
Privacy-Preserving Auditing for
Attribute-Based Credentials

Jan Camenisch, Anja Lehmann, Gregory Neven, and Alfredo Rial
IBM Research – Zurich, Switzerland
{jca,anj,nev,lia}@zurich.ibm.com

Abstract. Privacy-enhancing attribute-based credentials (PABCs) al-
low users to authenticate to verifiers in a data-minimizing way, in the
sense that users are unlinkable between authentications and only disclose
those attributes from their credentials that are relevant to the verifier. We
propose a practical scheme to apply the same data minimization principle
when the verifiers’ authentication logs are subjected to external audits.
Namely, we propose an extended PABC scheme where the verifier can
further remove attributes from presentation tokens before handing them
to an auditor, while preserving the verifiability of the audited tokens. We
present a generic construction based on a signature, a signature of knowl-
edge and a trapdoor commitment scheme, prove it secure in the universal
composability framework, and give efficient instantiations based on the
strong RSA and Decision Composite Residuosity (DCR) assumptions in
the random-oracle model.

1 Introduction

Privacy-enhancing attribute-based credentials (PABC) [1], also known as anony-
mous credentials [2, 3] or minimal-disclosure tokens [4], are cryptographic mech-
anisms to perform data-minimizing authentication. They allow users to obtain
credentials from an issuer, by which the issuer assigns a list of certified at-
tribute values to the user. Users can then use these credentials to authenticate
to verifiers, but have the option to disclose only a subset of the attributes; all
non-disclosed attributes remain hidden from the verifier. Moreover, different au-
thentications are unlinkable, in the sense that a verifier can’t tell whether they
were performed by the same or by different users. PABCs offer important privacy
advantages over other attribute certification schemes, that usually either employ
a central authority that is involved in every authentication and therefore forms
a privacy bottleneck (e.g., SAML, OpenID, or Facebook Connect), or force users
to disclose all of their attributes (e.g., X.509 certificates [5]).

But sometimes, attributes travel further than the verifier. Verifiers may be
subjected to external audits to check that access was only granted to entitled
users. For example, government authorities may require a video streaming ser-
vice to prove that age-restricted movies were streamed exclusively to viewers of
the required age, or film distributors may require it to prove that films were
only streamed to residents of geographic areas for which it bought the rights.
It makes perfect sense to extend the data minimization principle to auditors as
well: why should auditors be handed any user attributes that are not relevant to

the audit? Can one design a scheme where verifiers can further “maul” authen-
tication tokens so that some of the disclosed attributes are blinded, yet keeping
the audited token verifiable under the issuer’s public key?

Trivial constructions. Current PABC schemes don’t allow for such functional-
ity, or at least not efficiently. Presentation tokens usually consist of non-malleable
non-interactive zero-knowledge proofs. In theory, one can always rely on generic
zero-knowledge techniques [6] to prove knowledge of a valid presentation token
for a subset of the disclosed attributes, but such proofs will be prohibitively
expensive in practice. If the number of disclosed attributes is small, or the com-
bination of attributes required by the auditor is known upfront, the user can
generate multiple separate presentation tokens, one for the verifier and one for
each of the auditors. This solution doesn’t scale, however: if there are m disclosed
attributes and the audited combination is not known upfront, the user would
have to prepare 2m presentation tokens.

Our contributions. We present an efficiently auditable PABC scheme, mean-
ing the size of authentication as well as audited tokens stays linear in the num-
ber of attributes. Just like many PABC schemes, credentials in our construction
are signatures on blocks of messages, where each message block encodes an at-
tribute value. A presentation token is computed with an efficient signature of
knowledge [7] of a valid credential signature that reveals only part of the message
blocks. The basic idea of our construction is that, rather than simply revealing
the disclosed attribute values, the user commits to them and creates a signature
of knowledge of a valid credential signature for the same values as those that
he committed to. The opening information of all commitments is handed to the
verifier, who can check that they contain the claimed attribute values, but in
the auditing phase, the verifier only forwards the opening information of the
transferred attributes to the auditor, together with the user’s original signature
of knowledge.

We prove our construction secure in the universal composability (UC) frame-
work [8], which guarantees that our protocol can be securely composed with it-
self as well as with other protocols in arbitrary environments. Given the several
iterations that it took to define the security of basic signatures in this frame-
work [9–11], defining security for a complicated primitive like ours is a delicate
balancing act. We elaborately motivate our design choices for our ideal function-
ality in Section 3, in the hope that it can be of independent interest as a source
of inspiration for future signature variants with privacy features.

Related work. There are several proposals for dedicated signature schemes
that allow the receiver of a signed message to reduce the amount of information
in the message while retaining the ability to verify the corresponding signature.
Those are known as homomorphic [12], sanitizable [13–15], redactable [16], or
content extracting signatures [17]. Other constructions, described e.g. in [18, 19]
even allow more advanced operations on the signed data.

Those mechanisms do not yield straightforward constructions of our primitive
as they only consider modifications of signed messages, whereas our scheme has
to work with presentation tokens which itself are already derived from signed
credentials. The crucial difference between signed messages and presentation
tokens is that the latter should not be usable by a cheating verifier to impersonate
the user at other verifiers. Therefore, the simple scheme where the credential and
presentation token are redactable signatures on the list of attributes and where
the presentation token can be further redacted by the verifier, doesn’t work.

Another related line of work is that on delegatable anonymous credentials [20],
structure-preserving signatures [21], and commuting signatures [22]. The former
allow credentials to be repetitively delegated while hiding the identity of the
delegators. The latter two are more general signature schemes where the pub-
lic key, the signed message, and the signature are all in the same mathematical
group, and that among other things can be used to build delegatable credentials.
Even though verifiable auditing is a sort of delegation, none of these primitives
achieves the goals that we set out, as they cannot bind attributes to a delegatable
credential.

2 System Overview

A privacy-preserving audit protocol consists of four parties: an auditor R, an
issuer I, verifiers V1, . . . ,VJ , and users U1, . . . ,UN . The interaction between the
parties is as follows. First, in the issuing phase, a user Un gets credentials that
certify her attributes from the issuer I. A credential consists of L attributes
(a1, . . . , aL). In the presentation phase, Un sends a presentation token to a verifier
Vj . In each presentation token, U chooses which attributes are revealed to Vj
and, moreover, which of those attributes can further be revealed to the auditor
R. The indexes of the attributes that are only revealed to Vj are included in
a set F , and the indexes of the attributes that are revealed to Vj and that
can also be revealed to R are included in a set D . We call the attributes given
by D transferable, while the ones given by F are non-transferable. In the audit
phase, Vj reveals to R (a subset of) the transferable attributes, whose indexes
are included in a subset T such that T ⊆ D .

3 Security Definition of Privacy-Preserving Audits

3.1 Universally Composable Security

The universal composability framework [23] is a general framework for analyz-
ing the security of cryptographic protocols in arbitrary composition with other
protocols. The security of a protocol ϕ is analyzed by comparing the view of an
environment Z in a real execution of ϕ against that of Z when interacting with
an ideal functionality F that carries out the desired task. The environment Z
chooses the inputs of the parties and collects their outputs.

