
Efficient Key-policy Attribute-based Encryption for General
Boolean Circuits from Multilinear Maps

Constantin Cătălin Drăgan and Ferucio Laurenţiu Ţiplea

Department of Computer Science
“Al.I.Cuza” University of Iaşi

Iaşi 700506, Romania
e-mail: {constantin.dragan,fltiplea}@info.uaic.ro

Abstract. We propose an efficient Key-policy Attribute-based Encryption (KP-ABE) scheme
for general (monotone) Boolean circuits based on secret sharing and on a very particular and
simple form of leveled multilinear maps, called chained multilinear maps. The number of
decryption key components is substantially reduced in comparison with the scheme in [6],
and the size of the multilinear map (in terms of bilinear map components) is less than the
Boolean circuit depth, while it is quadratic in the Boolean circuit depth for the scheme in [6].
Moreover, it is much easier to find chained multilinear maps than leveled multilinear maps.
Selective security of the proposed schemes in the standard model is proved, under the decisional
multilinear Diffie-Hellman assumption.

1 Introduction

Attribute-based encryption (ABE) was introduced in [10] as a generalization of identity-based
encryption [11]. There are two forms of ABE: key-policy ABE (KP-ABE) and ciphertext-
policy ABE (CP-ABE) [8, 2]. A KP-ABE scheme encrypts messages taking into considera-
tion specific sets of attributes; decryption keys are distributed for an entire access structure
build over the set of attributes so that correct decryption is allowed only to authorized
sets of attributes (defined by the access structure). A CP-ABE scheme proceeds somehow
vice-versa than a KP-ABE scheme: messages are encrypted together with access structures
while decryption keys are given for specific sets of attributes. A general approach to specify
access structures is the one based on Boolean circuits with exactly one output wire [12].
Roughly speaking, each attribute is associated with an input wire of the Boolean circuit. A
set of attributes evaluates the circuit to one of the truth values. If this is the truth value
true, then the set of attributes is considered authorized. The set of all authorized sets of
attributes defines an access structure.

This paper focuses on KP-ABE. The first KP-ABE scheme was proposed in [8], where
the access structures were specified by monotone Boolean formulas (Boolean circuits of fan-
out one with no negation gates). An extension to non-monotonic Boolean formulas has later
been proposed in [9]. The transition to the general case (access structures defined by general
Boolean circuits) faces the backtracking attack. The first solution to this problem has been
proposed in [6]. While the schemes in [8, 9] use secret sharing techniques in conjunction with
bilinear maps, the scheme in [6] is based on leveled multilinear maps (“chains” of bilinear
maps with some special property) which are much more complex mathematical structures
than bilinear maps. A construction from the Learning With Errors (LWE) problem has also
been proposed [7]. The two solutions [6, 7] are built for access structures definable by general
Boolean circuits with fan-in two. Inspired by [7], Boneh et.al. [3] have proposed a KP-ABE

scheme for functions that can be represented as (polynomial-size) arithmetic circuits. The
scheme is based on the LWE problem and it can naturally handle access structures definable
as general Boolean circuits. Its decryption key size is quadratic in the circuit depth, while
for the schemes proposed in [6, 7] it is linear in the number of Boolean gates or wires in the
circuit. On the other side, the size of its public parameters is quadratic in the number of
input wires, while for the schemes in [6, 7] it is linear (in the number of input wires).

Contribution The KP-ABE schemes for general Boolean circuits proposed so far are either
based on leveled multilinear maps [6] or on the LWE problem [7, 3]. In this paper we propose
a new KP-ABE scheme based on a very particular and simple form of leveled multilinear
maps, called chained multilinear maps. Our scheme is more efficient than the scheme in [6]
both in terms of the decryption key size and of the multilinear map size and construction.
The size of the chained multilinear maps we use is less than the circuit depth, while the
leveled multilinear maps used in [6] have a quadratic size in the circuit depth. Moreover,
it is much easier to define chained multilinear maps than leveled multilinear maps: once
defined k bilinear maps from Gi ×G1 into Gi+1, 1 ≤ i ≤ k, any generator of the group G1,
together with the bilinear maps, defines a chained multilinear map.

Our construction uses general Boolean circuits where the logic gates of fan-out two
or more are split into logics gates of fan-out one and FANOUT-gates whose role is to
multiply the output of logic gates. Then, a secret sharing procedure works top-down to
share some secret, and a bottom-up procedure reconstructs a “hidden” form of the secret
by using chained multilinear maps. The generator of the chained multilinear map is changed
each time a FANOUT-level (level that contains FANOUT-gates) is reached. Decryption key
components are assigned to input wires, FANOUT-gates, and to circuit FANOUT-levels.
The size of the decryption key is thus a third of the size of the decryption key in the
construction in [6].

The selective security of our KP-ABE schemes is proved in the standard model under
the decisional multilinear Diffie-Hellman assumption.

Paper organization The paper is organized into eight sections. The next section fixes the
basic terminology and notation used throughout the paper. The third section discusses the
scheme in [6] and how it thwarts the backtracking attack, and gives an informal overview of
our solution. Our construction is presented in the fourth section, its security is discussed in
the fifth one, while the sixth section presents some comparisons between our scheme and the
one in [6]. Section seven proposes some extensions of our scheme, and the last one concludes
the paper.

2 Preliminaries

This section fixes the terminology and notation used in our paper.

Access structures Recall first that [12], given a non-empty finite set U whose elements are
called attributes in our paper, an access structure over U is any set S of non-empty subsets
of U . S is called monotone if it satisfies the following monotonicity property:

(∀B ⊆ U)((∃A ∈ S)(A ⊆ B) ⇒ B ∈ S)

The subsets (of U) that are in S are called authorized sets, while those not in S, unauthorized
sets. An authorized set A is minimal if there is no B ∈ S such that B ⊂ A.

2

It is customary to represent access structures by Boolean circuits (for more details about
Boolean circuits the reader is refereed to [1]). A Boolean circuit has a number of input wires
(which are not gate output wires), a number of output wires (which are not gate input wires),
and a number of OR-, AND-, and NOT-gates. The OR- and AND-gates have two input
wires, while NOT-gate has one input wire. All of them may have more than one output wire.
That is, the fan-in of the circuit is at most two, while the fan-out may be arbitrarily large
but at least one. A Boolean circuit is monotone if it does not have NOT-gates, and it is of
fan-out one if all gates have fan-out one. In this paper all Boolean circuits have exactly one
output wire (for the sake of simplicity they will also be called “Boolean circuits”). Boolean
circuits of fan-out one (with one output wire) correspond to Boolean formulas.

