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Abstract. SIMON is a family of lightweight block ciphers which are
designed by the U.S National Security Agency in 2013. It has total-
ly 10 versions corresponding to different block size 2n and key length
lk, named as SIMON2n/lk. In this paper, we present a new differential
attack by considering the sufficient bit conditions of the previous dif-
ferential paths. Based on the bit conditions, we successfully propose a
new type of dynamic key-guessing technique which greatly reduces the
key space guessed. Our attacks work on the reduced SIMON of all 10
suggested versions, which improve the best previous results by 2 to 4
rounds. For verification, we implemented a practical attack on 19-round
SIMON32 in a PC, and the experimental data confirm the correctness
of the attack, which also fit the theoretical complexity and success rate
very well. It is remarked that, our cryptanalysis only provides a more
accurate security evaluation, and it does not mean the security problem
of the whole SIMON family.

Keywords: SIMON, lightweight block cipher, bit condition, differential
attack, dynamic key-guessing

1 Introduction

Today, lightweight block ciphers for resource-constrained applications such as
RFID tags and sensor networks have received much attention. During the last
decade, many lightweight ciphers have been proposed, such as PRESENT[7],
LED[11], PRINCE[8], KANTAN[9] and CLEFIA[19] etc.

In 2013, NSA published the specifications of two lightweight block cipher
families SIMON and SPECK[3] which can perform well both in hardware and
software. Especially, compared with the other lightweight block cipher primitives,
SIMON and SPECK perform competitively in hardware and software platforms
respectively.

In this paper, we only focus on the differential attacks on reduced versions
of SIMON family. Differential attack [5] was firstly introduced by Biham and
Shamir which becomes a powerful tool in cryptanalysis of block ciphers to-
day. Differential cryptanalysis aims to analyze how particular XOR differences
in plaintext pairs affect the XOR differences of the resultant ciphertext pairs.
In the past 25 years, it has been developed into many variants used to an-
alyze various block cipher primitives[16,15,14,4,23]. Another type of differen-
tial attack is modular differential attack which is based on modular differences



instead of XOR differences, and it is widely used to attack or evaluate hash
functions[24,22,10,21,18,17]. The core of modular differential attack can be re-
garded as three steps: Firstly the adversary cancels the unwanted avalanche
arisen from a given input difference by various complex bit-carry control tech-
niques and finds a specifical optimized differential path. Then he determines a
set of sufficient bit conditions to obtain the specific differential path. Finally the
adversary fulfills various techniques including message modifications to guaran-
tee more bit conditions hold, and this improves the success rate of the attack.
The basic idea of our attack is to merge two types of differential attacks. Specif-
ically, we get the sufficient bit conditions using similar techniques as that of
the modular differential attack, and then apply some new techniques especially
dynamic key-guessing technique to ensure more bit conditions are satisfied. In
addition, cryptanalysis based on bit conditions are also used in condition differ-
ential cryptanalysis which was introduced by Knellwolf et al. in [13] to analyze
the stream cipher.

Related Works Since the SIMON family was announced, it has attracted a
lot of attention of the cryptographers. Before previewing the previous works on
SIMON family, we briefly give some explanations about the versions of SIMON.
SIMON2n/lk denotes a SIMON version with block size 2n and key length lk.
SIMON2n stands for the SIMON versions with block size 2n. For example, SI-
MON48 has two versions SIMON48/72 and SIMON48/96 corresponding to key
length 72 and 96 respectively. Alkhzaimi and Lauridsen[2] presented the first
security analysis of all the versions. They gave differential attacks on 16-round
SIMON32, 18-round SIMON48, 24-round SIMON64, 29-round SIMON96 and 40-
round SIMON128, as well as impossible differential attacks on 14, 15, 16, 19, and
22 rounds of the corresponding versions of SIMON. At FSE 2014, Biryukov and
Velichkov [6] found new differentials up to 13, 15 and 21 rounds for SIMON32,
SIMON48, SIMON64 respectively. As a result, 19-round SIMON32/64, 20-round
SIMON48/72, 20-round SIMON48/96, 26-round SIMON64/96 and 26-round SI-
MON64/128 were attacked with about 234, 252, 275, 289 and 2121 encryptions,
respectively. In addition, at the same workshop, Abed and List [1] independent-
ly used another differential to attack 18, 19, 26, 35 and 46 rounds of SIMON
versions of 5 different block sizes, respectively.

Our Contributions In this paper, we use the existing differentials in [6,20,1]
to analyze the reduced SIMON versions. The sketch of our attack is as follows.

Firstly, we extend several rounds on the top and the bottom of the previous
differentials, and get the target differential path to attack. We obtain the suf-
ficient bit conditions of the extended differential paths by investigating bitwise
behavior of differences in the paths. All the bit conditions can be categorized into
two types. The first type only depends on plaintexts or ciphertexts, which can
be handled by choosing plaintexs, ciphertexts and building the data structures.
The other type of conditions is related to the secret key.

Secondly, we observe that, there exists some information redundancy in the
second type of conditions (equations) which comes from the single non-linearity
in the round function of SIMON. Based on the observation, we can avoid guess-
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Table 1. Summary of Differential Attacks on SIMONs

Cipher Key Size Total Rounds Attacked Rounds Time Data Reference

SIMON32
64 32

18 246 231.2 [1]
19 234 231 [6]
21 255.25 231 Section 3

SIMON48

19 252 246 [1]
72 36 20 252 246 [6]

23 263.25 247 Section 4.1
19 276 246 [1]

96 36 20 275 246 [6]
24 287.25 247 Section 4.2

SIMON64

26 294 263 [1]
96 42 26 289 263 [6]

28 284.25 263 Section 4.2
26 2126 263 [1]

128 44 26 2121 263 [6]
29 2116.25 263 Section 4.2

SIMON96

96 52 35 293.3 293.2 [1]
37 295 295 Section 4.2

144 54 35 2101.1 293.2 [1]
37 2132.25 295 Section 4.2

SIMON128

128 68 46 2125.7 2125.6 [1]
49 2127 2127 Section 4.2

192 69 46 2142.0 2125.6 [1]
49 2183.25 2127 Section 4.2

256 72 46 2206.0 2125.6 [1]
50 2247.25 2127 Section 4.2

ing some subkey bits (or equivalent key bits) involved in these conditions, which
depend on the specific bits or the bit differences of intermediate variables. Conse-
quently, we propose a dynamic key-guessing technique which reduces the number
of secret key bits guessed greatly. For example, in the attack on 21-round SI-
MON32, we find 223.9 solutions of 49-bit subkey for a filtered palintext pair. It
implies that, for the collected pair, we need to guess 223.9 subkey space instead
of 249 in the conventional differential attack.

As a result, our attacks work on these reduced versions with 2 to 4 round-
s more than the previous attacks. The time complexities of our attacks on
the 21-round SIMON32/64, 23-round SIMON48/72, 24-round SIMON48/96,
28-round SIMON64/96, 29-round SIMON64/128, 37-round SIMON96/96, 37-
round SIMON96/144, 49-round SIMON128/128, 49-round SIMON128/192 and
50-round SIMON128/256 are 255.25, 263.25, 287.25, 284.25, 2116.25, 295, 2132.25,
2127, 2183.25 and 2247.25 encryptions, respectively. Our results are summarized in
Table 1.

The rest of this paper is organized as follows. In Section 2, we list some
notations, and give a brief description of the block cipher SIMON family and
some observations. Section 3 describes the details of our differential attacks on
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21-round SIMON32, and implements a practical attack expriment on 19-round
SIMON32 in a PC. The attacks on the other versions of SIMON are given in
Section 4. Finally, we conclude this paper in Section 5.

