
Providing Root of Trust for ARM TrustZone using On-Chip
SRAM

Shijun Zhao
TCA Laboratory, ISCAS
zqyzsj@gmail.com

Qianying Zhang
TCA Laboratory, ISCAS

zhangqy@tca.iscas.ac.cn

Guangyao Hu
Beijing Vion Technology, Inc

guangyaohu@gmail.com
Yu Qin

TCA Laboratory, ISCAS
qin_yu@tca.iscas.ac.cn

Dengguo Feng
TCA Laboratory, ISCAS

fengdengguo@tca.iscas.ac.cn

Abstract
We present the design, implementation and evaluation of
the root of trust for the Trusted Execution Environment
(TEE) provided by ARM TrustZone based on the on-chip
SRAM Physical Unclonable Functions (PUFs). We first im-
plement a building block which provides the foundations
for the root of trust: secure key storage and truly random
source. The building block doesn’t require on or off-chip
secure non-volatile memory to store secrets, but provides a
high-level security: resistance to physical attackers capable
of controlling all external interfaces of the system on chip
(SoC). Based on the building block, we build the root of
trust consisting of seal/unseal primitives for secure services
running in the TEE, and a software-only TPM service run-
ning in the TEE which provides rich TPM functionalities for
the rich OS running in the normal world of TrustZone. The
root of trust resists software attackers capable of compro-
mising the entire rich OS. Besides, both the building block
and the root of trust run on the powerful ARM processor. In
one word, we leverage the on-chip SRAM, commonly avail-
able on mobile devices, to achieve a low-cost, secure, and
efficient design of the root of trust.

Categories and Subject Descriptors
K.6.5 [Management of Computing and Information
Systems]: Security and Protection

Keywords
TrustZone; Trusted Execution Environment; TPM Service;
Root of Trust; on-chip SRAM

1. INTRODUCTION
Mobile devices are offering more and more functionalities,
some of which are security-critical, such as e-commerce and
banking. Modern mobile OSes are usually equipped with
sandbox mechanisms [1, 2, 16] to prevent malicious appli-

cations illegally gaining access to sensitive data or compro-
mising other applications, i.e., provides a Trusted Execution
Environment (TEE) for mobile applications. However, mod-
ern mobile OSes, i.e., the Trusted Computing Base (TCB)
that mobile applications rely on, are so complex that it is
difficult to ensure the absence of vulnerabilities which hack-
ers can exploit to gain control of OSes and then disable their
sandbox mechanisms. Thus, it’s far from trivial to provide
a TEE for mobile applications.

To address this problem, design of trusted systems providing
TEEs for sensitive-critical application code with small TCBs
is introduced. Such design can minimize potential security
vulnerabilities of TCBs which help attackers to compromise
systems. To this end, mainstream CPU designers and manu-
factures introduce new hardware primitives to their architec-
tures. Intel and AMD propose the late launch technology
by extending the x86 instruction set with their respective
Trusted eXecution Technology (TXT) [32] and Secure Vir-
tual Machine (SVM) [3] initiatives, which allows a software
module running in an environment isolated from the entire
OS. Some famous trusted systems have been implemented
based on the late launch technology, such as Flicker [46] and
TrustVisor [45]. ARM presents TrustZone technology [4],
which enables secure services to run in the “secure world”
of the processor. Several trusted systems for mobile devices
have been implemented leveraging ARM TrustZone tech-
nology, such as Nokia’s On-board Credentials [20, 34], Sier-
raware’s SierraTEE [57], and TOPPERS Project’s SafeG
[55].

Actually, a CPU with late launch or TrustZone security ex-
tensions only provides an “isolated” execution environment,
but not a “trusted” one since it can’t attest to the user or an
external verifier that the software running inside the envi-
ronment is untampered and trustworthy. At present, the
state-of-the-art for attestation is to compute a signature
with an attestation key over the software’s measurement,
and the software’s measurement and the attestation key are
securely stored by the root of trust. Thus, the root of trust
provides a way to establish trust in the execution environ-
ment. So only an isolated execution environment equipped
with a root of trust is a real “trusted”execution environment
(TEE).

Both Intel and AMD specify the TPM [63] as the root of

trust for late launch. Once the late launch instruction is trig-
gered, the software component that will run in the hardware-
protected environment is atomically measured to the TPM.
After that, an attestation identity key of the TPM attests
the identity of the software component to an external verifier
by signing the measurement. However, ARM doesn’t spec-
ify the root of trust for TrustZone. Current trusted systems
and security services [20, 34, 56, 15, 39] based on TrustZone
usually assume the availability of a unique device key which
is accessible only inside the secure world of TrustZone, and
use the device key to serve as the root of trust. Unfortu-
nately, such device keys are not always available on mobile
devices. For example, Nuno Santos et al. designed a trusted
language runtime [56] which required a device key to serve
as the platform identity. They implemented a prototype on
Nvidia’s Tegra 250 Dev Kit. However, this platform is not
equipped with such a device key. So they had to hard-coding
a software key in their implementation.

The device key should be stored securely and available after
a reboot. After making a survey on popular TrustZone-
enabled development platforms equipped with device keys
(Xilinx Zynq-7000 All Programmable SoC, Samsang ExynosTM

5 SoC, FreeScale i.MX53, and OMAPTM 3, 4 SoC fami-
lies), we find that current secure key storage mechanisms
for device keys usually rely on the Battery-backed RAM
(BBRAM) or eFuse technology. However, the way of using
these secure key storage mechanisms to provide a root of
trust has the following disadvantages:

1. The BBRAM mechanism requires a battery in order
to provide persistent storage across reboot. This ap-
proach induces additional cost and requires physical
room to add a battery.

2. The eFuse mechanism is inflexible. The eFuse technol-
ogy is a one-time programmable memory, and once the
device key has been designed into the IC it can never
be changed again. However, key update is desirable in
practice. For example, many mobile systems use reg-
ular key updates to prevent side-channel attacks [33,
38], and users can improve their security level by up-
dating their device key to a larger one.

3. These mechanisms only provides secure key storage,
and they are not sufficient to serve as a root of trust.
Building the root of trust in mobile devices requires
a secure random number generator (RNG). For ex-
ample, RNG is necessary for generating attestation
identity keys. Thus, in order to build their roots of
trust, mobile devices should be equipped with hard-
ware RNGs, which add product cost. However, to the
best of our knowledge, not all devices implement a
hardware RNG, such as Zynq-7000 AP SoC.

In this paper, we use a promising technology, SRAM PUFs,
to overcome above disadvantages. First, we build a building
block in the secure on-chip memory (OCM) which provides
the foundations for a root of trust:

• A primary seed extracted by a fuzzy extractor from
the start-up value of the on-chip SRAM. The primary

seed is the root of the secure storage as we use it to
derive the unique device key.

• A truly random seed extracted from the noise con-
tained in the start-up value of the on-chip SRAM. The
random seed is used to build a secure RNG for the se-
cure OS.

Besides, the building block also provides secure boot of the
secure OS and secure services running inside the secure world
of TrustZone. The secure boot process is mandatory for
TrustZone as the image of the secure OS and secure services
is loaded from non-secure persistent storage such as flash or
SD cards, which can be easily tampered by malicious appli-
cations in the normal world. Different from current mecha-
nisms providing roots of trust, our approach doesn’t require
persistent secure key storage and a hardware RNG, but only
a few kilos on-chip SRAM, which is available on commodity
ARM platforms. Our approach also features flexibility for
key updates as it is easy for the fuzzy extractor to replace
the primary seed with a new one which can derive a new
device key. Besides requiring no secure hardware resources
such as BBRAM or eFuse, the building block achieves high
security: it resists physical attackers capable of controlling
all the interfaces of the SoC in the platform.

Then, we provide the root of trust for secure services and
the rich mobile OS by leveraging the device key pair derived
from the primary seed:

• We leverage the device key to provide seal and unseal
primitives for secure services, which ensure that only
the specified secure service and platform can access
user data and can also be used to store critical data
by secure services. The seal/unseal primitives implic-
itly attest to the user the state of the platform and
the secure service, and can provide secure storage for
secure services. Thus, the seal/unseal primitives can
be seen as the root of trust for secure services.

• We integrate a software-only TPM service into the se-
cure world of TrustZone, and use the device key as the
Endorsement Key (EK) of the TPM service. The TPM
service serves as the root of trust for the rich mobile
OS running in the normal world.

