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Abstract. The GGH Graded Encoding Scheme [10], based on ideal lattices, is the first plausible ap-
proximation to a cryptographic multilinear map. Unfortunately, using the security analysis in [10], the
scheme requires very large parameters to provide security for its underlying “encoding re-randomization”
process. Our main contributions are to formalize, simplify and improve the efficiency and the security
analysis of the re-randomization process in the GGH construction. This results in a new construction
that we call GGHLite. In particular, we first lower the size of a standard deviation parameter of the
re-randomization process of [10] from exponential to polynomial in the security parameter. This first im-
provement is obtained via a finer security analysis of the “drowning” step of re-randomization, in which
we apply the Rényi divergence instead of the conventional statistical distance as a measure of distance
between distributions. Our second improvement is to reduce the number of randomizers needed from
Ω(n logn) to 2, where n is the dimension of the underlying ideal lattices. These two contributions allow
us to decrease the bit size of the public parameters from O(λ5 log λ) for the GGH scheme to O(λ log2 λ)
in GGHLite, with respect to the security parameter λ (for a constant multilinearity parameter κ).

1 Introduction

Boneh and Silverberg [7] defined a cryptographic κ-multilinear map e as a map from G1×. . .×Gκ to
GT , all cyclic groups of order p, which enjoys three main properties: first, for any elements gi ∈ Gi
for i ≤ κ, j ≤ κ and α ∈ Zp, we have e(g1, . . . , α · gj , . . . , gκ) = α · e(g1, . . . , gκ); second, the map e
is non-degenerate, i.e., if the gi’s are generators of their respective Gi’s then e(g1, . . . , gκ) generates
GT ; and third, there is no efficient algorithm to compute discrete logarithms in any of the Gi’s.
Bilinear maps (κ = 2) and multilinear maps have a lot of cryptographic applications, see [16,27,6]
and [7,26,22,25], respectively. But unlike bilinear maps, built with pairings on elliptic curves, the
construction of cryptographic multilinear maps was an open problem for several years. In [7], Boneh
and Silverberg studied the interest of such maps, and gave two applications: multipartite Diffie-
Hellman key exchange and very efficient broadcast encryption. But they conjectured that multilinear
maps will probably “come from outside the realm of algebraic geometry.” In 2013, Garg, Gentry
and Halevi [10] introduced the first “approximate” multilinear maps contruction, based on ideal
lattices, and the powerful notion of graded encoding scheme. Based on their work, Coron, Lepoint
and Tibouchi [8] recently described an alternative construction of graded encoding scheme.

We first give a high level description of the GGH graded encoding scheme [10]. If we come back to
the definition of cryptographic multilinear maps, the authors of [10] notice that α ·gi can be viewed
as an “encoding” of the “plaintext” α ∈ Zq. They consider the polynomial rings R = Z[x]/〈xn + 1〉
and Rq = R/qR (replacing the exponent space Zp). They generate a small secret g ∈ R and let
I = 〈g〉 be the principal ideal over R generated by g. They also sample a uniform z ∈ Rq which
stays secret. The “plaintext” is an element of R/I, and is encoded via a division by z in Rq: to
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encode a coset of R/I, return [c/z]q, where c is an arbitrary small coset representative. In practice,
as g is hidden, they give another public parameter y, which is an encoding of 1, and the encoding
of the coset is computed as [e · y]q, where e is a small coset representative (possibly different
from c). But, as opposed to multilinear maps, their graded encoding scheme uses the notion of
encoding level: the plaintext e is a level-0 encoding, the encoding [c/z]q is a level-1 encoding, and at
level i, an encoding of e+ I is given by [c/zi]q = [e · yi]q. These encodings are both additively and
multiplicatively homomorphic, up to a limited number of operations. More precisely, a product of i
level-1 encodings is a level-i encoding. One can multiply any number of encodings up to κ, instead
of exactly κ in multilinear maps (the parameter κ is called the multilinearity parameter).

The authors of [10] introduced new hardness assumptions: the Graded Decisional Diffie-Hellman
(GDDH) and its computational variant (GCDH). These are natural analogues of the Diffie-Hellman
problems from group-based cryptography. To ensure their hardness, and hence the security of
the cryptographic constructions, the second main difference with multilinear maps is the ran-
domization of the encodings. The principle is as follows: first some level-1 encodings of 0, called
{xj = [bj/z]q}j≤mr , are given as part of the public parameters; then, to randomize a level-1 encod-
ing u′ = [e · y]q, one outputs u = [u′ +

∑
j ρjxj ]q = [c/z]q with c = c′ +

∑
j ρjbj , where the ρj ’s

are sampled from a discrete Gaussian distribution over Z with deviation parameter σ∗. Without
this re-randomization, the encoding u′ of e allows e to be efficiently recovered using u = [u′y−1]q.
Adding the re-randomization step prevents this division attack, but the statistical properties of the
distribution of the re-randomized encoding u remain correlated to some extent with the original
encoding u′ (for instance, the center of the distribution of c is c′, since the distribution of

∑
j ρjbj is

known to be centered at 0). This property may allow other attacks that exploit this correlation. The
question arises as to how to set the re-randomization parameter σ∗ in order to guarantee security
against such potential “statistical correlation” attacks – the larger the re-randomization parameters
the smaller the correlation, and heuristically the more resistant the scheme is to such attacks. But
increasing σ∗ impacts the efficiency of the scheme.

In [10], the authors use a “drowning step” to solve this problem. This technique, also called
“smudging,” was previously used in other applications [4,13,3,5]. Generally, “drowning” consists in
hiding a secret vector s ∈ Zn by adding a sufficiently large random noise e ∈ Zn to it, so that
the distribution of s + e becomes “almost independent” of s. In all of the above applications, to
achieve a security level 2λ (where λ denotes the security parameter), the security analysis requires
“almost independent” to be interpreted as “within statistical distance 2−λ from a distribution that
is independent of s.” In turn, this requirement implies the need for “exponential drowning,” i.e.,
the ratio γ = ‖e‖/‖s‖ between the magnitude of the noise and the magnitude of secret needs to
be 2Ω(λ). Exponential drowning imposes a severe penalty on the efficiency of these schemes, as their
security is related to γ-approximation lattice problems, whose complexity decreases exponentially
with log γ. As a result, the schemes require a lattice dimension n at least quadratic in λ and key
length at least cubic in λ. In summary, the GGH re-randomization step, necessary for its security,
is also a primary factor in its inefficiency.

Our contributions. First, we formalize the re-randomization security goal in the GGH construc-
tion, that is implicit in the work of [10]. A primary security goal of re-randomization is to guarantee
security of the GDDH problem against statistical correlation attacks. Accordingly, we formulate a
security goal that captures this security guarantee, by introducing a canonical variant of GDDH,
called cGDDH. In this variant, the encodings of some elements are sampled from a canonical dis-
tribution whose statistical properties are independent of the encoded elements. Consequently, the
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canonical problems are by construction not subject to “statistical correlation” attacks. Our re-
randomization security goal is formulated as the existence of an efficient computational reduction
from the canonical problems to their corresponding non-canonical variants.

Our first main improvement to the GGH scheme relies on a new security analysis of the drowning
step in the GGH re-randomization algorithm. We show that our re-randomization security goal
can be satisfied without “exponential drowning,” thus removing the main efficiency bottleneck.
Namely, our analysis provides a re-randomization at security level 2λ while allowing the use of a
re-randomization deviation parameter σ∗ that only drowns the norm of the randomness offset r′ ∈ I
(from the original encoding to be re-randomized) by a polynomial (or even constant) drowning ratio
γ = λO(1) (rather than γ = 2Ω(λ), as needed in the analysis of [10]). However, our analysis only
works for the search variant of the Graded Diffie-Hellman problem. Fortunately, we show that the
two flagship applications of the GGH scheme – the N -party Key Agreement [10] and the Attribute
Based Encryption [12] – can be modified to rely on this computational assumption (in the random
oracle model).

Our second main improvement of the re-randomization process is to decrease mr, the number
of encodings of 0 needed, from Ω(n logn) to 2. We achieve this result by presenting a new discrete
Gaussian Leftover Hash Lemma (LHL) over algebraic rings. In [10], the authors apply the discrete
Gaussian LHL from [2] to show that the distribution of the sum

∑
j≤mr ρjrj is close to a discrete

Gaussian on the ideal I. Our improvement consists in sampling the randomizers ρj as elements
of the full n-dimensional ring R, rather than just from Z. Since each randomizer now has n times
more entropy than before, one may hope to obtain a similar LHL result as in [2] while reducing
mr by a factor ≈ n. However, as the designers of the GGH scheme notice in [10, Se. 6.4], the proof
techniques from [2] do not seem to immediately carry over to our “algebraic ring” LHL setting. Our
new LHL over rings resolves this problem.

The two contributions above allow us to decrease the bit size of the public parameters from
O(κ3λ5 log(κλ)) for the GGH scheme to O(κ3λ log2(κλ)) for GGHLite, for multilinearity factor κ
and security level 2λ for the graded Diffie-Hellman problem.
Technical overview. Our first main result is to reduce the size of the parameter σ∗ in the
re-randomization process. Technically, our improved analysis of drowning is obtained by using
the Rényi divergence (RD) to replace the conventional statistical distance (SD) as a measure of
distribution closeness. The RD was already exploited in a different context in [18, Claim 5.11], to
show the hardness of Ring-LWE. Here, we use the RD to decrease the amount of drowning, by
bounding the RD between a discrete Gaussian distribution and its offset. This suffices for relating
the hardness of the search problems using these encoding distributions, even though the SD between
the distributions is non-negligible. The technique does not seem to easily extend to the decision
problems, as RD induces a multiplicative relationship between success probabilities, rather than an
additive relationship as SD does.

Our second main result is a new LHL over the ring R. We now briefly explain this result and
its proof. For a fixed X = [x1, x2] ∈ R2, with each xi sampled from DR,s, our goal is to study the
distribution ẼX,s = x1 ·DR,s + x2 ·DR,s. In particular, we prove that ẼX,s is statistically close to
DZn,sXT . For this, we adapt the proof of the LHL in [2]: we follow a similar series of steps, but the
proofs of these steps differ technically, as we exploit the ring structure.

We first show that X ·R2 = R, except with some constant probability < 1. For this, we adapt
a result from [29] on the probability that two Gaussian samples of R are coprime. Note that in
contrast to the LHL over Z in [2], in our setting the probability that X ·R2 6= R is non-negligible.
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This is unavoidable with the ring R = Z[x]/〈xn + 1〉, since each random element of R falls in the
ideal 〈x+1〉 with probability ≈ 1/2, both x1 and x2 (and hence the ideal they generate) get “stuck”
in 〈x+1〉 with probability ≈ 1/4. However, the probability of this bad event is bounded away from 1
by a constant and thus we only need a constant number of trials on average with random X’s to
obtain a good X by rejection.

Then, we define the orthogonal R-module AX = {v ∈ R2 : X · v = 0}, and apply a directly
adapted variant of [2, Le. 10] to show that if the parameter s is larger than the smoothing parameter
ηε(AX) (with AX viewed as an integral lattice), then the SD between ẼX,s and the ellipsoidal
GaussianDZn,sXT is bounded by 2ε. We finally show that this condition on the smoothing parameter
of AX holds. For this, we observe that the Minkowski minima of the lattice AX are equal, due
to the R-module structure of AX . This allows us to bound the last minimum from above using
Minkowski’s second theorem. A similar approach was previously used (e.g., in [17]) to bound the
smoothing parameter of ideal lattices.

Open problems. Our “Rényi divergence” technique used to make the drowning efficient in the
GGH scheme is likely to have many applications. It is an interesting open problem to see whether
it could be used to remove exponential drowning in other contexts, such as [4,13], and whether it
could be used for a wider class of decision problems, such as as GDDH. We also think our new LHL
over rings may have other applications.

A very important open question is to gain a better understanding of the complexity of the
canonical Ext-GCDH problem and its variants, or to modify GGHLite to make its security based
on more well studied problems. Our “NTRU variant” of GGHLite seems somewhat closer to the
NTRUEncrypt scheme [15], and may be a first step in this direction. It is also intriguing to under-
stand better the security connection between this construction and the jigsaw puzzle variant used
in the construction of a candidate indistinguishability obfuscation mechanism [11].

Finally, evaluating the concrete computational and space efficiency achievable by GGHLite, by
setting the parameters based on the best known attacks on the underlying canonical problems
(and comparison with the concrete implementation of the integer-based scheme reported in [8]) is
another direction for future work.

Roadmap. The rest of this paper is organized as follows. In Section 2, we summarize notation
and necessary background (some additional background is postponed to the appendices). Section 3
reviews the GGH multilinear map construction, its underlying computational problems, and the
strong re-randomization security requirement from [10], and then introduces our canonical compu-
tational problems and formulates our precise security goal for re-randomization with respect to the
canonical problems. In Section 4, we study the Rényi divergence as an alternative to the statistical
distance in order to improve the security analysis of re-randomization “drowning” step. Section 5
contains our second main improvement to the re-randomization process: the algebraic ring variant
of the discrete Gaussian leftover hash lemma from [2]. In Section 6, we show how to combine the
results from the previous two sections to obtain our improved construction GGHLite. Section 7
compares the asymptotic parameters of GGHLite with those of the original GGH scheme. Finally,
in Section 8, we show how to adapt some applications of multilinear maps to rely on the hardness
of the Ext-GCDH problem, to which our security result for GGHLite applies.
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2 Preliminaries

Notation. A function f(λ) is said negligible if it is λ−ω(1). For an integer q, we let Zq denote the
ring of integers modulo q. The notation [·]q means that all operations within the square brackets
are performed modulo q. We choose n ≥ 4 as a power of 2, and let K and R respectively denote
the polynomial rings Q[X]/〈xn + 1〉 and Z[X]/〈xn + 1〉. The rings K and R are isomorphic to
the cyclotomic field of order 2n and its ring of integers, respectively. For an integer q, we let Rq
denote the ring Zq[x]/〈xn + 1〉 ' R/qR. For z ∈ R we denote by MSB`(z) ∈ {0, 1}`·n the `
most-significant bits of each of the n coefficients of z. Vectors are denoted in bold. For b ∈ Rd
(resp. g ∈ K), we let ‖b‖ (resp. ‖g‖) denote its Euclidean norm (resp. norm of its coefficient
vector). The uniform distribution on finite set E is denoted by U(E). For a random variable z, we
use D(z) to denote the distribution of z. The statistical distance (SD) between distributions D1
and D2 over a countable domain E is ∆(D1, D2) = 1

2
∑
x∈E |D1(x) − D2(x)|. For a function f

over a countable domain E, we let f(E) =
∑
x∈E f(x). Let X ∈ Rm×n be a rank-n matrix and

UX = {‖Xu‖ : u ∈ Rn, ‖u‖ = 1}. The smallest (resp. largest) singular value of X is denoted by
σn(X) = inf(UX) (resp. σ1(X) = sup(UX)).