2 Brief Description of SIMON

2.1 Notations

The following notations are used in this paper:

Xr−1 the input of the r-th round
Lr−1 the left half of the r-th round input
Rr−1 the right half of the r-th round input
Kr−1 the subkey used in the r-th round
Xi the i-th bit of X, the index of bits is from left to right
X ≪ r the left rotation of X by r bits
X ≫ r the right rotation of X by r bits
⊕ bitwise exclusive OR (XOR)
∩ bitwise AND
∆X the XOR difference of X and X ′

+ addition operation
% modular operation

2.2 Brief Description of Block Cipher SIMON

The SIMON block cipher is a Feistel structure with a 2n-bit state, where n is
required to be 16, 24, 32, 48, or 64. SIMON2n with an mn-bit key is referred
to as SIMON2n/mn, where m = 2, 3, 4. There are 10 suggested versions with d-
ifferent numbers of rounds nr. All versions of SIMON use similar round function.

Round Functions For high performance on both hardware and software plat-
forms, SIMON utilizes an extremely simple round function which iterates many
rounds. The function F (x) = ((x ≪ 1) ∩ (x ≪ 8)) ⊕ (x ≪ 2) is a non-linear
transformation from {0, 1}n to {0, 1}n, which is built by 3 bitwise operations
⊕, ∩ and ≪. Let the plaintext P = (L0, R0), and the i-th round function is
described in the following.

Li = Ri−1 ⊕ F (Li−1)⊕Ki−1,

Ri = Li−1,

where i = 1, ..., nr. (Rnr , Lnr ) is the ciphertext C.
To describe our differential attack with bit conditions conveniently, we give

a bitwise description of the round function. Let Li = {Xi
n, X

i
n+1, . . . , X

i
2n−1},

Ri = {Xi
0, X

i
1, . . . , X

i
n−1}, and Ki = {Ki

0,K
i
1, . . . ,K

i
n−1}, then the i-th round

function is denoted as:

Xi
j+n = (Xi−1

(j+1)%n+n ∩X
i−1
(j+8)%n+n)⊕Xi−1

(j+2)%n+n ⊕X
i−1
j ⊕Ki−1

j ,

Xi
j = Xi−1

j+n,
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where j = 0, 1, . . . , n− 1, and Xi
n is the left-most bit of Li, Xi

2n−1 is the right-
most bit of Li, Xi

0 is the left-most bit of Ri, and Xi
n−1 is the right-most bit of Ri.

Key Schedules The key schedules generate a sequence of nr round subkeys
{K0, ...,Knr−1} from the master key {k0, k1, ..., km−1}. For different key lengths
mn, the key schedules are given as follows, when i = 0, 1, . . . ,m − 1, Ki = ki;
and when i = m,m+ 1, . . . , nr,

if m = 2, Ki = c⊕ (zj)i−m ⊕Ki−m ⊕ (Ki−m+1 ≫ 3)⊕ (Ki−m+1 ≫ 4),

if m = 3, Ki = c⊕ (zj)i−m ⊕Ki−m ⊕ (Ki−m+2 ≫ 3)⊕ (Ki−m+2 ≫ 4),

if m = 4, Ki = c⊕ (zj)i−m ⊕Ki−m ⊕Ki−m+1 ⊕ (Ki−m+1 ≫ 1)

⊕(Ki−m+3 ≫ 3)⊕ (Ki−m+3 ≫ 4).

Here c = 2n − 4, zj is the version-dependent choice of constant sequence. For
more details, please refer to [3]. In fact, the key schedules are linear, so the
master key can be deduced from any mn independent bits of subkeys.

2.3 Some Observations

Observation 1 ([12]) Let ∆x = x⊕ x′, ∆y = y ⊕ y′, then

(x ∩ y)⊕ (x′ ∩ y) = ∆x ∩ y,
(x ∩ y)⊕ (x ∩ y′) = x ∩∆y,

(x ∩ y)⊕ (x′ ∩ y′) = (x ∩∆y)⊕ (∆x ∩ y)⊕ (∆x ∩∆y).

Observation 2 Given two inputs Xi−1 and (Xi−1)′ of the i-th round, where
∆Xi−1 = Xi−1 ⊕ (Xi−1)′. Then we can compute the output difference ∆Xi of
the i-th round function without any key bit guessing , and obtain a subkey bit
according to the following four cases(for j = 0, 1, . . . , n− 1).

1. When (∆Xi
(j+1)%n+n, ∆X

i
(j+8)%n+n) = (0, 0), there is no key bit involved in

∆Xi+1
j+n.

2. When (∆Xi
(j+1)%n+n, ∆X

i
(j+8)%n+n) = (0, 1), Ki−1

(j+1)%n is computed from

the value of ∆Xi+1
j+n.

3. When (∆Xi
(j+1)%n+n, ∆X

i
(j+8)%n+n) = (1, 0), Ki−1

(j+8)%n is computed from

the value of ∆Xi+1
j+n.

4. When (∆Xi
(j+1)%n+n, ∆X

i
(j+8)%n+n) = (1, 1), one equivalent key bit Ki−1

(j+1)%n⊕
Ki−1

(j+8)%n is computed from ∆Xi+1
j+n(j < n).

Since the subkey Ki−1 is linear with the output of Xi, it is obvious that ∆Xi

is independent with Ki−1.
By partial encryption and Observation 1, we deduce the following equations.

∆Xi+1
j+n = (∆Xi

(j+1)%n+n ∩Xi
(j+8)%n+n)⊕ (Xi

(j+1)%n+n ∩∆Xi
(j+8)%n+n)

⊕(∆Xi
(j+1)%n+n ∩∆Xi

(j+8)%n+n)⊕∆Xi
(j+2)%n+n ⊕∆Xij,

(1)
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Xi
(j+1)%n+n = (Xi−1

(j+2)%n+n ∩X
i−1
(j+9)%n+n)

⊕Xi−1
(j+3)%n+n ⊕X

i−1
(j+1)%n ⊕K

i−1
(j+1)%n,

(2)

Xi
(j+8)%n+n = (Xi−1

(j+9)%n+n ∩X
i−1
(j+16)%n+n)

⊕Xi−1
(j+10)%n+n ⊕X

i−1
(j+8)%n ⊕K

i−1(j + 8)%n.
(3)

It is obvious that Observation 2 is obtained from equations (1)-(3). In other
word, given a equation ∆Xi+1

j+n = b, where b = 0 or 1, Observation 2 implies
that,

1. When (∆Xi
(j+1)%n+n, ∆X

i
(j+8)%n+n) = (0, 0) and ∆Xi

(j+2)%n+n ⊕ ∆X
i
j =

b⊕ 1, there is no solution of the subkey (Ki−1
(j+1)%n,K

i−1
(j+8)%n).

2. When (∆Xi
(j+1)%n+n, ∆X

i
(j+8)%n+n) = (0, 0) and ∆Xi

(j+2)%n+n⊕∆X
i
j = b,

there are 4 solutions of (Ki−1
(j+1)%n,K

i−1
(j+8)%n).

3. When (∆Xi
(j+1)%n+n, ∆X

i
(j+8)%n+n) = (0, 1), there are two solutions of

(Ki−1
(j+1)%n,K

i−1
(j+8)%n).

4. When (∆Xi
(j+1)%n+n, ∆X

i
(j+8)%n+n) = (1, 0), there are two solutions of

(Ki−1
(j+1)%n,K

i−1
(j+8)%n).

5. When (∆Xi
(j+1)%n+n, ∆X

i
(j+8)%n+n) = (1, 1), there are two solutions of

(Ki−1
(j+1)%n,K

i−1
(j+8)%n).