The root of trust, i.e., the seal and unseal primitives and
the TPM service, is implemented in the secure region of the
main memory of the device. We don’t implement the root
of trust in the OCM for the reason that the size of OCM is
quite limited. The isolation provided by TrustZone protects
the root of trust from software attacks from the mobile OS.
For the root of trust, we don’t consider physical attacks such
as physical tampering the main memory of the device as this
kind of attacks falls outside of the protection capabilities of
TrustZone.

Finally, we implement above design on real TrustZone hard-
ware, and present a thorough evaluation of our implemen-
tation, including the TCB size, a quantitative analysis of
the SRAM PUF, randomness tests on the secure RNG, and
performance of the root of trust. The results show that the

Secure OS

...Application Application ...

GP TEE Client API

TrustZone Driver

Secure

Service

Secure

Service

Monitor

SMC

SMC

Normal World Secure World

Figure 1: TrustZone Overview

SRAM PUF is secure and unique enough to provide the trust
anchor for mobile devices, and can provide foundations for
the root of trust by adding only 3.2K lines of code to the
TCB. The performance evaluation shows the root of trust is
very efficient.

2. BACKGROUND
This section describes ARM TrustZone, the on-chip memory,
PUF, fuzzy extractor and truly random number generation
(TRNG), which are the key technologies used in our design.

2.1 ARM TrustZone
TrustZone is a set of hardware security extensions to ARM
SoC covering the processor, memory, and peripherals [9].
TrustZone Address Space Controllers (TZASC) can parti-
tion DRAM into distinct memory regions, and designate a
memory region as secure or normal. TrustZone Memory
Adapters (TZMA) provide a similar functionality for the
OCM. TrustZone-aware DMA controllers prevent a periph-
eral assigned to the normal world from performing a DMA
transfer to or from the secure world memory. TrustZone
Protection Controllers (TZPC) can configure peripherals to
be secure or normal. These isolation mechanisms partition
all of the SoC’s hardware resources into two worlds: the se-
cure world and the normal world. The world in which the
processor is executing is indicated by an NS bit, which is
propagated through the system bus. The TrustZone-enabled
bus fabric ensures that no secure world resources can be ac-
cessed by normal world components.

System designers can leverage TrustZone to run a small se-
cure OS and some secure services in the secure world, and
run untrusted software in the normal world. The secure OS
manages secure hardware sources, and dispatches the secure
services. Usually the secure services are security-sensitive
code, and the untrusted software is full blown mobile oper-
ating systems such as iOS, Android, and Windows 8. As
the processor only runs in one world at a time, to run in the
other world requires context switch. This is done via a spe-
cial instruction called the Secure Monitor Call (smc). When
the smc instruction is triggered, the processor switches into a
monitor mode which performs the context switch and allows
messages exchange between the two worlds. In order to fa-
cilitate an application in the normal world to connect to and
invoke a secure service in the secure world, the GlobalPlat-
form consortium develops the TEE client API specification
[24], see Figure 1.

Figure 2: Fuzzy Extractor Overview

2.2 On-Chip Memory
Mobile devices are SoC based. The OCM of an SoC com-
monly consists of BootROM and SRAM. The BootROM
stores the initial boot code when the platform is powered
up, which loads a bootloader into the SRAM from external
non-volatile memory such as flash or SD cards. In order to
establish a chain of trust, the BootROM needs to authenti-
cate the bootloader.

The on-chip SRAM is very fast memory in the SoC and con-
nects the processor via internal connection buses. Since the
on-chip SRAM has no address or data lines at device pins, it
is secure against physical attackers capable of controlling all
the external interfaces of the SoC. In a TrustZone-enabled
SoC, the on-chip SRAM can be isolated from the mobile OS,
thus it’s also capable of resisting software attacks. However,
the on-chip SRAM is quite limited, usually only dozens or
hundreds of kilobytes. That’s why we only implement the
building block in the OCM, and put the root of trust in the
main memory.

2.3 PUF, Fuzzy Extractor, and TRNG
The concept of PUFs is first introduced by Pappu et al.
[50, 51], which describes such hardware components that
when evaluated by a stimulus (challenge) they provide a
noisy response that depends on manufacturing process vari-
ations of the hardware components. Since the introduction,
many types of PUFs have been proposed in the literature,
e.g. optical PUFs [50], Silicon PUFs [22, 23], Coating PUFs
[66], Ring Oscillator PUFs [60], reconfigurable PUFs [36,
19], SRAM PUFs [27, 29], Butterfly PUFs [35], Flip-Flop
PUFs [40], Buskeeper PUFs [58], and Flash memory-based
PUFs [69].

PUFs should satisfy both high robustness and uniqueness.
The high robustness means that when a PUF is evaluated
by the same challenge over and over again it should pro-
duce responses up to a limited amount of noise. The high
uniqueness means that the responses of different PUFs to
the same challenge should be independent. These two prop-
erties enable each PUF to extract a reliable and unique key
by applying a fuzzy extractor introduced by Linnartz et al.
[37] (as shielding function) and Dodis et al. [18]. PUFs to-
gether with fuzzy extractors present an efficient approach
for secure key storage: it directly extracts secure keys from
responses of PUFs, eliminating the need for storing keys on
secure non-volatile memory. This approach reduces hard-
ware attack surfaces as keys are not present when devices
are powered off, and resists clone attacks as PUFs are phys-
ically unclonable.

Up to now, many fuzzy extractor implementations have been

proposed [14, 13, 41, 42, 67, 43]. A fuzzy extractor con-
sists of a pair of procedures, generate (Gen) and reproduce
(Rep), see Figure 2. The Gen procedure extracts a key
k from the PUF’s response r and generates a helper data
H which is not sensitive. The Rep procedure reproduces k
from a noisy response r′ under the help of H. The key k
is randomly chosen by the owner or the issuer of the PUF
during the Gen procedure, so it is easy to bind a new key
k′ to the PUF by running Gen again and obtaining a new
helper data H ′. This feature makes it easy to perform key
update mechanisms.

Another application area of PUFs is truly random number
generation (TRNG). Take SRAM PUFs for example, part of
the SRAM cell bits show noisy behaviour, and the entropy in
these noisy bits can be leveraged for random number gener-
ation. Several solutions [30, 61, 69, 68] have been proposed
in the literature.

Recently, invasive attacks on PUFs and SRAM PUFs in par-
ticular have been proposed [28, 49]. However, SRAM PUFs
reach at least the same security level as the conventional
mechanisms for secure storage, which are inherently suscep-
tible to such invasive attacks as memory contents are re-
tained even when the IC is no longer powered on. Moreover,
such invasive attacks on SRAM PUFs require expensive lab-
oratory equipment and the cost is high, so it’s uneconomical
for attackers to only obtain a device unique secret. Some
potential countermeasures [28, 49] against invasive attacks
on SRAM PUFs are proposed, and SRAM PUFs are still a
promising technology.

3. ADVERSARY MODELS AND DESIGN
PROPERTIES

3.1 Adversary Models
We distinguish between an adversary against the building
block and an adversary against the root of trust. The former
is stronger than the later as it is able to mount some physical
attacks.

Adversary Model for the Building Block. We assume
a sophisticated adversary with physical access to all exter-
nal interfaces of the SoC. In particular, the adversary can
compromise all software running in the normal world such
as applications and the mobile OS, and he can physically
attach malicious peripherals such as DDR memory devices
and even DMA-capable devices to the SoC as he has access
to external interfaces of the SoC. We don’t consider side-
channel attacks and sophisticated hardware attacks, such as
monitoring the high-speed internal buses in SoC using mi-
croscopic logic probes and extracting the contents of SRAM
at startup by laser stimulation analysis.

Adversary Model for the Root of Trust. The adver-
sary against the root of trust is a strong software attacker.
He can compromise the mobile OS and have access to the in-
terfaces of the root of trust, which is provided to the mobile
OS through TrustZone mechanisms. However, the adversary
cannot launch physical attacks on the root of trust which are
outside of the scope of the protection provided by TrustZone
technology [8].

