2c+u candidate points to test in the set

⋃
ij(Cand(y = x̂ij)). Build a

diamond filter for all the 2c+u candidate points.
6. (online) For each (x̂ij , y), match the state obtained after C|i with all

the corresponding 2u candidate points in Cand(y) using the diamond
filter. If a match is found, then with high probability the state obtained
after processing C|i is equal to the tested candidate.
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We match the known points in X ( ) and Y ( ) in order to detect a match between
the challenge points ( ) and the first part of the offline structure.

a In case t > `/3, we first recover the last computed state of a message of size
2`/3, and then complement it arbitrarily to a length of 2t.

Analysis. In Step 3 of the attack, we find 2c collisions between pairs of chains,
where the prefix of one chain in each pair is some challenge prefix C|i. Thus, the
2c collisions cover 2c such challenge prefixes, and moreover, the offline structure,
computed in Step 4, contains 2`−c points. Thus, according to the birthday paradox,
with high probability, the offline structure covers one of the states obtained after
the computation of a prefix C|i, such that the message Mi collides with some
Wj on a point x̂ij in Step 3. Since the state obtained after the computation
of C|i is covered by the offline structure, then x̂ij is also covered by the offline
structure, and thus the state corresponding to C|i will be matched as a candidate
and recovered in Step 6.

In order to calculate the value of c, note that the online structure, computed
in Step 1, contains 2t chains, each of length at least 2t, and thus another arbitrary
chain of length 2t collides with one of the chains in this structure at the same
offset with probability of about 22t−`. Since the structure computed in Step 3
contains 2v such chains, the expected number of detected collisions between the
structures is 2c = 22t+v−`, i.e., c = 2t+ v − `.

In order to calculate the value of u, we first calculate the expected number of
the endpoints of the chains computed in Step 3 of the attack. As the chains are
of length of 2t+1, after evaluating the first 2`−2t chains, a constant fraction of the
chains will not collide with any other chain, and thus we have (at least) about
2`−2t endpoints. Since the structure contains a total of 2`−c points, each endpoint
is a root of a tree of average size of (at most) 2`−c−(`−2t) = 22t−c. This gives
about 22t−c−t = 2t−c candidates nodes at a fixed depth, i.e., u = t− c = `− t− v.

We note that the last argument we use here is heuristic, as we assume that
the average number of preimages at a certain distance for the specific collision
points y is similar to the average for arbitrary points. However, steps 4 and 5 are
not bottlenecks of the attack (as described in the complexity analysis below), and
thus even if their complexity is somewhat higher, it will not effect the complexity



of the full attack. Furthermore, we can perform a more complicated matching
phase, in which we iteratively build filters for the offline structure at depths
about 2t−1, 2t−2, . . ., and match them with the online structure. This guarantees
that the expected complexity of the attack is as claimed below.

Step 1: 22t Step 2: max(2`−t, 22`/3)

Step 3: 2v+t Step 4: 2`−c = 22`−2t−v

Step 5: (c+ u) · 2(c+u+l)/2 = t · 2`/2+t/2 Step 6: 2c+u+t = 22t

We balance steps 3 and 4 by setting v+ t = 2`− 2t− v, or v = `− 3t/2. This
gives a total complexity of O(2`−t/2) for any t ≤ 2`/5.

9 Conclusions and Open Problems

In this paper, we provided improved analysis of HMAC and similar hash-based
MAC constructions. More specifically, we devised the first state-recovery attacks
on HMAC built using hash functions based on the HAIFA mode, and provided
improved trade-offs between the message length and the complexity of state-
recovery attacks for HMAC built using Merkle-Damg̊ard hash functions. Finally,
we presented the first universal forgery attacks which can be applied with short
queries to the MAC oracle. Since it is widely deployed, our attacks have many
applications to HMAC constructions used in practice, built using GOST, the SHA
family, and other concrete hash functions.