From Observation 2, we know that, the equation ∆Xi+1
j+n = b has all the 4

solutions only with probability 1
8 . It has 2 solutions with probability 3

4 and no
solution with probability 1

8 . This is an example of the dynamic key bit guessing.
In our attacks, we can explore more strategies of the dynamic key bit guessing
according to different bit conditions. It is obvious that, we can greatly reduce
the key space to be guessed by solving enough bit equations.

3 Differential Attack on SIMON32

In this section, we describe the details of differential attack on round-reduced
SIMON32/64. We utilize the recent 13-round differential in [6] to attack 21-round
SIMON32 by adding 4 rounds on the top and 4 rounds at the bottom. We first
find a set of sufficient bit-difference conditions to make 21-round differential path
hold, then deduce the equations related to subkey bits for a chosen plaintext-
ciphertext pair, and finally calculate the subkey solutions to the equations. Based
on the number of subkeys counted, we can distinguish the right subkey fast. Here,
we also implement a attack expriment on 19-round SIMON32 in a PC in order
to verify the correctness of our attack. For simplicity, we replace C = {Rnr , Lnr}
by C = {Lnr , Rnr} in the rest of this paper.

3.1 Sufficient Conditions for Differential Path of 21-round
SIMON32

For this attack, we consider the following 13-round differential with probability
2−28.56,

D1 : (0000, 0040)→ (4000, 0000).
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After prefixing 4 rounds on the top and appending 4 rounds at the bottom,
we extend the 13-round differential path to 21 rounds. It is easy to obtain a set of
sufficient bit conditions thar lead to the input and output differences of the 13-
round differential D1 (see Table 2). We select a plaintext pair to make the input
difference in the first row of Table 2 and the output difference in the last row
hold. It is easy to verify that 16 conditions in bold from round 1 and round 20 are
independent of subkey bits, 28 conditions in bold from rounds 2-4 and 17-19 are
related to subkey bits. If all the 44 conditions (16+28) hold, the other conditions
in the extended path hold with probability 1. So these 44 conditions are sufficient
to lead to the input and output differences of the 13-round differential D1, and
we call them a set of sufficient conditions of the differential path.

Table 2: Sufficient Conditions of Extended Differential Path of 21-round SIMON32

Rounds Input Differences of Each Round

0 0, *, 0, 1, *, *, *, *, *, 0, 0, 0, 0, *, *, *, *, 1, *, *, *, *, *, *, 0, *, 0, *, *, *, *, *

1 *, 0, 0, 0, 0, 1, *, *, 0, *, 0, 0, 0, 0, 0, *, 0, *, 0, 1, *, *, *, *, *, 0, 0, 0, 0, *, *, *

2 0, *, 0, 0, 0, 0, 0, 1, *, 0, 0, 0, 0, 0, 0, 0, *, 0, 0, 0, 0, 1, *, *, 0, *, 0, 0, 0, 0, 0, *

3 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, *, 0, 0, 0, 0, 0, 1, *, 0, 0, 0, 0, 0, 0, 0

4 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0

4 → 17 13-round differential D1

17 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

18 *, 0, 0, 0, 0, 0, 0, 0, 0, *, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

19 0, *, 0, 0, 0, 0, 0, *, *, 0, 0, 0, 0, 1, *, *, *, 0, 0, 0, 0, 0, 0, 0, 0, *, 0, 0, 0, 0, 0, 1

20 *, 0, 0, 0, 0, *, *, *, 0, *, 0, 1, *, *, *, *, 0, *, 0, 0, 0, 0, 0, *, *, 0, 0, 0, 0, 1, *, *

21 0, *, 0, *, *, *, *, *, *, 1, *, *, *, *, *, *, *, 0, 0, 0, 0, *, *, *, 0, *, 0, 1, *, *, *, *

We put the 16 conditions which are independent of the secret key in Table 3,
and the 28 conditions related to the secret key in the 2rd column of Table 4 in
Appendix. The clue of our attack is to build the structures in the data collection
phase to get 16 conditions independent of the secret key, and get 28 equations
on key bits from the other 28 conditions, then find the possible solutions of
these equations to reduce the key space searched. Table 4 gives solutions of the
key bits in the 3rd column, the 4th column is the conditions for the equation
to have the solutions in 3rd column, and the Pr in the 5th column denotes
the probability that the equations hold, and PFr means the probability that a
wrong bit condition occurs which results in the dissatisfaction of the differential
path(we call it a failure event).

Table 3: Conditions of Differential of 21-round SIMON32 that are Independent of
Subkeys

Rounds i Number of
Conditions

Bit Conditions of the i-th Round
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1 8 ∆X1[18] = 0, ∆X1[19] = 0, ∆X1[20] = 0, ∆X1[21] = 1,
∆X1[27] = 0, ∆X1[28] = 0, ∆X1[29] = 0, ∆X1[30] = 0

20 8 ∆X20[3] = 0, ∆X20[4] = 0, ∆X20[5] = 0, ∆X20[6] = 0,
∆X20[10] = 0, ∆X20[11] = 0, ∆X20[12] = 0, ∆X20[13] = 1

Table 4: Solutions of Subkey Bits Corresponding to Differential Path of 21-round SIMON32

Rounds Bit Conditions
Solutions of Key Conditions Leading

Pr PFrBits to Equations to Solutions

2(7)

∆X2
20 = 0 ⇔

X1
28 ⊕∆X

1
22 ⊕∆X

0
20 = 0

K0
12

1

∆X2
29 = 0 ⇔

X1
30 ⊕∆X

1
31 ⊕∆X

0
29 = 0

K0
14

1

∆X2
30 = 0 ⇔

∆(X1
31 ∩X

1
22) ⊕∆X1

16
⊕∆X0

30 = 0

Discard the pair
(∆X1

31 , ∆X1
22 , ∆X1

16 ⊕
∆X0

30) = (0, 0, 1)

1
8

K0
15 = 0, 1, K0

6 = 0, 1 (∆X1
31 , ∆X1

22 , ∆X1
16 ⊕

∆X0
30) = (0, 0, 0)

1
8

K0
6 = 0, 1, K0

15 (∆X1
31 , ∆X1

22) = (0, 1) 1
4

K0
15 = 0, 1, K0

6 (∆X1
31 , ∆X1

22) = (1, 0) 1
4

K0
15 ⊕K

0
6 (∆X1

31 , ∆X1
22) = (1, 1) 1

4

∆X2
21 = 0 ⇔

(∆X1
22 ∩X

1
29) ⊕∆X1

23
⊕∆X0

21 = 0

Discard the pair
(∆X1

22, ∆X1
23⊕∆X

0
21) =

(0, 1)
1
4

K0
13 = 0, 1

(∆X1
22, ∆X1

23⊕∆X
0
21) =

(0, 0)
1
4

K0
13 ∆X1

22 = 1 1
2

∆X2
23 = 1 ⇔

(∆X1
31 ∩X

1
24) ⊕∆X1

25
⊕∆X0

23 ⊕ 1 = 0

Discard the pair
(∆X1

31, ∆X1
25⊕∆X

0
23⊕1)

= (0, 1)
1
4

K0
8 = 0, 1

(∆X1
31, ∆X1

25⊕∆X
0
23⊕1)

= (0, 0)
1
4

K0
8 ∆X1

31 = 1 1
2

∆X2
31 = 0 ⇔

∆(X1
16 ∩X

1
23) ⊕∆X0

31 = 0

Discard the pair
(∆X1

16 , ∆X1
23 , ∆X0

31) =
(0, 0, 1)