If the input wires of a Boolean circuit C are in a one-to-one correspondence with the
elements of U , we will say that C is a Boolean circuit over U . Each A ⊆ U evaluates the
circuit C to one of the Boolean values 0 or 1 by simply assigning 1 to all input wires
associated to elements in A, and 0 otherwise. We will write C(A) for the value obtained by
evaluating C for A. The access structure defined by a Boolean circuit C is the set of all A
that evaluates C to 1.

Attribute-based encryption A KP-ABE scheme consists of four probabilistic polynomial-
time (PPT) algorithms [8]:

Setup(λ): this is a PPT algorithm that takes as input the security parameter λ and outputs
a set of public parameters PP and a master key MSK;

Enc(m,A,PP): this is a PPT algorithm that takes as input a message m, a non-empty set
of attributes A ⊆ U , and the public parameters, and outputs a ciphertext E;

KeyGen(C,MSK): this is a PPT algorithm that takes as input an access structure C (given
as a Boolean circuit) and the master key MSK, and outputs a decryption key D (for
the entire Boolean circuit C);

Dec(E,D): this is a deterministic polynomial-time algorithm that takes as input a cipher-
text E and decryption key D, and outputs a message m or the special symbol ⊥.

The following correctness property is required to be satisfied by any KP-ABE scheme: for
any (PP,MSK)← Setup(λ), any Boolean circuit C over a set U of attributes, any message
m, any A ⊆ U , and any E ← Enc(m,A,PP), if C(A) = 1 then m = Dec(E,D), for any
D ← KeyGen(C,MSK).

Security models We consider the standard notion of selective security for KP-ABE [8].
Specifically, in the Init phase the adversary (PPT algorithm) announces the set A of at-
tributes that he wishes to be challenged upon, then in the Setup phase he receives the public
parameters PP of the scheme, and in Phase 1 oracle access to the decryption key generation
oracle is granted for the adversary. In this phase, the adversary issues queries for decryp-
tion keys for access structures defined by Boolean circuits C, provided that C(A) = 0. In the
Challenge phase the adversary submits two equally length messages m0 and m1 and receives
the ciphertext associated to A and one of the two messages, say mb, where b← {0, 1}. The
adversary may receive again oracle access to the decryption key generation oracle (with
the same constraint as above); this is Phase 2. Eventually, the adversary outputs a guess
b′ ← {0, 1} in the Guess phase.

3

The advantage of the adversary in this game is defined as P (b′ = b)−1/2. The KP-ABE
scheme is secure (in the selective model) if any adversary has only a negligible advantage
in the selective game described above.

Leveled multilinear maps and the decisional MDH assumption [6, 5, 4] Given G1, G2, and
GT three multiplicative cyclic groups of prime order p, a map e : G1 × G2 → GT is called
bilinear if it satisfies:

– e(xa, yb) = e(x, y)ab, for any x ∈ G1, y ∈ G2, and a, b ∈ Zp;
– e(g1, g2) is a generator of GT , for any generators g1 of G1 and g2 of G2.

Given k multiplicative groups G1, . . . , Gk of the same prime order p with generators
g1, . . . , gk, respectively, a set e = {ei,j : Gi×Gj → Gi+j |i, j ≥ 1, i+ j ≤ k} of bilinear maps
is caled a leveled multilinear map if ei,j(g

a
i , g

b
j) = gabi+j , for all i, j ≥ 1 with i+ j ≤ k and all

a, b ∈ Zp.
The decisional Multilinear Diffie-Hellman (MDH) problem for e is the problem to

distinguish between gsc1···ckk and a random element in Gk given g1, g
s
1, g

c1
1 , . . . , g

ck
1 , where

s, c1, . . . , ck are randomly chosen from Zp.
The decisional MDH assumption for e states that no PPT algorithm A can solve the

decisional MDH problem for e with more than a negligible advantage.
The (leveled) multilinear maps defined as above should be viewed at a generic level.

Practical construction have also been obtained: [5] proposes a construction based on ideal
lattices, while [4] proposes a construction based on integers. Both of them are developed
inside the formalism called graded encoding systems.

3 An Informal View of Our Construction

Our approach to construct a KP-ABE scheme uses both secret sharing as in [8] and multi-
linear maps as in [6]. To clearly understand how these two techniques are combined, let us
briefly recall them.

The approach in [8] works only for monotone Boolean formulas. The main idea is quite
elegant and simple, and can be summarized as follows:

– choose a bilinear map e : G1 ×G1 → G2 and a generator g of G1;
– to encrypt a message m by a set A of attributes, just multiply m by e(g, g)ys, where y

is a random integer chosen in the setup phase and s is a random integer chosen in the
encryption phase. Moreover, an attribute dependent quantity is also computed for each
attribute i ∈ A;

– the integer y is then shared to all attributes so that it can be recovered only by the
authorized sets of attributes (the authorized sets are defined by monotone Boolean
formulas). The shares associated to attributes are then used to compute the decryption
key (which consists of a key component for each attribute);

– in order to decrypt me(g, g)ys, one has to compute e(g, g)ys. This can be done only if A
is an authorized set of attributes. The computation of e(g, g)ys is bottom-up, starting
from the key components associated to the attributes in A.

It was pointed out in [6] that the construction in [8] cannot directly be used to design
KP-ABE schemes for general Boolean circuits. The reason is the backtracking attack [6]. In

4

case of OR-gates, any value computed at an input wire should be the same with the value
computed at the other input wire (this is because of the way secrets are shared at OR-gates).
Therefore, knowing the value at one of the input wires of an OR-gate implicitly leads to
the knowledge of the value at the other input wire (although these values are computed by
different workflows), and this value can further “migrate” to other gates if the gate fan-out
is two or more. This aspect leads to the possibility of computing the value at the output wire
of the circuit starting from values associated to some unauthorized set of attributes. The
backtracking attack cannot occur when access structures are defined by Boolean formulas
as in [8] because, in such cases, the input wires of OR-gates are not used by any other gates.

In order to thwart the backtracking attack, [6] uses a “one-way” construction in eval-
uating general monotone Boolean circuits (the encryption technique is almost the same as
the one in [8]). The idea is the next one:

– consider a leveled multilinear map (as the one in the previous section);

– the key components are associated to the input wires of the circuit and to each gate
output wire (in [6], each gate has one output wire which may further be used by more
than one gate);

– the circuit is evaluated bottom-up and the values associated to output wires of gates on
level j are powers of gj+1;

– as the mappings ei,j work only in the “forward” direction, it is not feasible to invert
values on the level j + 1 in order to obtain values on the level j, defeating thus the
backtracking attack.