Lattices. We refer to [19,23] for introductions to the computational aspects of lattices. A d-
dimensional lattice Λ ⊆ Rn is the set of all integer linear combinations

∑d
i=1 xibi of some linearly

independent vectors bi ∈ Rn. The determinant det(Λ) is defined as
√

det(BTB), where B = (bi)i
is any such basis of Λ. For i ≤ d, the ith minimum λi(Λ) is the smallest r such that Λ contains i
linearly independent vectors of norms ≤ r.

Lemma 2.1 (Minkowski’s second theorem). Let Λ be an n-dimensional lattice. Then:

( ∏
1≤n

λi(Λ)
)1/n

≤
√
n det(Λ)1/n.

The following result links the determinants of a lattice and its orthogonal.

Lemma 2.2 ([21, Cor. 2]). Let Λ ⊆ Zn be a lattice, and let Λ⊥ = (Span(Λ))⊥
⋂
Zn denote the

orthogonal lattice of Λ. Then det(Λ⊥) ≤ det(Λ).

Gaussian distributions. For a rank-n matrix S ∈ Rm×n and a vector c ∈ Rn, the ellipsoid
Gaussian distribution with parameter S and center c is defined as:

∀x ∈ Rn, ρS,c(x) = exp
(
−π(x− c)T (STS)−1(x− c)

)
.

Note that ρS,c(x) = exp(−π‖(ST )†(x − c)‖2), where X† denotes the pseudo-inverse of X. The
ellipsoid discrete Gaussian distribution over a coset Λ + z of a lattice Λ, with parameter S and
center c is defined as: ∀x ∈ Λ+ z,DΛ+z,S,c = ρS,c(x)/ρS,c(Λ). The truncated tail Gaussian Dt

Λ,S,c

is obtained by sampling x from DΛ,S,c, and resampling if ‖x‖ > 2 ·
√
n ·σ1(S), where n denotes the

dimension of Λ. As shown in Lemma 2.3 below, the rejection probability can be made O(2−n).

Smoothing parameter. Introduced by [20], the smoothing parameter ηε(Λ) of an n-dimensional
lattice Λ and a real ε > 0 is defined as the smallest s such that ρ1/s(Λ∗ \ {0}) ≤ ε. We use the
following properties.
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Lemma 2.3 ([2, Le. 3]). For a rank-n lattice Λ, constant 0 < ε < 1, vector c and matrix S with
σn(S) ≥ ηε(Λ), if x is sampled from DΛ,S,c then ‖x‖ ≤ σ1(S)

√
n, except with probability ≤ 1+ε

1−ε ·2
−n.

Lemma 2.4 ([20, Le. 3.3]). Let Λ be an n-dimensional lattice and ε > 0. Then

ηε(Λ) ≤

√
ln(2n(1 + 1/ε))

π
· λn(Λ).

Lemma 2.5 (Adapted from [20, Le. 2.7]). Let Λ be an n-dimensional lattice and ε ∈ (0, 1).
Then for any c ∈ Rn and s ≥ ηε(Λ) we have ρs,c(Λ) ∈ [1− ε, 1 + ε] · det(Λ)−1.

Lemma 2.6 (Adapted from [14, Cor. 2.8]). Let Λ,Λ′ be n-dimensional lattices with Λ′ ⊆ Λ
and ε ∈ (0, 1/2). Then for any c ∈ Rn and s ≥ ηε(Λ′) and any x ∈ Λ/Λ′ we have

(DΛ,s,c mod Λ′)(x) ∈
[1− ε

1 + ε
,
1 + ε

1− ε

]
· det(Λ)

det(Λ′) .

Algebraic number rings and ideal lattices. For g, x ∈ R, we let [x]g denote the reduction of x
modulo the principal ideal I = 〈g〉 with respect to the Z-basis (g, x · g, . . . , xn−1 · g), i.e., [x]g is
the unique element of R in Pg = {

∑n−1
i=0 cix

ig : ci ∈ [−1/2, 1/2) ∩ R} such that x− [x]g ∈ 〈g〉. The
set Pg ∩ R is a set of unique representatives of the cosets of I in R, that make up the quotient
ring R/I.

To use our improved drowning lemma in Section 4, we need a lower bound on the least singular
value σn(rot(b)) of the matrix rot(b) ∈ Zn×n corresponding to the map x 7→ b · x over R, for a
Gaussian distributed b←↩ DI,σ. We also let b[j] = b(ζ2j+1) denote the jth complex embedding of b,
where ζ ∈ C is a primitive 2nth root of unity. We define T2(b) = (

∑
j |b[j]|2)1/2. Recall that we

have T2(b)2 = n‖b‖2 (see, e.g., [29]). In the proof of [29, Le. 4.1], a probabilistic lower bound on
minj∈[n] |b[j]| is obtained for a Gaussian distributed b. Since

σn(b)2 = min
u∈K,‖u‖=1

‖u · b‖2 = 1
n

min
u∈K,T2(u)2=n

∑
j∈[n]
|u[j]|2 · |b[j]|2

= min
j∈[n]
|b[j]|2 = 1

maxj∈[n] |b[j]−1|2

≤ 1
1
n

∑
j∈[n] |b[j]−1|2

= 1
‖b−1‖2

,

we can immediately adapt it to get the following.

Lemma 2.7 (Adapted from [29, Le. 4.1]). Let R = Zn[x]/(xn+ 1) for n a power of 2. For any
ideal I ⊆ R, δ ∈ (0, 1), t ≥

√
2π and σ ≥ t√

2π · ηδ(I), we have:

Prb←↩DI,σ
[
‖b−1‖ ≥ t

σ
√
n/2

]
≤ Prb←↩DI,σ

[
σn(b) ≤ σ

√
n/2
t

]
≤ 1+δ

1−δ
n
√

2πe
t .

We can also obtain a lower bound σn(b)2 ≥ 1
n · ‖b

−1‖−2 by replacing the last line in the equations
above Lemma 2.7 by ≥ 1∑

j∈[n] |b[j]
−1|2 = 1

n·‖b−1‖2 .
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3 GGH and its re-randomization procedure

In this section, we recall the Garg et al. scheme from [10], and its related hard problems. We then
discuss the re-randomization step of the scheme and explain what should be expected from it, in
terms of security. This security requirement is unclear in [10] and [2]. We formulate it precisely.
This will drive our re-randomization design in the following sections.

3.1 The GGH scheme

We recall the GGH scheme in Figure 1. We present it here in a slightly more general form than [10]:
we leave as a parameter the distribution χk of the re-randomization coefficients ρj for a level-k
encoding (for any k ≤ κ). In the original GGH scheme, we have χk = DZ,σ∗

k
for some σ∗k’s, i.e., the

ρj ’s are integers sampled from a discrete Gaussian distribution. Looking ahead, in Section 5, we
analyze a more efficient variant, in which χk = DR,σ∗

k
, so that the ρj ’s belong to R.

• Instance generation InstGen(1λ, 1κ): Given security parameter λ and multilinearity parameter κ, determine
scheme parameters n, q, mr, σ, σ′, `g−1 , `, based on the scheme analysis. Then proceed as follows:
• Sample g ←↩ DR,σ until ‖g−1‖ ≤ `g−1 and I = 〈g〉 is a prime ideal. Define encoding domain Rg = R/〈g〉.
• Sample z ←↩ U(Rq).
• Sample a level-1 encoding of 1: set y = [a · z−1]q with a←↩ D1+I,σ′ .
• For k ≤ κ, sample mr level-k encodings of 0: set x(k)

j = [b(k)
j · z

−k]q with b(k)
j ←↩ DI,σ′ for all j ≤ mr.

(Note that a = 1 + gry and b(k)
j = gr

(k)
j for some ry, r(k)

j ∈ R.)
• Sample h←↩ DR,√q and define the zero-testing parameter pzt = [h

g
zκ]q ∈ Rq.

• Return public parameters par = (n, q, σ′,mr, y, {x(k)
j }j≤mr,k≤κ) and pzt.

• Level-0 sampler samp(par): Sample e←↩ DR,σ′ and return e.
(Note that e = eL + geH for some unique coset representative eL ∈ Pg, and some eH ∈ R.)

• Level-k encoding enck(par, e): Given level-0 encoding e ∈ R and parameters par:
• Encode e at level k: Compute u′ = [e · yk]q.
• Re-randomize: Sample ρj ←↩ χk for j ≤ mr and return u = [u′ +

∑mr
j=1 ρjx

(k)
j ]q.

(Note that u′ = [c′/zk]q with c′ ∈ eL + I and u = [(c′ +
∑

j
ρjb

(k)
j )/zk]q.)

• Adding encodings add: Given level-k encodings u1 = [c1/z
k]q and u2 = [c2/z

k]q:
• Return u = [u1 + u2]q, a level-k encoding of [c1 + c2]g.

• Multiplying encodings mult: Given level-k1 encoding u1 = [c1/z
k1 ]q and a level-k2 encoding u2 = [c2/z

k2 ]q:
• Return u = [u1 · u2]q, a level-(k1 + k2) encoding of [c1 · c2]g.

• Zero testing at level κ isZero(par, pzt, u): Given a level-κ encoding u = [c/zκ]q, return 1 if ‖[pztu]q‖∞ < q3/4

and 0 else.
(Note that [pzt · u]q = [hc/g]q.)

• Extraction at level κ ext(par, pzt, u): Given a level-κ encoding u = [c/zκ]q, return v = MSB`([pzt · u]q).
(Note that if c = [c]g + gr for some r ∈ R, then v = MSB`(hg ([c]g + gr)) = MSB`(hg [c]g + hr), which is equal to
MSB`(hg [c]g), with probability 1− λ−ω(1).)

Fig. 1. The GGH graded encoding scheme.

The aim of isZero is to test whether the input u = [c/zκ]q is a level-κ encoding of 0 or not,
i.e., whether c = g · r for some r ∈ R. The following conditions ensure correctness of isZero,
when χk = DZ,σ∗

k
(for all k ≤ κ): the first one implies that false negatives do not exist (if u is
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level-κ encoding of 0, then isZero(u) returns 1), whereas the second one implies that false positives
occur with negligible probability (see Appendix A).

q > max((n`g−1)8, ((mr + 1) · n1.5σ∗1σ
′)8κ) (1)

q > (2nσ)4. (2)

The aim of ext is to extract a quantity from its input u = [c/zκ]q that depends only on the encoded
value [c]g, but not on the randomizers. To avoid trivial solutions, one requires that this extracted
value has min-entropy≥ 2λ (if that is the case, then one can obtain a uniform distribution on {0, 1}λ,
using a strong randomness extractor). The following two inequalities guarantee these properties,
when χk = DZ,σ∗

k
(for all k). The first one implies that εext = Pr[ext(u) 6= ext(u′)] is negligible,

when u and u′ encode the same value [c]g, whereas the second one provides large min-entropy (see
Appendix A).

1
4 log q − log( 2n

εext
) ≥ ` ≥ log(8nσ). (3)

3.2 The GDDH, GCDH and Ext-GCDH problems

The computational problems that are required to be hard for the GGH scheme depend on the
application. Here we recall the definitions of the Graded Decisional and Computational Diffie-
Hellman (GDDH and GCDH) problems from [10]. We introduce another natural variant that we
call the Extraction Graded Computational Diffie-Hellman (Ext-GCDH), in which the goal is to
compute the extracted string of a Diffie-Hellman encoding.

Definition 3.1 (GCDH/Ext-GCDH/GDDH). The problems GCDH, Ext-GCDH and GDDH
are defined as follows with respect to experiment of Figure 2:3

– κ-graded CDH problem (GCDH): On inputs par, pzt and the ui’s of Step 2, output a level-κ
encoding of

∏
i≥0 ei + I, i.e., w ∈ Rq such that ‖[pzt(vC − w)]q‖ < q3/4.

– Extraction κ-graded CDH problem (Ext-GCDH): On inputs par, pzt and the ui’s of
Step 2, output the extracted string for a level-κ encoding of

∏
i≥0 ei + I, i.e., the string w =

ext(par, pzt, vC) = MSB`([pzt · vC ]q).
– κ-graded DDH problem (GDDH): Distinguish between vD and vR, i.e., between the distri-

butions DDDH = {par, pzt, (ui)0≤i≤κ, vD} and DR = {par, pzt, (ui)0≤i≤κ, vR}.

Ext-GCDH is at least as hard as GDDH: given vx with x ∈ {DDH,R}, use the Ext-GCDH
oracle to compute w = ext(par, pzt, vC). Nevertheless, we show that it suffices for instantiating, in
the random oracle model, at least some of the interesting applications of graded encoding schemes,
at a higher efficiency than the instantiations of [10] based on GDDH.

3.3 The GGH re-randomization security requirement

The encoding re-randomization step in the GGH scheme is necessary for the hardness of the prob-
lems above. In [10], Garg et al. imposed the informal requirement that the re-randomization process
“erases” the structure of the input encoding, while preserving the encoded coset. In setting param-
eters, they interpreted this requirement in the following natural way.

3 Note that we use a slightly different process from [10], by adding a re-randomization to the element vD. Without
it, there exists a “division attack” against GDDH.
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Given parameters λ, κ, proceed as follows:

1. Run InstGen(1λ, 1κ) to get
par = (n, q, σ′,mr, y, {x(k)

j }j,k) and pzt.
2. For i = 0, . . . , κ:

-Sample ei ←↩ DR,σ′ , fi ←↩ DR,σ′ ,
-Set ui = [ei · y +

∑
j
ρijxj ]q

with ρij ←↩ χ1 for all j.
3. Set u∗ =

[∏κ

i=1 ui
]
q
.

4. Set vC = [e0u
∗]q.

5. Sample ρj ←↩ χκ for all j,
set vD = [e0u

∗ +
∑

j
ρjx

(κ)
j ]q.

6. Set vR = [f0u
∗ +
∑

j
ρjx

(κ)
j ]q.

Fig. 2. The GGH security experiment.

Given parameters λ, κ, (σ∗k)k≤κ, proceed as follows:

1. Run InstGen(1λ, 1κ) to get
par = (n, q, σ′,mr, y, {x(k)

j }j,k) and pzt.
Write x(k)

j = [b(k)
j z−k]q and B(k) = [b(k)

1 , · · · , b(k)
mr ] ∈ Imr .