TDDI
TrustZone

Driver
Unique Device
Key and RNG

Seal/Unseal
Primitives

TSS

Applications

Hardware Platform Building Block

On-Chip SRAM

PS TRS

TPM
Service

Secure

Services

Rich OS

Secure

Services

Normal World TrustZone TEE

GP TEE Client API Secure OS

Figure 3: Architecture of our Design

3.2 Design Properties
We describe the desired properties for our design.

1. Secure. The root of secure storage for the root of
trust, i.e., the primary seed, should resist physical at-
tacks. This guarantees that even if the device is at-
tacked by a physical attacker, we can deploy a new and
secure root of trust for the device. The root of trust
should be completely isolated from untrusted software
such as the mobile OS, and provide trusted comput-
ing functionalities for both the mobile OS and secure
services.

2. Efficient. The root of trust should run on the power-
ful ARM processor, so as to provide high performance
compared to the hardware root of trust, whose com-
puting power might be very limited. Take the TPM
1.2 chip for example, it only operates at 33M Hz, which
makes it a bottleneck for many security schemes and
renders it impractical for use in situations with de-
manding performance requirements.

3. Economical. No requirements for hardware-based se-
cure storage (e.g., secure non-volatile memory) and the
hardware RNG, which decreases manufacturing cost
and complexity of mobile devices.

4. Flexible. The unique device key should be updated
easily even after the device has left the production fa-
cility. This property makes it easy to replace the root
of trust when the device is corrupted by physical at-
tackers, and to adopt key update mechanisms to pre-
vent side-channel attacks.

4. DESIGN
The goal of this work is to provide the root of trust for
TrustZone-enabled platforms in an economical and flexible
way, which allows a designer to develop a TEE to provide
trusted computing functionalities (for secure services and
the mobile OS) with no need for additional security hard-
ware resources, and allows the device owner to re-deploy
the root of trust after the device is corrupted by physical

PS

Randomly Select

On-Chip SRAM

Start up Values

BCH

Decoder

Helper Data H

Entropy

Extractor
RNG

Root of Trust

On-Chip SRAM

Start up Values

KG

Generate Procedure (Manufacturer)

Building Block

PS

BCH Encoder

Code C

Code C’

Helper Data H

Device Key

Device Key

TRS

Reproduce Procedure

r

r'

Cert

KDF k

KG

KDF k

Figure 4: The Generate Procedure and Building
Block

attacks. We further seek to establish a chain of trust from
the root of trust to the normal world, which enables to boot
a clean mobile OS for the normal world. Figure 3 illustrates
the detailed architecture of our design, which consists of the
following components: the building block, the secure RNG,
the seal and unseal primitives for secure services, the TPM
service, and a TPM device driver interface (TDDI) providing
user-friendly interfaces of the TPM service. The following
gives a brief introduction of these components.

The primary goal of the building block is to provide the
foundations for building a root of trust: a primary seed
(PS) and a truly random seed (TRS) extracted from the
start-up values of the on-chip SRAM cells. The building
block also provides secure boot for the secure OS and se-
cure services. Secure boot is important for the secure OS
and secure services, as their image is stored in external non-
volatile memory which is subject to attacks. As the building
block resides in the secure on-chip SRAM, it achieves a high
security level: resistance against simple physical attacks on
the SoC.

Besides securely booting the secure OS, the building block
transfers the TRS and the unique device key derived from
the PS to the secure OS. Based on the unique device key
and the TRS, the secure OS builds the root of trust for
both secure services and the rich OS: the seal/unseal prim-
itives providing implicit attestation mechanism and secure
storage for secure services in the TEE, and the TPM ser-
vice which provides rich trusted computing functionalities
for the normal world. To facilitate the use of the TPM ser-
vice, a kernel module called TDDI simulating a hardware
TPM driver interface is provided in the normal world.

4.1 Building Block in OCM

The building block consists of the reproduce procedure of
a fuzzy extractor and a truly random number (TRN) ex-
tractor which extract a primary seed PS and a truly ran-
dom seed TRS respectively from the on-chip SRAM start-
up value. The PS is associated with the device during the
generate procedure of the fuzzy extractor. Figure 4 illus-
trates the generate procedure, which is performed by the
manufacturer, and the building block, which consists of the
reproduce procedure of the fuzzy extractor and the entropy
extractor.

4.1.1 Generate Procedure
This procedure is run by the manufacturer while the device
is in the production facility. It takes as input the on-chip
SRAM start-up value r (r is a binary string consisting of
start-up values of SRAM cells), then performs the following
steps:

1. Receive a large value PS which is randomly selected by
the manufacturer, then encode PS with the BCH error
correction code to obtain a code C = BCHEnc(PS).

2. The code C is XOR-ed with r to create the helper
data H , which can be stored in insecure non-volatile
memory of the device and will be used to reproduce the
same primary seed PS during the reproduce procedure.

3. The PS is transferred to a key derivation function
(KDF) and a deterministic key generation (KG) al-
gorithm, which will generate a symmetric key k and
a unique public/private key pair (pk, sk) respectively.
The symmetric key protects the secrecy of the secure
OS (including secure services) by encrypting its image,
and the encrypted image is stored on the device. The
manufacture also issues a certificate Certpk by signing
pk, the standard measurements of the building block
and the image of the secure OS. The two measurements
will be used to build a chain of trust on this device.

4. Finally, the manufacturer stores the helper data H, the
encrypted secure OS, and Certpk in the non-volatile
memory of the device.

In this phase, the device manufacturer implicitly embed the
primary seed PS into the device. Here the“implicitly”means
that the primary seed is not physically stored on the device,
but can be re-generated during runtime. The manufacturer
also issues a certificate for the unique device key derived
from PS .

4.1.2 Reproduce Procedure of the Building Block
This procedure takes as input the on-chip SRAM start-up
value r′ (measured and transferred by the BootROM, which
is the first code running on the device after powered on).
SRAM is a kind of PUF, and its start-up value is noisy
because of the manufacturing process variations, so r′ is a
noisy variant of the initial SRAM start-up value r. Thus
the BCH error correction code is used to eliminate the noise.
The reproduce procedure first XORs r′ with the helper data
H to generate a noisy BCH code C′ = r′⊕H . Then code C′

is transferred to the BCH decoder, which eliminates noise
and generates the same PS that the manufacturer selects

during the generate procedure. Finally, the symmetric key
k used to decrypt the secure OS and the unique device key
are derived from PS .

4.1.3 Entropy Extractor of the Building Block
As not all SRAM start-up bit cells are noisy, we need an en-
tropy extractor to condense the entropy in the noisy SRAM
start-up bits. We use the randomness extractor proposed
by [17], which stands for the state-of-the-art secure RNG
construction, as our entropy extractor to produce a truly
random seed TRS full of entropy. The TRS will be given
to the root of trust, who will build a RNG by feeding TRS
to a cryptographic pseudo-random generator such as AES
block cipher in counter mode. Let η be the output length
of our entropy extractor, i.e., the length of TRS , h be the
min-entropy of SRAM start-up value, and I be an SRAM
start-up binary string. According to the construction of the
entropy extractor proposed in [17], accumulating n bits en-
tropy to the TRS requires at least dη/he SRAM bits. As
the seed in our construction also requires η SRAM start-up
bits, the length of I is at least dη/he+η. The pseudocode of
our concrete construction is showed in Algorithm 1. To fix
the parameter h and thus determine the amount of SRAM
bits required by the entropy extractor, we estimate the min-
entropy of SRAM start-up value in Section 6.3.

Algorithm 1 Entropy Extractor

INPUT: I, η, h
OUTPUT: TRS
1: TRS ← 1η

2: seed← Read first η bits from I
3: for i = 0→ dη/he do
4: T ← Read next η bits from I
5: TRS = TRS ·seed+T , where · and + are operations

over the field F2η .
6: end for
7: return TRS

4.2 Root of Trust in Main Memory
We first show our construction of the secure RNG following
the instructions of [17]. Let || denote the concatenation of
two stings, [S]l1 denote the first l bits of S. Our construction
leverages AES function in counter mode as shown in Algo-
rithm 2. Based on the unique device key pair (sk, pk) and
the secure RNG, we design the seal and unseal primitives
and the secure TPM service.