Now, our approach can be described as follows. First, the logic gates of fan-out two
or more are split into logic gates of fan-out one and FANOUT-gates. A FANOUT-gate
multiplies the output of a logic gate. Then, a secret sharing procedure is used top-down to
share a secret to all attributes (input wires of the circuit). There are two main tricks here:

1. the shares associated to the output wires of a FANOUT-gate are processed via a random
value associated to the input wire of the gate, and this random value is passed down to
logic gates for sharing;

2. the share associated to the output wire of a logic gate is shared among its input wires
by taking into consideration the input wire levels of the gate.

When all input wires of the circuit get their shares, a “secret reconstruction” procedure
evaluates bottom-up the circuit by computing values to each wire. Each value is the power
of some group generator, and the generator is changed only when a FANOUT-level (level
that contains FANOUT-gates) is reached. Due to the way secrets are shared, the multilinear
map we use consists of just r+1 bilinear maps ei : Gi×G1 → Gi+1 with no other constraints,
1 ≤ i ≤ r+ 1 (r denotes the number of FANOUT-levels). As the bilinear maps ei work only
in the forward direction, our scheme defeats the backtracking attack.

4 Our Construction

In this section we propose a KP-ABE scheme for monotone Boolean circuits based on
a particular and simpler form of leveled multilinear maps. We begin first by fixing the
terminology and notation regarding the way Boolean circuits are used in our construction:

5

1. each Boolean circuit has a number of circuit input gates, but at least one. Each input
gate has no input wire and exactly one output wire (which is called a circuit input wire);

2. each Boolean circuit has exactly one circuit output gate, which has one input wire (which
is called the circuit output wire) and no output wire;

3. each Boolean circuit has a number of logic gates of two types: OR-gates and AND-gates.
Each of them has exactly two input wires and exactly one output wire;

4. each Boolean circuit may have a number of FANOUT-gates. Each FANOUT-gate has
exactly one input wire and at least two output wires. Their role is to propagate (multiply)
the logic gate outputs;

5. no two FANOUT-gates are directly connected (no output wire of a FANOUT-gate is
the input wire of another FANOUT-gate).

The restriction to Boolean circuits that are monotone does not constitute a loss of generality,
as it has been shown in [6] (see page 7 in [6]).

Each non-input gate of a Boolean circuit has one or two input wires and, therefore, one
or two input gates. Figure 1 pictorially represents a Boolean circuit under our conventions
(“FO” stands for “FANOUT”). Assuming that the wires are labeled, we may write the gates

Level

7

6

5

4

3

2

1

0

FOΓ0 FOΓ1

ORΓ2 ANDΓ3 ANDΓ4

ORΓ5

FOΓ6

ANDΓ7 ANDΓ8

ANDΓ9 ANDΓ10

ORΓ11

ORΓ12

o

1 2 3 4 5 6 7 8 FANOUT-level

FANOUT-level

Fig. 1. Boolean circuit with FANOUT-gates

as tuples (w1, w2, OR,w), (w1, w2, AND,w), and (w,FANOUT,w1, . . . , wj). The elements
before (after) the gate name are the input (output) wires of the gate. The output wire of

6

a Boolean circuit will always be denoted by o, and the input wires by 1, . . . , n (assuming
that the circuit has n input wires).

All gates of a Boolean circuit are distributed on levels which are defined as follows:

1. the 0th level, also called the input level, consists of all circuit input gates together with
all FANOUT-gates directly connected to them;

2. if the (i − 1)st level has been defined and there are logic gates whose input gates are
on the first (i− 1) levels but at least one input gate on the (i− 1)st level, then the ith
level consists of all such logic gates together with all FANOUT-gates directly connected
to them;

3. if the (i− 1)st level has been defined and there is no logic gates as above, then the ith
level consists only of the output gate (this is also called the output level of the circuit).

Figure 1 illustrates the way levels are counted in our Boolean circuits. For instance, the 2nd
level consists of Γ5 and Γ6.

By level(Γ) we denote the level of the gate Γ . The depth of a Boolean circuit C, denoted
depth(C), is the number of C’s output level. A level is called a FANOUT-level if it contains
FANOUT-gates. Remark that the input level may be a FANOUT-level, but the output level
as well as its direct predecessor cannot be FANOUT-levels (in fact, assuming that no logic
gate has a FANOUT-gate as input gate for both its inputs, each FANOUT-level i satisfies
i < depth(C)− 2).

Let Γ be a logic gate and Γ ′ be a gate such that Γ and Γ ′ are directly connected and
i = Level(Γ) > Level(Γ ′) = j (that is, Γ ′ is an input gate of Γ). The FANOUT-level
sequence from Γ to Γ ′ is a sequence, possible empty, of FANOUT-level indexes defined as
follows:

1. if Γ ′ is an input or logic gate, then the FANOUT-level sequence from Γ to Γ ′ is the
sequence of all FANOUT-level numbers taken in decreasing order from i− 1 to j;

2. if Γ ′ is a FANOUT-gate, then the FANOUT-level sequence from Γ to Γ ′ is the sequence
of all FANOUT-level numbers taken in decreasing order from i− 1 to j + 1.

As an example, in the Boolean circuit in Figure 1, (2,0) is the FANOUT-level sequence from
Γ7 to the input gate 1, and (2) is the FANOUT-level sequence from Γ8 to Γ0.

To each logic gate Γ , two FANOUT-level sequences are associated: the left one, from Γ
to its left input gate, and the right one, from Γ to its right input gate. It is clear that both
of them can be empty and one of them is a prefix of the other one. These two sequences
will play an important role in the sharing procedure described below.

Now, we need to fix the terminology on the multilinear maps we use in our construction.

Definition 1. A chained multilinear map is a sequence (ei|1 ≤ i ≤ k) of bilinear maps
ei : Gi × G1 → Gi+1, 1 ≤ i ≤ k, where G1, . . . , Gk+1 are multiplicative groups of the same
prime order p.

Remark 1. Let (ei|1 ≤ i ≤ k) be a chained multilinear map as above. If g1 ∈ G1 is a
generator of G1, then gi+1 defined recursively by gi+1 = ei(gi, g1) is a generator of Gi+1, for
all 1 ≤ i ≤ k (because ei is a bilinear map). Therefore, (ei|1 ≤ i ≤ k) can be regarded as
a special form of leveled multilinear map. Moreover, finding a chained multilinear map is
considerable more easier than finding a leveled multilinear map because no constraints on
generators is required.

7

Chained multilinear maps will be used in our construction as follows. Assume that r is
the number of FANOUT-levels in the Boolean circuits we consider, and (ei|1 ≤ i ≤ r + 1)
is a chained multilinear map as above. A message m ∈ Gr+2 will be encrypted by mgysr+2,
where y is a random integer chosen in the setup phase and s is a random integer chosen in
the encryption phase. To decrypt this message, one needs to compute gysr+2, and this will be
done by using a secret sharing procedure and a secret reconstruction procedure.