2. For i = 0, . . . , κ:
-Sample ei ←↩ U(Rg), fi ←↩ U(Rg),
-Set ui = [ciz−1]q ←↩ D(1)

can(ei),
i.e., with ci ←↩ DI+ei,σ∗1 (B(1))T .

3. Set u∗ =
[∏κ

i=1 ui
]
q
.

4. Set vC = [e0u
∗]q.

5. Set vD=[cD · z−κ]q ←↩ D(κ)
can(

∏κ

i=0ei),
i.e., with cD←↩ DI+

∏κ

i=0
ei,σ
∗
κ(B(κ))T .

6. Set vR=[cR · z−κ]q ←↩ D(κ)
can(f0

∏κ

i=1ei),
i.e., with cR←↩ DI+f0

∏κ

i=1
ei,σ
∗
κ(B(κ))T .

Fig. 3. The canonical security experiment.

Definition 3.2 (Strong re-randomization security requirement). Let u′ = [c′/zk]q, with
c′ = eL + gr′ be a fixed level-k encoding of eL ∈ Rg, and let u = [u′ +

∑
j ρjx

(j)
k ]q = [c/zk]q with

c = eL + gr and r = r′ +
∑
j ρjr

(k)
j be the re-randomized encoding, with ρj ←↩ χk for j ≤ mr. Let

D
(k)
u (eL, r′) denote the distribution of u (over the randomness of ρj’s), parameterized by (eL, r′)

and let D(k)
can(eL) denote some canonical distribution, parameterized by eL, that is independent of r′.

Then we say that the strong re-randomization security requirement is satisfied at level k with respect
to D(k)

can(eL) and encoding norm γ(k) if ∆(D(k)
u (eL, r′), D(k)

can(eL)) ≤ 2−λ for any u′ = [c′/zk]q with
‖c′‖ ≤ γ(k).

The authors of [10] argued that with χk = DZ,σ∗
k
(for k ≤ κ) and a “drowning ratio” σ∗k/‖r′‖

exponential in security parameter λ, the distribution D
(k)
u (eL, r′) is within negligible statistical

distance to the canonical distribution D(k)
can(eL) = [DI+eL,σ∗k(B(k))T · z−k]q. This requirement may be

stronger than needed. Accordingly, we now clarify the desired goal.

3.4 Our security goal: canonical assumptions

We formalize a re-randomization security goal to capture a security guarantee against “statistical
correlation” attacks on GCDH/Ext-GCDH/GDDH. We define canonical variants cGCDH/Ext-
cGCDH/cGDDH of GCDH/Ext-GCDH/GDDH, using Figure 3. The main difference with Figure 2
is that the encodings ui = [ci/z]q of the hidden elements ei, are sampled from a canonical distri-
bution D(1)

can(ei), parameterized by ei, whose statistical parameters are independent of the encoded
coset ei, so that it is “by construction” immune against statistical correlation attacks. In partic-
ular, in the canonical distribution D

(1)
can(ei) that we use, ci is sampled from a discrete Gaussian

distribution DI+ei,σ∗1(B(1))T (over the choice of the randomization, for a fixed ei), whose statistical
parameters such as center (namely 0) and deviation matrix σ∗1(B(1))T are independent of ei. The
only dependence this distribution has on the encoded element ei is via its support I + ei.
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We believe the canonical problems are cleaner and more natural than the non-canonical variants,
since they decouple the re-randomization aspect from the rest of the computational problem. As a
further simplification, the canonical variants also have their level-0 elements ei distributed uniformly
on Rg (rather than as reductions mod I of Gaussian samples).

Definition 3.3 (cGCDH/Ext-cGCDH/cGDDH). The canonical problems cGCDH, Ext-
cGCDH and cGDDH are defined as follows with respect to the experiment of Figure 3 and canonical
encoding distribution D(k)

can(e) (parameterized by encoding level k and encoded element e):

– cGCDH: On inputs par, pzt and the ui’s, output w ∈ Rq such that ‖[pzt(vC − w)]q‖ < q3/4.
– Ext-cGCDH: On inputs par, pzt and the ui’s, output: w = ext(par, pzt, vC) = MSB`([pzt ·vC ]q).
– cGDDH: Distinguish between DDDH = {par, pzt, (ui)0≤i≤κ, vD} and DR =
{par, pzt, (ui)0≤i≤κ, vR}.

Remark. One could consider alternative definitions of natural canonical encoding distributions
besides the ones we adopt here. For instance, our results in this paper can also be adapted to hold
for the canonical distribution D(1)

can(ei) of ui = [ci/z]q in which ci is sampled from DI+ei,σ∗1(B(1))T ,ei .
In this alternative, although the center of ci’s distribution depends on ei, the distribution of the
randomizer r in the representation ci = ei + g · r, is independent of ei.

Given the canonical problems on whose hardness we wish to rely, our security goal for re-
randomization with respect to the GCDH (resp. Ext-GCDH/GDDH) problems can now be easily
formulated: hardness of the latter should be implied by hardness of the former.

Definition 3.4 (Re-randomization security goal). We say that the re-randomization security
goal is satisfied with respect to GCDH (resp. Ext-GCDH/GDDH) if any adversary against GCDH
(resp. Ext-GCDH/ GDDH) with run-time T = O(2λ) and advantage ε = Ω(2−λ) can be used to
construct an adversary against cGCDH (resp. Ext-cGCDH/cGDDH) with run-time T ′ = poly(T, λ)
and advantage ε′ = Ω(poly(ε, λ)).

To set the background for our result, we show (in appendix) that Definition 3.2 implies that our
security goal is reached. This is implicit in [10]. Looking ahead, we will show that in some cases, we
may circumvent the strong re-randomization requirement of Definition 3.2 by replacing it with a
weaker requirement (see Definition 6.1), while still reaching the security goal if Definition 3.4, with
substantial consequent efficiency gains.

4 Polynomial drowning via Rényi divergence

In this section, we present our first result towards our improvement of the GGH scheme re-randomiza-
tion. It shows that one may reduce the re-randomization “drowning” ratio σ∗k/‖r′‖ from exponential
to polynomial in the security parameter λ. Although the SD between the re-randomized encoding
distribution D1 (essentially a discrete Gaussian with an added offset vector r′) and the desired
canonical encoding distribution D2 (a discrete Gaussian without an added offset vector) is then
non-negligible, we show that these encoding distributions are still sufficiently close with respect to
an alternative closeness measure to the SD, in the sense that switching between them preserves
the success probability of any search problem adversary receiving these encodings as input, up to
a polynomial transformation. This allows us to show that our re-randomization goal is satisfied for
the search problems GCDH and Ext-GCDH.
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Technically, the closeness measure we study is the Rényi divergence R(D1‖D2) between the
distributions D1 and D2, defined as the expected value of D1(r)/D2(r) over the randomness of r
sampled fromD1 (for brevity we will callR(D1‖D2) the RD betweenD1 andD2). Intuitively, the RD
is an alternative to SD as measure of distribution closeness, where we replace the difference between
the distributions in SD, by the ratio of the distributions in RD. Accordingly, one may hope RD to
have analogous properties to SD, where addition in the property of SD is replaced by multiplication
in the analogous property of RD. Remarkably, this holds true in some sense, and we explore some
of this below. In particular, a very important property of the SD is probability preservation: for any
two distributions D1, D2 on space X, and any event E ⊆ X, we have D2(E) ≥ D1(E)−∆(D1, D2).
Lyubashevsky et al. [18] observed an analogous property of the RD that follows roughly the above
intuition: D2(E) ≥ D1(E)2/R(D1‖D2). The latter property implies that as long as R(D1‖D2)
is bounded as poly(λ), any event E of non-negligible probability D1(E) under D1 will also have
non-negligible probability D2(E) under D2. We show that for our discrete Gaussian distributions
D1, D2 above, we have R(D1‖D2) = O(poly(λ)), if σ∗k/‖r′‖ = Ω(poly(λ)), as required for our
re-randomization security goal.

4.1 The Rényi divergence (RD) and its properties

We review the RD [24,9] and some of its properties. For convenience, our definition of the RD is
the exponential of the usual definition used in information theory [9], and coincides with a discrete
version of the quantity R defined for continuous density functions in [18, Claim 5.11].

For any two discrete probability distributions P and Q such that Supp(P ) ⊆ Supp(Q) over a
domain X and α > 1, we define the Rényi divergence of orders α and ∞ by

Rα(P‖Q) =
(∑

x∈X
P (x)α
Q(x)α−1

) 1
α−1 and R∞(P‖Q) = maxx∈X P (x)

Q(x) ,

with the convention that the fraction is zero when both numerator and denominator are zero. A
convenient choice for computations (as also used in [18]) is α = 2, in which case we omit the α
subscript. Note that Rα(P‖Q)α−1 =

∑
x P (x) · (P (x)/Q(x))α−1 ≤ R∞(P‖Q)α−1. We list several

properties of the RD that can be considered the multiplicative analogues of those of the SD.

Lemma 4.1. Let P1, P2, P3 and Q1, Q2 denote discrete distributions on a domain X and let α ∈
(1,∞]. Then the following properties hold:

– Log. Positivity: Rα(P1‖Q1) ≥ Rα(P1‖P1) = 1.
– Data Processing Inequality: Rα(P f1 ‖Q

f
1) ≤ Rα(P1‖Q1) for any function f , where P f1 (resp.

Qf1) denotes the distribution of f(y) induced by sampling y ←↩ P1 (resp. y ←↩ Q1).
– Multiplicativity: Let P and Q denote any two distributions of a pair of random variables

(Y1, Y2) on X ×X. For i ∈ {1, 2}, assume Pi (resp. Qi) is the marginal distribution of Yi under
P (resp. Q), and let P2|1(·|y1) (resp. Q2|1(·|y1)) denote the conditional distribution of Y2 given
that Y1 = y1. Then we have:
• Rα(P‖Q) = Rα(P1‖Q1) ·Rα(P2‖Q2) if Y1 and Y2 are independent.
• Rα(P‖Q) ≤ R∞(P1‖Q1) ·maxy1∈X Rα(P2|1(·|y1)‖Q2|1(·|y1)).

– Weak Triangle Inequality: We have:

Rα(P1‖P3) ≤
{

Rα(P1‖P2) ·R∞(P2‖P3),
R∞(P1‖P2)

α
α−1 ·Rα(P2‖P3).
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– R∞ Triangle Inequality: If R∞(P1‖P2) and R∞(P2‖P3) are defined, then R∞(P1‖P3) ≤
R∞(P1‖P2) ·R∞(P2‖P3).

– Probability Preservation: Let A ⊆ X be an arbitrary event. Then Q1(A) ≥ P1(A)
α
α−1 /Rα(P1‖Q1).

Proof. The log. positivity and data processing inequalities are proved in [9, Th. 8&9].
For multiplicativity, we have

Rα(P‖Q)α−1 =
∑
x1,x2

(P1(x1) · P2|1(x2|x1))α

(Q1(x1) ·Q2|1(x2|x1))α−1 =
∑
x1

P1(x1)α

Q1(x)α−1 ·Rα(P2|1(·|x1)‖Q2|1(·|x1))α−1.

If X1 and X2 are independent, then we have P2|1(x2|x1) = P2(x2) and Q2|1(x2|x1) = Q2(x2) for
all x1, and the result follows. More generally, since Rα(P‖Q)α−1 is the expected value of f(x1) =
P1(x1)α−1

Q1(x)α−1 · Rα(P2|1(·|x1)‖Q2|1(·|x1))α−1 over x1 sampled from P1, it follows that Rα(P‖Q)α−1 ≤
maxx1 f(x1), which gives the second multiplicativity property.

For the first weak triangle inequality, we have

Rα(P1‖P3)α−1 =
∑
x

P1(x)α

P3(x)α−1 =
∑
x

P1(x)α

P2(x)α−1 ·
P2(x)α−1

P3(x)α−1 ≤
(∑

x

P1(x)α

P2(x)α−1

)
·max

x

P2(x)α−1

P3(x)α−1 ,

which gives the desired result. Similarly, for the second weak triangle inequality,

Rα(P1‖P3)α−1 =
∑
x

P1(x)α

P3(x)α−1 =
∑
x

P1(x)α

P2(x)α ·
P2(x)α

P3(x)α−1 ≤
(

max
x

P1(x)α

P2(x)α
)
·
∑
x

P2(x)α

P3(x)α−1 ,

as required. For the R∞ triangle inequality, we have

R∞(P1‖P3) = max
x

P1(x)
P3(x) = max

x

P1(x)
P2(x) ·

P2(x)
P3(x) ≤

(
max
x

P1(x)
P2(x)

)
·
(

max
x

P2(x)
P3(x)

)
.

Finally, the probability preservation property is proved in [18, Claim 5.11] for the case
α = 2 using the Cauchy-Schwarz inequality. The general case follows by replacing the latter
with the more general Holder inequality, which states that

∑
x∈A |f(x)g(x)| ≤ (

∑
x∈A |f(x)|p)1/p ·

(
∑
x∈A |g(x)|1/(1−1/p))1−1/p for real-valued functions f, g and p ≥ 1. Taking f(x) = P1(x)

Q1(x)1−1/α ,

g(x) = Q1(x)1−1/α, and p = α, we get P1(A) ≤ (
∑
x∈A

P1(x)α
Q1(x)α−1 )1/α · Q1(A)1−1/α. The fact that∑

x∈A
P1(x)α
Q1(x)α−1 ≤ Rα(P1‖Q1)α−1 provides the result. ut

We note that the RD does not satisfy the (multiplicative) triangle inequality R(P1‖P3) ≤
R(P1‖P2) · R(P2‖P3) in general (see [9]), but a weaker inequality holds if one of the pairs of
distributions has a bounded R∞ divergence, as shown above. We also observe that R∞ does satisfy
the triangle inequality.

4.2 The Rényi divergence between a discrete Gaussian and its offset

For our re-randomization application, we are interested in the RD between two discrete Gaussians
with the same deviation matrix S, that differ by some fixed offset vector d. The following result
shows that their RD is O(1) if σn(S)/‖d‖ = Ω(1).
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Lemma 4.2. For any n-dimensional lattice Λ ⊆ Rn and rank n matrix S ∈ Rm×n (with4≥ n), let
P be the distribution DΛ,S,w and Q be the distribution DΛ,S,z for some fixed w, z ∈ Rn. If w, z ∈ Λ,
let ε = 0. Otherwise, fix ε ∈ (0, 1) and assume that σn(S) ≥ ηε(Λ). Then:

R(P‖Q) ∈
[(1− ε

1 + ε

)2
,

(1 + ε

1− ε

)2
]
· exp(2π‖S−T (w − z)‖2)

⊆
[(1− ε

1 + ε

)2
,

(1 + ε

1− ε

)2
]
· exp

(
2π‖w − z‖2

σn(S)2

)
.