Algorithm 2 Random Number Generator

INPUT: TRS
OUTPUT: A random number R
1: X ← 1η

2: Set state S ← TRS
3: k = [X · S]2561

4: (k′, R) = (AESk(0)||AESk(1),AESk(2))
5: Set [S]2561 = k′

6: return R

4.2.1 The Simple Seal/Unseal Primitives
The simple seal and unseal primitives bind secure data with
both the platform and the particular secure service through
cryptographic encryption and hashing. A user seals his data

Building

Block
BootROM Secure OS Rich OS

(pk,sk)r

On-Chip SRAM Main Memory

Figure 5: The Chain of Trust

data to some secure service S running on some device D by
the following steps. The user first derives a symmetric key
from the code identity of S (the cryptographic hash over S’s
binary): ks = KDF(hash(S)), then encrypts data with ks to
get T = Encks(data), and finally encrypts T with the device
public key to get an encrypted blob B = Encpk(T). Unseal-
ing is the reverse: using D’s private key sk to decrypt B
to obtain the symmetrically encrypted blob T , deriving the
symmetric ks using the code identity of the secure service,
and finally decrypting data using the derived symmetric key.

As the user data is first encrypted by the key derived from
the secure service, and then is encrypted by the device key,
only the device possessing the device key and running the
legitimate secure service can obtain the user data. We will
show in Section 4.3 that only the platform running the legit-
imate secure OS can get the device key, so the seal/unseal
primitives guarantee that only platform in a secure state can
access the user data. In another word, the seal/unseal prim-
itives implicitly attest to users the state of the TEE, i.e., an
implicitly attestation mechanism. This mechanism can also
be used by secure services to store sensitive data.

4.2.2 TPM service
The TPM service provides rich trusted computing function-
alities for the mobile OS, such as secure storage, measure-
ment, and attestation. These functionalities can be used to
bootstrap a trusted mobile OS and further help the OS to
extend the chain of trust to applications, i.e., help the nor-
mal world run in a trusted state. We will give a detailed
description of the chain of trust from the BootROM to the
mobile OS in Section 4.3.

The TDDI facilitates the use of the TPM service by simu-
lating a hardware TPM driver interface [64], see Figure 3.
It forwards all commands to and receives responses from the
TPM service through the GP TEE Client API [24]. TDDI
makes the TPM service compatible with hardware TPMs at
very low level, so applications previously leveraging hard-
ware TPMs and the TCG Software Stack (TSS) such as
Trousers [72] and jTSS [65] can leverage the TPM service
without any modification.

4.3 Chain of Trust
Chain of trust is essential for TrustZone, as code running in
the secure world is stored in the insecure non-volatile storage
of the device, which is vulnerable to attacks from the normal
world. Establishing a chain of trust from the BootROM to
the mobile OS can protect the secrecy and integrity of the
code running inside the secure world, and ensure to boot a
trustworthy mobile OS. We now show how to build a chain
of trust under our design, see the boot flow under our design
in Figure 5.

When the device is powered up, the ARM processor runs in
the secure mode and immediately executes the immutable
code from the BootROM, which is laid down during chip
fabrication and implicitly trusted. The BootROM first ver-
ifies the integrity of the building block: this can be done
by measuring the image of the building block and using the
manufacturer public key to verify whether the measurement
is signed by the manufacturer1. Then the BootROM reads
the start-up value r of the on-chip SRAM, initializes the
on-chip SRAM and loads the building block into it. If the
integrity verification succeeds, the BootROM transfers r to
the building block and runs the building block in the on-chip
SRAM, else stops the startup.

The building block reproduces the primary seed PS by feed-
ing the SRAM start-up value r and the helper data H to the
reproduce procedure of the fuzzy extractor, and then derive
a symmetric key k and the unique device key pair (pk, sk)
from PS. The symmetric key k is used to decrypt the im-
age of the secure OS and secure services. Then the building
block checks the integrity of the image by verifying whether
the measurement of the image is signed by the manufac-
turer. If the verification succeeds, the building block loads
the image to the secure region of the main memory, trans-
fers (pk, sk) to the secure OS, and runs the secure OS, else
stops the startup. Before running the secure OS, the build-
ing block erases all the information in the on-chip memory,
in particular, the SRAM start-up value, the primary seed
and the symmetric key.

When the secure OS starts up, it initializes the services con-
tained in the image (including the TPM service). Then it
measures the image of the normal OS and extends the mea-
surement to Platform Configuration Registers (PCRs) of the
TPM service. Finally, the secure OS runs the normal OS.
The normal OS can continually extend the chain of trust
with the TPM service.

A Brief Security Analysis. The BootROM ensures the
integrity of the building block, the building block ensures
both the secrecy and integrity of the secure OS, and the
secure OS records the integrity of the normal OS. Thus, a
complete chain of trust is established since the power-up of
the device. Our design of the TPM service helps the normal
world to extend the chain of trust to applications just like
using a hardware TPM.

4.4 Key Update
A significant benefit of our design of the root of trust in
comparison with existing physical secure key storage mecha-
nisms is that our design enables to deploy flexible key update
mechanisms. We propose a key update protocol through
which the device owner can change his device key regularly.

Let x
$←− S denote assigning x a value uniformly chosen

from a set S, {0, 1}n denote the set of binary strings of
length n, η denote the security parameter, D be the de-
vice, M be the manufacturer. D has a unique device pub-
lic/private key pair (pk, sk), and the manufacture has a key

1It’s common for BootROM to provide the verification abil-
ity in devices supporting secure boot, such as the Zynq-7000
SoC [54] and iOS platforms [6].

1. M→ D: nonce
$←− {0, 1}η

2. D→ M: sig=SIGsk(nonce[, c])[, c]

3. M→ D: M first performs the following steps:

(a) Verify sig by VERpk(sig)

(b) Choose PS′
$←− {0, 1}η

(c) H ′ = r⊕BCHEnc(PS
′) where r is SRAM values

collected during the Gen procedure

(d) k′ = KDF(PS′[, c]), (pk′, sk′) = KG(PS′[, c])

(e) Blob′ = AESk′(imS)

(f) Certpk′ = SIGskM (pk′,Hash(imB),Hash(imS))

Finally, M sends (H ′, Blob′, Certpk′) to D.

4. D verifies Certpk′ , deletes previous
(H,Blob, Certpk), and stores (H ′, Blob′, Certpk′).

Figure 6: Key Update Protocol

pair (pkM , skM) for signing. We denote a signature scheme
by a triple (KG,SIG,VER) where KG is a key generation algo-
rithm, SIG is a signature algorithm, and VER is a verification
algorithm. We use imB and imS to denote the image of the
building block and secure OS respectively, and use c to de-
note a mono counter. We define the protocol in Figure 6,
the option fields between square brackets are used to resist
the downgrading attack which will be described later. Our
key update protocol can be summarized in 3 simple steps
(in the following description, the secure OS includes secure
services running in the secure world):

1. Verify the device (Step 1, 2, and 3.(a)): M sends to
D a random challenge nonce. D signs nonce with its
private device key and sends the signature to M. Then
M verifies the signature to check whether D possesses
a legitimate device key.

2. Bind new device key (Step 3.(b) to 3.(f)): This
step actually is a re-run of the generate procedure,
during which M implicitly embeds a new primary seed
PS′ into the device. In this step, M generates a new
helper data H ′, a new encrypted blob of the secure OS
using a new symmetric key k′ derived from PS′, and
a certificate binding the new device public key pk′ and
measurements of the building block and secure OS.

3. Deploy new device key (Step 4): D first verifies the
certificate Certpk′ using M’s public key pkM , and then
stores the triple (H ′, Blob′, Certpk′) in its non-volatile
storage. H ′ will be used to generate the new embed-
ded primary seed PS′ during the reproduce procedure,
which derives the new device key (pk′, sk′). Blob′ is
the encrypted image of the secure OS using the new
symmetric key k′. Certpk′ , containing the standard
measurement values of the building block and secure
OS, will help the device to establish a chain of trust.

When the device reboots after running the key update pro-
tocol, the building block will generate PS′ under the help of

the new helper data H ′. As PS′ is randomly selected by M
and independent from the previous device key (pk, sk), the
knowledge of the previous key doesn’t give the adversary
any help in corrupting PS′. So the new device key derived
from PS′ is secure. Our key update protocol doesn’t resist
downgrading attacks: an adversary can roll back the device
key to an old one by copying previous helper data and en-
crypted blob of the secure OS back to the device. However,
this attack can be easily prevented under the help of a se-
cure mono counter c, see Figure 6. Once running the key
update protocol, c is increased by 1, so the building block
cannot compute the previous symmetric key k as c has been
changed, thus the secure OS cannot be decrypted. Thus,
only the new deployed software can boot the system, which
prevents downgrading attacks.