The secret sharing procedure, denoted Share(y, C), inputs a Boolean circuit C and a
value y ∈ Zp, and outputs three functions S, P , and L with the following meaning:

1. S assigns to each wire of C an element in Zp;
2. P assigns to each output wire of a FANOUT-gate an element (also called FANOUT-key)

in G1;

3. L assigns to each FANOUT-level an element (also called FANOUT-level-key) in G1.

The sharing procedure is the following one.

Share(y, C)

1. Initially, all gates of C are unmarked;

2. For each FANOUT-level i, 0 ≤ i < depth(C) − 2, choose uniformly at random ai ∈ Zp
and assign L(i) := gai1 ;

3. S(o) := y;

4. If Γ = (w1, w2, OR,w) is an unmarked OR-gate and S(w) = x, then mark Γ and
assign S(w1) := xa−1i1 · · · a

−1
iu

mod p and S(w2) := xa−1j1 · · · a
−1
jv

mod p, where i1 · · · iu
and j1 · · · jv are the left and right FANOUT-level sequences of Γ , respectively (if the
left FANOUT-level sequence is empty, then S(w1) := x, and similarly for the other
case);

5. If Γ = (w1, w2, AND,w) is an unmarked AND-gate and S(w) = x, then mark Γ and
do the followings:

(a) choose x1 uniformly at random from Zp and compute x2 such that

x = (x1ai1 · · · aiu + x2aj1 · · · ajv) mod p,

where i1 · · · iu and j1 · · · jv are the left and right FANOUT-level sequences of Γ ,
respectively (if i1 · · · iu is the empty sequence then ai1 · · · aiu = 1, and similarly for
the other case);

(b) assign S(w1) := x1 and S(w2) := x2;

6. If Γ = (w,FANOUT,w1, . . . , wj) is an unmarked FANOUT-gate and S(wi) = xi for all
1 ≤ i ≤ j, then mark Γ and do the followings:

(a) choose uniformly at random x ∈ Zp and compute bi such that xi = xbi mod p, for
all 1 ≤ i ≤ j;

(b) assign S(w) := x and P (wi) := gbi1 , for all 1 ≤ i ≤ j;
7. repeat the last three steps above until all gates get marked.

We will write (S, P, L) ← Share(y, C) to denote that (S, P, L) is an output of the
probabilistic algorithm Share on input (y, C). S(i) will be called the share of the input wire
i associated to the secret y, for all 1 ≤ i ≤ n, where n is the number of input wires of C.

8

The secret reconstruction procedure Recon(C, P, L,A, VA) reconstructs a “hidden form”
of the secret y starting from “hidden forms” of shares associated to some set A of attributes.
This procedure is deterministic and outputs an evaluation function R which assigns to each
wire either a value in some group G1, . . . , Gr+2 or the undefined value ⊥, where r is the
number of FANOUT-levels of C. The notation and conventions here are as follows:

– C is a monotone Boolean circuit;
– A ⊆ {1, . . . , n} is a subset of attributes (input gates/wires of C), where n is the number

of input wires of C;
– (S, P, L) is an output of Share(y, C), for some secret y;
– VA = (VA(i)|1 ≤ i ≤ n), where VA(i) = gαi2 for all i ∈ A and some αi ∈ Zp, and
VA(i) = ⊥ for all i 6∈ A;

– ⊥ is an undefined value for which the following conventions are adopted: ⊥ 6∈ ∪r+2
i=1Gi,

⊥ < x, ⊥ · z = ⊥, z/⊥ = ⊥, and ⊥z = ⊥, for all x ∈ ∪r+2
i=1Gi and z ∈ (∪r+2

i=1Gi) ∪ {⊥},
where r is the number of FANOUT-levels of C.

Before describing the secret reconstruction procedure we need one more notation. Given
gαi ∈ Gi for some i and α, a FANOUT-level sequence i1 · · · iu, and an output L of the
Share procedure, denote by Shift(gαi , i1 · · · iu, L) the element g

αai1 ···aiu
i+u ∈ Gi+u obtained

as follows:

g
αai1 ···aiu
i+u :=

{
gαi , if i1 · · · iu is empty

ei+u−1(· · · ei(gαi , L(iu)) · · · , L(i1)), otherwise

(recall that iu < · · · < i1).
Now, the Recon procedure is the next one.

Recon(C, P, L,A, VA)

1. Initially, all gates of C are unmarked;
2. R(i) := VA(i), for each input wire i of C;
3. If Γ = (w1, w2, OR,w) is an unmarked OR-gate and both R(w1) and R(w2) were defined,

then mark Γ and assign R(w) by

R(w) := sup{Shift(R(w1), i1 · · · iu, L), Shift(R(w2), j1 · · · jv, L)},

where i1 · · · iu and j1 · · · jv are the left and right FANOUT-level sequences of Γ , respec-
tively. Remark that either Shift(R(w1), i1 · · · iu, L) = ⊥ or Shift(R(w2), j1 · · · jv, L) =
⊥ if Shift(R(w1), i1 · · · iu, L) 6= Shift(R(w2), j1 · · · jv, L);

4. If Γ = (w1, w2, AND,w) is an unmarked AND-gate and both R(w1) and R(w2) were
defined, then mark Γ and assign R(w) by

R(w) := Shift(R(w1), i1 · · · iu, L) · Shift(R(w2), j1 · · · jv, L),

where i1 · · · iu and j1 · · · jv are the left and right FANOUT-level sequences of Γ , re-
spectively. Remark that there exists i such that both Shift(R(w1), i1 · · · iu, L) and
Shift(R(w2), j1 · · · jv, L) are powers of gi;

5. If Γ = (w,FANOUT,w1, . . . , wj) is an unmarked FANOUT-gate and R(w) was defined,
then mark Γ and assign R(wi) = eu(R(w), P (wi)) for all 1 ≤ i ≤ j, where R(w) is of
the form gαu for some u and α. Remark that P (wi) is of the form gbi1 for all i and some

bi. Therefore, R(wi) is of the form gαbiu+1, for all i;

9

6. repeat the last three steps above until all gates get marked.

We are now in a position to define our new KP-ABE scheme, called KP-ABE Scheme.