In the real world, Z can communicate freely with an adversary A who con-
trols the network as well as any corrupt parties. We assume static corruptions,
meaning that the adversary chooses which parties to corrupt at the beginning of
the game. In the ideal world, Z interacts with dummy parties, who simply relay
inputs and outputs between Z and F , and a simulator S. We say that protocol
ϕ securely realizes F if Z cannot distinguish the real world from the ideal world,
i.e., Z cannot distinguish whether it is interacting with A and parties running
protocol ϕ or with S and dummy parties relaying to Fϕ.

More formally, let k ∈ N denote the security parameter and a ∈ {0, 1}∗ denote
an input. Two binary distribution ensembles X = {X(k, a)}k∈N,a∈{0,1}∗ and
Y = {Y (k, a)}k∈N,a∈{0,1}∗ are indistinguishable (X ≈ Y) if for any c, d ∈ N there
exists k0 ∈ N such that for all k > k0 and all a ∈ ∪κ≤kd{0, 1}κ, |Pr [X(k, a) =
1] − Pr [Y (k, a) = 1]| < k−c. Let REALϕ,A,Z(k, a) denote the random variable
given by the output of Z when executed on input a with A and parties running
ϕ, and let IDEALF,S,Z(k, a) denote the output distribution of Z when executed
on a with S and dummy parties relaying to F . We say that protocol ϕ securely
realizes F if, for all polynomial-time A, there exists a polynomial-time S such
that, for all polynomial-time Z, REALϕ,A,Z ≈ IDEALF,S,Z .

When describing ideal functionalities, we use the following conventions:

Network vs. local communication. The identity of an ITM instance (ITI)
consists of a party identifier pid and a session identifier sid . A set of parties
in an execution of a system of ITMs are a protocol instance if they have the
same session identifier sid . ITIs can pass direct inputs to and outputs from
“local” ITIs that have the same pid . An ideal functionality F has pid = ⊥
and is considered local to all parties. An instance of F with session identi-
fier sid only accepts inputs from and passes outputs to machines with the
same session identifier sid . When describing functionalities, the expressions
“output to P” and “on input from P”, where P is a party identity pid , mean
that the output is passed to and the input received from party P only.
Communication between ITIs with different party identifiers must take place
over the network. The network is controlled by the adversary, meaning that
he can arbitrarily delay, modify, drop, or insert messages.

Waiting for the simulator. When we say that F sends m to S and waits for
m′ from S, we mean that F chooses a unique execution identifier, saves its
current state, and sends m together with the identifier to S. When S invokes
a dedicated resume interface with a message m′ and an execution identifier,
F looks up the execution state associated to the identifier and continues
running its program where it left off using m′.

A protocol ϕG securely realizes F in the G-hybrid model when ϕ is allowed
to invoke the ideal functionality G. Therefore, for any protocol ψ that securely
realizes functionality G, the composed protocol ϕψ, which is obtained by replac-
ing each invocation of an instance of G with an invocation of an instance of ψ,
securely realizes F .

Our protocol makes use of the standard functionalities FREG [23] for key
registration, FSMT for secure message transmission, and FD

CRS [23] for common

reference strings with distribution D . Descriptions and realizations of all these
functionalities can be found in the literature.

We also use the non-standard anonymous secure message transmission func-
tionality FASMT given in Figure 1. The literature provides a fair number of pro-
tocols that provide some form of anonymous communication. These include some
onion routing protocols for which ideal functionalities have been defined [24, 25].
These functionalities are quite complex, as they model the various imperfection
of the protocols, in particular, what routing information an adversary learns.
These information depend heavily on how messages are routed, how many other
users currently use the chanel, how many nodes are controlled by the adver-
sary, etc. Indeed, the modelling and realizations of anonymous communcation is
an active field of research. Now, if we used one of these functionalities for our
protocols, we would have had to model all these imperfactions in our ideal func-
tionality FAUD as well. We consider such modeling orthogonal to our protocol
and our goals and therefore choose to assume ideal anonymous communication
where the adversary only learns that some message is sent (and is allowed to
deny its delivery) but not not learn the identities of the sender and the receiver.

Functionality FASMT

Parameterized by a leakage function l : {0, 1}∗ ← {0, 1}∗, FASMT works as follows:

1. On input (send, sid ,m) from a party T , execute the following program:

• If sid 6= (R, sid ′), exit the program.
• Send (send, sid ′, l(m)) to S.
• Wait for a message (send, sid ′) from S.
• Send (sent, sid ,m) to R.

Fig. 1. The ideal functionality of anonymous secure message transmission.

3.2 Ideal Functionality of Privacy-Preserving Audits

We describe an ideal functionality FAUD of privacy-preserving audits in Figure 2.
We assume static corruptions, meaning that the adversary decides which parties
to corrupt at the beginning of the game but cannot corrupt additional parties
once the protocol is running. FAUD employs the following tables:

Table 1. Table 1 stores entries of the form [Un , 〈al〉Ll=1] associating a user Un to
her attributes 〈al〉Ll=1, or of the form [S, 〈al〉Ll=1] if the credential was issued
to a corrupt user.

Table 2. Table 2 stores entries of the form [Vj ,D ,F , 〈al〉l∈D∪F ,msg , tid] asso-
ciating verifiers Vj to the information of previous presentation phases.

Table 3. Table 3 stores entries of the form [audtok ,Vj ,D ,F ,T , 〈al〉l∈T ,msg , v],
associating auditable tokens to the data used to compute or verify the token,
plus v ∈ {valid, invalid} indicating whether the token is valid.

Functionality FAUD:

1. On input (issue, sid ,Un , 〈al〉Ll=1) from I:

• If sid 6= (I, sid ′) then exit the program.
• Send (issue, sid ,Un) to S and wait for (issue, sid) from S.
• If Un is honest then store [Un , 〈al〉Ll=1] in Tbl1, else store [S, 〈al〉Ll=1].
• Output (issue, sid , 〈al〉Ll=1) to Un .

2. On input (present, sid ,Vj ,D ,F , 〈al〉l∈D∪F ,msg) from Un :

• Continue only if one of the following conditions is satisfied:

– there exist [U ′n , 〈a ′l 〉Ll=1] ∈ Tbl1 s.t. a ′l = al ∀l ∈ D ∪F where U ′n = Un
if Un is an honest user, or U ′n = S if Un is corrupt,

– Un and I are both corrupt.

• Send (present, sid ,Vj) to S and wait for (present, sid) from S.
• Increment the token identifier tid(Vj) = tid(Vj) + 1.
• Store [Vj ,D ,F , 〈al〉l∈D∪F ,msg , tid(Vj)] in Tbl2.
• Output (tokrec, sid ,D ,F , 〈al〉l∈D∪F ,msg , tid(Vj)) to Vj .

3. On input (auditgen, sid ,D ,F ,T , 〈al〉l∈T ,msg , tid) from Vj :
• Continue only if one of the following conditions is satisfied:

– Vj and I are both corrupt,
– Vj is corrupt and there exists [S, 〈a ′l 〉Ll=1] ∈ Tbl1 s.t. a ′l = al ∀l ∈ T ,
– there exist [Vj ,D ,F , 〈a ′′l 〉l∈D∪F ,msg , tid] ∈ Tbl2 s.t. a ′′l = al ∀l ∈ T .

• Send (auditgen, sid ,Vj ,D ,F ,T , 〈al〉l∈T ,msg , tid) to S and wait for
(auditgen, sid , audtok) from S.

