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Abstract. Linear algebra plays an important role in computer science,
especially in cryptography.Numerous cryptog-raphic protocols, scientific
computations, and numerical computations are based on linear algebra.
Many linear algebra tasks can be reduced to some core problems, such
as matrix multiplication, determinant of matrix and the characteristic
polynomial of matrix. However, it is difficult to execute these tasks
independently for client whose computation abilities are weaker than
polynomial-time computational ability. Cloud Computing is a novel eco-
nomical paradigm which provides powerful computational resources that
enables resources-constrained client to outsource their mass computing
tasks to the cloud. In this paper, we propose a new verifiable and secure
outsourcing protocol for the problem of computing the characteristic
polynomial and eigenvalues of matrix. These protocols are not only effi-
cient and secure, but also unnecessary for any cryptographic assumption.
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1 Introduction

1.1 Cloud computing

Cloud computing provides an appropriate on-demand network access to a shared
pool of configurable computing resources which could be rapidly deployed with
much more great efficiency and with minimal overhead to management. It is
becoming an important topic in both of industry and academic communities. A
user can access cloud services as a utility service and use them almost instantly.
The rise of cloud computing also raises several potential risks. The most serious
concerns are the possibility of lack of confidentiality, integrity and authentica-
tion among the cloud users and service providers. The key intent of this research
work is to investigate the existing security schemes and to ensure data confi-
dentiality, integrity and authentication. One of the main challenges is how to
achieve a pair of apparently conflicting requirements simultaneously: efficiency



in communication, storage and computation on both client and server side, and
security against outside and internal attackers.

Two main services provided by cloud servers are storage and computation in
cloud computing. Outsourced computation is used when client needs to execute
a task, but does not have the appropriate computation power to perform it.
The task is then outsourced to the external server, which has the sufficient
computing power. Generally, an outsourced computation protocol is correct if
the final outputs for client are valid. An outsourced computation protocol is
secure if it is done without revealing to the external server either the actual data
or the actual answer to the computations. An outsourced computation protocol is
verifiable if the final outputs received from cloud server can be verified by client.
An outsourced computation protocol is efficient if the computational work done
locally by client is less than that of solving the original problem on his own.

1.2 Outsourced computation model

Our outsourcing protocols involve two different entities: cloud client(s) and cloud
server(s). Client has many matrix calculations tasks, which needs expensive com-
putation and exceeds his computational abilities. Hence all of calculations are
outsourced to cloud server, which has significant computation resources to per-
form all matrix calculations.

To achieve input/output privacy, the key idea is that some local preprocessing
should be done on the original problem and/or data before sending it to the cloud
server, and also the client needs to do some local post-processing on the answer
received from the cloud server to recover the true answer. More specifically, in our
model, instead of directly sending original problem ϕ , we use some disguising
techniques to transform original problem ϕ into a random problem φ , then
outsource problem φ to a cloud server. The server then conducts computation to
get the answer of φ and provides a proof that the evaluation has been carried out
correctly, but it cannot derive anything of the sensitive information contained
in ϕ from the disguised problem φ . After receiving the solution of φ from the
server, the client should be able to verify the validity of the answer via the
appended proof. If it’s valid, he recovers the desired answer for the original
problem.

The dishonest behaviors of cloud server can be divided into semi-honest and
malicious in our model. A semi-honest cloud server corrupted by an adversary
is one who follows the protocol with the exception that it keeps recodes of all
its intermediate results, he wishes to learn more sensitive information than they
should obtain from the running of the protocol. A malicious cloud server is one
who can deviate from the protocol description, they also can tamper with the
correct data to make the honest client calculate the wrong output, even suspend
(or abort) the execution in any desired point in time. In this paper, we assume
that cloud server is malicious.

Outsourcing protocols for some linear algebra problems with the following
properties are to be designed:



– Correctness Any cloud server that faithfully follows the mechanism must
produce an valid output.

– Soundness No cloud server can generate an incorrect output that can be
verified successfully by client with non-negligible probability.