KP-ABE Scheme

Setup(λ, n, r): the setup algorithm uses the security parameter λ and the parameter r to
choose a prime p, r+ 2 multiplicative groups G1, . . . , Gr+2 of prime order p, a generator
g1 ∈ G1, and a sequence of bilinear maps (ei|1 ≤ i ≤ r + 1), where ei is from Gi × G1

into Gi+1 for all 1 ≤ i ≤ r+ 1. Denote also gi+1 = ei(gi, g1), for all 1 ≤ i ≤ r+ 1. Then,
it defines the set of attributes U = {1, . . . , n}, chooses y ∈ Zp and, for each attribute
i ∈ U , chooses ti ∈ Zp. Finally, the algorithm outputs the public parameters

PP = (n, r, p,G1, . . . , Gr+2, g1, e1, . . . , er+1, Y = gyr+2, (Ti = gti1 |i ∈ U))

and the master key MSK = (y, t1, . . . , tn);

Encrypt(m,A,PP): the encryption algorithm encrypts a message m ∈ Gr+2 by a non-
empty set A ⊆ U of attributes as follows:

– s← Zp;
– output E = (A,E′ = mY s, (Ei = T si = gtis1 |i ∈ A));

KeyGen(C,MSK): the decryption key generation algorithm generates a decryption key D
for the access structure defined by a monotone Boolean circuit C with n input wires and
r FANOUT-levels, as follows:

– (S, P, L)← Share(y, C);
– output D = ((D(i)|i ∈ U), P, L), where D(i) = g

S(i)/ti
1 , for all i ∈ U ;

Decrypt(E,D): given E and D as above, the decryption works as follows:

– compute VA = (VA(i)|i ∈ U), where

VA(i) = e1(Ei, D(i)) = e1(g
tis
1 , g

S(i)/ti
1) = g

S(i)s
2

for all i ∈ A, and VA(i) = ⊥ for all i ∈ U −A;

– R := Recon(C, P, L,A, VA);

– compute m := E′/R(o).

It is straightforward to prove the correctness of our KP-ABE Scheme.

Theorem 1. The KP-ABE Scheme above satisfies the correctness property. That is, using
the notation above, for any encryption E = (A,mY s, (Ei|i ∈ A)), any circuit C with n
inputs wires and r FANOUT-levels and C(A) = 1, and any (S, P, L) ← Share(y, C), the
valuation R returned by Recon(C, P, L,A, VA) satisfies R(o) = Y s.

Proof. By a simple inspection of the Share and Recon procedures. ut

Our KP-ABE Scheme can be translated into the graded encoding system formalism
exactly as in [6] and, therefore, the details are omitted.

10

5 Security Issues

To show that our scheme defeats the backtracking attack we have to remark first that the
“migration” of a value gαi associated to an input wire w1 of a logic gate Γ1 to an input wire
w2 of another logic gate Γ2 is possible only via FANOUT-gates; more precisely, only if w1

and w2 are output wires of some FANOUT-gate Γ . If w is the input wire of Γ , the value
associated to w cannot be computed from gαi (because of the one-wayness property of the
chained multilinear map), whereas the value of w1 can be computed only by using the value
associated to w. Therefore, to compute the value for w2, one has to evaluate bottom-up the
circuit and to obtain first the value of w.

The security of KP-ABE Scheme is proven under the decisional MDH assumption. Re-
mark first that the decisional MDH problem can be formulated for chained multilinear maps
as well (with generators defined as in Remark 1).

Theorem 2. The KP-ABE Scheme is secure in the selective model under the decisional
MDH assumption.

Proof. Due to the space limitation, the proof can be found in the appendix. ut

6 Complexity of the Construction

We will discuss in this section the complexity of our construction KP-ABE Scheme in terms
of size of the decryption key and chained multilinear map, and we will compare it with the
complexity of the construction provided in [6].

The approach in [6] associates keys to the input wires of the circuit and to its output
gates. Each input wire gets two keys, each OR-gate output wire gets four keys, and each
AND-gate output wire gets three keys. The approach does not use explicit FANOUT-gates
(but an output wire of some gate may be used as an input wire for more than one gate).
Therefore, the total number of keys is bounded from below by 2n+ 3q and from above by
2n+4q, where n is the number of inputs and q is the number of gates of the Boolean circuit.
If the Boolean circuit C has the depth `, then the leveled multilinear map used in [6] has
`(`+ 1)/2 components.

Assuming that the Boolean circuit in our approach has n inputs, r FANOUT-levels,
and the total number of outputs of the FANOUT-gates is f , the complexity of our KP-
ABE Scheme is given by

1. n+ r + f decryption key components;
2. r + 1 bilinear maps.

To compare the two approaches (the one in [6] and ours), we need to examine the
complexity of the conversion of Boolean circuits as used in [6] to Boolean circuits as used
in our paper. Assume that C is a Boolean circuit as considered in [6], with n inputs and q
logic gates. Let n = n1 + n2 and q = q1 + q2, where n1 (q1) is the number of input (logic)
gates with fan-out one (called type 1 input (logic) gates) and n2 (q2) is the number of input
(logic) gates with fan-out greater than one (called type 2 input (logic) gates).

Each type 1 input gate “consumes” one input wire and “produces” one output wire, each
type 2 input gate “consumes” one input wire and “produces” at least two output wires, each

11

logic gate “consumes” two input wires and “produces” one output wire, and each type 2
logic gate “consumes” two input wires and “produces” at least two output wires. As the
Boolean circuit has n input wires and one output wire, it follows that

n− n2 − q1 − 2q2 + f = 1,

where f is the total number of output wires of type 2 input and logic gates. We can
easily transform C into a Boolean circuit C′ according to our notation by simply adding a
FANOUT-gate to each type 2 input and logic gate. This leads to n2 + q2 FANOUT-gates
with a total of f output wires. This FANOUT-gates may be distributed on at least two
levels and on at most 1 + q2 levels (remark that the FANOUT-gates associated to input
gates are all on the 0th level). Therefore, the number of decryption key components (that
is, n+ r + f) is

n2 + q + q2 + 3 ≤ number of key components ≤ n2 + q + 2q2 + 2

Now, let us estimate the depth ` of a Boolean circuit as in [6]. The number of logic gates
needed to “consume” n input wires and to generate just one input wire is at least log n and
at most n − 1. If the Boolean circuit has n2 type 2 input gates and q2 type 2 logic gates
(see the notation above), then the wires produced by them is

n− n2 − 2q2 + f = n1 − 2q2 + f = q1 + 1

To consume these wires by type 1 logic gates, at least log (q1 + 1) and at most q1 levels are
needed. The q2 type 2 logic gates can be distributed on at least one level and at most q2
levels. Therefore, the number ` of levels satisfies

1 + log (q1 + 1) ≤ ` ≤ q1 + q2 = q

Remark that q1 ≥ n+ n2.
Our constructions, using the notation above, needs a chained multilinear map with r+1

components, where r is the number of FANOUT-levels. According to the estimate above,
1 ≤ r ≤ q2 if n2 = 0, and 2 ≤ r ≤ q2 + 1 if n2 6= 0. Moreover, r < `− 1.