Proof. By definition,

P (x) = exp(−π‖(ST )†(x− w)‖2)∑
x∈Λ exp(−π‖(ST )†(x− w)‖2) and Q(x) = exp(−π‖(ST )†(x− z)‖2)∑

x∈Λ exp(−π‖(ST )†(x− z)‖2) .

We have:

R(P‖Q) =
∑
x∈Λ

P (x)2

Q(x)

=
∑
y∈Λ exp(−π‖(ST )†(y − z)‖2)

(
∑
y∈Λ exp(−π‖(ST )†(y − w)‖2))2 ·

∑
x∈Λ

exp(−2π‖(ST )†(x− w)‖2 + π‖(ST )†(x− z)‖2).

Defining c = 2w − z, we have that:

2‖(ST )†(x− w)‖2 − ‖(ST )†(x− z)‖2 = ‖(ST )†(x− c)‖2 − 2‖(ST )†(w − z)‖2.

Hence,

R(P‖Q) = exp(2π‖(ST )†(w−z)‖2)·
∑
x∈Λ exp(−π‖(ST )†(x− c)‖2) ·

∑
y∈Λ exp(−π‖(ST )†(y − z)‖2)

(
∑
y∈Λ exp(−π‖(ST )†(y − w)‖2))2 .

Notice that for any z ∈ Λ, we have
∑
x∈Λ exp(−π‖(ST )†(x − z)‖2) =

∑
x∈Λ exp(−π‖(ST )†x‖2).

From this, we conclude that if w, z ∈ Λ, then c ∈ Λ and hence the sums in the quotient above
cancel out, and we get R(P‖Q) = exp(2π‖(ST )†(w − z)‖2). In general, for any y, z ∈ Rn, we have∑
y∈Λ

exp(−πσ1((ST )†)2 ·‖y−z‖2) ≤
∑
y∈Λ

exp(−π‖(ST )† ·(y−z)‖2) ≤
∑
y∈Λ

exp(−πσn((ST )†)2 ·‖y−z‖2),

using the fact that σn((ST )†) · ‖y − z‖ ≤ ‖(ST )† · (y − z)‖ ≤ σ1((ST )†) · ‖y − z‖. But∑
y∈Λ

exp(−πσ1((ST )†)2 · ‖y − z‖2) = ρ1/σ1((ST )†),z(Λ) = ρσn(S),z(Λ)

∑
y∈Λ

exp(−πσn((ST )†)2 · ‖y − z‖2) = ρ1/σn((ST )†),z(Λ) = ρσ1(S),z(Λ).

Using the assumption σ1(S) ≥ σn(S) ≥ ηε(Λ) and Lemma 2.5, it follows that ρσ1(S),z(Λ) and
ρσn(S),z(Λ) are both in the interval [1− ε, 1 + ε] · (detΛ)−1. From the above inequality, we get that∑
y∈Λ exp(−π‖(ST )† · (y− z)‖2) is also in this interval. Applying this to the sums in the expression

for R(P‖Q) gives the claimed interval for R(P‖Q).
The claimed inequality follows from ‖(ST )†z‖2 ≤ σ1((ST )†)2 · ‖z‖2 and σ1((ST )†) = 1/σn(S).

ut

13



5 A discrete Gaussian leftover hash lemma over R

In this section, we present our second main result for improving the GGH scheme re-randomization
algorithm. Recall that the GGH algorithm re-randomizes a level-k encoding u′ into u = [u′ +∑mr
j=1 ρjx

(k)
j ]q, where the ρj ’s are sampled from χk = DZ,σ∗

k
and x(k)

j = [b(k)
j /zk]q = [gr(k)

j /zk]q. To
show that the distribution of

∑mr
j=1 ρjb

(k)
j is close to a discrete Gaussian over I, they then apply

the discrete Gaussian LHL from [2, Th. 3], using mr = Ω(n logn) fixed elements b(k)
j ∈ I that

are published obliviously as randomizers “inside” the public zero-encodings x(k)
j . We show that it

suffices to sample 2 randomizers as elements of the full n-dimensional ring R, rather than just
from Z, i.e., we set χk = DR,σ∗

k
. In Appendix B, we review the results of [2], as our proof follows

the same high-level steps.
For a fixed X = (x1, x2) ∈ R2, we define the distribution ẼX,s = x1DR,s + x2DR,s as the distri-

bution induced by sampling u = (u1, u2) ∈ R2 from a discrete spherical Gaussian with parameter s,
and outputting y = x1u1 + x2u2. We prove the following result on ẼX,s.

Theorem 5.1. Let R = Z[x]/〈xn + 1〉 with n a power of 2 and I = 〈g〉 ⊆ R, for some g ∈ R. Fix
ε ∈ (0, 1/2), X = (x1, x2) ∈ I × I and s > 0 satisfying the conditions

– Column span: X ·R2 = I.
– Smoothing: s ≥ max(‖g−1x1‖∞, ‖g−1x2‖∞) · n ·

√
2 log(2n(1 + 1/ε))/π.

Then, for all x ∈ I we have ẼX,s(x) = cf(x) ·DI,sXT (x), for some constant c and function f with
values in [1−ε

1+ε , 1]. In particular, we have

∆(ẼX,s, DI,sXT ) ≤ 2ε and max(R∞(ẼX,s‖DI,sXT ), R∞(DI,sXT ‖ẼX,s)) ≤ 1 + 4ε.

Finally, if s′ · σn(g−1) ≥ 7n1.5 ln1.5(n),4 x1, x2 ←↩ DI,s′ and n grows to infinity, then the first
condition holds with probability Ω(1).

We prove this result for g = 1, and then we generalize to general g. First, we consider the
column span condition.

Lemma 5.2 (Adapted from [29, Le. 4.2 and Le. 4.4]). Let S ∈ Rn×n, and σn(S) ≥
7n1.5 ln1.5(n). For n going to infinity, we have Prx1,x2←↩DR,S [X ·R2 = R] ≥ Ω(1).

Let AX ⊆ {(v1, v2) ∈ R2 : x1v1+x2v2 = 0} be the 1-dimensional R-module of vectors orthogonal
to X. We view AX as an n-dimensional lattice in Z2n, via the polynomial-to-coefficient-vector
mapping.

Lemma 5.3 (Adapted from [2, Le. 10]). Fix X such that X · R2 = R and AX as above. If
s ≥ ηε(AX), then ẼX,s(z) = cf(z) ·DZn,sXT (z) for any z ∈ R, for some constant c and function f
with values in [1−ε

1+ε , 1].5 In particular, we have

∆(ẼX,s, DZn,sXT ) ≤ ε

1− ε and max(R∞(ẼX,s‖DZn,sXT ), R∞(DZn,sXT ‖ẼX,s)) ≤
1 + ε

1− ε.

4 By abuse of notation, we identify g−1 ∈ K with the linear map over Qn obtained by applying the polynomial-to-
coefficient-vector mapping to the map r 7→ g−1r.

5 The normalization constant c was omitted in [2].
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We now study the quantity ηε(AX). First, we show that all successive Minkowski minima of AX
are equal. This property is inherited from the “equal minima property” of ideal lattices in R.

Lemma 5.4. Let X and AX be as above. Then λ1(AX) = · · · = λn(AX).

Proof. We observe that AX is closed under scalar multiplication by an arbitrary element w ∈ R,
i.e., if v = (v1, v2) ∈ AX then w · v = (w · v1, w · v2) ∈ AX . In particular, let v ∈ AX be a vector of
norm ‖v‖ = λ1(AX). For i = 0, . . . , n−1, let ei(x) = xi ∈ R. Then the n vectors (e0 ·v, . . . , en−1 ·v)
are in AX , and all have the same norm λ1(AX), because ‖ej ·vi‖ = ‖vi‖ for all i, j. Further, these n
vectors are linearly independent over Q: let i be such that vi 6= 0 (which must exist since v 6= 0);
the vectors (e0 · vi, . . . , en−1 · vi) are linearly independent over Q, because the fraction field K of R
is a field (it they were not linearly independent over Q, we would have (

∑
j αjej) · vi = 0 for some

non-zero α =
∑
j αjej ∈ K). It follows that λ1(AX) = · · · = λn(AX) = ‖v‖. ut

Lemma 5.5. Let X and AX be as above. Then we have ηε(AX) ≤ max(‖x1‖∞, ‖x2‖∞) · n ·√
2 log(2n(1 + 1/ε))/π.

Proof. We first use Lemma 5.4 and Minkowski’s second theorem (see Lemma 2.1) on the lattice AX :

λn(AX) =
(∏

1≤i≤n λi(AX)
)1/n ≤ √n · ( det(AX)

)1/n
.

Now, observe that AX = L⊥X , where LX = R ·X = {(r · x1, r · x2) : r ∈ R} is viewed as a sublattice
of Z2n. We have, by Lemma 2.2, that det(AX) ≤ det(LX) ≤ ‖X‖n, where the latter inequality fol-
lows from the Hadamard inequality, with ‖X‖ =

√
‖x1‖2 + ‖x2‖2 ≤ max(‖x1‖∞, ‖x2‖∞) ·

√
2n.

As a consequence λn(AX) ≤ max(‖x1‖∞, ‖x2‖∞) ·
√

2n. By Lemma 2.4, we have ηε(AX) ≤√
ln(2n(1 + 1/ε))/π · λn(AX), which completes the proof. ut

Combining the above lemmas, we get Theorem 5.1 for g = 1. The general case is proved as
follows. The injective map Mg : y 7→ g · y on R takes the distribution ẼX,s with X = g−1 · X to
the distribution ẼX,s, while it takes D

R,sX
T to DI,sXT , with I = 〈g〉. The conditions X · R2 = I

and X ·R2 = R are equivalent. The smoothing condition is satisfied for X by the choice of s. Thus
we can apply Theorem 5.1 with g = 1 to ẼX,s, and conclude by applying the mapping Mg to get
the general case of Theorem 5.1. For the very last statement of Theorem 5.1, it suffices to observe
that DI,β = g ·DR,s′(g−1)T .6 ut

6 Our improved GGH grading scheme: GGHLite

We are now ready to describe our simpler and more efficient variant of the GGH grading scheme,
that we call GGHLite. The scheme is summarized in Figure 4. The modifications from the original
GGH scheme consist in:

– Using mr = 2 re-randomization elements x1, x2 in the public key, sampling the randomizers
ρ1, ρ2 from a discrete Gaussian DR,σ∗1

over the whole ring R (rather than from Z), applying our
algebraic ring variant of the LHL from Section 5.

– Saving an exponential factor ≈ 2λ in the re-randomization parameter σ∗1 by applying the RD
bounds from Section 4.

6 With the same abuse of notation as in the previous footnote, for the term (g−1)T .
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In terms of re-randomization security requirement, we relax the strong SD-based requirement
on the original GGH scheme to the following weaker RD-based requirement on GGHLite.

Definition 6.1 (Weak re-randomization security requirement). Using the notations of Def-
inition 3.2, we say that the weak re-randomization security requirement is satisfied at level k with
respect to D

(k)
can(eL) and encoding norm γ(k) if R(D(k)

u (eL, r′)‖D(k)
can(eL)) = O(poly(λ)) for any

u′ = [c′/zk]q such that ‖c′‖ ≤ γ(k).

We summarize GGHLite in Figure 4, which only shows the algorithms differing from those in
the GGH scheme of Figure 1.

• Instance generation InstGen(1λ, 1κ): Given security parameter λ and multilinearity parameter κ, determine
scheme parameters n, q, mr = 2, σ, σ′, `g−1 , `b, `, based on the scheme analysis. Then proceed as follows:
• Sample g ←↩ DR,σ until ‖g−1‖ ≤ `g−1 and I = 〈g〉 is a prime ideal and ‖g‖ ≤

√
n · σ.

• Sample z ←↩ U(Rq).
• Sample a level-1 encoding of 1: y = [a · z−1]q with a←↩ D1+I,σ′ .
• For k ≤ κ:
∗ Sample B(k) = (b(k)

1 , b
(k)
2 ) from (DI,σ′)2. If 〈b(k)

1 , b
(k)
2 〉 6= I, or σn(rot(B(k))) < `b or ‖B(k)‖ >

√
n · σ′,

then re-sample.
∗ Define level-k encodings of 0: x(k)

1 = [b(k)
1 · z−k]q, x(k)

2 = [b(k)
2 · z−k]q.

• Sample h←↩ DR,√q and define the zero-testing parameter pzt = [h
g
zκ]q ∈ Rq.

• Return public parameters par = (n, q, y, {(x(k)
1 , x

(k)
2 )}k≤κ) and pzt.

• Level-k encoding enck(par, e): Given level-0 encoding e ∈ R and parameters par:
• Encode e at level k: Compute u′ = [e · yk]q.
• Return u = [u′ + ρ1 · x(k)

1 + ρ2 · x(k)
2 ]q, with ρ1, ρ2 ←↩ DR,σ∗

k
.

Fig. 4. The new algorithms of our GGHLite scheme.

Choice of σ, `g−1 and σ′, `b. The upper bound `g−1 on ‖g−1‖ in the rejection test of InstGen can be
chosen as small as possible while keeping the rejection probability pg bounded from 1. According
to Lemma 2.7 and Lemma 2.4 with t = 2

√
2πenp−1

g and δ = 1/3, one can choose

`g−1 = 4
√
πen/(pgσ) and σ ≥ 4πn

√
e ln(8n)/π/pg, (4)

to achieve pg < 1. Note that the same choices apply to the GGH scheme: here we have a rigorous
bound on pg instead of the heuristic arguments for estimating in ‖g−1‖ in [10]; however, as in [10],
we do not have a rigorous bound on the probability that I is prime conditioned on this choice.