4.5 Security Analysis
We now discuss the security of our design, i.e., how the
primary seed and the unique device key are protected.

Protection for the primary seed. We now show that the
primary seed is secure even under a sophisticated adversary
capable of controlling all external interfaces of the SoC. We
list all the possible attacks by which the adversary might
compromise the primary seed, and argue why these attacks
cannot succeed one by one.

1. Compromise the SRAM start-up value. The ad-
versary can generate the primary seed itself if it knows
the SRAM start-up value of the device. However, the
adversary cannot read the start-up value as the value
is transferred to the building block by the BootROM
through the internal buses in SoC which the adversary
cannot monitor.

2. Software attacks. The primary seed exists only when
the building block is running, and at this time the
building block is the only code running on the de-
vice. The chain of trust guarantees that only legiti-
mate building block can run in the OCM, so the ad-
versary cannot compromise the primary seed through
software attacks.

3. Attach malicious peripherals. The OCM is se-
cure storage for SoC as it has no address or data lines
at device pins. So malicious peripherals cannot read
the contents of the OCM from the pins of the device.
Moreover, the OCM is designated as secure, so the
TZPC can prevent malicious peripherals from access-
ing the OCM.

4. Attach malicious DMA-capable devices. The
last possible attack that the adversary can mount is
to attach a malicious DMA-capable device to the SoC
to read the primary seed in the OCM. However, as
we designate the OCM as secure, the TrustZone-aware
DMA Controller can prevent malicious devices from
accessing the OCM.

Protection for the device key. The device key is stored
in the secure OS which runs in the off-chip main memory
such as DRAM. The TrustZone isolation prevents all at-
tacks from the normal world, so adversaries capable of con-
trolling the mobile OS cannot compromise the device key.

Zynq AP SoC
SRAM Chip

GPIO

GPIO

Figure 7: Physical view of our implementation

For the device key, we don’t consider physical attacks that
fall outside the defense capabilities of TrustZone technology.
However, if the device key is compromised by physical at-
tacks, we can deploy a new one by running the key update
protocol, which mitigates physical attacks on the device key.

5. IMPLEMENTATION
We now present our implementation on a TrustZone-enabled
development board, Zynq-7000 AP SoC Evaluation Kit [71].
This board is equipped with dual ARM Cortex-A9 MPCore,
1GB of DDR3 Memory, and an OCM module consisting of
256 KB of SRAM and 128 KB of ROM (BootROM).

5.1 SRAM PUF
Although Zynq-7000 AP SoC has 256 KB of on-chip SRAM,
it is initialized by the BootROM once the board is powered
on, preventing us from reading the initial values of the on-
chip SRAM. We then use an SRAM chip that is of the type
IS61LV6416-10TL [31] to serve as our SRAM PUF. This
SRAM chip is equipped in a board [5] whose core is an AL-
TERA Cyclone II EP2C5T144 chip. Figure 7 shows the
Zynq development board, the Cyclone board, and their con-
nection. The SRAM start-up data is transferred to the Zynq
development board by an FPGA implementation of Univer-
sal Asynchronous Receiver/Transmitter (UART) in Verilog
hardware description language. A UART transmitter in the
Cyclone board transmits SRAM data via a General Purpose
I/O (GPIO) pin, and a UART receiver in the Zynq board
receives the SRAM data via a GPIO pin and stores the data
to a RAM cache we build in the programmable logic of the
Zynq development board. Then CPU can fetch the SRAM
data in the RAM cache via the AXI bus.

5.2 Building Block
We implement our building block based on the First Stage
BootLoader (FSBL) of Xilinx, which runs immediately af-
ter the BootROM. The fuzzy extractor is based on an open
source BCH code [48], which can build BCH codes with
different parameters. The parameters of BCH codes are
[n, k, d], where n is the code size, k is the data size, and
d ≥ 2t+ 1 (t is the number of errors that can be corrected).
However, the original source code of [48] requires more than
4MB memory, so it cannot directly run in the OCM. We cus-
tomize a [1020,43,439]-BCH code based on [48], and optimize

the source code to make it require less than 40KB memory.
The [1020,43,439]-BCH code can decode a noisy 1020 bits
message whose errors are less than b493/2c = 219, and ob-
tain 43 “error-free” bits. As the primary seed is of length
256 bits, we require at least d256/43e ∗ 1020 = 6120 SRAM
cells and need to run the BCH code d256/43e = 6 times in
our building block. For devices whose OCM is quite limited,
BCH codes with other parameters can be used. For exam-
ple, the [511,19,239]-BCH code only requires about 10KB
memory after our optimization.

The secure entropy extractor is implemented using a cus-
tomized Binary finite field library (BFFL) [12] for a finite
field of 512 bits. The BFFL consists of only about 300 lines
of code, and uses only a small fixed lookup table of 512
bytes. These features make it suitable for our entropy ex-
tractor running in the OCM.

We implement KG using the RSAREF library [52] (that we
modify to support 2048 bits and whose MD5 hash function
is replaced with SHA-2). The generation of the symmetric
key for secure boot is similar to the generation of a sym-
metric primary key in TPM 2.0 [62], so we implement KDF
following the cpri KDFa() function described in TPM 2.0.
We also add RSA verification function [52] and AES decryp-
tion function using Byte-Oriented-AES [44] to the building
block to support secure boot.

5.3 Root of Trust
In the normal world, we run a Linux OS with kernel version
3.8. In the secure world, we run the Open Virtualization
SierraTEE, which provides a basic secure OS running in the
secure world of TrustZone and is compliant with the Global
Platform’s TEE Specifications [25]. The source code of Sier-
raTEE for Xilinx’s Zynq-7000 AP SoC now is available from
Github [26] under a GNU v2.0 License.

In the secure OS of SierraTEE, we implement the secure
RNG described in Algorithm 2 and the simple seal/unseal
primitives described in Section 4.2.1. The secure RNG is
implemented by the BFFL, and ExpandKey() and Encrypt()
from [44]. We locate the secure RNG in a GlobalPlat-
form TEE Internal API TEE GenerateRandom() (which is
an empty function in the original SierraTEE source code2),
thus the secure OS and secure services can use our RNG
by calling this function. The seal/unseal primitives are im-
plemented by the modified RSAREF library, KDF, SHA256,
and the Byte-Oriented-AES.

TPM service is implemented by creating a secure service
in the secure world running a software TPM [59] whose
Endorsement Key is the unique device key. Figure 8 de-
picts our implementation. The original software TPM [59]
is a daemon application listening on a Unix socket for in-
coming TPM command requests, and transferring received
TPM requests to the main loop() function who dispatches
these requests to corresponding TPM functions. The origi-
nal software TPM requires TCP/IP software stack, but it’s
infeasible for the secure world to include such a big software
stack. So we move the main() function to the normal world,

2It is reasonable that SierraTEE doesn’t implement this
function: secure RNGs are not commonly available.

SierraTEE
Driver

tpm_dev

main()

SierraTEE
Secure OS

Socket
main_loop()

...

User
Mode

Privilege
Mode

Secure WorldNormal World

GP TEE Client API

TPM_
CreateWrapKey()

TPM_
Seal()

TPM_
Unbind()

tpm_execute_command()

Figure 8: TPM Service Implementation

Table 1: TCB size of our implementation
Code (LOC) Code Size

BB

Fuzzy Extractor 0.3K 33.4K
Entropy Extractor 0.8K 19.7K
KG and KDF 1.7K 10.7K
Secure Boot 0.4K 23.8K
Total 3.2K 63.8K3

RoT

Secure RNG 0.8K 20.3K
Seal/Unseal 1.9K 56.5K
TPM Service 21.1K 336.5K
Total 23.8K 413.3K

and leave the main loop() function as the entry of the TPM
service. When the main() function receives a TPM command
request, it transfers the request to the main loop() function
though the GP TEE client API. We also port the tpmd dev
Linux kernel module of the software TPM to the normal
world, which simulates a hardware TDDI, and connects the
TPM daemon through a socket connection. Another techni-
cal issue that we meet during implementation is the storage
of the persistent data. Storing persistent data of the TPM
service happens when a TPM command is successfully pro-
cessed or the TPM SaveState() command is called. Unfor-
tunately, the secure world has no persistent secure storage.
We solve this issue by encrypting the persistent data using
another symmetric key derived from the primary seed and
storing the encrypted blob in the normal world.