1
8

K0
0 = 0, 1, K0

7 = 0, 1 (∆X1
16 , ∆X1

23 , ∆X0
31) =

(0, 0, 0)
1
8

K0
7 = 0, 1, K0

0 (∆X1
16 , ∆X1

23) = (0, 1) 1
4

K0
0 = 0, 1, K0

7 (∆X1
16 , ∆X1

23) = (1, 0) 1
4

K0
0 ⊕K

0
7 (∆X1

16 , ∆X1
23) = (1, 1) 1

4

∆X2
22 = 0 ⇔

(∆X1
23 ∩X

1
30) ⊕∆X0

22 = 0

Discard the pair (∆X1
23, ∆X0

22) = (0, 1) 1
4

K0
14 = 0, 1 (∆X1

23, ∆X0
22) = (0, 0) 1

4
K0

14 ∆X1
23 = 1 1

2

3(5)

∆X3
16 = 0 ⇔

∆(X2
17 ∩X

2
24) ⊕∆X1

16 = 0

(guess K0
9 , K0

2)

No solution
(∆X2

17 , ∆X2
24, ∆X1

16) =
(0, 0, 1)

1
8

K1
1 ⊕K

0
3 = 0, 1, K1

8 ⊕K
0
10 =

0, 1
(∆X2

17 , ∆X2
24, ∆X1

16) =
(0, 0, 0)

1
8

K1
8 ⊕K

0
10 = 0, 1, K1

1 ⊕K
0
3 (∆X2

17 , ∆X2
24) = (0, 1) 1

4
K1

1 ⊕K
0
3 = 0, 1, K1

8 ⊕K
0
10 (∆X2

17 , ∆X2
24) = (1, 0) 1

4
K1

1 ⊕K
0
3 ⊕K

1
8 ⊕K

0
10 (∆X2

17 , ∆X2
24) = (1, 1) 1

4
∆X3

22 = 0 ⇔
X2

30 ⊕∆X
2
24 ⊕∆X

1
22 = 0

K1
14

1

∆X3
23 = 0 ⇔

(∆X2
24 ∩X

2
31) ⊕∆X1

23 = 0

No solution (∆X2
24 , ∆X1

23) = (0, 1) 1
4

K1
15 ⊕K

0
1 = 0, 1 (∆X2

24 , ∆X1
23) = (0, 0) 1

4
K1

15 ⊕K
0
1 ∆X2

24 = 1 1
2

∆X3
25 = 1 ⇔

(∆X2
17 ∩X

2
26) ⊕∆X1

25
⊕1 = 0 (guess K0

11)

No solution
(∆X2

17 , ∆X1
25 ⊕ 1) =

(0, 1)
1
4

K1
10 = 0, 1

(∆X2
17 , ∆X1

25 ⊕ 1) =
(0, 0)

1
4

K1
10 ∆X2

17 = 1 1
2

∆X3
31 = 0 ⇔ X2

16 ⊕∆X
2
17 ⊕

∆X1
31 = 0 (guess K0

1)
K1

0
1

4(2)

∆X4
17 = 0 ⇔ X3

18 ⊕∆X
2
17 =

0 (guess K0
4 , K0

5 , K1
3)

K2
2 ⊕K

1
4

1

∆X4
24 = 0 ⇔ X3

16 ⊕∆X
2
24 =

0 (guess K0
3 , K0

10)
K2

0 ⊕K
1
2

1

19(7)

∆X19
5 = 0 ⇔

X20
6 ⊕∆X20

7 ⊕∆X21
5 = 0

K20
6

1

∆X19
12 = 0 ⇔

X20
4 ⊕∆X20

14 ⊕∆X
21
12 = 0

K20
4

1

8



∆X19
6 = 0 ⇔

∆(X20
7 ∩X20

14) ⊕∆X20
8

⊕∆X21
6 = 0

Discard the pair
(∆X20

7 , ∆X20
14 , ∆X20

8 ⊕
∆X21

6 ) = (0, 0, 1)

1
8

K20
7 = 0, 1, K20

14 = 0, 1
(∆X20

7 , ∆X20
14 , ∆X20

8 ⊕
∆X21

6 ) = (0, 0, 0)

1
8

K20
14 = 0, 1, K20

7 (∆X20
7 , ∆X20

14) = (0, 1) 1
4

K20
7 = 0, 1, K20

14 (∆X20
7 , ∆X20

14) = (1, 0) 1
4

K20
7 ⊕K20

14 (∆X20
7 , ∆X20

14) = (1, 1) 1
4

∆X19
15 = 1 ⇔

(∆X20
7 ∩X20

0 ) ⊕∆X20
1

⊕∆X21
15 ⊕ 1 = 0

Discard the pair
(∆X20

7 , ∆X20
1 ⊕∆X21

15 ⊕
1) = (0, 1)

1
4

K20
0 = 0, 1

(∆X20
7 , ∆X20

1 ⊕∆X21
15 ⊕

1) = (0, 0)
1
4

K20
0 ∆X20

7 = 1 1
2

∆X19
13 = 0 ⇔

(∆X20
14 ∩X

20
5 ) ⊕∆X20

15
⊕∆X21

13 = 0

Discard the pair
(∆X20

14 , ∆X20
15⊕∆X

21
13) =

(0, 1)
1
4

K20
5 = 0, 1

(∆X20
14 , ∆X20

15⊕∆X
21
13) =

(0, 0)
1
4

K20
5 ∆X20

14 = 1 1
2

∆X19
7 = 0 ⇔

∆(X20
8 ∩X20

15) ⊕∆X21
7 = 0

Discard the pair
(∆X20

8 , ∆X20
15 , ∆X21

7 )
= (0, 0, 1) 1

8

K20
8 = 0, 1, K20

15 = 0, 1
(∆X20

8 , ∆X20
15 , ∆X21

7 )
= (0, 0, 0)

1
8

K20
15 = 0, 1, K20

8 (∆X20
8 , ∆X20

15) = (0, 1) 1
4

K20
8 = 0, 1, K20

15 (∆X20
8 , ∆X20

15) = (1, 0) 1
4

K20
8 ⊕K20

15 (∆X20
8 , ∆X20

15) = (1, 1) 1
4

∆X19
14 = 0 ⇔

(∆X20
15 ∩X

20
6 ) ⊕∆X21

14 = 0

Discard the pair (∆X20
15 , ∆X21

14) = (0, 1) 1
4K20

6 = 0, 1 (∆X20
15 , ∆X21

14) = (0, 0) 1
4

K20
6 ∆X20

15 = 1 1
2

18(5)

∆X18
8 = 0 ⇔

∆(X19
9 ∩X19

0 ) ⊕∆X20
8 = 0]

(guess K20
1 , K20

10)

No solution
(∆X19

9 , ∆X19
0 , ∆X20

8 ) =
(0, 0, 1)

1
8

K19
0 ⊕ K20

2 = 0, 1, K19
9 ⊕

K20
11 = 0, 1

(∆X19
9 , ∆X19

0 , ∆X20
8 ) =

(0, 0, 0)
1
8

K19
0 ⊕K

20
2 = 0, 1, K19

9 ⊕K
20
11 (∆X19

9 , ∆X19
0 ) = (0, 1) 1

4
K19

9 ⊕K
20
11 = 0, 1, K19

0 ⊕K
20
2 (∆X19

9 , ∆X19
0 ) = (1, 0) 1

4
K19

9 ⊕K20
11 ⊕K

19
0 ⊕K20

2 (∆X19
9 , ∆X19

0 ) = (1, 1) 1
4

∆X18
7 = 0 ⇔

X19
8 ⊕∆X19

9 ⊕∆X20
7 = 0

(guess K20
9 )

K19
8

1

∆X18
1 = 1 ⇔ (∆X19

9 ∩X19
2 )

⊕∆X20
1 ⊕ 1 = 0

(guess K20
3 )