• Store [audtok ,Vj ,D ,F ,T , 〈al〉l∈T ,msg , valid] in Tbl3.
• Output (audrec, sid , audtok) to Vj .

4. On input (auditvf, sid , audtok ,Vj ,D ,F ,T , 〈al〉l∈T ,msg) from a party P:

• Send (auditvf, sid , audtok ,Vj ,D ,F ,T , 〈al〉l∈T ,msg) to S and wait for
(auditvf, sid , w) from S.

• If there exists [audtok ,Vj ,D ,F ,T , 〈al〉l∈T ,msg , u] ∈ Tbl3 then set v = u.
(Completeness/Consistency)

• Else, set v = w only if one of the following conditions is satisfied (Un-
forgeability):

– Vj and I are both corrupt,
– Vj is corrupt and there exists [S, 〈a ′l 〉Ll=1] ∈ Tbl1 or

[Vj ,D ,F , 〈a ′l 〉l∈D∪F ,msg , tid] ∈ Tbl2 such that a ′l = al ∀l ∈ T ,
– there exists [audtok ′,Vj ,D ,F ,T , 〈al〉l∈T ,msg , valid] ∈ Tbl3.

• Otherwise, set v = invalid.
• Store [audtok ,Vj ,D ,F ,T , 〈al〉l∈T ,msg , v] in Tbl3.
• Output (audvf, sid , v) to P.

Fig. 2. The ideal functionality FAUD

To save on notation we further introduce the following conventions, which
basically enforce that the functionality only proceeds if the incoming messages
are well-formed. That is, for the presentation, audit and verify messages, FAUD

only continues if D ∩ F = ∅, D ⊆ [1,L], F ⊆ [1,L] and sid = (I, sid ′). For the
audit and verify messages, FAUD further checks that T ⊆ D .

The functionality assumes certified identities of the users, verifiers, and the
signer. See the discussion on public keys below.

The issue interface is called by the issuer with the user identity and the
attributes in the issued credential, meaning that the issuer is aware of which
attributes he issues to which user. The simulator indicates when the issuance is
to be finalized by sending a (issue, sid) message. At this point, the issuance is
recorded in Table 1. If the user is honest, then the issuance is recorded under
the correct user’s identity; any instantiating protocol will have to set up an
authenticated channel to the user to ensure this in the real world. If the user is
corrupt, the credential is recorded as belonging to the simulator, modeling that
corrupt users may pool their credentials. Note that the simulator is not given
the issued attribute values, so the real-world protocol must hide these from the
adversary.

The presentation phase in Figure 2 lets a user present a subset of attributes
to a verifier Vj . Honest users can only show combinations of attributes that
appear in a credential issued to that user. If the issuer is honest, but the user is
corrupt, then the presented attributes must be part of a credential issued to some
corrupt user, not necessarily Un itself. Upon receiving a message (present, sid)
from S, the presented attributes and the associated message are recorded in
Table 2. The table also contains the identity of the verifier to whom the attributes
were presented. Finally, the verifier is informed about the revealed attributes
and the message. Note that neither the verifier nor the simulator learns the
identity of the user who initiated the presentation protocol, which guarantees
that presentation protocols are anonymous. Of course, one requires some form
of anonymous communication between the user and the verifier to achieve this.

The audit phase depicted in Figure 2 has two interfaces: the auditgen interface
to create audited tokens, and the auditvf to verify audited tokens. Honest verifiers
can only create audited tokens that can be derived from presentations that they
have seen, as recorded in Table 2. If the verifier is corrupt, but the issuer is
honest, the verifier can additionally create tokens that can be derived from any
credentials issued to a corrupt user, as recorded in Table 1. If the verifier and the
issuer are both corrupt, then the adversary can generate any audited tokens that
he wants. Unlike credentials and presentations, audited tokens have an actual
bit string representations in our functionality that can be verified by anyone,
not just by a dedicated auditor. We follow Canetti’s signature functionality [11]
by letting the simulator determine the value of the audited token. Note that
the simulator is only given the values of the transferred attributes T , which
guarantees that audited tokens do not reveal any information about the non-
transferred attributes. The functionality registers the token as valid in Table 3
and returns it to the verifier.

Any party can verify an audited token through the auditvf interface. The
functionality enforces consistency through Table 3, guaranteeing that verifica-
tion of the same audited token for the same parameters always returns the same
result. Note that this also enforces completeness, i.e., that honestly generated to-
kens verify correctly, because honestly generated tokens are recorded in Table 3
as valid. When the issuer is honest, the functionality enforces unforgeability by
rejecting all audited tokens that the adversary should not be able to create. If in
the real world the adversary manages to come up with a valid forgery, then the
environment will be able to notice a difference between the real and the ideal
world by verifying the token. Tokens are considered forgeries when they could
not have been derived from any credentials issued to corrupt users in Table 1,
from any presentation to a corrupt verifier Vj in Table 2, or from any honestly
generated audited tokens in Table 3. Note that in the latter condition, the hon-
estly generated token audtok ′ may be different from the verified token audtok .
This models conventional (i.e., non-strong) unforgeability: if the environment
previously obtained any token that is valid for the same parameters, then the
current token is no longer considered a forgery.

Public keys. We define our functionality FAUD so that, rather than providing a
binding to the public key of the issuer, audited tokens provide a direct binding to
the issuer’s identity, much like Canetti’s certified signature functionality FCERT

provides a direct binding to the signer’s identity [11]. Similarly, presentation
protocols are bound directly to verifiers’ identities rather than their public keys.
This greatly simplifies the description of our functionality because we do not
have to model public keys of issuers and verifiers, and we do not have to specify
how the various interfaces behave when called with incorrect public keys. In-
deed, when tokens are bound directly to party identities, public keys become an
implementation detail of the protocol. This of course comes at a price: in order
to satisfy the functionality, our protocol must rely on an underlying public-key
infrastructure to bind public keys to party identities.

Session identifiers. The restriction that the issuer’s identity I must be in-
cluded in the session identifier sid = (I, sid ′) guarantees that each issuer can
initialize its own instance of the functionality. In applications where the issuer
is to remain anonymous, the issuer identity could be replaced with a unique
pseudonym.

Representations of credentials, presentations, and audited tokens. The
issuing phase depicted in Figure 2 does not expose any bit string representation
for credentials to the environment, but merely records which attributes are issued
to which user. Just like public keys, credentials are thereby reduced to implemen-
tation details that remain internal to the state of honest parties. Unlike public
keys, however, this is not just an easy way to simplify our functionality, but is ac-
tually crucial to the unforgeability guarantee. Namely, our functionality imposes
unforgeability of audit tokens by letting the verification interface reject tokens
that the environment should not have been able to produce, including tokens
that could have been derived from honest users’ credentials, but not from corrupt

users’ credentials. However, if the functionality were to output actual credentials
to honest users, the environment could itself derive valid audited tokens from
these credentials, which the functionality would have to accept. Similarly, the
presentation phase in Figure 2 merely records which combinations of attributes
were shown to which verifier, without exposing a cryptographic token of that
presentation to the environment.