– Input/output privacy No sensitive information from client’s private data
can be derived by cloud server during performing the computation.

– Verifiability The protocol should allow client to verify the correctness of
results received from an honest server with non-negligible probability, and
also to detect the wrong results received from a dishonest server with non-
negligible probability.

– Efficiency The local computations done by client should be substantially
less than that of solving the original problem on his own.

1.3 Contributions

In this paper, we use disguising technology as a tool to construct efficiently and
verifiably secure outsourced protocol for the computation of the characteristic
polynomial of matrix. Our protocol achieve several desired features, such as pri-
vacy, verifiability and efficiecy. And no any cryptographic assumption is needed
in this protocol.

Moreover, this is the first time a verifiable and secure outsourcing protocol for
computing the characteristic polynomial and eigenvalues of matrix is proposed.

2 Related Work

In 2009, Gentry firstly constructed fully homomorphic encryption scheme based
on ideal lattice theory, which is a significant work. Efficiently and verifiably se-
cure outsourcing computation can be constructed for any function if efficiently
fully homomorphic encryption scheme exists. However, it is impossible to con-
struct efficiently fully homomorphic encryption scheme in recent years. Some
improved fully homomorphic encryption scheme were proposed [03-09], which
are far away from practically fully homomorphic encryption scheme.

Atallah[10] proposed verifiably outsourcing computation protocol for expen-
sive linear algebraic computation by using a homomorphic semantically secure
encryption system. However, their design is built on the assumption of two non-
colluding servers and thus vulnerable to colluding attacks. In their protocols, the
computation cost for client is O(n2) , where n is the size of the input matrix.
Then, based on Shamir’s secret sharing scheme, Atallahet al. [11]constructed
a verifiably outsourcing computation protocol for matrix multiplication, which
only needs one un-trusted cloud server. In their protocols, the computation cost
for client is O(t2n2), where n and t are the size of matrix and the threshold in
Shamir’s secret sharing scheme respectively. Based on Yao’s Garbled Circuits
and fully homomorphic encryption scheme, verifiably non-interactive outsourc-
ing computation for any function was proposed in [12], however, client needs to



do an expensive preprocessing stage, and his computation complexity is related
to the size of the Boolean circuit representing function .

To construct outsourcing computation protocol for solving linear equationAx =
b , C.Wang et al.[13]realized it by using iteration from Jacobi method and ad-
ditive homomorphic encryption with semantic security. In their protocols, the
computation complexity for client is O(n) , however, their solutions are approx-
imate and the input matrix A is constrained. In 2011, P. Mohassel[14] designed
non-interactive and secure protocols for delegating matrix multiplication, based
on a number of encryption schemes with limited homomorphic properties where
the client only needs to perform O(n2) work. But their verification algorithm
works correctly with an all but negligible probability in k , the probability is
over the random coins of the verification algorithm (see section4.2 in[14]).

In [15], a new protocol for publicly verifiable secure outsourcing of matrix
multiplication was presented. Their scheme was in the amortized model [12], in
which the client invests a one-time expensive computation phase when storing a
large matrix with the server, which was used to make the verification of matrix
multiplication fast. However, their design was built upon some cryptographic
assumptions, such as the co-CDH assumption and the Decision Linear assump-
tion. And their result also relied on the use of pseudo-random functions with
closed-form efficiency and bilinear maps.

In 2007, Eike Kiltz et al.[16]presented secure two-party protocols for various
core problems in linear algebra, such as computing the determinant and minimal
polynomial of a matrix. Their protocols were based on an algorithm by Wiede-
mann for ”black-box linear algebra” [17] which was efficient when applied to
sparse matrices. Their techniques exploited certain nice mathematical properties
of linearly recurrent sequences and their relation to the minimal and characteris-
tic polynomial of the input matrix. Nevertheless, their constructions were secure
under the assumption of the existence of a homomorphic public-key encryption
scheme and a secure instantiation of Yao’s garbled circuit protocol. And their
protocol for computing determinant and the minimal polynomial of an encrypted
matrix needs O(n2 log n log |F |) communication complexity and O(log n) rounds
respectively.