Let pb be the rejection probability for the lower bound `b on σn(B(k)) in the rejection test
of InstGen. To keep pb away from 1, we use that σn(B(k))2 = minu∈K,‖u‖=1

∑
i=1,2 ‖u · b

(k)
i ‖2 ≥∑

i=1,2 σn(b(k)
i )2. Applying Lemma 2.7 with t = 2

√
2πenp−1

b and δ = 1/3, we get that σn(b(k)
i ) >

pb
8
√
πen ·σ

′, except with probability≤ pb for i ∈ {1, 2} if σ′ ≥ t√
2πη1/3(I), where η1/3(I) ≤

√
ln(8n)/π·

‖g‖ by Lemma 2.4. Therefore, we can choose

`b = pb
2
√
πen · σ

′ and σ′ ≥ 2n1.5σ
√

e ln(8n)/π/pb. (5)
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We also need to bound the probability p′b of the first rejection test 〈b(k)
1 , b

(k)
2 〉 6= I. This is

bounded by some constant < 1 by Theorem 5.1, but it requires the assumption σ′ · σn(g−1) ≥
7n1.5 ln1.5(n). To use Theorem 5.1 to obtain a rigorous bound on p′b, we can satisfy the assumption
as follows. Using the lower bound σn(g−1) ≥ 1√

n‖g‖ from the remark after Lemma 2.7, and using
the rejection condition ‖g‖ ≤

√
n · σ, we have σn(g−1) ≥ 1

nσ , so the Theorem 5.1 assumption is
satisfied by setting

σ′ ≥ 7n2.5 ln1.5(n) · σ. (6)

Zero-testing and extraction correctness. The correctness conditions for zero-testing and correctness
remain the same as conditions (2), (3) for the original GGH scheme. The only modification needed is
for condition (1), because in GGHLite, mr = 2 and ρj ∈ R so ‖ρjb(1)

j ‖ ≤
√
n‖ρj‖‖b(1)

j ‖. Accordingly,
condition (1) is replaced by:

q > max
(
(n`g−1)8, (3 · n1.5σ∗σ′)8κ

)
. (7)

Security. We state our improved re-randomization security reduction for GGHLite, that works with
much smaller parameters than GGH. To our knowledge, it is the first security proof in which the
RD is used to replace the SD in a sequence of games, using the RD properties from Section 4 to
combine the bounds on changes between games. This allows us to gain the benefits of RD over SD,
for both the drowning and smoothing aspects. Namely, with εd, ερ, εe in Theorem 6.2 set as large as
O(log λ/κ), our weak security requirement of Definition 6.1 is satisfied (the RD between real and
canonical encoding distributions is bounded by the quantity R = poly(λ) in Theorem 6.2), and our
re-randomization goal for Ext-GCDH is achieved (whereas the strong requirement of Definition 3.2
is not satisfied).

Theorem 6.2 (Security of GGHLite). Let εd, ερ, εe ∈ (0, 1/2) and κ ≤ 2n. Suppose that the
following conditions are satisfied for GGHLite:

– LHL Smoothing:
σ∗1 ≥ n1.5 · `g−1 · σ′ ·

√
2 log(4n · ε−1

ρ )/π. (8)

– Offset “Drowning:”
σ∗1 ≥ n1.5 · (σ′)2 ·

√
8πε−1

d /`b. (9)

– samp Uniformity Smoothing:

σ′ ≥ σ ·
√
n ln(4n · ε−1

e )/π. (10)

Then, if A is an adversary against the (non-canonical) Ext-GCDH problem for GGHLite with run-
time T and advantage ε, then A is also an adversary against the canonical problem Ext-cGCDH
for GGHLite with T ′ = T and advantage

ε′ ≥ (ε−O(κ · 2−n))2/R with R = 2O(κ·(εd+ερ+εe+2−n)). (11)

In particular, there exist εd, εe, ερ bounded as O(log λ/κ) such that the re-randomization security
goal in Definition 3.4 is satisfied by GGHLite with respect to problem Ext-GCDH.

Proof. We consider a sequence of games Game0, . . . ,Game5, where the distributions of the view of
A differ among the games as follows:
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– Game0: The Ext-GCDH experiment, where y = [az−1]q with a = 1+gry ←↩ D1+I,σ′ and I = 〈g〉,
ui = [(ei,L +

∑
j ρijb

(1)
j + ci) · z−1]q for i ∈ {0, . . . , κ}, ei,L = [ei]g, ei = ei,L + gei,H ←↩ DR,σ′ ,

and ci = g(ei,Lry + ei,H) + g2ryei,H .
– Game1: Modification of Game0 in which ei (for i ∈ {0, . . . , κ}) and a are sampled from the

truncated tail Gaussians Dt
R,σ′ and Dt

1+I,σ′ (instead of the untruncated Gaussians DR,σ′ and
D1+I,σ′ respectively).

– Game2: Modification of Game1 in which the distribution of the re-randomization term
∑
j ρijb

(1)
j

is replaced by the canonical distribution DI,σ∗1(B(1))T , so ui = [(ei,L + wi + ci) · z−1]q, with
wi ←↩ DI,σ∗1(B(1))T for 0 ≤ i ≤ κ.

– Game3: Modification of Game2 in which offset vector ci in the randomization of encoding ui is
removed and replaced by −ei,L, so that ui = [(ei,L + wi) · z−1]q, where wi ←↩ DI,σ∗1(B(1))T ,−ei,L
for 0 ≤ i ≤ κ (note that ei,L +wi is distributed as DI+ei,L,σ∗1(B(1))T over the randomness of wi).

– Game4: Modification of Game3 in which ei is sampled from DR,σ′ (instead of sampling ei from
the truncated tail Gaussian Dt

R,σ′), for 0 ≤ i ≤ κ, and a is sampled from D1+I,σ′ (instead of
Dt

1+I,σ′).
– Game5: The Ext-cGCDH experiment, which can be obtained as a modification of Game4 in

which ei,L is sampled uniformly from Rg, instead of being computed from ei as ei,L = [ei]g.
For i = 0, . . . , 5, let Vi denote the distribution of the view of A in Gamei, and let E de-

note the event that A outputs the correct Ext-GCDH solution. By the probability preserva-
tion property of RD from Lemma 4.1, we have that the advantage of A against Ext-cGCDH is
V5(E) ≥ V1(E)2/R(V1‖V5) and from the probability preservation property of the SD, the latter is
≥ (ε−∆(V0, V1))2/R(V1‖V5).

To complete the proof, it thus remains to show that ∆(V0, V1) = O(κ · 2−n) and R(V1‖V5) ≤ R,
with R defined in the theorem statement. Using two applications of the weak triangle inequality and
one application of the R∞ triangle inequality from Lemma 4.1, we get R(V1‖V5) ≤ R∞(V1‖V2)2 ·
R(V2‖V5), R(V2‖V5) ≤ R(V2‖V3) ·R∞(V3‖V5) and finally

R(V1‖V5) ≤ R∞(V1‖V2)2 ·R(V2‖V3) ·R∞(V3‖V4) ·R∞(V4‖V5).

We now bound each factor in turn:

– To bound ∆(V0, V1), we use the fact that Game0 and Game1 differ only if the norm of one of the
sampled ei (for i ∈ {0, . . . , κ}) or a exceeds 2

√
n · σ′. By Lemma 2.3, since σ′ ≥ η1/2(I) (which

follows from the samp uniformity smoothing condition, as shown below), this event occurs with
probability at most 2−n+2 for each of these κ + 2 Gaussian samples. By the union bound, it
thus follows that

∆(V0, V1) ≤ (κ+ 2) · 2−n+2 = O(κ · 2−n).
– To bound R∞(V1‖V2)2, we apply our LHL over R (Theorem 5.1) to conclude that, for each
i ∈ [κ + 1], R∞(D(

∑
j ρijb

(1)
j )‖DI,σ∗1(B(1))T ) ≤ 1 + 4ερ ≤ exp(4ερ) if ερ ≤ 1/2, σ∗1 ≥

‖g−1B(1)‖∞n
√

2 log(4n · ε−1
ρ )/π, and B(1) · R2 = I. The last condition on B(1) holds by the

rejection test of the InstGen algorithm of GGHLite. The condition on σ∗1 holds by the assumed
LHL Smoothing condition and the bound ‖g−1 ·B(1)‖∞ ≤ ‖g−1‖ · ‖B(1)‖ ≤ `g−1 · σ′ ·

√
n, from

the rejection tests of the InstGen algorithm. Using the multiplicativity property over i ∈ [κ+ 1],
and data processing inequality for R∞, we conclude that

R∞(V1‖V2)2 ≤ exp(8 · (κ+ 1) · ερ).
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– To bound R(V2‖V3), let D1,i = DI,σ∗1(B(1))T + ci = DI,σ∗1(B(1))T ,ci (using I + ci = I, since
ci ∈ I) and D2,i = DI,σ∗1(B(1))T ,−ei,L for i ∈ [κ + 1]. From the offset drowning condition, we
have σ∗1 · `b ≥ σ′, and using the samp uniformity smoothing condition, we have σ′ ≥ ηεe(I),
where we have used the bound ηεe(I) ≤

√
ln(2n(1+1/εe))

π · λn(I) from Lemma 2.4, and the fact
that λn(I) = λ1(I) ≤ ‖g‖ ≤

√
n · σ. We conclude that σn(σ∗1(B(1))T ) ≥ σ∗1 · `b ≥ ηεe(I).

Therefore, we can apply our offset Gaussian divergence bound (Lemma 4.2) for each i (with
w = ci and z = −ei,L) to get that, conditioned on a fixed value of offset ci and encoded
element ei,L (as well as fixed g, B(1) and a), we have R(D1,i‖D2,i) ≤ (1+εe

1−εe )2 · exp(2π‖ci +
ei,L‖2/(σ∗1σn(B(1)))2) ≤ exp(2π‖ci+ei,L‖2/(σ∗1`b)2 +8εe) using (1+εe

1−εe )2 ≤ exp(8εe) for εe < 1/2.
We also have ‖ci+ei,L‖ = ‖ei ·a‖ ≤

√
n ·‖ei‖·‖a‖ ≤ n1.5 ·(σ′)2, using the bounds ‖ei‖ ≤

√
n ·σ′,

‖a‖ ≤ 2
√
nσ′. Therefore, we get R(D1,i‖D2,i) ≤ exp(εd + 8εe) using the “Offset Drowning”

condition. Using the multiplicativity property over i ∈ [κ + 1], and data processing property
of R, we conclude that

R(V2‖V3) ≤ exp((κ+ 1) · (εd + 8εe)).

– To bound R∞(V3‖V4), we recall that for each i ∈ [κ+ 1], the distribution Dt
R,σ′ of ei in Game3

is obtained by rejecting and resampling from DR,σ if the rejection test ‖ei‖ >
√
nσ′ is satisfied.

It follows that Dt
R,σ′(x) = 1

1−prej ·DR,σ′(x) for all x in the support of Dt
R,σ′ , where prej is the

probability that a sample DR,σ′ is rejected, and hence that R∞(Dt
R,σ′‖DR,σ′) = 1

1−prej . By the
discrete Gaussian tail bound Lemma 2.3, we have prej ≤ 2−n+2 if σ′ ≥ η1/2(R), and the latter
condition is satisfied by the choice of σ′. It follows that R∞(Dt

R,σ′‖DR,σ′) ≤ 1+2−n+3. Applying
a similar argument to the distribution of a using σ′ ≥ η1/2(I), we have R∞(Dt

1+I,σ′‖D1+I,σ′) ≤
1 + 2−n+3 and hence by the multiplicativity and data processing properties of the RD:

R∞(V3‖V4) ≤ (1 + 2−n+3)κ+2 ≤ exp((κ+ 2) · 2−n+3).

– To bound R∞(V4‖V5), let De denote the distribution of [ei]g over the randomness of ei sampled
from DR,σ′ . We apply smoothing Lemma 2.6. to get that R∞(U(Rg)‖De) ≤ 1+εe

1−εe if σ′ ≥ ηεe(I).
The latter condition holds as shown above. Using the multiplicativity and data processing
properties of RD from Lemma 4.1, over i = 0, . . . , κ, we conclude that for εe ≤ 1/2:

R∞(V4‖V5) ≤
(1 + εe

1− εe

)κ+1
≤ exp((κ+ 1) · 4εe).

Combining the above bounds gives the claimed bound. For the last statement, it suffices to observe
that ε′ = Ω(ε2/poly(λ)) if κ ·max(εd, ερ, εe) = O(log λ). ut

6.1 Canonical re-randomization algorithm cenc.

In Remark 2 of [10], the authors of the original GGH scheme define a canonicalizing encoding
algorithm cenc that allows for certain applications (like the ABE scheme in [12]) to use the encoding
re-randomization multiple times. We can define such a canonical re-randomization algorithm for
our GGHLite in a similar way.

Algorithm cencl(par, k, u′) takes a level-k encoding u′ of some element e ∈ Rg with k ≤ κ and
returns a re-randomized level-k encoding u of e. The parameter l indicates the “re-randomization
depth,” i.e., the number of times that cenc has been applied, and determines the re-randomization
noise level.
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Alternative “pairwise closeness” re-randomization security requirement. For applications such as
the ABE scheme in [12], it is required that, for any two given level-k encodings u′1 = [c1/z

k]q, u′2 =
[c2/z

k]q of the same element e, the pair of distributions D(u1), D(u2) of u1 = cencl(par, k, u′1) and
u2 = cencl(par, k, u′2), respectively (over the randomness of cenc), are “close.” This “pairwise close-
ness” requirement for re-randomized encodings is an alternative to the “closeness to a canonical
distribution” requirement for re-randomized encodings in Definition 3.2 and Definition 6.1. In the
case of the strong SD-based “closeness” requirement in Definition 3.2, we have, from the triangle
inequality property of SD, that the “closeness to a canonical distribution” requirement of Defini-
tion 3.2 implies the “pairwise closeness” requirement. However, due to the lack of such a general
triangle inequality property for the RD, such an implication does not immediately hold for our
weak RD-based “closeness” requirements. Nevertheless, our improved re-randomization analysis of
GGHLite above can be carried over to establish the weak “pairwise closeness” requirement as well.

In the following, we define our weak RD-based “pairwise closeness” re-randomization require-
ment.

Definition 6.3 (Weak pairwise-closeness re-randomization property of cenc). Fix a κ-
graded encoding scheme S, and an instance par of this scheme for security parameter λ. For k ≤ κ
and l ≤ L, let S(k,l) denote a set of “admissible” level-k input encodings at re-randomization depth l.
Let cencl denote a re-randomization probabilistic algorithm that takes as input (par, k, u′) with u′ a
level-k encoding of some level-0 element eL, and returns a re-randomized level-k encoding u of eL.
Then we say that cenc satisfies the weak pairwise closeness re-randomization property for S with
RD bound R and admissible input encoding sets {S(k,l)}k∈[κ],l∈[L] if, for any k ∈ [κ], l ∈ [L] and
two level-k encodings u′1, u′2 ∈ S(k,l) of the same level 0 element eL, we have R(D(u1)||D(u2)) ≤
R = O(poly(λ)), where D(ui) denotes the distribution (over the randomness of cenc) of the re-
randomized encoding ui = cencl(par, k, u′i) for i ∈ {1, 2}.