6. EVALUATION
We present the TCB size of our implementation, and then
perform tests on the SRAM PUF and our secure RNG. Fi-
nally, we present a performance evaluation of the root of
trust.

6.1 TCB Size
We present the number of lines of source code and the bi-
nary code size (after compilation) of the building block (BB)
and the root of trust (RoT) in Table 1, and all implementa-
tions are written in C. As shown in Table 1, the TCB size
of the building block and the simple seal/unseal primitives
is very small: the total size of the building block is 3.2K
and the seal/unseal primitives is 1.9K. The binary code size
indicates that only additional 63.8KB ROM and 413.3KB
flash is required. One reason for the small TCB size of our
implementation is that we leverage some very efficient open
source libraries such as BFFL and Byte-Oriented-AES. The
TCB size of the TPM service is much bigger as it provides
rich trusted computing functionalities.

Figure 9: Robustness and Uniqueness Evaluation

6.2 Tests on SRAM PUF
We test the robustness and uniqueness of the SRAM PUF,
which are two most important properties of PUFs. For
the SRAM PUF, high robustness means that the start-up
value from the same address range (the challenge to SRAM
PUFs) should not differ significantly between the generate
procedure and reproduce procedure. This property guaran-
tees that errors between the generate and reproduce pro-
cedure can be corrected by the BCH code, thus the pri-
mary seed randomly chosen by the manufacturer during the
generate procedure can be reconstructed during the repro-
duce procedure. The robustness of an SRAM PUF is usu-
ally assessed by the Hamming distance between repeated
measurements of SRAM cells from the same address range,
which is defined by HD(x̄, ȳ) =

∑L
i=1 xi ⊕ yi where x̄ and

ȳ are two start-up binary strings of the SRAM PUF, L is
the length of x̄ and ȳ, and xi and yi are the i-th bit of x̄
and ȳ respectively. We perform 100 measurements on the
same address range of 6120 bits in the SRAM chip, com-
pare the 100 measurements to each other, and depict the
Hamming Distance histogram of the 100(100− 1)/2 = 4950
comparisons in Figure 9 (left). The analysis shows the av-
erage Hamming distance of the SRAM PUF start-up bi-
nary strings is 273 (273/6120 = 4.46%), and the maxi-
mum Hamming distance is 343 (343/6120 = 5.6%). We
now assess the robustness of our fuzzy extractor, i.e., the
ability to reconstruct the implicitly embedded primary seed
in the reproduce procedure. Under assumption that all
SRAM bits are independent, the max bit error probabil-
ity p is 0.056. Considering experimental results of [27] ob-
tained under the condition that large environment varia-
tions are taken into account (and to be conservative), we
set p = 0.15. Notice that the [1020,43,439]-BCH code can
correct up to t = 219 errors. Thus the probability that the
fuzzy extractor cannot reconstruct the 43 “error-free” bits
can be calculated by P =

∑1020
i=219+1

(
1020
i

)
pi(1 − p)1020−i =

1−
∑219
i=0

(
1020
i

)
pi(1−p)1020−i < 10−7. As the building block

runs the fuzzy extractor 6 times to generate a 256 bits pri-
mary seed, the robustness of the building block (i.e., the
probability that the building block can reconstruct the pri-
mary seed), can be calculated by PBB = (1−P)6 > 1−10−6.

3The reason that the total code size is smaller than the sum
of above rows is above rows shares some libraries.

The SRAM PUF should achieve high uniqueness, which
means that start-up binary strings from different SRAM
PUFs should be random and independent from each other.
This property guarantees that knowledge of SRAM start-up
value of one device doesn’t help in the prediction of SRAM
start-up value of another device. We use three methods to
assess the uniqueness of the SRAM PUF:

1. Hamming distance measure. As we expect that dif-
ferent SRAM PUFs behave independently from each
other, the Hamming distance between start-up binary
strings from different SRAM PUFs should be close to
one half of the length of the start-up binary string.

2. Min-entropy estimation. Min-entropy provides a lower
bound for the unpredictability of the SRAM start-
up strings. We assume that all bits from the SRAM
start-up strings are independent, so each bit can be
viewed as an individual binary source. We leverage
the method described in NIST 800-90 [11] to assess
the min-entropy of a binary bit: H = −log2(pmax),
where pmax = max{p0, p1} (p0 and p1 are probabili-
ties of the binary bit output zero and one respectively).
The min-entropy of the SRAM start-up strings is de-
fined by: Htotal =

∑n
i=1Hi where n is the length of

the start-up string.

3. CTW compression. Context-Tree Weighting (CTW)
[70] is an optimal compression algorithm for stationary
sources and is commonly used to estimate entropy.

We implement 100 SRAM PUFs using 100 different address
ranges of 6120 bits in the SRAM chip. A histogram of Ham-
ming distances between start-up binary strings of the 100
SRAM PUFs (100 ∗ 99/2 = 4950 comparisons) is depicted
in Figure 9 (right). Our analysis shows that the Hamming
distance distribution closely matches a normal distribution
with mean 2972 (which is close to one half of 6120) and a
standard deviation of 44 (44/6120=0.7%). The min-entropy
and the CTW compression ratio of the 100 SRAM PUFs
startup strings are 4835 (4835/6120 = 79%) and 99% respec-
tively. All the results show that our SRAM PUF satisfies
high uniqueness.

6.3 NIST Test on the RNG
As we use the noise present in the SRAM start-up value to
accumulate entropy for the secure RNG, we first need to es-
timate the entropy in the start-up value. This time the input
of the min-entropy estimation method is not SRAM start-up
binary strings from different SRAM PUFs but binary strings
from repeated measurements on the same SRAM PUF. We
perform 100 measurements on the same address range of
6120 bits, and calculate the min-entropy. The results show
that the min-entropy rate of the SRAM chip is about 5.5%.
To be conservative, we set the min-entropy rate to be 2%.
Notice that our implementation of the entropy extractor ex-
tracts a truly random seed of 512 bits, so the required length
of the SRAM start-up value is 512/0.02 + 512 = 25.5K bits.

We then perform the complete set of randomness tests from
NIST 800-22 [53] on our implementation of the secure RNG.
We use the RNG to generate 128.000.000 bits output, and

Table 2: Performance Evaluation (in ms). Avg. of
100 runs.

Command Key Time Command Key Time
Simple Seal 2048 4

Sign
2048 17

Simple Unseal 2048 17 1024 6
TakeOwnership 2048 1056

Seal
2048 4

MakeIdentity 2048 947 1024 4
ActivateIdentity 2048 18

Unseal
2048 18

Quote 2048 17 1024 6

CreateWrapKey
2048 972

Unbind
2048 17

1024 85 1024 6

LoadKey
2048 18
1024 6

Table 3: TPM chip vs TPM service (in ms, key size:
2048 bits). Avg. of 100 runs.

LoadKey Sign Seal Unseal Unbind
TPM 1.2 chip 781 609 63 625 625
TPM Service 18 17 4 18 17

divide it into 125 strings of 1.024.000 bits. The result shows
that at least 124 strings (99%) pass all tests.

6.4 Performance of The Root of Trust
We first evaluate the performance delay introduced by the
context switch between the secure world and the normal
world. This evaluation is done by invoking an empty ser-
vice running in the secure world. The result shows that the
context switch only requires about 2 milliseconds (ms).

We then evaluate the performance of the simple seal/unseal
primitives and some TPM commands of the TPM service,
and summarize the results in Table 2 (the number in the Key
column denotes the key length in bits). We also compare
the TPM service with a TPM 1.2 hardware chip produced
by National Semiconductor, which is embedded in an IBM
ThinkCenter M52 81114 host. The comparison is shown in
Table 3. The results of the performance evaluation on the
TPM service include the context switch delay. The results
indicate that the TPM service is very efficient compared to
TPM hardware chips.

7. RELATED WORK
Researchers at Johns Hopkins University Applied Physics
Laboratory working with the Trusted Computing Group de-
velop specifications for trusted computing technologies in
mobile devices [47]. They define the root of trust and chain
of trust as basic requirements for a mobile TPM, which are
supported by our design.