Our results raise several interesting future work items such as devising efficient
universal forgery attacks on HMAC built using hash functions based on the HAIFA
mode, or proving that this mode provides resistance against such attacks. At the
same time, there is also a wide gap between the complexity of the best known
attacks and the security proofs for HMAC built using Merkle-Damg̊ard hash
functions. For example, the best universal forgery attacks on these MACs are still
significantly slower than the birthday bound, which is the security guaranteed by
the proofs.
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A Extended Analysis of Collision and Cycle Search
Algorithms

In this section, we prove the lemmas of Section A, in addition to further results.
The collision probabilities in the lemmas are estimated up to a constant factor
(using the Θ notations), but in order to upper bound the running time of our
algorithms, we only need to lower bound these collision probabilities. Thus, for
the sake of simplicity, we only prove lower bounds on collision probabilities
(formulated using the Θ notation) in this paper, and note that the matching
upper bounds can be proven by standard probabilistic arguments.
Lemma 1 (restated). Let s ≤ `/2 be a non-negative integer. Let f1, f2, . . . , f2s

be a sequence of random functions over the set of 2` elements, and gi , fi ◦ . . . ◦
f2 ◦ f1 (with the fi being either all identical, or independently distributed). Then,
the images of two arbitrary inputs to g2s collide with probability of about 2s−`,
i.e. Prx,y [g2s(x) = g2s(y)] = Θ(2s−`).

Proof. Let x and y be two arbitrary points, xi = gi(x) and yi = gi(y) (or
equivalently x0 = x, xi = fi(xi−1) and y0 = y, yi = fi(yi−1)). As fi is a random
function, at each step of the iteration, there is a probability of 2−` that the
two chains collide, given that they have not collides before (otherwise, they
collide with probability 1). This proves the lower bound Pr[g2s(x) = g2s(y)] ≤
1− (1− 2−`)2

s

= Ω(2s−`) ut

Lemma 2 (restated). Let f1, f2, . . . , f2s be a sequence of random functions,
then the image of the function g2s , f2s ◦ . . . ◦ f2 ◦ f1 contains at most Õ(2`−s)
points.

Proof. Let α ≥ 1 be a parameter, and consider α · (2`−s) inputs to g2s (denoted
by xj for 1 ≤ j ≤ α · (2`−s)) that generate distinct images. Let x be a different
input to g2s , then for each j, Pr(g2s(x) = g2s(xj)) ≈ 2s−`. Thus, for α = 1, g2s(x)
collides with one of the (2`−s images with constant probability, and for a general
α > 1, this collision probability is about 1− e−α. For α = `, the probability that
g2s(x) is a new distinct image become exponentially small in `, and this allows
us to take a union bound on all the inputs x (whose number is about 2`), and
prove the lemma.

Lemma 4 (restated). Let x̂ and ŷ be two arbitrary same-offset collisions
found, respectively, at offsets i and j by a collision search algorithm using chains
of fixed length 2s, with independent `-bit functions fi, such that s < `/2.
Then Pr [(x̂, i) = (ŷ, j)] = Θ(2s−`). Furthermore, assuming that i = j, we have
Pr [x̂ = ŷ] = Θ(22s−`).

Proof. The proof follows essentially the same line of arguments as the proof
of Lemma 3. We assume that 0.25 · 2s ≤ i ≤ 0.75 · 2s (which occurs with
probability 1/2), and fix the collision x̂. We denote by A the event that chains
starting from arbitrary points (y0, y

′
0) collide on x̂ at offset i, and by B the

event that the chains starting from (y0, y
′
0) collide at an arbitrary offset j.



We have Pr[B] = Θ(2s−`) (see Lemma 1) and Pr[A] = Ω(22(s−`)), and thus
Pr[A|B] = Pr[A

⋂
B]/Pr[B] = Pr[A]/Pr[B] = Ω(2s−`), which is the claimed

lower bound.

When assuming that i = j, we need to change the definition of event B
such that the chains starting from (y0, y

′
0) collide at the fixed offset i. This gives

Pr[B] = Θ(2−`) and Pr[A|B] = Pr[A
⋂
B]/Pr[B] = Pr[A]/Pr[B] = Ω(22s−`),

which is the claimed lower bound. ut

Definition 1. A u-deep collision is a node with two distinct preimages, both of
them being u-th images.

Lemma 5. A random mapping f has at most Õ(2`/u2) u-deep collisions.

Proof. Consider a structure of α · 2`/u2 chains, starting from α · 2`/u2 terminal
nodes (i.e., nodes with no preimages) for α ≥ 1, and generating α · 2`/u2 u-deep
collisions. This structure contains at least α · 2`/u distinct points. Consider
another chain, starting from a different terminal node that is not contained in the
initial structure. This chain will collide with the structure of α ·2`/u points within
the first u− 1 iterations, with probability of about 1− e−α, and in this case, it
will not generate an additional u-deep collision. We choose α = ` and consider
all the chains starting from all the terminal nodes which are not contained in the
initial structure. Taking a union bound on all these chains, we conclude that with
high probability, none of the chains will generate an additional u-deep collision,
implying that f has at most ` · 2`/u2 u-deep collisions.