No solution
(∆X19

9 , ∆X20
1 ⊕ 1) =

(0, 1)
1
4

K19
2 = 0, 1

(∆X19
9 , ∆X20

1 ⊕ 1) =
(0, 0)

1
4

K19
2 ∆X19

9 = 1 1
2

∆X18
14 = 0 ⇔

X19
6 ⊕∆X19

0 ⊕∆X20
14 = 0

K19
6

1

∆X18
15 = 0 ⇔

(∆X19
0 ∩X19

7 ) ⊕∆X20
15 = 0

No solution (∆X19
0 , ∆X20

15) = (0, 1) 1
4K19

7 = 0, 1 (∆X19
0 , ∆X20

15) = (0, 0) 1
4

K19
7 ∆X19

0 = 1 1
2

17(2)

∆X17
9 = 0 ⇔

X18
10 ⊕∆X

19
9 = 0

(guess K20
12 , K20

13 , K19
11)

K18
10 ⊕K

19
12

1

∆X17
0 = 0 ⇔

X18
8 ⊕∆X19

0 = 0

(guess K20
2 , K20

11)

K18
8 ⊕K19

10
1

In the 3rd column of Table 4, for example, K0
12 means that there are 1 solution to the corresponding equation,

K0
6 = 0, 1 means that 0 and 1 are all solutions to the corresponding equation.

3.2 Key-Recovey Attack on 21-round SIMON32

In this subsection, we describe a key recovery attack on 21-round SIMON32/64.
Since there are 8 conditions in the input of the 2nd round, which are independent
of the secret key, we make use of these conditions to construct structures, so as to
reduce the time complexity of collecting plaintext-ciphertext pairs. In the process
of key recovery attack, we use the above observations to reduce the guessed key
space greatly.
Data Collection In order to reduce the time complexity for data collection, we
propose the following method.

9



1. There are 10 conditions on the plaintext differences, 8 conditions in the in-
put of the 2nd round. We divide the plaintexts into 218 structures with
232−18 = 214 plaintexts. By Observation 2, K0

j is independent of ∆X1
j ,

which does not impact the structure. According to the round function defi-
nition and conditions on Table 3, we build the following 8 equations X1

j =

(X0
(j+1−n)%n+n∩X

0
(j+8)%n+n)⊕X0

(j+2)%n+n⊕X
0
j−n, where j = 18, 19, 20, 21,

27, 28, 29, 30. Because there are 10 conditions on plaintexts, we fix 10 bits
of X0

i (i = 16, 18, 19, 25, 26, 27, 28, 1, 8, 10), and 8 bits of X1
j to be constants,

and obtain each structure by solving the above equations system.
2. For structures A and A′ with 3 different bits (X0

19, X0
1 , X1

21), we find the
corresponding ciphertexts, and save them into a table indexed by X21

t (t =
1, 2, 3, 4, 8, 10, 16, 18) with ∆X21

t = 0. There are about 214×2−8 = 220 re-
maining pairs for each structure.

3. We build 217 structures, and filter out the remaining pairs by decrypting one
round according to the conditions in Table 2. Then there are 217−1+20−10 =
226 pairs left. Store the pairs in table T .

In data collection phase, we need about 217+14 = 231 encryptions for the cho-
sen plaintexts, and about 217+20 = 237 one round computations to decide the
conditions which is equivalent to 233 encryptions. For the 231 collected plain-
texts, we get about 217−1+28−14 = 230 pairs satisfying the input difference of
the 13-round differential D1. Hence, there are about 230−28.56 = 2.7 right pairs
occurred on average.

Filtering the Wrong Plaintext Pairs Because the conditions leading to nec-
essary solutions in round 2 and 19 are independent of the secret key, for each
pair in T, we first discard those wrong pairs which are not consistent with the
conditions in rounds 2 and 19. For conditions (∆X2

30 = 0, ∆X2
21 = 0, ∆X2

23 = 1).
we get the probability that all the three equations have solutions is 17

32 from Ta-
ble 4, In other words, the probability of no solution for the three equations is
PFr = 15

32 which is called failure event.
Applying similar method to conditions (∆X2

31 = 0, ∆X2
22 = 0), (∆X19

6 = 0,
∆X19

15 = 1, ∆X19
13 = 0), (∆X19

7 = 0, ∆X19
14 = 1), we get the probabilities that

equations have solutions are 11
16 , 17

32 , 11
16 respectively. There are 226 × ( 17

32 )2 ×
( 11
16 )2 ≈ 223.1 pairs remaining after discarding false pairs, which are stored in T1

.
Computing Subkey Candidates By partial encryptions and decryptions,
there are totally 50 bits of subkeys involved in the 28 conditions, of which 49 bits
are independent according to key schedules(K20

1 can be deduced from the other
49-bit subkeys). Given a plaintext pair in T1, we obtain 28 equations of 49-bit
independent subkeys by partially encrypting the first 4 rounds, and decrypting
the last 4 rounds. According to the specific bit-differences in the corresponding
21-round differential path, we compute all the solutions to the 28 equations,
and every solution is a possible candidate for 49-bit subkeys. We collect all the
solutions of corresponding 223.1 pairs, and the right subkey will occur with an
obvious probability advantage. It is mentioned that, the key-guessing technique

10



is dynamic. For the different pairs which result in the same differential path, we
deduce the solutions of different subkeys. The subkeys solved are determined by
specific differences in the differential path. To detect the correct key, we main-
tain lots of counters of size 249, initialized with 0. Given a plaintext pair in T1,
the computation details of 28 equations of 49-bit subkeys are as follows.

1. Choose a new pair in T1
2. There are 7 equations obtained by partially encrypting round 2 (see Table

4).
– For conditions (∆X2

30 = 0, ∆X2
21 = 0, ∆X2

23 = 1), we partially encrypt
round 2, and deduce that

∆(X1
31 ∩X1

22)⊕∆X1
16 ⊕∆X0

30 = 0, (4)

(∆X1
22 ∩X1

29)⊕∆X1
23 ⊕∆X0

21 = 0, (5)

(∆X1
31 ∩X1

24)⊕∆X1
25 ⊕∆X0

23 ⊕ 1 = 0. (6)

Because the pairs which are inconsistent with conditions in round 2 and
round 19 have been discarded corresponding to the specific path, so the
failure event dose not occur.
From

X1
31 = (X0

16 ∩X0
23)⊕X0

17 ⊕X0
15 ⊕K0

15,

X1
22 = (X0

23 ∩X0
30)⊕X0

24 ⊕X0
6 ⊕K0

6 ,

X1
29 = (X0

30 ∩X0
21)⊕X0

31 ⊕X0
13 ⊕K0

13,

X1
24 = (X0

25 ∩X0
16)⊕X0

26 ⊕X0
8 ⊕K0

8 ,

equations (4)-(6) should have solutions about subkey (K0
15, K0

6 , K0
13,

K0
8 ) with the following cases depending on the values of (∆X1

22, ∆X1
31,

∆X1
16 ⊕∆X0

30, ∆X1
23 ⊕∆X0

21, ∆X1
25 ⊕∆X0

23 ⊕ 1).

• (0, 0, 0, 0, 0): there are 16 solutions to the above the three equations.
• (0, 1, ∗, 0, ∗): there are 4 solutions to the three equations for each of

4 the cases.
• (1, 0, ∗, ∗, 0): there are 4 solutions to the three equations for each of

4 the cases.
• (1, 1, ∗, ∗, ∗): there are 2 solutions to the three equations for each of

8 the cases.