Next, we show that our requirement above is satisfied for GGHLite by a canonical re-randomization
algorithm cenc with a similar choice of parameters as in Theorem 6.2. The proof is very similar
to the proof of Theorem 6.2. The main difference is the direct “jump” in the RD-based analysis
between the pair of encoding distributions D(u1), D(u2) to avoid going through an intermediate
canonical distribution, which would require applying a “strong” triangle inequality for the RD.

Lemma 6.4 (Weak Pairwise-closeness Re-randomization for GGHLite). Let εd, ερ, εe ∈
(0, 1/2) and κ ≤ 2n. For k ≤ κ and l ∈ [L], let cencl(par, k, u′) denote the canonicalizing encoding
algorithm for GGHLite that takes a level-k encoding u′ = [c′/zk]q with ‖c′‖ ≤ γk,l, and returns a
re-randomized encoding u = [u′ + ρ1 · x(k)

1 + ρ2 · x(k)
2 ]q with ρ1, ρ2 ←↩ DR,σ∗

k,l
, for some admissible

input encoding norm bound γk,l. Suppose that the following conditions hold:

– LHL Smoothing:
σ∗k,l ≥ n1.5 · `g−1 · σ′ ·

√
2 log(4n · ε−1

ρ )/π. (12)
– Offset “Drowning:”

σ∗k,l ≥ (
√

8πε−1
d /`b) · γk,l. (13)

Then cencl satisfies the weak pairwise-closeness re-randomization property for GGHLite with RD
bound

R = exp(12ερ + εd), (14)
and admissible input encoding sets Sk,l = {u′ = [c′/zk]q : ‖c′‖ ≤ γk,l}.
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Proof. We fix an instance par = (n, q, y, {(x(k)
1 , x

(k)
2 )}k≤κ) and pzt of GGHLite, with x(k)

1 = [b(k)
1 /zk]q,

x
(k)
2 = [b(k)

2 /zk]q, and y = [a/z]q with a = 1+gry, and two level-k encodings u′i = [c′i/zk]q in Sk,l, i.e.
with ‖c′i‖ ≤ γk,l, of the same level 0 element eL, so that c′i = eL + ci ∈ R with ci ∈ I for i ∈ {1, 2}.
We consider the following sequence of games, where in each game, a re-randomized level-k encoding
u of eL is sampled, but the distribution of u differs among the games as follows:
– Game0: In this game, we define u as the re-randomization of u′1, i.e. u = cencl(par, k, u′1) =

[(eL + c1 + w)/zk]q, where w = ρ1 · b(k)
1 + ρ2 · b(k)

2 ∈ R and ρi ←↩ DR,σ∗
k,l

for i ∈ {1, 2}.
– Game1: Modification of Game1 in which the distribution of the re-randomization term w is

replaced by the distribution DI,σ∗
k,l

(B(k))T , i.e. u = [(eL + c1 + w)/zk]q with w ←↩ DI,σ∗
k,l

(B(k))T .
– Game2: Modification of Game2 in which the randomization offset term c1 ∈ I is replaced by

offset term c2 ∈ I, i.e. u = [(eL + c2 + w)/zk]q with w ←↩ DI,σ∗
k,l

(B(k))T .
– Game3: Modification of Game2 which “undoes” the modification introduced in Game1, i.e. in

this game we have u = [(eL + c2 +w)/zk]q, where w = ρ1 · b(k)
1 + ρ2 · b(k)

2 ∈ R and ρi ←↩ DR,σ∗
k,l

for i ∈ {1, 2}. Observe that in this game, u has exactly the distribution of a re-randomization
of u′2, i.e. u = cencl(par, k, u′2).

For i = 0, . . . , 3, let D(u)i denote the distribution of u in Gamei. To prove the lemma, it thus
suffices to show that R(D(u)0‖D(u)3) ≤ R, with R defined in the lemma statement. Applying both
of the weak triangle inequalities from Lemma 4.1, we get

R(D(u)0‖D(u)3) ≤ R∞(D(u)0‖D(u)1)2 ·R(D(u)1‖D(u)2) ·R∞(D(u)2‖D(u)3).

We now bound each factor in turn:

– To bound R∞(D(u)0‖D(u)1)2, we apply our LHL over R (Theorem 5.1) to conclude that
R∞(D(u)0‖D(u)1) ≤ 1 + 4ερ if σ∗k,l ≥ ‖g−1B(1)‖∞n

√
2 log(4n · ε−1

ρ )/π, and B(1) · R2 = I.
The last condition on B(1) holds by the rejection test of the InstGen algorithm of GGHLite. The
condition on σ∗k,l holds by the assumed LHL Smoothing condition and the bound ‖g−1 ·B(k)‖∞ ≤
‖g−1‖ · ‖B(k)‖ ≤ `g−1 · σ′ ·

√
n, from the rejection tests of the InstGen algorithm. Using the data

processing inequality for R∞, we conclude that

R∞(D(u)0‖D(u)1)2 ≤ exp(8ερ).

– To bound R(D(u)1‖D(u)2), notice that for i ∈ {1, 2}, using the fact that ci ∈ I, the distribution
of ci + w in Gamei is Di

def= DI,σ∗
k,l

(B(k))T ,ci . Applying our offset Gaussian divergence bound
(Lemma 4.2) (with w = c1,z = c2) gives R(D(u)1‖D(u)2) ≤ exp(2π‖c1 − c2‖2/(σ∗k,lσn(B(k)))2).
The latter is upper bounded by exp(εd) if (σ∗k,l)2 ≥ 2π‖c1−c2‖2

εd·σn(B(k)))2 . This last condition is satisfied
by the offset drowning condition, using ‖c1−c2‖ = ‖c′1−c′2‖ ≤ 2γk,l and the acceptance condition
σn(B(k)) ≥ `b of the InstGen algorithm. We conclude that

R(D(u)1‖D(u)2) ≤ exp(εd).

– To bound R∞(D(u)2‖D(u)3), we apply the LHL over R (Theorem 5.1) with the same argument
as used to bound R∞(D(u)0‖D(u)1), except that this time, the order of the arguments to R∞ is
reversed. Since the R∞ upper bound of Theorem 5.1 holds regardless of the order, we conclude
that

R∞(D(u)2‖D(u)3) ≤ exp(4ερ).
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Combining the above bounds gives the claimed bound R.
ut

6.2 Eliminating z: an NTRU variant of GGHLite

In this section, we introduce a simplified variant of the GGH/GGHLite scheme that eliminates the
parameter z, and yet preserves the security of the GDDH/GCDH problems. We call our variant the
NTRU variant, since it involves publishing “NTRU-like” quotients pk(k)

i = [x(k)
i /yk]q = [b(k)

i /ak]q
instead of the separate GGH parameters x(k)

i , y, thus cancelling out the parameter z, and replacing
it effectively by a. Similarly, level-k encodings in this construction also correspond to GGHLite
encodings divided by yk, i.e., have the form u = [(e·ak+ρ1b

(k)
1 +ρ2b

(k)
2 )/ak]q = [e+ρ1pk

(k)
1 +ρ2pk

(k)
2 ]q.

The zero testing parameter is accordingly modified to pzt = h
g a

k. The latter encoding resembles an
NTRU ciphertext for e with respect to public keys pk(k)

1 , pk
(k)
2 , although in NTRU we have only one

public key, whereas here we have two public keys. The fact that public parameters and encodings
can be efficiently translated from GGHLite to the NTRU variant by taking quotients in Rq, implies
that the security of the NTRU variant is at least as hard as GGHLite. Details of the scheme are
summarized in Figure 5.

• Instance Generation InstGen(1λ, 1κ): Given security parameter λ and multilinearity parameter κ, determine
scheme parameters n, q, mr = 2, σ, σ′, `g−1 , `b,`. Let R = Z[x]/(xn + 1) and Rq = R/qR = Zq[x]/(xn + 1). Do
the following:
• Sample g ←↩ Dt

R,σ. If (1) ‖g−1‖ > `g−1 or (2) 〈g〉 is not a prime ideal, resample g, else define ideal I = 〈g〉.
• Sample a←↩ Dt

1+I,σ′ (note that a = 1 + gry for some ry ∈ R).
• For k ∈ [κ]:
∗ Sample B(k) = (b(k)

1 , b
(k)
2 ) from (Dt

I,σ′)2. If: (1) 〈b(k)
1 , b

(k)
2 〉 6= I, or (2) σn(rot(B(k))) < `b, resample.

∗ Define level-k public keys: pk(k)
1 = [b(k)

1 · a−k]q, pk(k)
2 = [b(k)

2 · a−k]q.
• Sample h←↩ DR,√q and define the zero-testing parameter: pzt,κ = [h

g
aκ]q ∈ Rq.

• Return public parameters par = (n, q, {(pk(k)
1 , pk

(k)
2 )}k∈[κ]) and pzt.

• Level-k encoding enck(par, e): Given level-0 encoding e ∈ R and parameters par, return u = [e + ρ1 · pk(k)
1 +

ρ2 · pk(k)
2 )]q, with ρ1, ρ2 ←↩ DR,σ∗

k
(note u = [(c′ + ρ1b

(k)
1 + ρ2b

(k)
2 )/ak]q, where c′ = e · ak ∈ e+ I).

Fig. 5. The new algorithms of our NTRU variant GGHLite scheme. Other algorithms are the same as in the original
GGH scheme.

Security of the construction. We can define the corresponding problems GCDHNTRU , ExtGCDHNTRU
and GDDHNTRU for this NTRU variant, in the natural way as in Section 3, but with respect to
experiment of Figure 6.

To show that the NTRU variant of the GGH encoding scheme is at least as secure as the GGH
scheme, we now provide a formal reduction from GDDH to GDDHNTRU (and similarly for the
other two problems).

Theorem 6.5. There exists a polynomial time reduction from GDDH (resp. GCDH/ExtGCDH)
to GDDHNTRU (resp. GCDHNTRU/ExtGCDHNTRU ).
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Given parameters λ, n, q,mr, κ, σ
′, proceed as follows:

1. Run InstGen(1n, 1κ) to get par = (n, q, {pk(k)
j }j,k)

and pzt.
2. For i = 0, . . . , κ:

-Sample ei ←↩ DR,σ′ and fi ←↩ DR,σ′ ,
-Set ui = [ei +

∑
j
ρijpkj ]q with ρij ←↩ χ1 for all j.

3. Set u∗ =
[∏κ

i=1 ui
]
q
.

4. Set vC = [e0u
∗]q.

5. Sample ρj ←↩ χκ for all j; set vD = [e0u
∗ +∑

j
ρjpk

(κ)
j ]q.

6. Set vR = [f0u
∗ +
∑

j
ρjpk

(κ)
j ]q.

Fig. 6. The GGHNTRU security experiment.

Proof. For simplicity, we only describe the reduction from GDDH to GDDHNTRU . Let
{(y, {xj}j , pzt), u0, . . . , uκ, v} be a GDDH instance and let O be a polynomial-time oracle for solving
GDDHNTRU .

• Let pk(k)
j = [x

(k)
j

y ]q for j ∈ {1, 2} and k ∈ [κ],
• Let p̂zt = [pzt · yκ]q,
• Let v̂ = [v · y−κ]q,
• Call the oracle O on input {({pk(k)

j }j,k, p̂zt), [
u0
y ]q, . . . , [uκy ]q, v̂}.

We have ui = enc1(ei) = [eiy +
∑
j ρ

(i)
j x

(1)
j ]q for all i ∈ [κ], then let untru

i = [uiy ]q = [ei +∑
j ρ

(i)
j

x
(1)
j

y ]q = [ei +
∑
j ρ

(i)
j pk

(1)
j ]q is a valid ntru variant level-1 encoding for ei. Furthermore, if

v = vD, then

v̂ = [(e0 · u∗ +
∑
j

ρj · x(κ)
j ) · y−κ]q = [e0 ·

κ∏
i=1

(ui
y

) +
∑
j

ρj ·
x

(κ)
j

yκ
]q = [e0 ·

κ∏
i=1

untru
i +

∑
j

ρj · pk(κ)
j ]q,

is a valid ntru variant level-κ encoding of
∏
i ei. Similarly, if v = vR, then v̂ is a valid ntru variant

level-κ encoding of f0
∏
i≥1 ei, as required. ut

7 Parameter settings

In Table 1, we summarize asymptotic parameters for GGHLite to achieve 2λ security for the under-
lying Ext-GCDH problem, assuming the hardness of the canonical Ext-cGCDH problem, and to
satisfy the zero-testing/extraction correctness conditions with error probability λ−ω(1). For simplic-
ity, we assume that κ = ω(1) and κ = O(poly(λ)). For comparison, we also show the corresponding
parameters for GGH. The “Condition” column lists the conditions that determine the corresponding
parameter in the case of GGHLite. For security of the canonical Ext-cGCDH problem, we assume (as
in [10]) that the best attack is the one described in [10, Se. 6.3.3], whose complexity is dominated
by the cost of solving γ-SVP (the Shortest lattice Vector Problem with approximation factor γ) for
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the lattice I, with γ set at ≈ q3/8 to get a sufficiently short multiple of g. By the lattice reduction
“rule of thumb,” to make this cost 2λ, we need to set

n = Ω(λ log q). (15)

Table 1. Asymptotic parameters.

Parameter GGHLite GGH[10] Condition
mr 2 Ω(n logn) LHL: Th. 5.1
σ O(n logn) O(n logn) Eq. (4)
`g−1 O(1/

√
n logn) O(1/

√
n logn) Eq. (4)

εd, εe, ερ O(κ−1) O(2−λκ−1) Eq. (11)
σ′ Õ(n3.5) Õ(n1.5√λ) Eq. (6)
σ∗1 Õ(n5.5√κ) Õ(2λλn4.5κ) Drown: Eq. (9)
εext O(λ−ω(1)) O(λ−ω(1))
q Õ(n10.5√κ)8κ Õ(2λλ1.5n8.5κ)8κ Corr.: Eq. (7)
n O(κλ log λ) O(κλ2) SVP: Eq. (15)
|enc| O(κ2λ log2 λ) O(κ2λ3) O(n log q)
|par| O(κ3λ log2 λ) O(κ4λ5 log λ) O(mrκn log q)

When κ = poly(log λ), the dimension n, encoding length |enc| and public parameters length
|par| in our scheme GGHLite are all asymptotically close to optimal, namely quasi-linear in the
security parameter λ, versus quadratic (resp. cubic and quintic) in λ for GGH [10]. Thus we expect
GGHLite’s public parameters and encodings to be orders of magnitudes shorter than GGH for typical
λ ≈ 100.