Cycle Search. Cycles are created when a chain collides with itself while iterating
a fixed function f . In order to search offline for a cycle of lengthO(2s) (for s ≤ `/2),
we evaluate 2`−2s chains starting from arbitrary points, and extended to length
2s. The probability that a chain collides with itself to form a cycle is equal (up
to a constant factor) to the probability that its first half (of length 2s−1) collides
with its second half, which occurs with probability Θ(22s−`). Thus, we expect to
find a cycle within the evaluated 2`−2s chains.

Lemma 6. Let x̂ be the entry point of an arbitrary cycle found by the cycle
search algorithm for the fixed `-bit function f , using chains of fixed length 2s

such that s ≤ `/2. Let y0 be an arbitrary point, and define the chain yi+1 = f(yi)
for i ∈ {0, 1, . . . , 2s − 1}. Then Pr [∃i|x̂ = yi] = Θ(22s−`).

Proof. We denote the starting points of the chain which collides (cycles) on
x̂ by x0, and the actual corresponding colliding points of the chain by (xi, xj)
(assuming i < j), and thus f(xi) = f(xj) = x̂. In the following, we assume that
0.25 · 2s ≤ i ≤ 0.75 · 2s, which occurs with constant probability. In order for
the event ∃i|x̂ = yi to occur, it is sufficient that y0, y1, . . . , y2s−i collides with
x0, x1, . . . , xi. This occurs with probability Ω(22s−`) (assuming 0.25 · 2s ≤ i ≤
0.75 · 2s, the two chains are of length Θ(2s)). ut



B State-Recovery Based on Cycles

The original cycle-based state-recovery attack of [15] exploits the main cycle
of approximate length 2`/2 in the graph of the random mapping, in order to
construct two colliding messages of the same length (thus having equal tags,
which can be detected at the output). Our attack uses the same idea with shorted
messages, and we refer the reader to [15] for a detailed description of the original
attack.

Attack 7: Cycle-based trade-off for HMAC with Merkle-Damg̊ard

Complexity O(22l−3s), with s ≤ `/2 (min: 2`/2)

1. (offline) Search for a cycle in the functional graph of h[0], using the
algorithm of Section 3.1 with chains of length 2s. Denote the length of
the cycle by L, and its entry point by x̂.

2. (online) For different values of the message block [b], query the MAC

oracle with two messages M = [b] ‖ [0]2
s ‖ [1] ‖ [0]2

s+L and M ′ =
[b]‖ [0]2

s+L ‖ [1]‖ [0]2
s

(both of length 1+2s+1+2s+L = 2+2s+1 +L),
until MAC(M) = MAC(M ′).

3. (online) Find the first point on which M and M ′ collide using binary
search (i.e., detect the online collision, as described in Section 3.1). With
high probability, the online collision state is equal to x̂.

Complexity analysis. First, both M,M ′ are of the same length 2+2s+1 +L <
2s+2, and thus we can detect a collision in their final states by comparing the
output tags in Step 2. In order for M,M ′ to collide on the final state, it is
sufficient that two conditions occur simultaneously: first, the states obtained
after evaluating the prefixes [b] ‖ [0]2

s

and [b] ‖ [0]2
s+L, collide. This occurs if one

of the states computed during the evaluation of [b] ‖ [0]2
s

collides with x̂ (and
thus enters the cycle of length L), which has probability θ(22s−`) according to
Lemma 6. Second, the states obtained after evaluating the suffixes [1] ‖ [0]2

s+L

and [1] ‖ [0]2
s

, collide. Assuming that the states obtained after evaluating the
prefixes collide, similarly to the previous case, this occurs if one of the states
computed during the evaluation of [1] ‖ [0]2

s

collides with x̂. Again, this event
occurs with probability θ(22s−`) according to Lemma 6.

Thus, the success probability of Step 2 is Ω(22(2s−`)), and we need to repeat it
for O(22(`−2s)) different values of [b] for the attack to succeed with high probability.
Consequently, the time complexity of Step 2 is O(22(`−2s)+s) = O(22`−3s). The
time complexity of all the steps is summarized below.

Step 1: 2`−2s+s = 2`−s Step 2: 22·(`−2s)+s = 22`−3s Step 3: 2s · 2`−2s · s = 2`−s · s

Since s ≤ `/2, the complexity of the attack is O(22`−3s).