Clearly, we get in total 64 solutions for 17 cases, thus there are 64
17 values

of subkeys (K0
15, K0

6 , K0
13, K0

8 ) for each pair in T1 on average.
– Similarly, solving the equations (∆X2

31 = 0, ∆X2
22 = 0), we get about

32
11 values of subkeys (K0

0 , K0
7 , K0

14).
– For the equations (∆X2

20 = 0, ∆X2
29 = 0), we get a solution of subkeys

(K0
12, K0

14).
In Step 2, by solving 7 equations and combining these obtained subkeys,
we get 64

17 ×
32
11 ×2−1 values of subkeys (K0

0 , K0
6 , K0

7 , K0
8 , K0

12, K0
13, K0

14,
K0

15) which are involved in the 2nd round conditions .

11



3. For every subkey obtained in Step 2, by partially encrypting round 3, we get
5 equations. Guessing all subkeys (K0

9 , K0
2 , K0

11, K0
1 ), we use similar method

above to solve the 5 equations, and get about 2 values of subkeys (K0
3 ⊕K1

1 ,
K0

10⊕K1
8 , K1

14, K0
1 ⊕K1

15, K1
10, K1

0 ) for each guess. By the end of this step,
we will get 64

17 ×
32
11 × 24 values of subkeys involved in the first 3 rounds for

each pair in T1.
4. Under the above computed subkeys, we get 2 corresponding equations about

subkey bits depending on conditions of ∆X4
17 = 0, ∆X4

24 = 0 with proba-
bility 1. We can get one value of subkey bit (K2

2 ⊕K1
4 , K2

0 ⊕K1
2 ) for every

guessed subkey (K0
4 , K0

5 , K1
3 , K0

3 , K0
10). By the end of this step, we will get

64
17 ×

32
11 × 29 values of subkey bits involved in first 4 rounds conditions for

every pairs in T1.
5. Applying the above similar method to the last 4 rounds, we also get 64

17 ×
32
11 × 29 values of subkeys involved in the 4 rounds conditions for every pair
in T1.

6. Combining all the subkeys computed from Step 4 to Step 5, we deduce
( 64
17 )2 × ( 32

11 )2 × 217 ≈ 223.9 solutions of the 49-bit subkeys for every chosen
pair in T1. Renew the corresponding counter by these solutions.

7. Go to Step 1 until no pairs in T1 left.

Complexity Evaluation Let Nr be the number of plaintext pairs in T1, Cs
be the number of solutions to subkey for every pair in T1, and Ckey be the
number of candidate subkeys obtained by Computing Subkey Candidates. Then
Ckey = Nr ×Cs. It is obviously that the time complexity of Computing Subkey
Candidates (denoted as Tcsc) is dominated by updating subkey counter in Step
6. Hence, the time complexity of Computing Subkey Candidates is estimated by
the formula (4)

Tcsc = Ckey/(n× nr), (4)

where we assume that the counter updating is equivalent to 1
n time-round com-

putations, and nr is the attack rounds. Therefore, the complexity of Computing
Subkey Candidates is about Tcsc = Ckey/(n × nr) = (Nr × Cs)/(n × nr) =
223.1 × 223.9 ≈ 238.6 encryptions.

Since the expected count of the right key is 2.7, we choose the subkeys whose
counts are greater than or equal to 3, and exhaustively search them by trail
encryptions. We apply the Poisson distribution in as follows to compute the
number of the remaining subkeys. The probability that the event ξ occurs k
times is

Pr[ξ = k] =
λk

k!
× e−λ,

where λ is the expectation of ξ.
Let |sk| be the number of independent subkeys in the extended rounds which

is used to deduce the input and output differences for a pair to satisfy the
differential path. Because a wrong subkey occurs with probability pe = Cs

2|sk|
,

the expected count of a wrong subkey for all pairs in T1 is λe = Nr × pe =

223.1 × 223.9

249 = 2−2. Therefore, the number of the remaining subkeys that need

12



to be searched is

249(1− Pr[ξe = 0]− Pr[ξe = 1]− Pr[ξe = 2]) = 240.25.

So, we search 240.25 49-bit subkeys, and tranverse 15-bit subkey, which needs
255.25 encryptions. We denote the exhaustive search complexity as Tes, and the
total time complexity is obviously dominated by Tes.

Since the expected count of the right key is λr = 2.7, the probability that
the right key count is greater than or equal to 4 is

1− Pr[ξr = 0]− Pr[ξr = 1]− Pr[ξr = 2] = 0.51.

Therefore, our attack on 21-round SIMON32/64 needs 255.25 encryptions
with 231 chosen plaintexts, and the success probability is about 51%.
General Formula of Complexity Evaluation Let N be the pairs left in
the data collection which are used to sieve the right key, nc be the number of
conditions related to subkeys sk in the extended rounds for differential attack.
It is easy to prove that Ckey = 2|sk|×N×2−nc without consideration of filtering
the wrong plaintext pairs.

Hence, the time complexity of Computing Subkey Candidates is computed
by formula (5).

Tcsc = 2|sk| ×N × 2−nc/(n× nr) (5)

The expected count of a wrong subkey for all remaining pairs in data collection
is obtained by formula (6)

λe = N × 2−nc (6)

3.3 Experimental Results of the Attack on 19-round SIMON32

In order to verify the correctness of our attacks, with the above 13-round dif-
ferential mounted rounds 3-16, we first statistics the number of right pairs for
all 232 plaintexts with 100 random masterkeys respectively, there are about 4.95
right pairs satisfying a 13-round differential.

Furthermore, by prefixing 3 rounds on the top and appending 3 rounds at the
bottom, we use the 13-round differential D1 to attack 19 rounds, and expiriment
a key recovery on 19-round SIMON32/64 with 231 chosen plaintexts. There are
totally 18 bits of subkey involved in 14 conditions of the extended differential
path. By using the above attack method, there are about 212 × ( 17

32 )2 ≈ 210.17

pairs left for 231 chosen plaintexts after data collection and filtering, and there
are about 216 possible subkeys, those whose count is greater than or equal to 3
is about:

218(1− Pr[ξe = 0]− Pr[ξe = 1]− Pr[ξe = 2]) = 29.25.

We perform experiment for 100 random masterkeys, there are 22 subkeys which
are obtained successfully. Hence, the experimental results are consistent with the
complexity and success rate.
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4 Differential Attack on Other SIMON versions

In this section, we describe the differential attacks on round-reduced SIMON48,
SIMON64, SIMON96 and SIMON128 respectively.

4.1 Differential Attack on SIMON48

We utilize a 16-round differential D : (800000, 220082) → (800000, 220000) in
[20] with probability 2−44.65 to mount 23-round attack on SIMON48/72 by
adding 3 rounds on the top and 4 rounds at the bottom, and 24-round attack
on SIMON48/96 by adding one more round on the top.

Attack on 23-round SIMON48/72 For the differential D, decrypt the first
3 rounds and encrypt the last 4 rounds. It is easy to obtain a set of sufficient bit
conditions (see Table 6).

There are 11 conditions on plaintexts and 16 conditions not related subkey
bits in rounds 1-2 (∆X2

40 = ∆X1
42⊕∆X0

40 = 1, ∆X2
47 = ∆X1

25⊕∆X0
47 = 0). We

build 226 structures, and filter out the chosen pairs according to the conditions
independent of secret key, there are N = 226−1+33−16 = 242 pairs left. We get
226−1+42−21 = 246 pairs satisfying the input difference of the differential. Hence,
the expected count of the right key is λr = 246−44.65 ≈ 2.6.

