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Abstract

In this paper, we introduce the concept of the derivative of sequence of numbers and define
new statistical indices by which we discoverd new properties of randomly generated number
sequences. We also build a test for pseudo random generators based on these properties and
use it to confirm the weakness of RC4 key scheduling algorithm that has been reported in the
litterature. In this rescpect we publish a new RC4’s key scheduling algorithm that don’t have
this weakness.
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1 Introduction :

Randomness is a fundamental scientific and phisophical concept, it reflects our brains limits to
apprehend the complexities of the universe and thence to predict the events occuring in it.
In the field of cryptography , the main objective of a encryptor was always been producing a cipher
text , a sequence of symbols or numbers indistinguishable from corresponding sequences generated
by a true random process such as the game of lottery or a radioactive decay process.
That means that the more we understand randomness or know properties of true random processes
or number sequences, the more it helps cryptographers by devising new tests and use them to
analyze and test the security of new or old cryptographic schemes

In this paper we publish a new test of randomness based on newly discoverd properties of random
numbers sequences, use it to perform 5 analysis on a key schedule algorithm of a stream cipher
namely RC4, and validate it by revealing some of this algorithm’s weaknesses already reported in
the litterature [2][3][4]. We also propose a new KSA for RC4 that don’t have these weaknesses.



2 Definitions :

2.1 Derivative of a sequence of numbers :

Definition :

Let Sn be a sequence of n + 1 natural numbers [ s(0) ... s(i) ,s(i + 1) ... s(n) ]
while 0 < 5(0...n) < M and M being the smallest natural number greater than s(0...n).

The first derivative of Sn is defined as the sequence of natural numbers
Sny : [ |s(1) —s(0)]...|s(i + 1) — s(7)[...|s(n) — s(n — 1)| ]

2.2 Interval Average Indices (IAIs) :

Definition :

Let Sn be a sequence of n + 1 natural numbers [ s(0) ... s(i) s(i+ 1) ... s(n)]
while 0 < 5(0...n) < M and M being the smallest natural number greater than s(0...n) .

Interval Average Index IAI of Sn base M is defined as :

LA (Sn) = (Is(1) = 5(0)] + . + [s(i + 1) — 5(3)| + .. + |s(n) — s(n— D)])/m.
The length of the derivative of Sn is the length minus one of this last.

The nth+1 derivative of Sn is the first derivative of the nth derivative of Sn.
The mean of the first derivative of Sn is the Interval Average Index I Al base M of this last.

If Sn, is the nth derivative of Sn, the derivative order of Sn,, relative to Sn is n.

2.3 Derivative sequences Means :

Let Sn be a sequence of n + 1 natural numbers [ s(0) ... s(i) s(i+ 1) ... s(n)]
while 0 < 5(0...n) < M and M being the smallest natural number greater than s(0...n) .

We have experimentaly observed that If Sn is a randomely choosen sequence of n natural numbers
and n increases :

The mean of the first derivative of Sn , Or Interval Average Index Base M of Sn ( IAIy(Sn) )
converge to a constant value C' = M/3 te.

If M =2 then e = —(M x 0.25).
If M > 2 then e < [(M x 0.10)|.

If M increases then ¢ — 0.



We have equaly experimentaly observed that

The mean of the nth derivative (n > 1) of a randomely choosen sequence of natural numbers con-
verge to a constant value C = M xd + ¢.

If M increases then ¢ — 0.

The table below ( figure 1 ) shows the average means of nth derivatives (0 < n < 11) of a randomely
choosen sequence of 1000000 natural numbers s(0...999999) < M.

Derivative order 1 2 3 4 5 6 T 3 9 10

Sequence Mean | M /3 Mi4 |[MI508 |[MIG44 |MI798 | M/98 [M/11.73|M[13.96|M/16.45|M[19.25

Figure 1: Average means of nth derivatives of a random sequence of numbers (n =0 ... 10)



3 A Test for Pseudo random number generators :

1 - Set value N and value L .
2 - Repeat N Times.
2 - 1 Choose randomely a sequence RSn of L bytes.
2 - 2 Compute I Al index of RSn.
2 - 3 Produce with the PRNG to be tested a sequence PrSn of L bytes.
2 - 4 Compute I Al>s6 index of PrSn.

3 - The test is successful, if the statistical distributions of I Als5¢ indices of the N pseudo randomly
produced sequences coincides with those of N Randomely choosen sequences.

4 RC4 key scheduling analysis :

RC4 key scheduling [1] weakness is reported by many authors [2][3][4]. In this section we will use
our test for Prngs to show this weakness.