Linkability of audit tokens. An audit token can be linked to the presenta-
tion token from which it was computed. For each verifier Vj , each presentation
phase is given a unique identifier tid(Vj), and this identifier is passed to the
functionality when creating an audit token through the auditgen interface. The
functionality also passes tid(Vj) to the simulator when it is asked to create the
actual token, so that the simulator can create an audit token that respects the
linkability to the corresponding presentation token. The simulator still does not
get any information about the non-transferred attributes, however.

4 Technical Preliminaries

4.1 Trapdoor Commitment Schemes

A non-interactive commitment scheme consists of algorithms ComSetup, Commit
and VfCom. ComSetup(1k) generates the parameters of the commitment scheme
parc . Commit(parc , x) outputs a commitment com to x and auxiliary informa-
tion open. A commitment is opened by revealing (x , open) and checking whether
VfCom(parc , com, x , open) outputs 1 or 0. A commitment scheme has a hiding
property and a binding property. Informally speaking, the hiding property en-
sures that a commitment com to x does not reveal any information about x ,
whereas the binding property ensures that com cannot be opened to another
value x ′.

A trapdoor commitment scheme [26, 27] is a commitment scheme where there
exists trapdoor information that allows to open commitments to any value. More
formally, there exist polynomial-time algorithms ComSimSetup and ComOpen,
where ComSimSetup on input 1k outputs parameters parc with trapdoor tdc
such that parc are indistinguishable from those produced by ComSetup. Given
a commitment com for message x1 and opening information open1, a second
message x2 and trapdoor tdc, ComOpen produces the opening information open2

such that VfCom(parc , com, x2, open2) = 1.

4.2 Signature Schemes

A signature scheme consists of the algorithms KeyGen, Sign, and VfSig. Algorithm
KeyGen(1k) outputs a secret key sk and a public key pk , which include a de-
scription of the message spaceM. Sign(sk ,m) outputs a signature s on message
m ∈ M. VfSig(pk , s,m) outputs 1 if s is a valid signature on m and 0 other-
wise. This definition can be extended to blocks of messages m̄ = (m1, . . . ,mn).
A signature scheme must fulfill the correctness and existential unforgeability
properties [28].

4.3 Signatures of Knowledge

Let L be an NP language defined by a polynomial-time computable relation R
as L = {x |∃w : (x ,w) ∈ R}. We call x a statement in L and w with (x ,w) ∈ R
a witness for x . A signature of knowledge (SK) [29, 7] for L consists of the fol-
lowing algorithms:

SKSetup(1k). Output parameters pars, which include a description of the mes-
sage space M.

SKSign(pars,R, x ,w ,m). If (x ,w) ∈ R, output a signature of knowledge σ on
the message m with respect to statement x , else output ⊥.

SKVerify(pars,R, x ,m, σ). If σ is a valid signature of knowledge on the message
m with respect to statement x , output 1, else output 0.

A signature of knowledge scheme needs to fulfil the following three properties.

Definition 1 (Correctness). Correctness ensures that the algorithm SKVerify
accepts the signatures of knowledge that are output by the algorithm SKSign.
More formally, for any (x ,w) ∈ R and any m ∈M, we require

Pr
[
pars ← SKSetup(1k); σ ← SKSign(pars,R, x ,w ,m) :

1← SKVerify(pars,R, x ,m, σ)
]

= 1 .

Definition 2 (Simulatability). Simulatability requires the existence of a sim-
ulator defined by algorithms (SKSimSetup,SKSimSign) that can compute signa-
tures without having a witness for the statement. Let SKSim be an algorithm
that, on input (pars,R, x ,w ,m), if (x ,w) ∈ R, outputs SKSimSign(pars, tds,R,
x ,m), else outputs ⊥. More formally, simulatability is defined as follows.∣∣∣Pr

[
pars ← SKSetup(1k); b ← A(pars)

↔SKSign(pars,·,·,·,·) : b = 1
]
−

Pr
[
(pars, tds)← SKSimSetup(1k);

b ← A(pars)
↔SKSim(pars,tds,·,·,·,·) : b = 1

]∣∣∣ ≤ ε(k)

Definition 3 (Extraction). Extraction requires the existence of an algorithm
SKExt that, given (R, x , σ,m) such that SKVerify(pars,R, x ,m, σ) outputs 1, ex-
tracts a witness w such that (x ,w) ∈ R. Let Ssk contain the tuples (R, x ,w ,m)
submitted to SKSim. More formally, extraction is defined as follows.

Pr

 (pars, tds)← SKSimSetup(1k); (R, x ,m, σ)← A(pars)
↔SKSim(pars,·,·,·,·);

w ← SKExt(pars, tds, x ,m, σ) :
1← SKVerify(pars,R, x ,m, σ) ∧ (R, x , ·,m) /∈ Ssk ∧ (x ,w) /∈ R

 ≤ ε(k)

5 Construction of Privacy-Preserving Audits

The high-level idea of our protocol is as follows: a user Un can obtain credentials
from an issuer I, where credentials are signed sets of attributes. From a credential
the user can subsequently derive a presentation token which discloses attributes
al for l ∈ D in a transferable way to the verifier, and attributes al for l ∈ F

in a non-transferable way. To this end, the user first creates a commitment and
opening (com l , open l) for each disclosed attribute al with l ∈ D ∪ F . He then
generates a signature of knowledge σ, proving that he has a valid credential for
all the committed values. To further ensure that the signature can not be used
in a different context, e.g., by a malicious party trying to impersonate an honest
user, the proof signs a message which contains the public key of the verifier and
a fresh nonce chosen by the user. The entire presentation token then consists
of the signature of knowledge σ, the commitments 〈com l〉l∈D∪F and openings
〈open l〉l∈D∪F for all disclosed attributes, and the random nonce.

The verifier Vj can check the correctness of such a token by verifying the
signature of knowledge and verifying whether the commitments com l open to
the correct values al for all l ∈ D ∪F . If that is the case, the verifier stores the
token and the nonce contained in those proofs and will not accept any further
token that signs the same nonce.

When the verifier wants to derive an audit token from the presentation token
where he wishes to disclose attributes T ⊆ D to the auditor, he simply reuses
the presentation token with the modification that he only includes the openings
for the subset of transferred attributes into the audit token. The verifier further
adds a signature s, where he signs the redacted presentation token with his own
signing key. This ensures that a malicious user can not bypass an honest verifier
and directly create an audit token by himself.

An auditor can verify an audit token by verifying the correctness of the
forwarded signature of knowledge σ, the correct opening of all commitments for
the disclosed attributes and the verifiers signature s.

5.1 Our protocol

Our protocol uses a trapdoor commitment scheme (ComSetup,Commit,VfCom),
and two signature schemes (KeyGenI ,SignI ,VfSigI) (for the issuer) and (KeyGenV ,
SignV ,VfSigV) (for the verifier). Both signature schemes follow the standard sig-
nature definition given in Section 4.2 and can be instantiated with the same
construction. However, as the issuer’s signature also serves as witness in a signa-
ture of knowledge scheme (SKSetup,SKSign,SKVerify) it might be beneficial to
choose a signature scheme for (KeyGenI ,SignI ,VfSigI) that already comes with
efficient protocols for such proofs. Furthermore, the issuers signature scheme
must allow signing blocks of messages, whereas for the verifiers scheme only a
single message needs to be signed.