Another main difference between our KP-ABE Scheme and the construction in [6] is
that it is much easier to find chained multilinear maps than leveled multilinear maps.
Indeed, given k multiplicative groups of the same prime order p, any k − 1 bilinear maps
ei : G1 ×G1 → Gi+1, 1 ≤ i ≤ k − 1, define a chained multilinear map. This is simply seen
by taking any arbitrary generator g1 of G1 and recursively defining gi+1 = ei(gi, g1), for any
1 ≤ i ≤ k − 2. On the contrary, not any k(k − 1)/2 bilinear maps ei,j : Gi × Gj → Gi+j
define a leveled multilinear map. This is because of the constraint ei,j(gi, gj) = gi+j , for all
i, j ≥ 1 with i+ j ≤ k − 1.

7 Extensions and Improvements

It is straightforward to see that our scheme can be extended to Boolean circuits with logic
gates of fan-in more than two, without increasing the size of the decryption key or of the
chained multilinear map. Such an extension could be useful in order to reduce the number

12

of gates and the depth of a given Boolean circuit, resulting in a possible smaller decryption
key.

Another simple extension of KP-ABE Scheme is to consider ei as bilinear maps from
Gi × Gi into Gi+1, for all i. Of course, in such a case, gi+1 is defined as being ei(gi, gi),
for all i. For this extension to work what we have to do is to replace “L(i) := gai1 ” by

“L(i) := gaii ” in step 2 of Share, and “P (wi) := gbi1 ” by “P (wi) := gbilevel(Γ)” in step 6 of

Share. Moreover, “...P (wi) is of the form gbi1 ...” in step 5 of the procedure Recon should

be replaced by “...P (wi) is of the form gbilevel(Γ)...”.

Our KP-ABE Scheme is defined for a fixed number r of FANOUT-levels. However,
we can easily extend it to correspond to an arbitrary but upper bounded number of such
levels. The main idea is to add FANOUT-level-keys for the “missing FANOUT-levels”. More
precisely, let r be an upper bound of the number of FANOUT-levels. Define two procedure
Share′ and Recon′ by modifying Share and Recon as follows:

1. Share′(y, C) outputs (S, P, L,H) and it is obtained from Share by changing the second
and third steps into

“2′. For each FANOUT-level i, 0 ≤ i < depth(C)−2, choose uniformly at random ai ∈ Zp
and assign L(i) := gai1 . For each 1 ≤ i ≤ h, where h = r − r′ and r′ is the number
of FANOUT-levels in C, choose uniformy at random ci ∈ Zp and assign H(i) := gci1 ,
1 ≤ i ≤ r − r′;”

“3′. S(o) := yc−11 · · · c
−1
h mod p if h > 0, and S(o) = y, otherwise;”

2. Recon′(C, P, L,H,A, VA) is obtained from Recon by simply adding one more step
“7. R(o) := Shift(R(o), h · · · 1, H)”

The new scheme KP-ABE Scheme 1 is the next one:

KP-ABE Scheme 1

Setup(λ, n, r): the same as in KP-ABE Scheme;
Encrypt(m,A,PP): the same as in KP-ABE Scheme;
KeyGen(C,MSK): the decryption key generation algorithm generates a decryption key D

for the access structure defined by a monotone Boolean circuit C with n input wires and
r′ ≤ r FANOUT-levels, as follows:
– (S, P, L,H)← Share′(y, C);
– output D = ((D(i)|i ∈ U), P, L,H), where D(i) = g

S(i)/ti
1 , for all i ∈ U ;

Decrypt(E,D): given E and D as above, the decryption works as follows:
– compute VA = (VA(i)|i ∈ U), where

VA(i) = e1(Ei, D(i)) = e1

(
gtis1 , g

S(i)/ti
1

)
= g

S(i)s
2

for all i ∈ A, and VA(i) = ⊥ for all i ∈ U −A;
– R := Recon′(C, P, L,H,A, VA);
– compute m := E′/R(o).

An important improvement of our scheme consists of using the FANOUT-level-key of a
FANOUT-level as a FANOUT-key for the first output wire of each FANOUT-gate on that
level. More precisely, define the procedure Share′′ by modifying the sixth step of Share
into:

13

6′. If Γ = (w,FANOUT,w1, . . . , wj) is an unmarked FANOUT-gate and S(wi) = xi for all
1 ≤ i ≤ j, then mark Γ and do the followings:
(a) compute x such that x1 = xalevel(Γ) mod p;
(b) compute bi such that xi = xbi mod p, for all 2 ≤ i ≤ j;
(c) assign S(w) := x, P (w1) = g

alevel(Γ)

1 , and P (wi) := gbi1 , for all 2 ≤ i ≤ j;

Now, define the scheme KP-ABE Scheme 2 as the scheme obtained by replacing Share by
Share′′ in KP-ABE Scheme.

The main benefit of this new KP-ABE scheme consists of the fact that the number of
decryption key components is decreased by the number of FANOUT-gates. Thus, according
to our notation in Section 6, the size of the key provided by KP-ABE Scheme 2 is

n2 + q + 3 ≤ number of key components ≤ n2 + q + q2 + 2

Of course, the extensions and the improvement above can be combined. Their security
can be proved as for the KP-ABE Scheme.

8 Conclusions

We have proposed in this paper a KP-ABE scheme for general monotone Boolean circuits.
The scheme is based on secret sharing and a particular and special form of leveled multilinear
maps, called chained multilinear maps. The efficiency of our scheme (the improved version
in Section 7), in comparison with the scheme in [6] which falls in the same class of schemes
as ours, is presented in the following table.

Monotone Boolean circuits with
– n1 input gates of fan-out 1
– n2 input gates of fan-out > 1
– q1 logic gates of fan-out 1
– q2 logic gates of fan-out > 1
– r FANOUT-levels
– depth `

No of keys
Type and size
of multilinear
map

KP-ABE scheme in [6]
2(n1 + n2) + 3(q1 + q2) ≤ no. keys ≤

2(n1 + n2) + 4(q1 + q2)

• leveled

•
`(`+ 1)

2

Our KP-ABE Scheme
n2 + q1 + q2 + 3 ≤ no. keys ≤

n2 + q1 + 2q2 + 2

• chained
• r + 1 < `

One can see a great improvement over the decryption key size as well as over the multilin-
ear map size. Apart of this, the use of chained maps instead of leveled maps may constitute
a significant benefit.

The improvement in Section 7 is based on the fact that the FANOUT-level-key of some
FANOUT-level can be used to reduce a FANOUT-key for each FANOUT-gate on that level.
Now, the following question arises: if the maximum fan-out of the FANOUT-gates on some

14

level is α, is there any way to associate α FANOUT-level-keys to that level and remove
all FANOUT-keys of all FANOUT-gates on the level? If this can be done, then the size
of the decryption key would be cr, where r is the number of FANOUT-levels and c is the
maximum fan-out of all FANOUT-gates in the circuit.