Below is described RC4 algorithm :

Key scheduling algorithm :

Input : Secrete key K composed by 1 bytes K]0],..,K[i], ..,K[l-1].
Output : S a SBox ( 8 X 8).

fori =0 to 255
S[i] : i

j:0

for i = 0 to 255
j: (j+ S[i] + K[i mod1] ) mod 256
swap S[i] and S[j]

4.1 Analysis 1 :

In this analysis we intialised 10000 RC4’s SBoxs with 10000 randomely choosen key.

We constructed then 256 byte sequences whose lenght is 10000.

Each sequence of bytes Sb(i) ( 0 <14 < 256 ) is filled with the iths elements of our 10000 SBoxs. (
See Figure 2 ).



If RC4 key scheduling algorithm is strong we couldn’t distinguish these 256 sequences of 10000
bytes from a randomely choosen byte sequences of the same length.

Sh(0) Sh(1) Sb (255)

J l L

[swor || st ]|« « - - - |[ =]

(oo J||[saa 1|+ - - - - |[sa=1]

Key 10000 Shox 10000 [s10000[07 || [S10000[11]|+ .+ « « . |[510000[255]

Figure 2: Analysis 1

As random source we have used true random number sequences downloaded from www.random.org.
our experiments shows us that :

I Als6 indices of random byte sequences whose length is 10000 are included between 83 and 87.

I Al indices of 78 to 88 from the 256 sequences constructed from 10000 RC4’s Sboxs as described
above are outside the interval [ 83 - 87 |.

This result means that RC4 key scheduling algorithm is inclined to produce Sboxs thats biased
toward certain values.

4.2 Analysis 2 :

In this analysis we have intialised 10000 RC4’s SBox with 10000 randomely choosen key.
We then have constructed 256 byte sequences whose length is 10000.

After that, each sequence of bytes Sb(i) (0 < i < 256 ) is filled with the iths elements of our 10000
Sboxs xored with the first key byte K[0] corresponding to the Sboxs ( See Figure 3 ).



Sh(i=0to255)

[ Key1 —sbox1 [—3 || S1[i] Xor Key1[0] |

[ Key2 F—sbox2  |— || S2[i ] Xor Key2[0] |

Key 10000 3 Sbox 10000 |— || $10000[ i ] Xor Key 10000[0] |

Figure 3: Analysis 2

We have found that the I Alss¢ of sequence Sb(0) is between 92 and 95 then outside

the interval [ 83 - 87 ], implying that there is a correlation between the first byte of secret keys K[0]
and first byte of corresponding RC4’s Sbhoxs S[0].

Next we xored the byte sequences elements with corresponding second keys bytes.

I Alyse of sequence Sb(1) is outside the interval [ 83 - 87 | that means that S[1] ( the second byte
of RC4’s Sboxs ) correlates with the xor sum of the first and second bytes of corresponding secret
key KJ[0] xor KI1].

These correlations equations are showen below :

Equation : Sbox[0] & K[0] =0 , holds with probability of 1/3 instead of 1/256.

Equation : Sboz[l] & (K[0] ® K[1]) = 2™ — 1, holds with probability P.

If (n < 8), P =4.5/256 instead of 1/256.

If (n=8), P =12.12/256 instead of 1/256.

We repeated this procedure for the next key bytes and found that :

If (n < 10) is inferior to 10, S[i] the ith elements of RC4s’ SBox correlates with &§K][i], the xor sum
of the i first bytes of corresponding secret key.



4.3 Analysis 3 :

We repeated the protocole of analysis 2 but this time we xored the elements of our bytes sequences
with sum modulo 256 of corresponding k bytes we got these correlation equations :

Equation :
Equation :
Equation :
Equation :

Equation :

Sbox[1] @ (K[0] + K[1]) =1, holds with probability of 45/256 instead of 1/256.
Sbox[l] & (K[0] + K[1]) = 3, holds with probability of 23/256 instead of 1/256.
Sbox[l] & (K[0] + K[1]) =7, holds with probability of 12/256 instead of 1/256.
Sbozx[l] & (K[0] + K[1]) = 15, holds with probability of 6.5/256 instead of 1/256.

Sboz (1] & (K[0] + K[1]) = 31, holds with probability of 3.5/256 instead of 1/256.

We repeated this procedure for the next key bytes and found that :

If (n < 30) , S[i] the ith elements of RC4s’ SBox correlates with S°3K][i], the sum modulo 256 of
the i first bytes of corresponding secret key.