ARM defines an architecture [10] for TrustZone-enabled plat-
forms based on GlobalPlatform TEE API standards. The
architecture leverages hardware resources such as hardware
keys, crypto accelerators, and Secure Element to provide the
root of trust. Nokia’s On-board Credentials system uses an
assumed device key to provide root of trust for the plat-
form. These approaches require special hardware compo-
nents to provide secure storage and randomness for TEE.
However, these hardware components are not always avail-
able in devices. Furthermore, the conventional secure stor-

age provided by hardware keys is inflexible when key update
is required.

Areno et al. present a methodology that uses PUFs to pro-
tect the TEE [7]. Their idea is similar to this work. How-
ever, they only concern about the secure-boot process on
a TrustZone-enabled platform, and other security function-
alities such as attestation and RNGs are not considered.
Furthermore, they only discuss how their design can be im-
plemented by FPGA technology and don’t give a concrete
implementation.

Another related work is TEEM [21], a portable Trusted
Computing module that can provide trusted computing func-
tionalities for various computing platforms such as desktop
machines and mobile devices. TEEM is designed as a secure
TPM service running in the secure world of TrustZone, and
a prototype is implemented on a general ARM SoC develop-
ment board. However, their implementation doesn’t isolate
TEEM from the Rich OS. Actually, the TEEM runs on an
entire Linux OS, which makes the TCB very large. Fur-
thermore, their work ignores the root of trust for TEEM,
i.e., they don’t consider how to establish a chain of trust for
TEEM from powered on.

8. CONCLUSION
In this paper, we presented a research prototype that pro-
vides the root of trust for TrustZone-enabled platforms us-
ing SRAM PUFs. Our prototype first leveraged the SRAM
PUF commonly available on mobile devices to provide foun-
dations for the root of trust (secure storage, randomness,
and secure boot) in a very small TCB size of about 3.2K
LOC, then built the root of trust running in the secure world
of TrustZone, which enabled to establish a complete chain
of trust for mobile devices. Another advantage of our pro-
totype is that it enables to deploy key update mechanisms
easily. As a result, we demonstrated that the SRAM PUF
could provide the root of trust for TrustZone-enabled plat-
forms in a secure, efficient and flexible way.

9. ACKNOWLEDGMENTS
We thank Yevgeniy Dodis, Sylvain Ruhault for their sug-
gestions on building our secure RNG. We especially thank
Antonio Bellezza for providing an efficient customized finite
field library. We appreciate anonymous TrustED reviewers
for their helpful comments.

10. REFERENCES
[1] App Sandbox Design Guide. https://developer.apple.com/libr

ary/mac/documentation/Security/Conceptual/AppSandboxDesign
Guide/AboutAppSandbox/AboutAppSandbox.html.

[2] SE for Android. http://selinuxproject.org/page/SEforAndroid.

[3] Advanced Micro Devices. Secure Virtual Machine Architecture
Reference Manual. AMD Publication, (33047), 2005.

[4] T. Alves and D. Felton. Trustzone: Integrated hardware and
software security. ARM white paper, 3(4), 2004.

[5] Anne’s fashion shoes. ALTERA EP2C8F256 Core Board.
http://www.aliexpress.com/item/Altera-ep2c8f256-core-board
-belt-sdram-sram-fpga-development-board-power-supply-pin/1
427214650.html.

[6] Apple. iOS Security. http://images.apple.com/ipad/business/d
ocs/iOS_Security_Feb14.pdf.

[7] M. Areno and J. Plusquellic. Securing trusted execution
environments with puf generated secret keys. In Trust, Security
and Privacy in Computing and Communications (TrustCom),
2012 IEEE 11th International Conference on, pages
1188–1193. IEEE, 2012.

[8] ARM. ARM Security Technology Building a Secure System

using TrustZoneR© Technology.

[9] ARM. Designing with TrustZoneR© - Hardware Requirements.

[10] ARM. Securing the System with TrustZoneR© Ready Program.
http://www.arm.com/products/security-on-arm/trustzone-ready
/index.php.

[11] E. B. Barker and J. M. Kelsey. Recommendation for random
number generation using deterministic random bit generators
(revised). NIST, 2007.

[12] A. Bellezza. Binary finite field library 0.02.
http://www.beautylabs.net/software/finitefields.html.

[13] C. Bösch. Efficient fuzzy extractors for reconfigurable
hardware. Master’s Thesis, Ruhr-University Bochum, 2008.

[14] C. Bösch, J. Guajardo, A.-R. Sadeghi, J. Shokrollahi, and
P. Tuyls. Efficient helper data key extractor on fpgas. In
Cryptographic Hardware and Embedded Systems–CHES 2008,
pages 181–197. Springer, 2008.

[15] M. Claudio, K. Nikolaos, S. Claudio, K. Kari, and Č. Srdjan.
Smartphones as practical and secure location verification
tokens for payments. In NDSS, 2014.

[16] A. Desnos and P. Lantz. Droidbox: An android application
sandbox for dynamic analysis.
https://code.google.com/p/droidbox/, 2011.

[17] Y. Dodis, D. Pointcheval, S. Ruhault, D. Vergniaud, and
D. Wichs. Security analysis of pseudo-random number
generators with input:/dev/random is not robust. In
Proceedings of the 2013 ACM SIGSAC conference on
Computer & communications security, pages 647–658. ACM,
2013.

[18] Y. Dodis, L. Reyzin, and A. Smith. Fuzzy extractors: How to
generate strong keys from biometrics and other noisy data. In
Advances in cryptology-Eurocrypt 2004, pages 523–540.
Springer, 2004.

[19] I. Eichhorn, P. Koeberl, and V. van der Leest. Logically
reconfigurable pufs: Memory-based secure key storage. In
Proceedings of the sixth ACM workshop on Scalable trusted
computing, pages 59–64. ACM, 2011.

[20] J.-E. Ekberg, N. Asokan, K. Kostiainen, P. Eronen, A. Rantala,
and A. Sharma. Onboard credentials platform design and
implementation. Nokia Research Center Helsinki, Finland,
2008.

[21] W. Feng, D. Feng, G. Wei, Y. Qin, Q. Zhang, and D. Chang.
Teem: A user-oriented trusted mobile device for multi-platform
security applications. In Trust and Trustworthy Computing,
pages 133–141. Springer, 2013.

[22] B. Gassend, D. Clarke, M. Van Dijk, and S. Devadas.
Controlled physical random functions. In Computer Security
Applications Conference, 2002. Proceedings. 18th Annual,
pages 149–160. IEEE, 2002.

[23] B. Gassend, D. Clarke, M. Van Dijk, and S. Devadas. Silicon
physical random functions. In Proceedings of the 9th ACM
conference on Computer and communications security, pages
148–160. ACM, 2002.

[24] Global Platform Device Technology. TEE client API
specification version 1.0. http://globalplatform.org, 2010.

[25] GlobalPlatform. GlobalPlatform Device Specifications.
http://www.globalplatform.org/specificationsdevice.asp.

[26] J. González. Open Virtualization for Xilinx’s ZC-702.
https://github.com/javigon/OpenVirtualization.

[27] J. Guajardo, S. S. Kumar, G.-J. Schrijen, and P. Tuyls. Fpga
intrinsic pufs and their use for ip protection. In Cryptographic
Hardware and Embedded Systems-CHES 2007, pages 63–80.
Springer, 2007.

[28] C. Helfmeier, C. Boit, D. Nedospasov, and J.-P. Seifert.
Cloning physically unclonable functions. In Hardware-Oriented
Security and Trust (HOST), 2013 IEEE International
Symposium on, pages 1–6. IEEE, 2013.

[29] D. E. Holcomb, W. P. Burleson, and K. Fu. Power-up sram
state as an identifying fingerprint and source of true random
numbers. Computers, IEEE Transactions on, 58(9):1198–1210,
2009.

[30] D. E. Holcomb, W. P. Burleson, and K. Fu. Power-up sram
state as an identifying fingerprint and source of true random
numbers. Computers, IEEE Transactions on, 58(9):1198–1210,
2009.

[31] Integrated Silicon Solution, Inc. IS61LV6416-10TL.
http://www.alldatasheet.com/datasheet-pdf/pdf/505020/ISSI/I
S61LV6416-10TL.html.