For simplicity, it is assumed that all issuers and verifiers in the scheme have
registered public keys. That is, the issuer generates its key as (ipk , isk) ←
KeyGenI(1k), stores (ipk , isk) and sends (register, I, ipk) to FREG. Similarly,
each verifier Vj runs (vpkj , vskj) ← KeyGenV(1k), stores (vpkj , vskj) and sends
(register,Vj , vpkj) to FREG.

We further assume that all parties fetch the necessary parameters and public
keys by invoking the corresponding functionalities. That is, the system parame-
ters (pars, parc) with pars ← SKSetup(1k) and parc ← ComSetup(1k) are obtain
via FD

CRS, and the public keys of the verifiers and issuer can be retrieved via

the FREG functionality. Note that the issuer identity I is part of the session
identifier sid = (I, sid ′) that is contained in every message. The verifier also
maintains a list of of nonces Lnonce which is initially set to Lnonce := ∅ and will
be filled with nonces of verified presentation tokens, which is used to guarantee
a one-time showing for each token. The communication between the different
parties is done over ideal functionalities FSMT and FASMT respectively.

As in the ideal functionality FAUD, the parties in our protocol only proceed
if the incoming messages are well-formed, i.e., for the presentation, audit and
verify messages the respective party only continues if D ∩ F = ∅, D ⊆ [1,L],
F ⊆ [1,L] and sid = (I, sid ′). For the audit and verify messages, the verifier and
auditor further check that T ⊆ D .

Issuance Protocol. On input (issue, sid ,Un , 〈al〉Ll=1) where sid = (I, sid ′), the
issuer I and user Un execute the following program:

Step I1. Issuer I generates and sends credential:

a) Generate credential as cred ← SignI(isk , 〈al〉Ll=1).

b) Set sidSMT := (Un , sid , sid ′′) for a randomly chosen sid ′′ and send (send,
sidSMT, (sid , 〈al〉Ll=1, cred)) to FSMT.

Step I2. User Un verifies and stores credential:

a) Upon receiving (sent, sidSMT, (sid , 〈al〉Ll=1, cred)) from FSMT, verify that 1←
VfSigI(ipk , cred , 〈al〉Ll=1) and abort if the verification fails.

b) Store (〈al〉Ll=1, cred) and output (issue, sid , 〈al〉Ll=1).

Presentation Protocol. On input (present, sid ,Vj ,D ,F , 〈al〉l∈D∪F ,msg), the
user Un executes the following program with verifier Vj .

Step S1. User Un creates a presentation token:

a) Retrieve the credential (〈a ′l 〉Ll=1, cred) where a ′l = al for all l ∈ D ∪F . Abort
if no such credential exist.

b) Create a signature of knowledge of a valid credential w.r.t. committed at-
tributes and bound to a nonce:
• Compute (com l , open l)← Commit(parc , al) ∀l ∈ D ∪ F .
• Choose a random nonce nonce ∈ {0, 1}k and set m := (msg ,Vj ,nonce).
• Prepare a signature of knowledge for the statement that a valid credential

is known which contains the same attribute values as the commitments.
That is, set the relation to R :=

(1← VfSigI(ipk , cred , 〈al〉Ll=1) ∧ 1← VfCom(parc , al , com l , open l) ∀l ∈ D∪F),

and set the statement and witness to x := (ipk , 〈com l〉l∈D∪F , parc ,D ,
F), w := (cred , 〈al〉Ll=1, 〈open l〉∈D∪F).

• Generate the signature as σ ← SKSign(pars,R, x ,w ,m).

c) Compose and send the presentation token:
• Set sidASMT := (Vj , sid , sid ′′) for a randomly chosen sid ′′.

• Send (send, sidASMT, (〈al〉l∈D∪F ,D ,F ,msg ,nonce, 〈com l〉l∈D∪F , 〈open l〉l∈D∪F ,
σ)) to FASMT.

Step S2. Verifier Vj verifies the presentation token:

a) Upon receiving a message (sent, sidASMT, (〈al〉l∈D∪F ,D ,F ,msg ,nonce,
〈com l〉l∈D∪F , 〈open l〉l∈D∪F , σ)) from FASMT check that nonce /∈ Lnonce and
abort otherwise.

b) Verify signature of knowledge and commitments:
• Set (R, x , m) similarly as in Step S1(b) and verify that 1← SKVerify(pars,

R, x ,m, σ).
• Verify that 1← VfCom(parc , al , com l , open l) for all l ∈ D ∪ F . Abort if

a verification fails.
c) Store token & nonce and end:

• Set the token-identifier to tid := tid + 1 and Lnonce := Lnonce ∪ nonce.
• Store (〈al〉l∈D∪F ,D ,F ,msg ,nonce, 〈com〉l∈D∪F , 〈open l〉l∈D∪F , σ, tid).
• Output (tokrec, sid ,D ,F , 〈al〉l∈D∪F ,msg , tid).

Audit Token Generation. On input (auditgen, sid ,D ,F ,T , 〈al〉l∈T ,msg , tid),
the verifier Vj executes the following program.

a) Retrieve the tuple (〈a ′l 〉l∈D∪F ,D ,F ,msg ,nonce, 〈com〉l∈D∪F , 〈open l〉l∈D∪F ,
σ, tid), such that a ′l = al for all l ∈ T , abort if no such tuple exist.

b) Sign the redacted token information as

s ← SignV(vskj , (〈com l〉l∈D∪F , 〈open l〉l∈T , σ,T)).

c) Set the audit token to audtok := (〈com l〉l∈D∪F , 〈open l〉l∈T , σ,nonce, s) and
end with output (audrec, sid , audtok).

Audit Token Verification. On input (auditvf, sid , audtok ,Vj ,D ,F ,T , 〈al〉l∈T ,
msg), the auditorR executes the following program. Whenever a verification step
fails, the auditor ends with output (audvf, sid , invalid).

a) Parse token as audtok = (〈com l〉l∈D∪F , 〈open l〉l∈T , σ,nonce, s).
b) Verify that 1← VfSigV(vpkj , s, (〈com l〉l∈D∪F , 〈open l〉l∈T , σ,T)).
c) Set (R, x , m) as in Step S1(b) and verify that 1← SKVerify(pars,R, x ,m, σ).
d) Verify that 1← VfCom(parc , al , com l , open l) for all l ∈ T .
e) If all checks succeeded, output (audvf, sid , valid) and end.

5.2 Security

We prove our protocol secure in the UC model based on the security properties of
the underlying building blocks. A sketch of the simulator is given in Appendix A.

Theorem 1. The above construction securely implements FAUD in the FREG,
FSMT, FD

CRS, and FASMT-hybrid model if the underlying trapdoor commitment
scheme is hiding and binding, the underlying signature schemes are existen-
tially unforgeable, and the signature of knowledge scheme is simulatable and
extractable.

6 Instantiation of Privacy-Preserving Audits

We recall the Damg̊ard-Fujisaki commitment scheme, which under the strong
RSA assumption securely instantiates algorithms (ComSetup,Commit,VfCom,
ComSimSetup,ComOpen) described in Section 4.1. Let ln be the bit-length of
the RSA modulus n and lr be the bit-length of a further security parameter,
both are functions of k . Typical values are ln = 2048 and lr = 80.