4.4 Analysis 4 :

Sh{i=0to255)

[ Key1 —>sbox1 |—3 || S1[i] = Key1[0] |

[ Key2 F—={sbox2 |[—3 || S2[i] = Key2[0] |

Key 10000 |——3{Sbox 10000 |— [[ $10000[i] = Key10000[0] |

Figure 4: Analysis 4



We repeated the protocole of analysis 2 but this time we substracted the elements of our bytes
sequences with sum modulo 256 of corresponding k bytes (see figure 4) we got these correlation
equations :

Equation : Sbox[0] — K[0] = 0, holds with probability of 93/256 instead of 1/256.
Equation : Sbox[l] — (K[0] + K[1]) = 1, holds with probability of 91/256 instead of 1/256.
Equation : Sbozx[2] — (K[0]+ K[1]+ K[2]) = 3, holds with probability of 89/256 instead of 1/256.

Equation : Sboz[3] — (K[0] + K[1] + K[2] + K[3]) = 6, holds with probability of 88/256 instead
of 1/256.

Equation : Sbozx[4] — (K[0] + K[1] + K[2] + K[3]) = 10, holds with probability of 86/256 instead
of 1/256.

We repeated this procedure for the next key bytes and found that :

Equations :  Sbox[i] — >4 K[i] = C;. (C; is a constant). holds with probabilities much higher than
what suposed to be : 1/256.

5 A new key scheduling algorithm for RC4 :

In our expriments we used our new randomness test to validate what is already reported in the
litterature [2][3][4] namely the fact that RC4 key scheduling algorithm is weak and produces Sboxs
whose elements are correlating with certain secret key bytes.

In our opinion, RC4 current key scheduling algorithm consists of a unique perumtation encryption
stage of the state : the Sbox. We think that a additional substitution stage would strength it. In
other hand In each permutation , only one byte of the secret key is used.

That leads us to the key scheduling algorithm described below :

The substitution stage consists in xoring the Sboxs bytes with secret key bytes sum modulo 256,
after its initialization to identity permutation.



The new RC4 Key scheduling algorithm :

Input : Secrete key K composed by 1 bytes K][0],..,K[i], ..,K[I-1].
Output : S, a SBox ( 8 X 8).

k:0
fori=0tol
k: (k + K[i] ) mod 256
for i = 0 to 255
S - ik
j: 0
for i = 0 to 255
it ((®k) +S[i]+ (j®K[imodl])) mod 256
swap S[i] and S[j]

We performed the 4 analysis described above on this new key scheduling algorithm and found that
T Als6 of all the sequences Sb(0..255) are included in the interval [ 83 - 87 | proving that this new
KSA don’t have the weaknesses of RC4’s KSA.

5.1 Analysis 5 :

Sh(i=0to 255)

]
|Key1 HSbom H S1[i]  Xor ZKew[i]
0

]
[ Key2 ——{sbox2 > S2[il Xor > Key2li]
0

I
Key 10000 Shox 10000 $10000[i ] Xor ZKeymDOD[i]
[1]

Figure 5: Analysis 5



In this analysis we used the new key scheduling algorithm to intialise 10000 SBoxs with 10000
randomely choosen key. We constructed 256 byte sequences whose length is 10000. We then filled,
each sequence of bytes Sb(i) ( 0 < < 256 ) with the iths elements of our 10000 Sboxs xored with
the sum of key bytes corresponding to the Sboxs ( See Figure 5 ).

I Al indices of 30 to 40 from the 256 sequences constructed from 10000 RC4’s Sboxs as described
above are outside the interval [ 83 - 87 |.

implying that the elements of the Sboxs biased toward secret key bytes sum, which is explainable
by the fact that we xored the first with the last during the inialisation.

To remove this bias we modified our KSA :

Input : Secrete key K composed by 1 bytes K[0],..,K[i], ..,K[I-1].
Output : S a SBox ( 8 X 8).

k:0
fori=0tol
k: (k + K[i] ) mod 256
for i = 0 to 255
Si]:i®k
j: 0
for i = 0 to 255
j:(G@k) +S[i]+ (j® K[imodl])) mod 256
swap Sli] and S[j]
if (i mod 64) =0
forw=0tol
K[w] : S[K[w]]

We performed all the five analysis on this version of proposed KSA for RC4 and found that I Alssg
of all the sequences Sb(0..255) are included in the interval [ 83 - 87 | proving that this new KSA
don’t have the weaknesses of RC4’s original KSA.
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6 Conclusion :

In this paper, we introduce the concept of the derivative of sequence of numbers and define new
statistical indices by which we discoverd new properties of randomly generated number sequences.
We also build a test for pseudo random generators based on these properties and use it to perform 5
analysis on RC4’s KSA. These analyses help us to illucidate the cause of RC4’s KSA weakness that
has been reported in the literrature [2][3][4], which is that RC4’s KSA is equivalent to merly one
stage of permutation encryption of a identity permutation Sbox. Yet It is Known that permutation
alone without subsequent or precedent substitution is cryptographically weaker.

In this respect we produced a new KSA for RC4 that dont have the original RC4’s KSA weakness.
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