[32] Intel Corporation. LaGrande technology preliminary

architecture specification. Intel Publication, (D52212), May
2006.

[33] P. C. Kocher. Leak-resistant cryptographic indexed key update,
Mar. 25 2003. US Patent 6,539,092.

[34] K. Kostiainen, J.-E. Ekberg, N. Asokan, and A. Rantala.
On-board credentials with open provisioning. In Proceedings of
the 4th International Symposium on Information, Computer,
and Communications Security, pages 104–115. ACM, 2009.

[35] S. S. Kumar, J. Guajardo, R. Maes, G.-J. Schrijen, and
P. Tuyls. The butterfly puf protecting ip on every fpga. In
Hardware-Oriented Security and Trust, 2008. HOST 2008.
IEEE International Workshop on, pages 67–70. IEEE, 2008.

[36] K. Kursawe, A. Sadeghi, D. Schellekens, B. Skoric, and
P. Tuyls. Reconfigurable physical unclonable functions-enabling
technology for tamper-resistant storage. In Hardware-Oriented
Security and Trust, 2009. HOST’09. IEEE International
Workshop on, pages 22–29. IEEE, 2009.

[37] J.-P. Linnartz and P. Tuyls. New shielding functions to enhance
privacy and prevent misuse of biometric templates. In
Audio-and Video-Based Biometric Person Authentication,
pages 393–402. Springer, 2003.

[38] D. Liu and Q. Dong. Combating side-channel attacks using key
management. In Parallel & Distributed Processing, 2009.
IPDPS 2009. IEEE International Symposium on, pages 1–8.
IEEE, 2009.

[39] H. Liu, S. Saroiu, A. Wolman, and H. Raj. Software
abstractions for trusted sensors. In Proceedings of the 10th
international conference on Mobile systems, applications, and
services, pages 365–378. ACM, 2012.

[40] R. Maes, P. Tuyls, and I. Verbauwhede. Intrinsic pufs from
flip-flops on reconfigurable devices. In 3rd Benelux workshop
on information and system security (WISSec 2008),
volume 17, 2008.

[41] R. Maes, P. Tuyls, and I. Verbauwhede. Low-overhead
implementation of a soft decision helper data algorithm for
sram pufs. In Cryptographic Hardware and Embedded
Systems-CHES 2009, pages 332–347. Springer, 2009.

[42] R. Maes, P. Tuyls, and I. Verbauwhede. A soft decision helper
data algorithm for sram pufs. In Information Theory, 2009.
ISIT 2009. IEEE International Symposium on, pages
2101–2105. IEEE, 2009.

[43] R. Maes, A. Van Herrewege, and I. Verbauwhede. Pufky: A
fully functional puf-based cryptographic key generator. In
Cryptographic Hardware and Embedded Systems–CHES 2012,
pages 302–319. Springer, 2012.

[44] K. Malbrain. Byte-Oriented-AES.
https://code.google.com/p/byte-oriented-aes/.

[45] J. M. McCune, Y. Li, N. Qu, Z. Zhou, A. Datta, V. Gligor, and
A. Perrig. Trustvisor: Efficient tcb reduction and attestation.
In Security and Privacy (SP), 2010 IEEE Symposium on,
pages 143–158. IEEE, 2010.

[46] J. M. McCune, B. J. Parno, A. Perrig, M. K. Reiter, and
H. Isozaki. Flicker: An execution infrastructure for tcb
minimization. In ACM SIGOPS Operating Systems Review,
volume 42, pages 315–328. ACM, 2008.

[47] K. N. McGill. Trusted mobile devices: Requirements for a
mobile trusted platform module. JOHNS HOPKINS APL
TECHNICAL DIGEST, 32(2):544, 2013.

[48] R. Morelos-Zaragoza. Encoder/decoder for binary BCH codes
in C (Version 3.1). http://www.rajivchakravorty.com/source-c
ode/uncertainty/multimedia-sim/html/bch_8c-source.html.

[49] D. Nedospasov, J.-P. Seifert, C. Helfmeier, and C. Boit.
Invasive puf analysis. In Fault Diagnosis and Tolerance in
Cryptography (FDTC), 2013 Workshop on, pages 30–38.
IEEE, 2013.

[50] R. Pappu, B. Recht, J. Taylor, and N. Gershenfeld. Physical
one-way functions. Science, 297(5589):2026–2030, 2002.

[51] P. S. Ravikanth. Physical one-way functions. PhD thesis,
Massachusetts Institute of Technology, 2001.

[52] RSA Data Security Inc. RSAREF.
http://www.homeport.org/~adam/crypto/rsaref.phtml.

[53] A. Rukhin, J. Soto, J. Nechvatal, M. Smid, and E. Barker. A
statistical test suite for random and pseudorandom number
generators for cryptographic applications. Technical report,
DTIC Document, 2001.

[54] L. Sanders. Secure Boot of Zynq-7000 All Programmable SoC.
2013.

[55] D. Sangorrin, S. Honda, and H. Takada. Dual operating system
architecture for real-time embedded systems. In Proceedings of
the 6th International Workshop on Operating Systems

Platforms for Embedded Real-Time Applications (OSPERT),
Brussels, Belgium, pages 6–15, 2010.

[56] N. Santos, H. Raj, S. Saroiu, and A. Wolman. Using arm
trustzone to build a trusted language runtime for mobile
applications.

[57] Sierraware. Open Virtualization - ARM TrustZone and ARM
Hypervisor Open Source Software. http://www.sierraware.com.

[58] P. Simons, E. van der Sluis, and V. van der Leest. Buskeeper
pufs, a promising alternative to d flip-flop pufs. In
Hardware-Oriented Security and Trust (HOST), 2012 IEEE
International Symposium on, pages 7–12. IEEE, 2012.

[59] M. Strasser and H. Stamer. A software-based trusted platform
module emulator. In Trusted Computing-Challenges and
Applications, pages 33–47. Springer, 2008.

[60] G. E. Suh and S. Devadas. Physical unclonable functions for
device authentication and secret key generation. In Proceedings
of the 44th annual Design Automation Conference, pages
9–14. ACM, 2007.

[61] G. Taylor and G. Cox. Behind intel’s new random-number
generator. IEEE Spectrum, 2011.

[62] TCG. Trusted Platform Module Library Part 1: Architecture,
Family 2.0, Level 00 Revision 01.07, 2014.

[63] Trusted Computing Group.
http://www.trustedcomputinggroup.org.

[64] Trusted Computing Group. TPM Software Stack (TSS)
Specification, Version 1.2. https://www.trustedcomputinggroup.
org/resources/tcg_software_stack_tss_specification.

[65] TU Graz, IAIK. jTSS–Java TCG Software Stack.
http://trustedjava.sourceforge.net, 2009.

[66] P. Tuyls, G.-J. Schrijen, B. Škorić, J. Van Geloven,
N. Verhaegh, and R. Wolters. Read-proof hardware from
protective coatings. In Cryptographic Hardware and Embedded
Systems-CHES 2006, pages 369–383. Springer, 2006.

[67] V. Van der Leest, B. Preneel, and E. Van der Sluis. Soft
decision error correction for compact memory-based pufs using
a single enrollment. In Cryptographic Hardware and Embedded
Systems–CHES 2012, pages 268–282. Springer, 2012.

[68] V. van der Leest, E. van der Sluis, G.-J. Schrijen, P. Tuyls, and
H. Handschuh. Efficient implementation of true random number
generator based on sram pufs. In Cryptography and Security:
From Theory to Applications, pages 300–318. Springer, 2012.

[69] Y. Wang, W.-k. Yu, S. Wu, G. Malysa, G. E. Suh, and E. C.
Kan. Flash memory for ubiquitous hardware security functions:
true random number generation and device fingerprints. In
Security and Privacy (SP), 2012 IEEE Symposium on, pages
33–47. IEEE, 2012.

[70] F. M. Willems, Y. M. Shtarkov, and T. J. Tjalkens. The
context-tree weighting method: Basic properties. Information
Theory, IEEE Transactions on, 41(3):653–664, 1995.

[71] Xilinx. Zynq-7000 All Programmable SoC ZC702 Evaluation
Kit. http://www.xilinx.com/products/boards-and-kits/EK-Z7-Z
C702-G.htm.

[72] K. Yoder et al. TrouSerS–Open-source TCG Software Stack.
http://trousers.sourceforge.net, 2007.