Another important way to construct secure outsourcing protocols is to use
mathematical disguise (or blinding) methods. In 2001, Atallahet al.[18]investigated
the outsourcing of numerical and scientific computations. Their schemes applied
disguise techniques to science computational problems, which guaranteed the
data security and privacy. But they did not handle the important case of ver-
ification of validity of final result. In 2005, Hohenberger S, Lysyanskaya A[19]
presented practical outsource-secure scheme for modular exponentiation where
the honest party may use two exponentiation programs. The exponentiation pro-
grams were un-trusted and cannot communicate with each other, after deciding
on an initial strategy. In 2012, several new methods of secure outsourcing of nu-
merical and scientific computations were proposed by Yerzhan N. Seitkulov[21].
They had presented different methods of finding approximate solutions to some
equations solved by an external computer. Most of their methods were verifiable.



In2013, verifiable and secure outsourcing protocols for matrix multiplication
and matrix inversion have been proposed in [22]. These protocols used disguising
matrix to tackle privacy-preserving problem.

3 Review

3.1 Mathematical notation

Without loss of generality, we will use capital letter, such as A, to denote a
matrix, and the notation aij represents the element at the ith row and jth column
of the matrix A. The notation Fq denotes a finite field which has q elements,
and Fn×nq denotes the set of n × n matrices over Fq. In what follows, we also
use δx,y to denote the Kronecker delta function that equals 1 if x = y and 0
if x 6= y.

Moreover, we use E(i, j(k)) to denote an elementary matrix which differs
from the identity matrix I by one single elementary row operation. The elemen-
tary matrix E(i, j(k)) is the identity matrix but with a randomly chose k ∈
Fq in the (i, j) position. We note immediately that left multiplication (pre-
multiplication) by E(i, j(k)) represents elementary row operations. So E(i, j(k))·
A is the matrix produced from A by adding k times row j to row i .

3.2 Secure outsourcing protocol MP

In[22], a verifiable and secure outsourcing protocol MP has been proposed for
matrix multiplication, which will be used as a building block in later section.

Let M1,M2 ∈ Fn×nq be two matrices, client wants to obtain M1M2.Cloud
server is not allowed to learn any sensitive information such as the input matrices
or the actual output,etc. We briefly review this protocol which proceeds as follow:

Step 1 Client generates a secret value for verification. He chooses two numbers 1 ≤
i, j ≤ n randomly and picks two vectors (a

i1
, ..., a

in
)and(b1j , ..., bnj)T which

corresponding to the ith row of M1 and the jth column of M2 respectively,
then computes the secret value c =

∑n
t=1 aitbtj .

Step 2 Client proceeds with the following sub-steps:
(a) Generates six private random permutations π1, ..., π6,where πi ∈ {1, ..., n},

i = 1, 2, ..., 6.
(b) Chooses 6n non-zero numbers {a1, ..., an},{b1, ..., bn}, {c1, ..., cn},
{d1, ..., dn},{e1, ..., en},{f1, ..., fn}from Fq randomly.

(c) Generates six matrices P1, ..., P6 where P1(i, j) = aiδπ1(i),j ,P2(i, j) =
biδπ2(i),j , P3(i, j) = ciδπ3(i),j , P4(i, j) = diδπ4(i),j , P5(i, j) = eiδπ5(i),j ,
P6(i, j) = fiδπ6(i),j .These matrices are readily invertible,
e.g. P−1

1 (i, j) = a−1

j δπ−1
1 (i),j .

Step 3 Client computes 4 matrices

X1 = P1M1P
−1

2 , Y1 = P2M2P
−1

3 , X2 = P4M1P
−1

5 , Y2 = P5M2P
−1

6 .

and then sends to cloud server two pairs (X1, Y1) and (X2, Y2).



Step 4 The sever computes Z1 = X1Y1,Z2 = X2Y2 and return the computed out-
put (Z1, Z2) to client.