8 Applications

In previous sections, we have shown that our graded encoding scheme GGHLite can be instantiated
much more efficiently than the GGH scheme [10], but on the other hand, with our efficient choice
of parameters for GGHLite, we have only been able prove the hardness of the search problem Ext-
GCDH (based on the hardness of the corresponding canonical problem) rather than the decision
problem GDDH used in [10]. In this section, we show that the hardness of Ext-GCDH is sufficient
for important applications of graded encoding schemes, in the random oracle model. In particular,
we show that existing protocols based on the hardness of GDDH can be easily modified to make
their security based on Ext-GCDH in the random oracle model, while preserving the efficiency of
the original protocols, up to a small factor.

8.1 Efficient one-round N-party Diffie-Hellman key exchange in the ROM

We show how to adapt the one round N -party key exchange protocol described in [10, Section 5]
(originally described by Boneh and Silverman [7] in the abstract setting of multilinear maps) to
achieve security assuming the hardness the Ext-GCDH problem, rather than the GDDH problem,
in the random oracle model. The modification is straightforward: we simply replace the shared key
s = ext(par, pzt, v) in the original protocol, where v is the encoding of the Diffie-Hellman product of
the N parties’ secrets, by its hash K = H(ext(par, pzt, v)), where H(.) : {0, 1}∗ → {0, 1}λ denotes
a hash function modelled as a random oracle. Details follow.
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Construction. Given a κ-graded encoding scheme with κ = N−1 over an encoded element ring R/I
of prime order p, and a hash function H : {0, 1}∗ → {0, 1}λ, the N -party key exchange protocol is
presented in Figure 7.

• Setup Setup(1λ, 1N ): Given security parameter λ and number of parties N , run InstGen(12λ+1, 1N−1) for the
graded encoding scheme to get (par, pzt) and output protocol public parameters (par, pzt).

• Publish Publish(par, pzt, i): The ith party runs the level-0 encoding sampler to generate a random secret key
ei = Samp(par) (corresponding to encoded element ei,L), and publishes a corresponding level-1 public key ui =
enc1(par, ei).

• KeyGen KeyGen(par, pzt, j, ej , {ui}i6=j): The jth party computes a level-(N−1) encoding vj = ej ·
∏
i 6=j ui of the

Diffie-Hellman product
∏
i
ei,L, and computes the key Kj = H(sj), where sj = ext(par, pzt, vj) is the extracted

string for vj .

Fig. 7. Our modified N -party Diffie-Hellman key exchange protocol.

Correctness. We have to show that all the N computed keys K1, . . . ,KN are equal except for
negligible probability λ−ω(1). In the KeyGen algorithm, each party computes an encoding vj of the
product eL =

∏
i ei,L in the ring R/I. Since |R/I| = Ω(2λ) is prime and the distribution of the

ei,L’s is within statistical distance O(2−λ) of uniform on R/I, the product eL is also within negli-
gible statistical distance O(2−λ) to a uniformly random element in R/I. Hence by the extraction
correctness property of the encoding scheme, all N extracted strings {sj}i∈[N ], and hence also all N
computed keys {Kj}i∈[N ], are equal, except with negligible probability O(N · λ−ω(1)) = O(λ−ω(1))
for N = λO(1).

Passive security. We have to show that, given (par, pzt) and the public keys u1, . . . , uN , the key
(sayK1) is indistinguishable to the adversaryA from a uniformly random string in {0, 1}λ, assuming
the hardness of the Ext-GCDH problem and the random oracle model for H. Formally, we define
a passive security attack game, in which A is given (par, pzt), u1, . . . , uN , and Tb, for a uniformly
random bit b ∈ {0, 1}, where T0 = K1 is the real key and T1 = R ←↩ U({0, 1}λ is an independent
uniformly random string, and A outputs a guess b′ for b. We say that A’s advantage is ε = 2(Pr[b′ =
b]− 1/2).

Lemma 8.1. Let A denote an attacker, in the random oracle model for H, against the passive
security of the N -party Diffie-Hellman key exchange protocol in Figure 7, with run-time T and
advantage ε, making qH queries to H. Then there exists an algorithm A′ for the Ext-GCDH problem
for the underlying encoding scheme, with run-time T ′ = T and success probability ε′ ≥ ε/(2qH).

Proof. Let Game1 denote the passive security attack game with A, and let Game2 denote a mod-
ification of Game1 in which A’s queries to H are answered differently as follows: if the query x is
equal to s1 = ext(par, pzt, e1 ·

∏
i>1 ui), the query is answered with a uniformly random K ∈ {0, 1}λ

(instead of K1 = H(s1)), otherwise, the query is answered with H(x), as in Game1.
For i ∈ {1, 2}, let Si denote the event that b′ = b in Gamei, and let E denote the event in Game1

that A queries H at s1. Note that by definition, Pr[S1] = 1/2 + ε/2, and we also have Pr[S2] = 1/2
because in Game2, Tb is a uniformly random string independent of A’s prior view, regardless of the
value of b. On the other hand, since the view of A is identical in Game1 and Game2 until A queries
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H at s1, we have |Pr[S1] − Pr[S2]| ≤ Pr[E]. It follows that Pr[E] ≥ ε/2. Given an input instance
(par, pzt, {ui}i) of the Ext-GCDH problem, the attacker A′ simply runs A on input (par, pzt, {ui}i)
and Tb (with T0 = K1 chosen uniformly random in {0, 1}λ – note that A′ does not need to know
s1 to simulate T0) and simulates Game1, hoping that the event E occurs. Let {xi}i∈[qH ] denote the
queries made by A to H, When A finishes, A′ chooses i ∈ [qH ] uniformly at random and outputs xi
as its guess for A’s query that equals s1 (note that until A queries H at s1, the view of A is perfectly
simulated by A′ as in Game1, so Pr[E] is preserved). Conditioned on the event E occurring, we
have xi = s1 with probability ≥ 1/qH . Overall, A′ outputs the correct Ext-GCDH solution with
probability ≥ 1/qH · Pr[E] ≥ ε/(2qH). ut

Note that when the protocol attacker A has run-time T = 2λ (so that also qH ≤ 2λ) and advantage
ε ≥ 2−λ, the Ext-GCDH attacker A′ constructed by our security lemma above, has run-time
T ′ = 2λ and advantage ε′ ≥ 2−(2λ+1), thus contradicting the assumed 22λ+1-security of the undrlying
encoding scheme (it is for this reason that we used a security parameter λ′ = 2λ+1 for the encoding
scheme). Consequently, we only lose a constant factor ≈ 2 in relating the security parameter of
the encoding scheme to that of the protocol, essentially preserving the efficiency of our encoding
scheme in this application.

8.2 Efficient ABE from canonical Ext-GCDH in the ROM

We explain how to modify the Attribute Based Encryption (ABE) scheme for circuits by Garg et
al. [12] and its security proof, to achieve security assuming the hardness the Ext-GCDH problem
in the random oracle model, and our weak canonical re-randomization property from Lemma 6.4,
rather than the GDDH problem and the strong canonical re-randomization property from [10], al-
though in this application, we need to set the re-randomization boundR(D(u1), D(u2)) = exp(O(εd+
ερ)) to be relatively small, namely O(1/Nqf ), where Nqf is the total size of the circuits queried to
the key generation oracle by the adversary. This still gives our scheme significant savings when Nqf
is much smaller than 2λ. Our modification of the scheme uses the same hashed-key idea as used
in the key-exchange protocol of the previous section. Since the scheme and its analysis are almost
identical to that in [12], we only summarize the required changes below and refer the reader to [12]
for details.

Construction. Given a κ-graded encoding scheme over an encoded element ring R/I of prime
order p with canonical re-randomization algorithm cenc (see end of Section 6) and a hash function
G : {0, 1}∗ → {0, 1}, the ABE scheme is presented in Figure 8.

Correctness. The correctness analysis in [12] shows that Decrypt correctly recovers a level-κ en-
coding E of α · s if f(x) = 1. By the extraction property of the encoding scheme and the random
choice of s, we have v′ = ext(par, pzt, E) is equal to v = ext(par, pzt, H · s) and therefore decryption
succeeds to recover M , except with negligible probability O(λ−ω(1)).

Security. We sketch how to modify the security proof of selective security from [12, Theorem 6.1].
Full security follows as in [12, Corollary 6.2]. The selective security game consists of the following
game. In the Init. stage, the adversary commits to the challenge attribute string x∗. Then the
challenger runs Setup, gives PP to the adversary and keeps SK to itself. The adversary then makes
qf private key queries f of his choice such that f(x∗) = 0 to get keys KeyGen(MSK, f). The
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• Setup Setup(1λ, 1n, `c): Given security parameter λ, maximum circuit depth `c and number of circuit in-
puts n, run InstGen(12λ+1, 1κ=`c+1) for the graded encoding scheme to get (par, pzt). Sample α, ĥ1, . . . , ĥn
using Samp(par). Return public parameters PP = (par, pzt, H = cenc2(par, k, enck(par, α)), {hi =
cenc2(par, 1, enc1(par, ĥi))}i∈[n]) and Master secret key MSK = α.

• Encrypt Encrypt(PP, x ∈ {0, 1}n,M ∈ {0, 1}): Sample s = Samp(par), and compute the key K = G(v), where
v = ext(par, pzt, H · s) is the extracted string for the encoding H · s of α · s, and compute CM = M ⊕K ∈ {0, 1}.
Let S denote the set of i such that xi = 1. Return the ciphertext C = (CM , ŝ = cenc1(par, 1, enc1(par, s)), {Ci =
cenc3(par, 1, hi · s)}i∈S).

• KeyGen KeyGen(MSK = α, f): Identical to [12]. Return SK consisting of function f , ‘header’ KH =
cenc3(par, κ− 1, α− rn+q) (with rn+q ←↩ Samp(par)), and key components {Kw,i}w∈[n+q].

• Decrypt Decrypt(SK,C): If f(x) = 1, compute a level-κ encoding E of α · s, as in [12] and recover v′ =
ext(par, pzt, E), K′ = G(v′) and M ′ = CM ⊕K′. Return message M ′.

Fig. 8. Our modified ABE.

adversary then outputs a pair of messages M0,M1, and the challenger returns challenge ciphertext
C = Encrypt(PP, x∗,Mb) for b a uniformly random bit. The challenger continues to run and outputs
a guess b′ for b. We say that A’s advantage is ε = 2(Pr[b′ = b]− 1/2).

Theorem 8.2. Let A denote an attacker, in the random oracle model for G, against the selective
security of the ABE scheme in Figure 8, with run-time T and advantage ε, making qG queries to G
and qf private key queries on circuits f of ≤ N wires. Then there exists an algorithm A′ for the Ext-
GCDH problem for the underlying encoding scheme, with run-time T ′ = T and success probability
ε′ = Ω(εO(1)/(qGRO(Nqf ))), where R = R(D(u1)‖D(u2)) is the canonical re-randomization RD
bound for the canonical re-randomization algorithm cenc of the underlying encoding scheme (see
Definition 6.3).

Proof. (Sketch.) Let Game1 denote the selective security attack game withA, with v = ext(par, pzt, H·
s) being the extracted string of element αs, used to derive the key K = G(v) in the challenge ci-
phertext C. As in the proof of Lemma 8.1, let Game2 denote a modification of Game1 in which
A’s queries to G are answered differently as follows: if the query x is equal to v, the query is
answered with a uniformly random K ′ ∈ {0, 1}λ (instead of K = G(v)), otherwise, the query is
answered with G(x), as in Game1. Let Ei denote the event in Gamei that A queries G at v. As
in the proof of Lemma 8.1, we have Pr[E1] = Pr[E2] ≥ ε/2. Now, we define a sequence of games
Game3,Game4,Game5, where in Game5, algorithm A will solve the Ext-GCDH problem with re-
spect to an input instance par, pzt, ŝ = cenc1(par, 1, enc1(par, s)), {ĉi = cenc1(1, ci)}i∈[κ], where
s, c1, . . . , cκ ←↩ Samp(par). Let Vi denote the view of A in Gamei.

– Game3: Change the definition of hi in PP to hi = cenc2(par, 1, enc1(par, yi)) if x∗i = 0 and
hi = cenc2(par, 1, enc1(par, yi) + ĉ1) if x∗i = 1, where yi ←↩ Samp(par) for i ∈ [n] (instead
of hi = cenc2(par, 1, ĥi)}i∈[n] in Game2) . The encoded elements in the encodings that are
input to cenc are uniformly random elements in R/I in both games, so by the weak canonical
randomization and the multiplicativity property of RD over i ∈ [n], we have R(V1‖V3) ≤ Rn.
By the probability preservation property of RD, it follows that Pr[E3] ≥ (ε/2)2/Rn.

– Game4: Change the definition of H in PP to H = cenc2(par, k, enck(par, ξ) +
∏
i∈[κ] ĉi) (instead

of H = cenc2(par, k, enck(par, α))), where ξ ←↩ Samp(par) is random, effectively using element
ξ +

∏
i ci to represent α. As above, the encoded element in H is a uniformly random element

in R/I in both games, so by the weak canonical re-randomization assumption on cenc, we
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have R(V3‖V4) ≤ R . By the probability preservation property of RD, it follows that Pr[E4] ≥
Pr[E3]2/R.

– Game5: Change the KeyGen query answers for circuits f with f(x∗) = 0 so that α = ξ+
∏
i ci is

not used explicitly in the computation of KH . This change is described in the “KeyGen Phase”
of the proof of [12, Theorem 6.1]. It involves changing the definition of key components Kw,i for
the wires w of f . The distribution of the encoded elements in the encodings re-randomized by
cenc in the computation of Kw,i are the same as in the previous game, but the input encodings
have a different distribution. By the weak canonical re-randomization assumption on cenc and
the multiplicativity property of RD over the O(N · qf ) key components in A’s view, we have
R(V4‖V5) ≤ RO(Nqf ). By the probability preservation property of RD, it follows that Pr[E5] ≥
Pr[E4]2/RO(Nqf ).

In Game5, algorithm A does not use the Ext-GCDH secrets s, c1, . . . , cκ. The Ext-GCDH attacker
A′ simply runs A (with K = H(v) chosen uniformly random in {0, 1} for computing the challenge
ciphertext component CM – note that A′ does not need to know v to simulate CM ) and simulates
Game5, hoping that the event E5 occurs. Let {xi}i∈[qG] denote the queries made by A to G. When
A finishes, algorithm A′ chooses i ∈ [qG] uniformly at random and outputs xi as its guess for
A’s query that equals the Ext-GCDH solution v. Conditioned on the event E5 occurring, we have
xi = v with probability ≥ 1/qG. Overall, algorithm A′ outputs the correct Ext-GCDH solution
with probability ≥ 1/qG · Pr[E5] = Ω(εO(1)/(qGRO(Nqf ))). ut
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A Background on graded encoded schemes

We refer to [10] for the basic definitions concerning graded encoded schemes.