C Key recovery attack on HMAC with GOST R 34.11-2012

In [15], the state-recovery attack on HMAC with a Merkle-Damg̊ard hash function
(with complexity 2`/2) is extended into a key-recovery attack, in case the hash
function uses an internal checksum like the GOST R 34.11-94 hash function (with
complexity 23/4·`). In this section, we show that a similar attack can be applied
to a hash function based on HAIFA with an internal checksum. Namely, the
state-recovery attack (with complexity 24/5·`) can be extended into a key-recovery
attack (with complexity 24/5·`).

In particular, this attack is applicable to the recent proposal GOST R 34.11-
2012, and gives a key-recovery attack with complexity 2410 for the 512-bit version.
This result shows that HMAC-GOST R 34.11-2012 is significantly weaker than
HMAC-SHA-3-512.

C.1 Description of the attack

The attack uses the same framework as [15], exploiting the structure of hash
functions with a checksum. We target the finalization function in the first hash
function call: the state value can be recovered using the previous state-recovery
attacks, and exploiting the fact that the checksum value is key dependant, but can
be controlled by injecting differences in the message: σ = K ⊕ opad⊕ Sum⊕(M).
This allows for attacks which are somewhat similar to related-key attacks.

More precisely, we first generate a large set of messages of length L, leading
to the same state x?, but with different checksums σ. Then, we consider collisions
in the function σ 7→ g(x?, L, σ), which can be detected using online calls to the
MAC oracle. At the same time, we can also generate collisions offline since x?
and L are known. Moreover, if we locate two collisions with the same difference
in the σ input, then there is a high probability that the actual input pairs are
the same (on average, we expect a single collision with a fixed difference). If we
find an online collision and an offline collision with the same difference, we can
therefore recover the value of K using σ = K ⊕ opad⊕ Sum⊕(M).

C.2 Detailed attack process

The first step of the attack is to use the state-recovery attack of Section 7.2. In
order to deal with the checksum, we modify the attack so that we only look for
collisions between pairs of messages with same checksum:

• In step 1, we use Mi = [i] ‖ [i] ‖ C
• In step 2, when building the diamond structure, we extend the messages by
m ‖m. We do the same when building a collision pair for the end point of
the diamond.

• For the offline steps, we ignore the checksum, and only look for collisions in
the iterated state.



Attack 8: Key recovery attack against HMAC with a GOST-like
hash function
Complexity Õ(24`/5)

0. Use the Attack 4 to recover the state x1 after some message M1, with
|M1| = `/10.

1. (offline) Starting from state x1, use Joux’s multicollision attack [11] to
generate a set of 27`/10 messages that all collide on the internal state
before the checksum block, but with different checksums. Denote the
final state as x?, and the length of the messages as L.

2. (online) Query the set of messages from Step 1 to HMAC and collect
collisions (22`/5 collisions are expected). For each collision (M,M ′),
compute the checksum difference ∆M = Sum⊕(M) ⊕ Sum⊕(M ′), and
store (∆M, Sum⊕(M)).

3. (offline) Choose a set of 24`/5 one-block random checksums σ, compute
g(x?, L, σ) and collect collisions (23`/5 collisions are expected). For each
collision (σ, σ′), compute the difference σ ⊕ σ′ and compare it with the
stored ∆M from Step 3. If a match is found, consider Sum⊕(M) ⊕ σ
and Sum⊕(M)⊕ σ′ as potential key candidates, and verify them using a
known tag.

Analysis. Since we have 22`/5 collisions in Step 2 and collisions 23`/5 in step 3,
there is a high probability to find a match and recover the key.

Complexity. The total complexity is Õ(24`/5):

Step 0: Õ(24`/5) Step 1: ` · 2`/2

Step 2: 2`/10+7`/10 = 24`/5 Step 3: 24`/5

Comparison with previous works. In [15], the attack uses a specific property
of the finalization of GOST R 34.11-94: the message length is only used as a padding
block, processed with the message input of the compression function. As a result,
it is possible to build messages including a padding block, and to deduce the
state of a short message from the state of a long message.

In general, the message length is used through a different function than
the message blocks (this is the case in GOST R 34.11-2012), and we cannot
recover the state of a short message as easily. In particular, the complexity of the
state-recovery attack for short messages is an important factor: an attack with
complexity 2`−s as in Section 5 (or in [15], for the Merkle-Damg̊ard construction)
can only reach 25`/6 for the key recovery, while the attacks with complexity 2`−2s

(described in Section 7) allow to reach a complexity of 24`/5.
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