According to the key schedule, we find there are 64-bit independent subkey
required to guess in order to conform the path D, i.e, |sk| = 64. To distinguish
the correct key, we maintain a counter of size 264, which is the memory com-
plexity. There are nc = 44 bit conditions relating to the subkey bits in the 7
extended rounds. We apply the dynamic key-guessing method to compute the
subkey candidates which may lead to the input and output differences of the
high probability differential D for a pair, and update the corresponding subkey
counter. The time complexity of Computing Subkey Candidates is computed by
equation (5) which equals to 264 × 242 × 2−44/(24× 23) = 252.9 encryptions. By
equation (6), the expected count of a wrong subkey for all remain pairs in data
collection is λe = N × 2−nc = 2−2. Since the expected count of the right key
λr = 2.6, we choose the subkeys whose count is greater than 2, and exhaustive-
ly search them by trail encryption. Then, the number of the remaining subkeys
which should be searched is 264(1−Pr[ξe = 0]−Pr[ξe = 1]−Pr[ξe = 2]) = 255.25.
Therefore, the exhaustive search complexity is 28 × 255.25 = 263.25 encryptions,
which demonstrates the time complexity.

Since the expected count of the right key is λr = 2.6, the probability that
the right key count is greater than or equal to 3 is 1 − Pr[ξr = 0] − Pr[ξr =
1] − Pr[ξr = 2] = 0.48. Therefore, our attack on 23-round SIMON48/72 needs
263.25 encryptions with 247 chosen plaintexts, and the success probability is about
48%.
Attack on 24-round SIMON48/96 We extend one more round on the top of
the above 23-round differential path, and deduce 37 bit conditions independent
of the secret key and nc = 59 bit conditions relating to |sk| = 88 secret key.
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According to 12 conditions not related to any key bit in the input differences
of plaintexts and the first three rounds, we divide the plaintexts into 212 sets.
Each set is a structure with 248−12 = 236 plaintexts. We build 211 structures, and
get 211−1+72−36 = 246 pairs satisfying the input differences of the differential.
Hence, there are about 246−44.65 = 2.6 right pairs. It means that the expected
count of the right key is λr = 2.6.

We apply th method above, the time complexity of Computing Subkey Can-
didates is computed by equation (5) which equals to 288×257×2−59/(24×24) =
276.8 encryptions. The expected count of a wrong subkey for all 247 chosen
plaintexts is still λe = 2−2. Therefore, the exhaustive search complexity is
28 × 288(1 − Pr[ξe = 0] − Pr[ξe = 1] − Pr[ξe = 2]) = 287.25. Since the expected
count of the right key is λr = 2.6, the success rate is also 0.48. Consequently,
our attacks on 24-round SIMON48/96 needs 287.25 encryptions with 247 chosen
plaintexts, and the success probability is about 48%.

4.2 Differential Attacks on SIMON64/96/128

Here, we give a brief description of the differential attacks on SIMON64, SI-
MON96 and SIMON128 with the similar method mentioned in the Section 3.
Attack on SIMON64 Versions We invoke a 21-round differential with prob-
ability 2−60.21 in [20] to mount a 28-round attack on SIMON64/96 by adding
3 rounds on the top and 4 rounds at the bottom. We deduce 25 conditions on
plaintexts, and 21 conditions in the first two rounds not relating to secret key,
and 34 conditions relating to 69 bit equivalent subkeys (see Table 7).

We prefix one round on the top of the 28-round attack to launch the 29-
round attack on SIMON64/128. There are 8 conditions on plaintexts, and 18
conditions in the first three rounds independent of secret key, and 54 conditions
related to 101 bit equivalent subkeys (see Table 7).
Attack on SIMON96 Versions Applying a 30-round differential with prob-
ability 2−92.2 in [1], we mount a 37-round attack on SIMON96 with 3 rounds
on the top and 4 rounds in the tail (see Table 8). There are 47 conditions on
plaintexts, 25 conditions in the first two rounds not relating to secret key. For
the 103-bit subkey from the 59 sufficient conditions, we show that the 103-bit
subkey can be computed from a 88-bit subkey for SIMON96/96.
Attack on SIMON128 Versions From a 41-round differential with proba-
bility 2−124.6 in [1], we mount a 49-round attack on SIMON128/128 and SI-
MON128/192 by adding 4 rounds on the top and 4 rounds in the tail (see Table
9). There are 69 conditions on plaintexts, and 21 conditions in the first three
rounds not relating to secret key bits. There are 168-bit subkeys involved in the
76 sufficient conditions. By key schedules, we know that 168-bits of subkey can
be obtained from 164 bit subkeys for SIMON128/192, and obtained from 122
bit subkeys for SIMON128/128 respectively.

We prefix one round at the bottom of the 49-round attack to launch the
50-round attack on SIMON128/256 (see Table 9). We have 69 conditions on
plaintexts, 21 conditions in the first three rounds not related secret key bits, and
the 220-bit subkey from the 96 sufficient conditions.
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We choose plaintexts to construct structures using the similar techniques as
described in Section 3, and apply the dynamic key-guessing method to compute
the subkey candidates which lead to the input and output differences of the
differential for a pair, and update the corresponding subkey counter. The time
complexity is computed by equation (5). The time complexities and success rates
are summarized in Table 5.

Table 5. Differential Attacks for Reduced SIMONs

Cipher Attacked |sk| λe λr Chosen Data Time Complexity Success
Rounds Count Complexity Tes Rate

SIMON64/96 28 69 2−2 3.46 4 263 284.25 0.46

SIMON64/128 29 101 2−2 3.46 4 263 2116.25 0.46

SIMON96/96 37 88 2−2 3.48 2 295 295 0.86

SIMON96/144 37 103 2−2 3.48 4 295 2132.25 0.46

SIMON128/128 49 122 2−2 2.6 2 2127 2127 0.73

SIMON128/192 49 164 2−2 2.6 3 2127 2183.25 0.48

SIMON128/256 50 220 2−2 2.6 3 2127 2247.25 0.48

5 Conclusion

In this paper, we present the improved differential attacks on SIMON32, SI-
MON48, SIMON64, SIMON96, and SIMON128 with 2 to 4 more rounds than
previous attacks. The main contribution of our work is to compute sufficient
conditions to ensure the differential path hold, and obtain the corresponding
subkey bits equations. Based on the equations, we reduce the key space searched
greatly. Furthermore, we present a new method to build structures in data col-
lection phase, and decrease the time complexity of sieving the collected pairs.
Our technique can be applied to other lightweight block ciphers depending on
the bitwise operations.
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A Differential Conditions

Here, we list some differential conditions used in our cryptanalysis.

Table 6: Sufficient Conditions of Extended Differential Path of 23/24-round SIMON48

Rounds Input Differences of Each Round

0 0,*,*,*,*,*,*,0,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*

1 *,0,0,*,*,0,*,*,0,0,*,0,*,*,*,0,*,*,1,*,*,*,1,*,0,*,*,*,*,*,*,0,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*

2 0,*,0,0,1,*,0,0,*,0,0,0,0,0,*,*,0,0,*,0,1,*,*,0,*,0,0,*,*,0,*,*,0,0,*,0,*,*,*,0,*,*,1,*,*,*,1,*

3 0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,*,0,0,1,*,0,0,*,0,0,0,0,0,*,*,0,0,*,0,1,*,*,0

4 1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0

4 → 20 16-round differential D

20 1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0

21 0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,*,0,0,0,0,0,1,*,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0

22 0,*,0,0,1,*,0,0,*,0,0,0,0,0,*,*,0,0,*,0,1,*,*,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,*,0,0,0,0,0,1,*

23 *,0,0,*,*,0,*,*,0,0,*,0,*,*,*,0,*,*,1,*,*,*,1,*,0,*,0,0,1,*,0,0,*,0,0,0,0,0,*,*,0,0,*,0,1,*,*,0

24 0,*,*,*,*,*,*,0,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,0,0,*,*,0,*,*,0,0,*,0,*,*,*,0,*,*,1,*,*,*,1,*