Step 5 Client recover the result by computing T1 = P−1

1 Z1P3andT2 = P−1

4 Z2P6.
Step 6 After recovering, client needs to verify the result T1 and T2. That is, if T1 =

T2 and Tk(i, j) = c (k = 1, 2) hold simultaneously, which means the server
is honest, client obtain the correct output P−1

1 Z1P3 which actually equals
to M1M2 , otherwise, client refuses the received outputs and terminates the
protocol.

Note: The server gains no information about the input/output matrix during
the execution of the protocol. Moreover, because the matrix Pt(t = 1, ..., 6) is
special, which has only n elements rather than the matrix computed by the
server which has n2 elements, the computation time in client side is less than
the computing time in the cloud side. According to [22], the protocol MP has
been proved to be an efficient and verifiable outsource-secure implementation of
matrix multiplication in the single cloud server model.

4 Finding the Characteristic Polynomial and Eigenvalues
of Matrix

In this section, we present a secure outsourcing protocol for the characteristic
polynomial of a matrix and its eigenvalues. Because the probability of the real
random matrix being nonsingular is 1(see Corollary 1.1 in[23]), so we assume
that all eigenvalues of a matrix are nonzero.

Problem ME: let A ∈ Fn×nq be a private matrix, client needs to calculate
the characteristic polynomial of A and its eigenvalues with the help of an un-
trusted cloud server without revealing any private information,such as the input
matrix or the actual output,etc.

Protocol ME: The outsourcing protocol ME proceeded as follows:

Step 1 Client chooses a secret random number r ∈ Fq and computes A1 = rA .
Step 2 For each i ∈ {i, ..., n} ,client chooses a random number 1 ≤ j ≤ n, j 6= i, and

then computes a matrix B(λ) = L(A1−λI) where L =
∏n
i=1E(i, j(1)) .Ob-

viously, L is readily invertible.
Step 3 Client chooses a secret random number 1 ≤ i ≤ n, then divides each el-

ement bij(λ) in the ith row (or the ith column) of B(λ) to m(1 < m <
n− 2) random pieces. So, client has |B(λ)| = |B1(λ)|+ · · ·+ |Bm(λ)| .

Step 4 Client picks two secret random numbers 1 ≤ i, j ≤ n, i 6= j, then involves
the protocol MP to obtain Bi(λ) ·Bj(λ) , which denoted by Bm+1(λ) .

Step 5 Client hides matrices B(λ) and Bi(λ)(i = 1, ...m + 1) by the following sub-
steps:

(a) Generates matrices P1, ..., P2m+4, where Pk is a n×n matrix for all k =
1, ...2m + 4, Pk(i, j) = aki δπk(i),j , πk ∈ {1, ..., n} are random permuta-
tions, and {ak

1 , ..., a
k
n} are random numbers over Fq.

Let P = {P1, ..., P2m+4}.



(b) For each 0 ≤ s ≤ m+1, client picks two matrices Pl, Pr ∈ P from P ,let Pl =
P sl , Pr = P sr and B0(λ) = B(λ) ,then computes matrices Cs(λ) =
P sl Bs(λ)P sr . Note that for eachBs(λ) , the disguising matrix set {P sl , P sr } is
different from each other.

(c) Client sends C0(λ), ..., Cm+1(λ) to cloud server. Note that the sending
order of these matrices |Cs(λ)| is random.

Step 6 The server computes |C0(λ)|, ..., |Cm+1(λ)| and solves |Cs(λ)| = 0 for each 0 ≤
s ≤ m+ 1. Let λs = (λs1, ..., λ

s
n) be the root vector of |Cs(λ)| = 0 . Then the

server return m + 2 two-tuples (|Cs(λ)|, λs) to client. We require that the
server’s outputs should according to the sending order.

Step 7 After receiving the result from cloud server, client checks the following three
equalities:

|C0(λ)|
|P 0
l P

0
r |

=

m∑
s=1

|Cs(λ)|
|P sl P sr |

(1)

|Cm+1(λ)|
|Pm+1
l Pm+1

r |
=
|Ci(λ)|
|P il P ir |

× |Cj(λ)|
|P jl P

j
r |

(2)

n∏
j=1

(λ− λ0j ) = |C0(λ)| (3)

If the above three equalities hold simultaneously, client gets |A1 − λE| =
|B(λ)| from |C0(λ)| . Otherwise, client refuses all answers and terminates
the protocol.