References

1. Mihir Bellare, Viet Tung Hoang, and Phillip Rogaway. Foundations of garbled circuits. In Proceedings
of the 2012 ACM Conference on Computer and Communications Security, CCS ’12, pages 784–796, New
York, NY, USA, 2012. ACM.

2. John Bethencourt, Amit Sahai, and Brent Waters. Ciphertext-policy attribute-based encryption. In
IEEE Symposium on Security and Privacy, S&P 2007, pages 321–334. IEEE Computer Society, 2007.

3. Dan Boneh, Valeria Nikolaenko, and Gil Segev. Attribute-based encryption for arithmetic circuits. IACR
Cryptology ePrint Archive, 2013, 2013.

4. Jean-Sbastien Coron, Tancrde Lepoint, and Mehdi Tibouchi. Practical multilinear maps over the inte-
gers. In Ran Canetti and Juan A. Garay, editors, Advances in Cryptology CRYPTO 2013, volume 8042
of Lecture Notes in Computer Science, pages 476–493. Springer Berlin Heidelberg, 2013.

5. Sanjam Garg, Craig Gentry, and Shai Halevi. Candidate multilinear maps from ideal lattices. In Thomas
Johansson and Phong Q. Nguyen, editors, EUROCRYPT, volume 7881 of Lecture Notes in Computer
Science, pages 1–17. Springer, 2013. Preprint on IACR ePrint 2012/610.

6. Sanjam Garg, Craig Gentry, Shai Halevi, Amit Sahai, and Brent Waters. Attribute-based encryption
for circuits from multilinear maps. In Ran Canetti and JuanA. Garay, editors, Advances in Cryptology
CRYPTO 2013, volume 8043 of Lecture Notes in Computer Science, pages 479–499. Springer Berlin
Heidelberg, 2013. Preprint on IACR ePrint 2013/128.

7. Sergey Gorbunov, Vinod Vaikuntanathan, and Hoeteck Wee. Attribute-based encryption for circuits.
In Dan Boneh, Tim Roughgarden, and Joan Feigenbaum, editors, STOC, pages 545–554. ACM, 2013.
Preprint on IACR ePrint 2013/337.

8. Vipul Goyal, Omkant Pandey, Amit Sahai, and Brent Waters. Attribute-based encryption for fine-
grained access control of encypted data. In ACM Conference on Computer and Communications Secu-
rity, pages 89–98. ACM, 2006. Preprint on IACR ePrint 2006/309.

9. Rafail Ostrovsky, Amit Sahai, and Brent Waters. Attribute-based encryption with non-monotonic access
structures. In ACM Conference on Computer and Communications Security, pages 195–203. ACM, 2007.
Preprint on IACR ePrint 2007/323.

10. Amit Sahai and Brent Waters. Fuzzy identity-based encryption. In Ronald Cramer, editor, EURO-
CRYPT, volume 3494 of Lecture Notes in Computer Science, pages 457–473. Springer, 2005.

11. Adi Shamir. Identity-based cryptosystems and signature schemes. In Proceedings of CRYPTO 84 on
Advances in cryptology, pages 47–53, New York, NY, USA, 1985. Springer-Verlag New York, Inc.

12. Douglas R. Stinson. Cryptography: Theory and Practice. Chapman and Hall/CRC, 3 edition, 2005.

15

Appendix

In this appendix to prove the security of our KP-ABE Scheme.

Theorem 2. The KP-ABE Scheme is secure in the selective model under the decisional
MDH assumption.

Proof. It is sufficient to prove that for any adversary A with an advantage η in the selective
game for KP-ABE Scheme, a PPT algorithm B can be defined, with the advantage η/2
over the decisional MDH problem. The algorithm B plays the role of challenger for A in the
selective game for KP-ABE Scheme. Taking into account that

1. any leveled multilinear map {ei,j |i, j ≥ 1, i+ j ≤ k} includes a chained multilinear map
(ei,1|1 ≤ i < k);

2. if some PPT algorithm can decide the decisional MDH problem with chained multilinear
map instances then it can decide, with at least the same advantage, the decisional MDH
problem with leveled multilinear map instances,

we conclude that it is sufficient to give the algorithm B a chained multilinear map instance
of the decisional MDH problem consisting of r+2 multiplicative groups G1, . . . , Gr+2 of the
same prime order p, r+2 generators g1, . . . , gr+2 of these groups, respectively, r+1 bilinear
maps ei : Gi × G1 → Gi+1 such that ei(g

a
i , g

b
1) = gabi+1 for all 1 ≤ i ≤ r + 1 and a, b ∈ Zp,

and the values gs1, gc11 , . . . , g
cr+2

1 , Z0 = g
sc1···cr+2

r+2 , and Z1 = gzr+2, where s, c1, . . . , cr+2, z are
chosen uniformly at random from Zp.

Now, the algorithm B runs A acting as a challenger for it.

Init Let A be a non-empty set of attributes the adversary A wishes to be challenged upon.

Setup B chooses at random ri ∈ Zp for all i ∈ U , and computes Y = g
c1···cr+2

r+2 and Ti = gti1
for all i ∈ U , where

ti =

{
ri, if i ∈ A
c2ri, otherwise

(B can compute Y by using gc11 , . . . , g
cr+2

1 and e1, . . . , er+1, as well as Ti by using ri and
gc21). Then, B publishes the public parameters

PP = (n, r, p,G1, . . . , Gr+2, g1, e1, . . . , er+1, Y, (Ti|i ∈ U))

The choice of Ti in this way will be transparent in the next step.

Phase 1 The adversary is granted oracle access to the decryption key generation oracle for
all queries C with n input wires and r FANOUT-levels and C(A) = 0. Given such a query,
the decryption key is computed by the following general methodology. First, the algorithm B
uses a procedure FakeShare which shares gc11 by taking into account a set A of attributes
and using FANOUT-level-keys based on gc31 , . . . , g

cr+2

1 . Then, B delivers decryption keys
based on gc21 . Two requirements are to be fulfilled:

1. from the adversary’s point of view, the secret sharing and distribution of decryption
keys should look as in the original scheme;

2. the reconstruction procedureRecon, starting from the decryption keys and an authorized
set of attributes, should return g

c1···cr+2s
r+2 .