ComSetup(1k). Compute a safe RSA modulus ñ of length ln, i.e., such that
ñ = pq, p = 2p′ + 1, q = 2q′ + 1, where p, q, p′, and q′ are primes. Pick
a random generator h ∈ QRñ and random α ← {0, 1}ln+lr and compute
g ← hα. Output the commitment parameters parc = (g, h, ñ).

Commit(parc , x). Pick random open ← {0, 1}ln+lr , compute com ← gxhopen

(mod ñ), and output the commitment com and the auxiliary information
open.

VfCom(parc , com, x ,w). On inputs x and w , compute com ′ ← gxhw mod ñ and
output 1 if com = com ′ and 0 otherwise.

ComSimSetup(1k). Same as ComSetup, but outputting α as trapdoor.
ComOpen(com, x1, open1, x2, tdc). Compute open2 = open1 + α(x1 − x2).

We employ the Camenisch-Lysyanskaya signature scheme [30] to implement
the issuer signature scheme (KeyGenI ,SignI ,VfSigI). This signature scheme is
existentially unforgeable against adaptive chosen message attacks [28] under the
strong RSA assumption.

Let `m, `e, `n, and `r be system parameters determined by a function of k ,
where `r is a security parameter and the meaning of the others will become clear
soon. We denote the set of integers {−(2`m − 1),, (2`m − 1)} by ±{0, 1}`m .
Elements of this set can thus be encoded as binary strings of length `m plus an
additional bit carrying the sign, i.e., `m + 1 bits in total.

KeyGen(1k). On input 1k , choose an `n-bit safe RSA modulus n. Choose, uni-
formly at random,R1, . . . , Rn , S, Z ∈ QRn. Output the public key (n,R1, . . . ,
Rn , S, Z) and the secret key sk ← p.

Sign(sk , 〈m1, . . . ,mL〉). The message space is the set {(m1, . . . ,mL) : mi ∈
±{0, 1}`m}. On input m0, . . . ,mL, choose a random prime number e of length
`e > `m + 2, and a random number v of length `v = `n + `m + `r. Compute

A← (Z/(Rm1
1 . . . RmL

L Sv))
1/e

mod n. Output the signature (e,A, v).
VfSig(pk , s, 〈m1, . . . ,mL〉). To verify that the tuple (e,A, v) is a signature on

message 〈m1, . . . ,mL〉, check that the statements Z ≡ AeRm1
1 . . . RmL

L Sv

(mod n), mi ∈ ±{0, 1}`m , and 2`e > e > 2`e−1 hold.

For the realization of signatures of knowledge we use the CPA secure version
of Camenisch-Shoup encryption scheme [31] as well as generalized Schnorr proof
protocols [32, 29, 33]. We describe how to instantiate the signature of knowledge
scheme for the relation we require in our protocol, i.e., for R := {(x := (ipk ,
〈com l〉l∈D∪F , parc ,D ,F),w := (cred , 〈al〉Ll=1, 〈open l〉∈D∪F): s.t. 1← VfSigI(ipk ,
cred , 〈al〉Ll=1) ∧ 1 ← VfCom(parc , al , com l , open l) ∀l ∈ D ∪ F}. It is a secure

signature of knowledge in the random oracle model under the strong RSA as-
sumption and the DCR assumption (the proof is straightforward and is given in
the full version of this paper).

SKSetup(1k). On input 1k , choose an `n = k -bit safe RSA modulus n. Choose
random x(1,1), . . . , x(1,2L), ∈R [n2/4], choose a random g′ ∈R Z∗n2 , and com-
pute g← (g′)2n, and y(1,i) ← gx(1,i) for i = 1, . . . , 2L+2. Output (n, g, {y(1,i)}).

SKSign(pars,R, x ,w ,m). Let h = (1 + n). Compute a randomized credential:
choose random v′ ∈R {0, 1}`v and compute A′ ← ASv

′
and v∗ ← v − v′e.

Choose random r ∈R [n/4] and compute u ← gr, ei ← yr(1,i)h
ai for i =

1, . . . ,L, eL+l ← yr(1,L+l)h
open l for all l ∈ D ∪ F , e2L+1 ← yr(1,i)h

e, and

e2L+1 ← yr(1,i)h
v∗ . Compute

π ← SPK{(r,A′, v∗, 〈al〉Ll=1, {ol}l∈D∪F) : u = gr∧∧
∀l∈D∪F

(
com l = galhol (mod ñ) ∧ eL+l = yr(1,L+l)h

ol
)
∧

e1 = yr(1,1)h
a1 ∧ . . . ∧ e1 = yr(1,L)h

aL ∧ Z = AeRa1
1 . . . RaL

L S
v (mod n)

)
∧

e2L+1 = yr(1,i)h
e ∧ e2L+1 = yr(1,i)h

v∗ ∧ ai ∈ ±{0, 1}`m ∧ 2`e > e > 2`e−1}(m)

and output (u, {ei}, A′, π). For the realization of the non-interactive proof of
knowledge π we refer Camenisch et al. [29, 33].

SKVerify(pars,R, x ,m, (u, {ei}, A′, π)). This algorithm will verify whether π is
correct.

The signature of knowledge simulator SKSimSign will make use of the random
oracle and the honest-verifier zero-knowledge property of the generalized Schnorr
proofs. One can get rid of the random oracle with alternative techniques [34].
The SKExt works by decryption of (u, {ei}), providing all attributes, opening
information of the commitments, and the credential (CL-signature).

7 Conclusion

Data minimization is a basic privacy principle in authentication mechanisms. In
this paper, we show that data minimization doesn’t need to stop at the verifier:
using our auditable PABC scheme, the information revealed in a presentation to-
ken can be further reduced when forwarding it to an auditor, all while preserving
the verifiability of the audited token.

In our construction, presentations and audited tokens are anonymous in the
sense that neither of them can be linked to the user or credential from which
they originated. Audited tokens can be linked to the presentation from which
they were derived. This can be used as a feature when the verifier must be unable
to inflate the number of presentations that it performed, but it may also be a
privacy drawback. We leave the construction of a scheme satisfying a stronger
privacy notion with fully unlinkable audited tokens as an open problem.

References

1. Camenisch, J., Krontiris, I., Lehmann, A., Neven, G., Paquin, C., Rannenberg,
K., Zwingelberg, H.: H2.1 – abc4trust architecture for developers. ABC4Trust
Heartbeat H2.1 (2011) Available from https://abc4trust.eu.

2. Chaum, D.: Security without identification: Transaction systems to make big
brother obsolete. Communications of the ACM 28(10) (1985) 1030–1044

3. Camenisch, J., Lysyanskaya, A.: A signature scheme with efficient protocols. In
SCN 02. Volume 2576 of LNCS., Springer (September 2002) 268–289

4. Brands, S.A.: Rethinking Public Key Infrastructures and Digital Certificates:
Building in Privacy. MIT Press, Cambridge, MA, USA (2000)

5. Adams, C., Farrell, S.: Rfc 2510, x. 509 internet public key infrastructure certificate
management protocols. Internet Engineering Task Force (1999)

6. Goldreich, O., Micali, S., Wigderson, A.: Proofs that yield nothing but their validity
or all languages in NP have zero-knowledge proof systems. Journal of the ACM
38(3) (1991) 691–729

7. Chase, M., Lysyanskaya, A.: On signatures of knowledge. In Dwork, C., ed.:
CRYPTO 2006. Volume 4117 of LNCS., Springer (August 2006) 78–96

8. Canetti, R.: Universally composable security: A new paradigm for cryptographic
protocols. In: 42nd FOCS, IEEE Computer Society Press (October 2001) 136–145

9. Canetti, R.: Universally composable signature, certification, and authentication.
In: IEEE CSFW-17, IEEE Computer Society (2004).