Step 8 Let gB(λ) = |B(λ)| , client computes the characteristic polynomial fA(λ) =
1
rn gB(rλ) , and the corresponding eigenvalues λ∗j = 1

rλ
0
j (j = 1, ..., n) .

Theorem 1. In the single cloud server model, protocol ME is a verifiable outsource-
secure computation of the characteristic polynomial of a matrix.

Proof. – Correctness: The correctness property is straight-forward. Obvi-
ously, the cloud server’s output can be accepted successfully by client if it is
honest.

– Soundness: Cloud server’s dishonest behavior is to return some randomly
chosen matrices instead of C0(λ), ..., Cm+1(λ) , and/or return another wrong
root vector instead of the right one. However, it is infeasible for the server to
satisfy the three equalities in step7 simultaneously. The three equalities will
be simultaneously satisfied with probability at most ( 1

m+2 )( 1
m+1 )( 1

C2
m

)( 1
qm ) .

That is, any incorrect output generated by cloud server can be detected
successfully by client with non-negligible probability.

– Input/output privacy: The outsourcing protocol ME does not disclose
the input matrix and the real result.
First of all, client conducts a pre-disguising in step1 and step2, so the real
eigenvalues and all the elements of the input matrix A (including the zero el-
ements) are effectually hidden. Second, the second-round disguising has been
done in step5. If an attacker wants to deriver any Bs(λ) from Cs(λ) , he has to



guess two permutations (from the (n!)2 possible such choices) and 2n random
numbers before he can determine a Bs(λ) . That is, for each permutation,
the probability is 1

n! , and for each random number, the probability is 1
q , so

the total probability for the attacker to obtain a correct Bs(λ) is ( 1
n! )

2( 1
qn )2 ,

which is negligible.
– Verifiability: Assume the server is corrupted by a PPT adversary, who

wants to cheat client without being caught. He wants to use some wrong
data to make the three equalities hold simultaneously. However, he has to
find out the correct |C0(λ)|, |Ci(λ)|, |Cj(λ)| and |Cm+1(λ)|
from m+2 determinants |C0(λ)|, ..., |Cm+1(λ)| and m numbers αs ∈ Fq (s =
1, ...,m) to make equality(1)and(2) hold simultaneously. Hence, the chance of
the server successfully pass equality(1)and(2)is at most ( 1

m+2 )( 1
m+1 )( 1

C2
m

)( 1
qm ) .

Moreover, if the attacker returns to client a randomly chosen vector instead
of the right root vector, it is infeasible for him to make equality(5)hold for the
reason that the probability of |C0(λ)| found from |C0(λ)|, ..., |Cm+1(λ)| is 1

m+2 .
Therefore, cloud server’s dishonest behavior can be caught by client with
non-negligible probability.

Theorem 2. In the single cloud server model, the protocol ME is efficient.

Proof. The protocol ME achieves not only the privacy but also the efficiency. The
disguise conducted in step1 requires O(n2) local computation, and in step2 incurs
close-to-zero additional cost on client side. And disguising matricesB(λ) andBi(λ)
(i = 1, ...,m + 1) in step5 requires O((m + 2)n2) local computation, which
could be small if we choose m (1 < m < n − 2) properly. In the result ver-
ification phase(i.e. step7), client also needs O(n2) local computation to verify
equality

∏n
j=1(λ − λ0j ) = |C0(λ)|. In addition, protocol ME involves the se-

cure outsourcing protocol MP to obtain Bm+1(λ) which requires O(n2) local
computation[22]. Therefore, the protocol ME is efficient.

5 Conclusion

In this paper, we present an outsourcing protocol for computing the characteris-
tic polynomial and eigenvalues of matrix.This protocol satisfy privacy,verifiability,
efficiency and validity.
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