A.1 Correctness analysis of the GGH scheme

We explain here how to derive the correctness conditions of Section 3. For this, we need the following
result.

Lemma A.1 (Adapted from [10, Lemma 4]). Let g ∈ R such that I = 〈g〉 is a prime ideal
in R, let c ∈ R with ‖c‖ < q1/8 and h ∈ R with ‖h‖ <

√
nq1/2 and c, h /∈ I and q > (2tnσ)4 for

some t ≥ 1. Then ‖[h · c/g]q‖∞ > t · q3/4.

Correctness of zero-testing. To satisfy the “no false negatives” zero-testing condition, we need
‖pztu‖∞ < q3/4 for all valid level-κ encodings u = [c/zκ]q ∈ S(0)

κ of zero. Taking S(0)
κ as the set of

possible encodings obtained by multiplying κ level-1 encodings ui = [ci/z]q output by Enc, we have

‖[pztu]q‖∞ = ‖[hc
g

]q‖∞ = ‖hc
g
‖∞ ≤ ‖hc‖ · ‖g−1‖ ≤ ‖h‖ · ‖c‖ · ‖g−1‖

√
n.
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To satisfy ‖pztu‖∞ < q3/4, it therefore suffices to have ‖c‖ ≤ q1/8 and ‖h‖·q1/8·`g−1 ·
√
n < q3/4. Now,

we have ‖h‖ ≤
√
nq1/2, ‖ei‖ ≤ σ′

√
n, |ρj | ≤ σ∗1

√
n, ‖b(1)

j ‖ ≤ σ′
√
n, with probability exponentially

close to 1, thanks to Lemma 2.3. Now, we have ‖ui‖ = ‖ei+
∑
j ρjb

(1)
j ‖ ≤ ‖ei‖+mr maxj |ρj |·‖b(1)

j ‖ ≤
(mr + 1) · nσ∗1σ′ and ‖c‖ = ‖

∏κ
i=1 ui‖ ≤

√
n
κ−1 · (maxi ‖ui‖)κ ≤ ((mr + 1)n1.5σ∗1σ

′)κ. Therefore,
these two conditions are satisfied if:

q > max
(
(n`g−1)8, ((mr + 1) · n1.5σ∗1σ

′)8κ
)
. (16)

To satisfy the “negligible probability false positives” zero-testing condition, we need ‖pztu‖∞ >

q3/4, for any level-κ encoding u = [c/zκ]q ∈ S(eL)
κ of eL ∈ Rg, except with negligible probability

εzt = λ−ω(1) over the uniform choice of eL ∈ Rg. By Lemma A.1 with t = 1, the facts that
‖c‖ < q1/8, ‖h‖ ≤

√
nq1/2 (see just above), h 6∈ I (see just below), and that I is prime, it follows

that, ‖pztu‖∞ > q3/4 for any encoding of a non-zero eL /∈ I (and hence εzt = Pr[eL = 0] = 1/|Rg| =
O(2−n)), assuming the condition

q > (2nσ)4. (17)
We have h 6∈ I, except with probability O(1/|R/I|) over the choice of h, by Lemma 2.6, when

q = ω(nσ)2. Note that thanks to the remark just after Lemma 2.7, we have |R/I| ≥ σn(rot(g))n ≥
( 1√

n·‖g−1‖)
n. Now, by the InstGen rejection test, we have ‖g−1‖ ≤ `g−1 . Condition (4) finally implies

that |R/I| ≥ 2n when n ≥ 8.

Correctness of extraction. To satisfy the min-entropy extraction condition, we need that the min-
entropy of [pztu]q is ≥ 2λ. Indeed, any two level-κ encodings u = [(eL + gr)/zκ]q and u′ =
[(e′L+ gr′)/zκ]q of different elements eL 6= e′L ∈ Rg have different extracted elements MSB`(pztu) 6=
MSB`(pztu′) as long as ‖[pztu]q − [pztu′]q‖∞ = ‖[pzt(u − u′)]q‖∞ > 2L−`+1. If that condition is
satisfied, then the min-entropy is log2 |R/I|. As |R/I| ≥ 2n for n ≥ 8 (see above), we have
log2 |R/I| ≥ n ≥ 2λ. We now prove that the condition ‖[pzt(u − u′)]q‖∞ > 2L−`+1 is satisfied.
Since u− u′ is an encoding of a non-zero element eL − e′L ∈ Rg this follows, similarly to the zero-
testing correctness above, from Lemma A.1 with t satisfying tq3/4 > 2L−`+1. The latter holds with
t = q1/42−`+2. The condition t > 1 is satisfied by the upper bound (19) on ` below, while the
condition q > (2tnσ)4 is satisfied by the lower bound

` > log2(8nσ). (18)

To satisfy the “negligible failure probability” extraction condition, we need MSB`(pztu) =
MSB`(pztu′) for any two level-κ encodings u = [(eL + gr)/zκ]q and u′ = [(eL + gr′)/zκ]q of the
same element eL ∈ Rg, except with negligible probability εext over the uniform choice of eL ∈ Rg.
Since [pztu]q = [heL/g + hr]q and [pztu′]q = [heL/g + hr′]q with ‖hr‖∞, ‖hr′‖∞ < q3/4, we can
only have MSB`(pztu) 6= MSB`(pztu′) if heL/g falls within infinity distance < q3/4 of a multiple
of 2L−`+1, where L = blog2 qc. Under the heuristic assumption that each coefficient of [heL/g]q
is uniform in Zq over the choice of eL (this heuristic assumption is reasonable from the point of
view of entropy; indeed, by the min-entropy condition above, the entropy of [heL/g]q ∈ Rq over the
choice of eL uniformly in R/I, is at least n bit, and this exceeds log2 q because of the lattice rule
of thumb security requirement n = Ω(λ log q) in Eq. (15)), we have by a union bound over all n
coefficients that this “bad” event occurs with probability ≤ 2nq3/4

2L−`+1 . To make this probability ≤ εext,
it suffices to take

` ≤ 1
4 log2 q − log2( 2n

εext
). (19)
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A.2 Review of GGH re-randomization security reduction

To set the background for our result, we review the re-randomization security reduction from the
non-canonical problems to their canonical variants, which is implicit in the work of Garg et al.
(GGH) [10]. For simplicity, we explain it for the case of Ext-GCDH, although it holds similarly for
the other variants GCDH and GDDH.

The first step is to show that re-randomization security goal in Definition 3.4 is satisfied if the
strong re-randomization requirement in Definition 3.2 is satisfied. Let A denote a (T, ε) adversary
against problem Ext-GCDH, in which ei ←↩ DR,σ′ , u′i = [ei ·y]q = [(ei,L+gr′i)z−1]q with ei,L = [ei]g,
and ui = [u′i +

∑
j ρijxj ]q where ρij ←↩ DR,σ∗1

, for i ∈ {0, . . . , κ} and j ∈ {1, . . . ,mr}. Let Game1
denote this game. Now let Game3 denote the game in which ei ←↩ DR,σ′ and ui = [(ei,L + gri)z−1]q
with ei,L + gri ←↩ D(1)

can(ei,L) = DI+ei,L,σ∗1(B(1))T .
Note that the only difference between the two games is the distribution of the randomizers ri:

in Game1, we have ri = r′i +
∑
j ρijr

(1)
j , which has the distribution D

(1)
ui (ei,L, r′i) in Definition 3.2

(over the randomness of ρij), while in Game3, we have ri sampled from the canonical distribution
(D(1)

can(ei,L) − ei,L)/g. Hence, by the strong re-randomization requirement in Definition 3.2, the
statistical distance between the ri’s in the two games is≤ 2−λ. Therefore, we have that the statistical
distance between the distributions of the view of A in the two games is at most (κ + 1) · 2−λ.
Finally, let Game4 denote the Ext-cGCDH game. The only difference between Game3 and Game4
is the distribution of ei,L: in Game3, we have ei,L = [ei]g with ei sampled from DR,σ′ , whereas in
Game4 we have ei,L sampled uniformly from Rg. By Lemma 2.6, if σ′ ≥ ηεe(I), then the statistical
distance between the distributions of ei,L in both games is ≤ 2εe, so that the statistical distance
between the view of A in both games is O(κ · εe). By Lemma 2.4, the latter condition is satisfied if

σ′ = ‖g‖ ·Ω
(√

log(nε−1
e )
)
≥ σ
√
n ·Ω

(√
log(nε−1

e )
)
. (20)

The second step is to show that the strong re-randomization requirement in Definition 3.2 is
satisfied, i.e., that the distribution of ri in Game3 is statistically close to the distribution of ri
in Game1. To do so, consider the intermediate game Game2, in which the distribution of the term∑
j ρijr

(1)
j is replaced by D(1)

can(0), so that ri = r′i + w, where w ←↩ D(1)
can(0) = DI,σ∗1(B(1)))T . There

are now two changes to analyze:

– For the change from Game1 to Game2, the authors of [10] apply a discrete Gaussian variant of
the Leftover Hash Lemma from [2] (see Theorem B.5 in Section 5) to show that ∆(

∑
j ρijr

(1)
j :

ρij ←↩ DZ,σ∗1 ;DI,σ∗1(B(1))T ) ≤ 2ερ if mr = Ω(n logn) and σ∗1 = Ω(mrn
2 log(1/ερ)).

– For the change from Game2 to Game3, the authors of [10] argue (informally) that if the ran-
domizer deviation parameter σ∗1 is sufficiently large to “drown” the offset r′i ∈ I by an expo-
nential ratio, i.e., if σ∗1/‖r′i‖ ≥ 2λ, then the statistical distance between r′i + DI,σ∗1(B(1))T and
DI+ei,L,σ∗1(B(1))T is O(‖r′i‖/σ∗1) ≤ O(2−λ).

Overall, the statistical distance between the views ofA in Game1 and Game4 is∆(Game1,Game4) =
O(κ · (ερ + ‖r′i‖/σ∗ + εe)). Therefore, algorithm A solves Ext-cGCDH with run-time T ′ = T and
success probability

ε′ ≥ ε−O(κ · (ερ + ‖r′i‖/σ∗ + εe)), (21)
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so that the re-randomization security goal of Definition 3.4 is satisfied if

‖r′i‖/σ∗, ερ, εe = O(κ−1 · 2−λ), (22)

and mr = Ω(n logn) and σ′ = ‖g‖ ·Ω
(√

log(nε−1
e )
)
.

Our main contribution is to improve the above analysis, and show how to satisfy the security
goal with much better parameters, namely ‖r′i‖/σ∗, ερ, εe = O(κ−1). In Section 5, we show that
we can take mr = 2 in the leftover hash lemma step, between Game2 and Game3, using a ring-
based variant of the leftover hash lemma from [2]. In Section 4, we develop a better analysis of the
drowning step above, between Game2 and Game3.

B Review of the discrete leftover hash lemma from [2]

We review the results of [2]. For X ∈ Zn×m and s > 0, the authors define the distribution EX,s =
X · DZm,s as the distribution induced by sampling an integer vector v from a discrete spherical
Gaussian with parameter s and outputting y = X ·v. They show that with overwhelming probability
over the choice of X, the distribution EX,s is statistically close to a discrete Gaussian distribution.

Theorem B.1 ([2, Theorem 2]). For ε negligible in n, let S ∈ Rn×n be a matrix such that
sn = σn(S) ≥ 18Kηε(Zn) (for some universal constant K > 0), and set s1 = σ1(S) and w = s1/sn.
Also let m, s be parameters such that m ≥ 10n log(8(mn)1.5s1w) and s′ ≥ 4mnw ln(1/ε).

Then, when choosing the columns of an n-by-m matrix X from the ellipsoid Gaussian over Zn,
X ←↩ (DZn,S)m, we have with all but probability 2−Ω(m) over the choice of X, that the statistical
distance between EX,s and the ellipsoid Gaussian DZn,sXT is bounded by 2ε.

Note that this result has been recently improved in [1], but this improvement is independent
from ours. In [1], the authors keep the same distribution EX,s, but obtain weaker conditions under
which the result holds. We recall the proof line of [2], as we modify it in our improvement. In [2],
the proof of this theorem proceeds by the following three lemmata.

Lemma B.2 ([2, Lemma 9]). With parameters as above, when drawing the columns of an n-by-m
matrix X independently at random from DZn,S, we get X ·Zn = Zn with all but probability 2−Ω(m).

Let A = A(X) = {v ∈ Zm : X · v = 0} be the (m− n)-dimensional lattice in Zn orthogonal to
all the rows of X. If the smoothing parameter of A is small, then EX,s and DZn,sXT must be close.

Lemma B.3 ([2, Lemma 10]). Fix X and A as above. If s ≥ ηε(A), then for any point z ∈ Zn,
the probability mass assigned to z by EX,s differs from that assigned by DZn,sXT by at most a factor
of (1− ε)/(1 + ε), namely

EX,s(z) ∈
[1− ε

1 + ε
, 1
]
·DZn,sXT (z)

In particular, if ε < 1/3 then the statistical distance between EX,s and DZn,sXT is at most 2ε.

Finally, the authors of [2] show that the smoothing parameter of A is indeed small.

Lemma B.4 ([2, Corollary 3]). With the parameters above, the smoothing parameter of A sat-
isfies ηε(A) ≤ 4mnw ln(1/ε), except with probability 2−Ω(m).
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The following also holds for general lattices.

Theorem B.5 ([2, Theorem 3]). Let Λ ⊆ Rn be a full-rank lattice and B a matrix whose columns
form a basis of Λ. Also let M ∈ Rn×n be a full-rank matrix, and denote S = M(BT )−1, s1 = σ1(S),
sn = σn(S), and w = s1/sn. Finally, let ε be negligible in n and m, s be parameters such that
m ≥ 10n log(8(mn)1.5s1w) and s ≥ 4mnw ln(1/ε). If s ≥ ηε(Zn), then when choosing the columns
of an n-by-m matrix X from the ellipsoid Gaussian over Λ, X ←↩ (DΛ,M )m, we have with all but
probability 2−Ω(m) over the choice of X, that the statistical distance between EX,s and the ellipsoid
Gaussian DΛ,sXT is bounded by 2ε.
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