Table 7: Sufficient Conditions of Extended Differential Path of 28/29-round SIMON64

Rounds Input Differences of Each Round

0(left) *,*,*,*,*,*,*,*,*,*,*,*,0,*,*,*,0,*,*,0,0,0,*,0,*,*,*,0,*,*,*,*

0(right) *,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,0,*,*,*,*,*,*,*,*,*,*,*,*

1(left) *,*,*,0,*,*,1,*,*,*,1,*,*,0,0,*,*,0,1,0,0,0,0,0,0,0,*,0,0,0,*,0

1(right) *,*,*,*,*,*,*,*,*,*,*,*,0,*,*,*,0,*,*,0,0,0,*,0,*,*,*,0,*,*,*,*

2(left) 0,0,*,0,0,0,*,0,1,*,*,0,0,*,0,0,1,*,0,0,0,0,0,0,0,0,0,0,0,0,0,0

2(right) *,*,*,0,*,*,1,*,*,*,1,*,*,0,0,*,*,0,1,0,0,0,0,0,0,0,*,0,0,0,*,0

3(left) 0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0

3(right) 0,0,*,0,0,0,*,0,1,*,*,0,0,*,0,0,1,*,0,0,0,0,0,0,0,0,0,0,0,0,0,0

4(left) 0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0

4(right) 0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0

4 → 25 21-round differential D

25(left) 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0

25(right) 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0

26(left) 0,0,0,0,0,0,0,0,0,0,*,0,0,0,0,0,1,*,0,0,0,0,0,0,0,0,0,0,0,0,0,0

26(right) 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0

27(left) 0,0,*,0,0,0,0,0,*,*,0,0,0,0,1,*,*,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0

27(right) 0,0,0,0,0,0,0,0,0,0,*,0,0,0,0,0,1,*,0,0,0,0,0,0,0,0,0,0,0,0,0,0

28(left) *,*,0,0,0,0,*,*,*,0,*,0,1,*,*,*,0,*,0,0,0,0,0,0,0,0,*,0,0,0,0,0

28(right) 0,0,*,0,0,0,0,0,*,*,0,0,0,0,1,*,*,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0

29(left) *,0,*,0,*,*,*,*,*,*,1,*,*,*,*,*,*,0,*,0,0,0,0,0,*,*,0,0,0,0,*,*

29(right) *,*,0,0,0,0,*,*,*,0,*,0,1,*,*,*,0,*,0,0,0,0,0,0,0,0,*,0,0,0,0,0

Table 8: Sufficient Conditions of Extended Differential Path of 37-round SIMON96

Rounds Input Differences of Each Round

0(left) 0,0,0,0,0,0,0,0,0,*,0,0,0,*,0,*,*,*,0,*,*,1,*,*,*,*,*,*,0,0,*,*,*,1,0,0,0,1,*,*,0,1,0,0,0,0,0,0

0(right) 0,*,0,0,0,*,0,*,*,*,0,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,0,*,*,*,*,*,*,0,1,*,*,*,0,*,0,0,0,0,0,0,0

1(left) 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,*,0,0,0,*,0,1,*,*,0,0,*,0,0,1,*,*,0,0,0,0,0,1,*,0,0,0,0,0,0,0

1(right) 0,0,0,0,0,0,0,0,0,*,0,0,0,*,0,*,*,*,0,*,*,1,*,*,*,*,*,*,0,0,*,*,*,1,0,0,0,1,*,*,0,1,0,0,0,0,0,0

2(left) 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0

18



2(right) 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,*,0,0,0,*,0,1,*,*,0,0,*,0,0,1,*,*,0,0,0,0,0,1,*,0,0,0,0,0,0,0

3(left) 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0

3(right) 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0

3 → 33 30-round differential D

33(left) 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0

33(right) 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,1,0,0,0,0,0,0

34(left) 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,*,0,0,0,0,0,1,*,*,0,1,0,0,0,0,*,0,0,1,0,0,0,0,0,0

34(right) 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0

35(left) 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,*,0,0,0,0,0,*,*,*,0,*,0,1,*,*,*,0,*,*,0,0,*,*,0,0,*,0,0,0,0,0,0,0

35(right) 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,*,0,0,0,0,0,1,*,*,0,1,0,0,0,0,*,0,0,1,0,0,0,0,0,0

36(left) 0,0,0,0,0,0,0,*,0,0,0,0,0,*,*,*,0,*,0,*,*,*,*,*,*,*,*,*,*,*,*,*,*,1,*,*,*,0,*,*,0,1,0,0,0,0,0,0

36(right) 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,*,0,0,0,0,0,*,*,*,0,*,0,1,*,*,*,0,*,*,0,0,*,*,0,0,*,0,0,0,0,0,0,0

37(left) 0,0,0,0,0,*,*,*,0,*,0,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,1,*,0,0,0,0,0,0,*

37(right) 0,0,0,0,0,0,0,*,0,0,0,0,0,*,*,*,0,*,0,*,*,*,*,*,*,*,*,*,*,*,*,*,*,1,*,*,*,0,*,*,0,1,0,0,0,0,0,0

Table 9: Sufficient Conditions of Extended Differential Path of 49/50-round SIMON128

Rounds Input Differences of Each Round

0(left) 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,*,0,0,0,*,0,*,*,*,0,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,0,*,*,*,0,*,0,0,0,0,0,0,0

0(right) 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,*,0,0,0,*,0,*,*,*,0,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,0,1,0,0,0,0,0,0

1(left) 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,*,0,0,0,*,0,*,*,*,0,*,*,1,*,*,*,1,*,*,0,0,*,*,0,1,0,0,0,0,0,0

1(right) 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,*,0,0,0,*,0,*,*,*,0,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,0,*,*,*,0,*,0,0,0,0,0,0,0

2(left) 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,*,0,0,0,*,0,1,*,*,0,0,*,0,0,1,*,0,0,0,0,0,0,0

2(right) 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,*,0,0,0,*,0,*,*,*,0,*,*,1,*,*,*,1,*,*,0,0,*,*,0,1,0,0,0,0,0,0

3(left) 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,1,0,0,0,0,0,0

3(right) 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,*,0,0,0,*,0,1,*,*,0,0,*,0,0,1,*,0,0,0,0,0,0,0

4(left) 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0

4(right) 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,1,0,0,0,0,0,0

4 → 45 41-round differential D

45(left) 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,1,0,0,0,0,0,0

45(right) 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0

46(left) 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,*,0,0,0,*,0,1,*,*,0,0,*,0,0,1,*,0,0,0,0,0,0,0

46(right) 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,1,0,0,0,0,0,0

47(left) 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,*,0,0,0,*,0,*,*,*,0,*,*,1,*,*,*,1,*,*,0,0,*,*,0,1,0,0,0,0,0,0

47(right) 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,*,0,0,0,*,0,1,*,*,0,0,*,0,0,1,*,0,0,0,0,0,0,0

48(left) 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,*,0,0,0,*,0,*,*,*,0,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,0,*,*,*,0,*,0,0,0,0,0,0,0

48(right) 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,*,0,0,0,*,0,*,*,*,0,*,*,1,*,*,*,1,*,*,0,0,*,*,0,1,0,0,0,0,0,0

49(left) 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,*,0,0,0,*,0,*,*,*,0,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,0,1,0,0,0,0,0,0

49(right) 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,*,0,0,0,*,0,*,*,*,0,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,0,*,*,*,0,*,0,0,0,0,0,0,0

50(left) 0,0,0,0,0,0,0,0,0,*,0,0,0,*,0,*,*,*,0,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,1,*,0,0,0,0,0,0,0

50(right) 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,*,0,0,0,*,0,*,*,*,0,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,0,1,0,0,0,0,0,0
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