10. Backes, M., Hofheinz, D.: How to break and repair a universally composable
signature functionality. In ISC 2004. Volume 3225 of LNCS, Springer, pp. 61–72.

11. Canetti, R.: Universally composable signatures, certification and authentication.
Cryptology ePrint Archive, Report 2003/239 (2003)

12. Johnson, R., Molnar, D., Song, D.X., Wagner, D.: Homomorphic signature
schemes. In CT-RSA 2002. Volume 2271 of LNCS, Springer, pp. 244–262.

13. Ateniese, G., Chou, D.H., de Medeiros, B., Tsudik, G.: Sanitizable signatures. In
ESORICS 2005. Volume 3679 of LNCS., Springer , pp.159–177.

14. Brzuska, C., Fischlin, M., Lehmann, A., Schröder, D.: Unlinkability of sanitizable
signatures. In PKC 2010. Volume 6056 of LNCS, Springer, pp., 444–461.

15. Brzuska, C., Fischlin, M., Freudenreich, T., Lehmann, A., Page, M., Schelbert, J.,
Schröder, D., Volk, F.: Security of sanitizable signatures revisited. In PKC 2009.
Volume 5443 of LNCS, Springer, pp. 317–336.

16. Brzuska, C., Busch, H., Dagdelen, Ö., Fischlin, M., Franz, M., Katzenbeisser, S.,
Manulis, M., Onete, C., Peter, A., Poettering, B., Schröder, D.: Redactable signa-
tures for tree-structured data: Definitions and constructions. In ACNS 10.

17. Steinfeld, R., Bull, L., Zheng, Y.: Content extraction signatures. In Kim, K., ed.:
ICISC 01. Volume 2288 of LNCS., Springer (December 2001) 285–304

18. Ahn, J.H., Boneh, D., Camenisch, J., Hohenberger, S., Shelat, A., Waters, B.:
Computing on authenticated data. In TCC 2012. Vol. 7194 of LNCS.

19. Bellare, M., Neven, G.: Transitive signatures based on factoring and RSA. In
ASIACRYPT 2002. Volume 2501 of LNCS, Springer pp. 397–414.

20. Belenkiy, M., Camenisch, J., Chase, M., Kohlweiss, M., Lysyanskaya, A.,
Shacham, H.: Randomizable proofs and delegatable anonymous credentials. In
CRYPTO 2009. Volume 5677 of LNCS. Springer, pp. 108–125.

21. Abe, M., Fuchsbauer, G., Groth, J., Haralambiev, K., Ohkubo, M.: Structure-
preserving signatures and commitments to group elements. In CRYPTO 2010.
Volume 6223 of LNCS, Springer, pp. 209–236.

22. Fuchsbauer, G.: Commuting signatures and verifiable encryption. In EURO-
CRYPT 2011. Volume 6632 of LNCS, Springer, pp. 224–245.

23. Canetti, R.: Universally composable security: A new paradigm for cryptographic
protocols. In: FOCS, IEEE Computer Society (2001) 136–145

24. Backes, M., Goldberg, I., Kate, A., Mohammadi, E.: Provably secure and practical
onion routing. In IEEE CSF-25, IEEE press, pp. 369–385.

25. Camenisch, J., Lysyanskaya, A.: A formal treatment of onion routing. In: CRYPTO
2005, Springer, pp. 169–187.

26. Brassard, G., Chaum, D., Crépeau, C.: Minimum disclosure proofs of knowledge.
J. Comput. Syst. Sci. 37(2) (1988), pp. 156–189.

27. Fischlin, M.: Trapdoor Commitment Schemes and Their Applications. PhD thesis,
Goethe Universität Frankfurt (2001).

28. Goldwasser, S., Micali, S., Rivest, R.: A digital signature scheme secure against
adaptive chosen-message attacks. SIAM J. Comput. 17(2) (1988) 281–308

29. Camenisch, J., Stadler, M.: Efficient group signature schemes for large groups
(extended abstract). In CRYPTO 97. Vol. 1294 of LNCS, Springer, pp. 410–424.

30. Camenisch, J., Lysyanskaya, A.: A signature scheme with efficient protocols. In
SCN 02, Volume 2576 of LNCS, Springer, pp. 268–289.

31. Camenisch, J., Shoup, V.: Practical verifiable encryption and decryption of discrete
logarithms. In CRYPTO 2003. Volume 2729 of LNCS, Springer, pp. 126–144.

32. Schnorr, C.P.: Efficient identification and signatures for smart cards (abstract)
(rump session). In EUROCRYPT ’89. Vol. 434 of LNCS, Springer, pp. 688–689.

33. Camenisch, J., Kiayias, A., Yung, M.: On the portability of generalized schnorr
proofs. In EUROCRYPT 2009. Volume 5479 of LNCS, Springer, pp. 425–442.

34. Damg̊ard, I.: Efficient concurrent zero-knowledge in the auxiliary string model. In
EUROCRYPT 2000, Volume 1807 of LNCS, Springer, pp. 418–430.

A Security

To prove that our protocol securely realizes the ideal functionality FAUD, we
have to show that for any environment Z and any adversary A there exist a
simulator S, such that Z can not distinguish whether it’s interacting with A
and the protocol in the real world or with S and FAUD.

The simulator thereby plays the role of all honest parties in the real world
and interacts with FAUD for all corrupt parties in the ideal world. We denote by
′′P ′′ that the simulator plays the role of the honest party P in the real world.

The simulation is described along two different main cases, depending on
whether the issuer is honest or corrupt. Regarding the other parties, the adver-
sary can corrupt an arbitrary subset of verifiers, users, and auditors. Depending
on the different combinations of honest and corrupt parties, the simulation then
branches further in the different subprotocols for issuance, presentation, audit
token generation and verification. We now provide a sketch of our simulator, the
full description and the games appear in the full version of the paper.

A.1 Sketch of Simulator

For our simulation, we first replace the parameters of the signature of knowl-
edge and of the trapdoor commitment scheme by simulated parameters, where

the trapdoors are known to the simulator. That is, the CRS is now replaced by
(pars, parc) where (pars, tds)← SKSimSetup(1k) and (parc , tdc)← ComSimSetup(1k),
and tds and tdc are known to the simulator. This has no noticeable impact on
the view of the environment, due to the simulatability property of the signature
of knowledge scheme and the trapdoor commitments.

Case 1 – Honest Issuer
When the issuer is honest, the simulated issuer “I” creates his signing key
(ipk , isk) ← KeyGenI(1k) as in the real protocol. Thus, we can create valid
credentials in the simulation.

Issuance: The simulation is triggered when S receives (issue, sid ,Un) from FAUD,
and then branches depending on whether Un is corrupt or honest as follows.

honest user. If Un is honest, S starts the simulation of “Un” and “I” in the
real world, merely simulating the traffic between both parties. When “Un”
receives the dummy message that “I” had sent, S sends (issue, sid) to FAUD,
ensuring that a credential entry in the ideal functionality will be created.

corrupt user. If Un is corrupt, S sends (issue, sid) to FAUD, receiving (issue, sid ,
〈al〉Ll=1) from FAUD. With the knowledge of all attributes, “I” then runs the
normal issuance protocol with Un in the real world and stores [S, 〈al〉Ll=1] in
a locally maintained table Tbl1.