16

In order to describe the procedure FakeShare we adopt the following notation: given a
wire w of C, denote by Cw(A) the truth value at w when the circuit C is evaluated for A.
The main idea in FakeShare is the following:

1. if the output wire w of a logic gate Γ = (w1, w2, X,w) satisfies Cw(A) = 0, where X
stands for “OR” or “AND”, then the value to be shared at this wire is of the form gx1 ,
for some x ∈ Zp; otherwise, the value to be shared at this wire is an element x ∈ Zp;

2. the shares obtained by sharing the value associated to w, and distributed to the input
wires of Γ , should satisfy the same constraints as above. For instance, if Cw1(A) = 0
and Cw2(A) = 1, then the share distributed to w1 should be of the form gx11 while the
share distributed to w2 should be of the form x2;

3. the same policy applies to FANOUT-gates as well.

The procedure FakeShare is as follows (for the sake of simplicity we adopt the conven-
tion ai1 · · · aiu = 1 = a−1i1 · · · a

−1
iu

whenever i1 · · · iu is the empty sequence):

FakeShare(gc11 , g
c3
1 . . . , g

cr+2

1 , C, A)

1. Initially, all gates of C are unmarked;
2. Assuming that the FANOUT-levels in C are h1 < · · · < hr, we denote cj by c′hj−2

,
for all 3 ≤ j ≤ r + 2. The aim of this notation is just technical, in order to have a
correspondence between the c’s and the FANOUT-levels (see below).
Now, for each FANOUT-level i, 0 ≤ i < depth(C) − 2, choose uniformly at random

ai ∈ Zp and assign L(i) := g
aic
′
i

1 ;
3. S(o) := gc11 ;
4. If Γ = (w1, w2, OR,w) is an unmarked OR-gate and S(w) was defined, then mark Γ

and do the followings:
(a) compute i1 · · · iu and j1 · · · jv the left and right FANOUT-level sequences of Γ , re-

spectively;

(b) if Cw(A) = Cw1(A) = Cw2(A) = 0, then S(w1) := S(w)
a−1
i1
···a−1

iu and S(w2) :=

S(w)
a−1
j1
···a−1

jv ;
(c) if Cw(A) = Cw1(A) = Cw2(A) = 1, then S(w1) := S(w) · a−1i1 · · · a

−1
iu

and S(w2) :=

S(w) · a−1j1 · · · a
−1
jv

;

(d) if Cw(A) = 1 = Cw1(A) and Cw2(A) = 0, then S(w1) := S(w) · a−1i1 · · · a
−1
iu

and

S(w2) := g
S(w)·a−1

j1
···a−1

jv

1 ;

(e) if Cw(A) = 1 = Cw2(A) and Cw1(A) = 0, then S(w1) := g
S(w)·a−1

i1
···a−1

iu

1 and S(w2) :=
S(w) · a−1j1 · · · a

−1
jv

.
Remark that S(w) ∈ Zp in the cases (c), (d), and (e);

5. If Γ = (w1, w2, AND,w) is an unmarked AND-gate and S(w) was defined, then mark
Γ and do the followings:
(a) compute i1 · · · iu the left FANOUT-level sequence of Γ and j1 · · · jv the right FANOUT-

level sequence of Γ ;
(b) choose x1 uniformly at random from Zp;
(c) if Cw(A) = 1, then:

i. compute x2 such that

S(w) = (x1ai1 · · · aiu + x2aj1 · · · ajv) mod p;

17

ii. assign S(w1) := x1 and S(w2) := x2;

(d) if Cw(A) = 0 = Cw2(A) and Cw1(A) = 1 then assign S(w1) := x1 and

S(w2) =
(
S(w)/g

x1ai1 ···aiu
1

)a−1
j1
···a−1

jv

(e) if Cw(A) = 0 = Cw1(A) and Cw2(A) = 1 then do as above by switching w1 and w2;

(f) if Cw(A) = Cw1(A) = Cw2(A) = 0 then S(w1) := gx11 and S(w2) is computed as in
the case (d);

6. If Γ = (w,FANOUT,w1, . . . , wj) is an unmarked FANOUT-gate and S(wi) was defined
for all 1 ≤ i ≤ j, then mark Γ and do the followings:

(a) choose uniformly at random x ∈ Zp;
(b) if Cw(A) = Cw1(A) = · · · = Cwj (A) = 1 then S(w) := x and

P (wi) := g
c′
level(Γ)

S(wi)x
−1

1

for all 1 ≤ i ≤ j;
(c) if Cw(A) = Cw1(A) = · · · = Cwj (A) = 0 then S(w) := g

c′
level(Γ)

x

1 and P (wi) :=

S(wi)
x−1

, for all 1 ≤ i ≤ j;
7. repeat the last three steps above until all gates get marked.

Let (S, P, L)← FakeShare(gc11 , g
c3
1 , . . . , g

cr+2

1 , C, A). The algorithm B delivers to A the
decryption key D = ((D(i)|i ∈ U), P, L), where

D(i) =

 (gc21)S(i)/ri , if i ∈ A

S(i)1/ri , if i 6∈ A

for any i ∈ U . The key component D(i) is of the form g
yi/ri
1 = g

c2yi/c2ri
1 for all i 6∈ A (for

some yi ∈ Zp) because the shares of i 6∈ A are all powers of g1 (remark that Ci(A) = 0).

The distribution of this decryption key is identical to that in the original scheme.
Moreover, it is straightforward to see that the reconstruction procedure Recon, applied

to VA(i) = g
S(i)c2s
2 for all i ∈ A, where A is an authorized set, returns g

c1···cr+2s
r+2 . Indeed,

in the reconstruction process each FANOUT-level hj changes the generator (by applying
a bilinear map) and multiplies the exponent by c′hj . As c3 · · · cr+2 = c′h1 · · · c

′
hr

, the claim
follows.

Challenge The adversary A selects two messages m0 and m1 (of the same length) and sends
them to B. The algorithm B encrypts mu with Zv, where u← {0, 1}, and sends it back to
the adversary (recall that Zv was randomly chosen from {Z0, Z1}). The ciphertext is

E = (A,E′ = muZv, {Ei = T si = gsri1 }i∈A)

If v = 0, E is a valid encryption of mu; if v = 1, E′ is a random element from G2.

Phase 2 The adversary may receive again oracle access to the decryption key generation
oracle (with the same constraint as in Phase 1).

18

Guess Let u′ be the guess of A. If u′ = u, then B outputs v′ = 0; otherwise, it outputs
v′ = 1.

We compute now the advantage of B. Clearly,

P (v′ = v)− 1

2
= P (v′ = v|v = 0) · P (v = 0) + P (v′ = v|v = 1) · P (v = 1)− 1

2

Both P (v = 0) and P (v = 1) are 1/2. Then, remark that

P (v′ = v|v = 0) = P (u′ = u|v = 0) =
1

2
+ η

and P (v′ = v|v = 1) = P (u′ 6= u|v = 1) = 1
2 . Putting all together we obtain that the

advantage of B is P (v′ = v)− 1
2 = 1

2η. ut

19