Presentation: The simulation for the presentation protocol again depends on the
different combinations of user and verifier. Note that the case of a corrupt user
and corrupt verifier requires no simulation, as all communication is internal to
the adversary.

honest user & honest verifier. The simulation is triggered when S receives
(present, sid ,Vj) from FAUD. Let “Un” send a dummy message of the correct
length to “Vj”. When “Vj” receives the message, S sends (present, sid) to
FAUD, increases the token identifier tid for “Vj” and stores an empty token
presentation token ⊥ and dummy attributes 〈al〉Ll=1 together with tid in
Tbl2.

honest user & corrupt verifier. Again, the simulation starts when S receives
(present, sid ,Vj) from FAUD. The simulator then sends (present, sid) to FAUD

and receives (tokrec, sid ,D ,F , 〈al〉l∈D∪F ,msg , tid(Vj)) in return. Knowing
all attributes that will be shown to the verifier, S now creates real commit-
ments and openings for all attributes in D ∪ F and produces a simulated σ
using SKSimSign and the trapdoor tds. The honest user “Un” then sends the
composed presentation token to Vj .

corrupt user & honest verifier Here the simulation starts when an honest
verifier “Vj” in the real world receives a presentation token (sent, sidASMT,
(〈al〉l∈D∪F ,D ,F ,msg ,nonce, 〈com l〉l∈D∪F , 〈open l〉l∈D∪F , σ)) from a dishon-
est user. If the token is valid, but there is no matching credential entry in
Tbl1 maintained by S, we can use the signature of knowledge extractor SKExt

to obtain the underlying credential (and all attributes) from σ and derive a
forgery against the issuers signature scheme.
If the token is valid and there is a matching entry in Tbl1, S sends (present, sid ,
Vj ,D ,F , 〈al〉l∈D∪F ,msg) to FAUD and subsequently triggers with (present, sid)
the delivery to the honest verifier in the ideal world. The simulator increases
tid for Vj and stores the received presentation token (nonce, 〈com l〉l∈D∪F ,
〈open l〉l∈D∪F , σ) together with all disclosed attributes 〈al〉l∈D∪Fand tid in
Tbl2.

Audit Token Generation: Here we only have to consider the case where the veri-
fier is honest. The simulation is triggered when S receives (auditgen, sid , 〈al〉l∈T ,
D ,F ,T , tid) from FAUD. S then retrieves the presentation token stored with
tid in Tbl2, which can come in three different flavours to which we have adapt
our simulation accordingly. Those are: the simulator retrieves (i) an empty pre-
sentation token for tid , (ii) an incomplete (simulated) presentation token with
dummy openings for attributes he has to reveal now, or (iii) a full presentation
token.

honest verifier & case (i). In this case the retrieved token equals ⊥, which
occurs when the presentation happened between an honest user and hon-
est verifier. S then computes a (simulated) audit token from scratch. That
is, the simulator first computes real commitments and openings for all at-
tributes in T , whereas for all attributes in D\T and F he commits to ze-
roes obtaining a “dummy” commitment and opening. He then chooses a
fresh nonce and simulates σ using SKSimSign and the trapdoor tds. The
signature s is computed normally and the audit token is set to audtok :=
(〈com l〉l∈D∪F , 〈open l〉l∈T , σ,nonce, s) which is input to FAUD as (auditgen, sid ,
audtok).
Internally, S now stores the simulated presentation token, together with
〈a ′l 〉Ll=1 and tid in Tbl2, where a ′l := al for all l ∈ T and a ′l := ⊥ otherwise.
Note that the audit token already reveals commitments for all attributes in
D\T and F , for which the simulator does not know the attribute value or
real opening yet. However, we can open them in a correct way whenever S
learns the real attributes in a subsequent audit token request. This is handled
in the next case.

honest verifier & case (ii). Here, a simulated and incomplete presentation
token retrieved from Tbl2 and S received an audit request that should reveal
attributes al ∈ T where the stored presentation token contains (for some
of them) a ′l := ⊥. That is, the simulator has to open some of the dummy
commitments in the new audit token. However, as S now learned the corre-
sponding attributes from FAUD, he uses ComOpen on input the trapdoor tdc,
the dummy commitment and the dummy opening (stored in the presenta-
tion token) to produces openings that will open the dummy commitment to
the correct attribute. The presentation token in Tbl2 is then updated accord-
ingly, replacing the dummy openings and dummy attributes with the correct
ones. The rest of the audit token is computed according to the real protocol,

and S finally sends the produced audit token as (auditgen, sid , audtok) to
FAUD.

honest verifier & case (iii). In this case a full fledged presentation token is
stored (received from a corrupt user, or generated by the simulator), and thus
“Vj” simply derives an audit token audtok according to the real protocol and
sends it to FAUD.

Audit Token Verification: Whenever S receives (auditvf, sid , audtok ,Vj ,D ,F ,T ,
〈al〉l∈T ,msg) from FAUD, he verifies audtok according to our protocol and sends
the result to FAUD.

When an auditor receives a valid audit token in the real world which would
not be valid according to the functionality, we can either break the unforgeability
of the signature scheme of the verifier or of the issuer. The information for the
latter case will be extracted from the received audit token using SKExt. The
reduction is given in the full version of the proof.

Case 2 – Corrupt Issuer
When the issuer is corrupt, the simulator no longer controls the set of “valid”
credentials, which is reflected in the proof. The main changes occur in the sim-
ulation of the issuance with an honest user and the presentation between an
honest user and corrupt verifier. Thus, we omit the other cases here.

Issuance: Here we only have to consider issuance with an honest user, as with a
corrupt user the communication is internal to the adversary.

with honest user. If an honest user “Un” receives a message (sent, sidSMT,
(sid , 〈al〉Ll=1, cred)) where cred is a valid credential from a dishonest issuer
I (specified in sid), the simulator S sends (issue, sid ,Un , 〈al〉Ll=1) to FAUD,
and triggers the output to the honest user by sending (issue, sid) to FAUD.
Thus, a credential entry will be registered for the same attributes in the ideal
functionality as well. The simulator also stores the credential and attributes
in Tbl1.

Presentation: The simulation of the presentation protocol between an honest
user & honest verifier is exactly the same as in Case 1. For the setting of corrupt
user & honest verifier, the only difference to Case 1 is that we no longer control
the issued credentials and thus do not reduce a forged presentation token to a
forged signature.

honest user & corrupt verifier. The simulation starts when S receives (present,
sid ,Vj) from FAUD. The simulator then sends (present, sid) to FAUD and re-
ceives (tokrec, sid ,D ,F , 〈al〉l∈D∪F ,msg , tid(Vj)) in return. Having learned
the verified attributes 〈al〉l∈D∪F , S then retrieves a matching credential
(and additional unrevealed attributes) from Tbl1 and derives the presenta-
tion token according to the protocol. The simulator stores the derived token
together with the attributes and tid(Vj) in Tbl2 and sends the presentation
token to Vj .

