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Abstract. Several papers have studied fault attacks on computing a pairing value e(P,Q),
where P is a public point and Q is a secret point. In this paper, we observe that these attacks
are in fact effective only on a small number of pairing-based protocols, and that too only
when the protocols are implemented with specific symmetric pairings. We demonstrate
the effectiveness of the fault attacks on a public-key encryption scheme, an identity-based
encryption scheme, and an oblivious transfer protocol when implemented with a symmetric
pairing derived from a supersingular elliptic curve with embedding degree 2.

1. Introduction

Fault attacks were introduced in 1997 by Boneh, DeMillo and Lipton [7]. In these attacks,
an adversary induces an error in a cryptographic device performing a secret-key operation.
Using the incorrect output of the cryptographic operation, and possibly other publicly avail-
able data, the adversary may then be able to glean some information about the secret key.

Page and Vercauteren [25] were the first to consider fault attacks on pairing-based proto-
cols. Their work motivated several other papers, most notably those of Whelan and Scott
[35], Vercauteren [32], and Lashermes et al. [24]; see [15] for a recent survey. The crypto-
graphic scenario considered in all these papers is the following. Let e : G1 ×G2 → GT be a
bilinear pairing, where G1, G2 and GT are groups of prime order n. Suppose that party A
has a secret point Q ∈ G2. During the execution of a cryptographic protocol, A computes
e(P,Q) where P ∈ G1 is some publicly known point. The adversary learns e(P,Q) by some
legitimate means, e.g., the pairing value itself is transmitted in a step of the protocol or is
easily deduced from other quantities that are transmitted. During a subsequent execution of
the protocol, the adversary induces a fault while A is computing e(P,Q) and the adversary
obtains the incorrect value e′(P,Q). Note that the points P and Q are the same for both
executions of the protocol. Depending on the nature of the fault introduced, the adversary
may then be able to compute Q from e(P,Q) and e′(P,Q).

There are many possible variations of the scenario considered above. For example, the
adversary may only be able to obtain the ratio e(P,Q)/e′(P,Q) of the correct and faulty
pairing values. Or, the adversary may only be able to obtain the ratio e′(P,Q)/e′′(P,Q) of
two faulty pairing values.

A glaring omission in the aforementioned papers is an examination of the effectiveness
of these fault attacks on specific pairing-based protocols. Indeed, none of these papers
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provide a single example of a pairing-based protocol where the fault attacks are effective.
Our examination of the literature reveals that there are relatively few protocols that release
pairing values one of whose input points is secret and the other is public (or the ratio of
two such pairing values, one or both of which are faulty). Such protocols include a public-
key encryption (PKE) scheme [10], an identity-based encryption (IBE) scheme [16], and
an oblivious transfer protocol [12]. These protocols were designed specifically to allow a
reductionist security proof that does not invoke the random oracle assumption; such proofs
are said to be in the ‘standard model’.

The protocols in [10, 12, 16] all require an efficient method for embedding the message space
(presumably the set of all bitstrings of some length ℓ) into the group GT . Furthermore, this
embedding must also be efficiently reversible. However, it appears that such an embedding
may not be constructible for asymmetric pairings including those derived from Barreto-
Naehrig (BN) elliptic curves [5]. Instead, these protocols should be implemented using
symmetric pairings e : G×G→ GT derived from supersingular elliptic curves where efficient
embedding methods can be designed. Such supersingular elliptic curves include (i) the elliptic
curves Y 2 = X3 − X ± 1 defined over F3m with embedding degree k = 6; (ii) the elliptic
curves Y 2 + Y = X3 + X and Y 2 + Y = X3 + X + 1 defined over F2m with embedding
degree k = 4; and (iii) embedding degree k = 2 elliptic curves E defined over prime fields
Fp with #E(Fp) = p + 1. The security of elliptic curves with embedding degrees k = 4
and k = 6 have been tarnished by recent advances on the discrete logarithm problem in
small-characteristic finite fields [19, 17, 4, 1, 2, 3, 18]. Thus, we will focus our attention on
pairings derived from the k = 2 supersingular elliptic curves.

The remainder of the paper is organized as follows. In §2 we review the salient properties
of the symmetric pairing derived from supersingular elliptic curves with embedding degree
k = 2 and present an efficient embedding method. The efficiency of the fault attacks on these
pairings is considered in §3. In §4 we give some examples of pairing-based protocols which
succumb to the Page-Vercauteren and Whelan-Scott fault attacks. We draw our conclusions
in §5.

2. The k = 2 supersingular pairing

Supersingular elliptic curves over prime fields with embedding degree 2 were used by Boneh
and Franklin [8] to construct symmetric pairings for their famous identity-based encryption
scheme. These pairings are also the only concrete examples of pairings given in the IETF
RFC 5091 [9] specification for identity-based encryption. In this section, we follow the
description of these pairings given in [21].

Let p = 4n− 1 be a prime, where n is also prime. Then it can be easily verified that the
elliptic curve

(1) E : Y 2 = X3 − 3X

over Fp has #E(Fp) = p+ 1 = 4n. The curve E is supersingular and has embedding degree
k = 2. Since p ≡ 3 (mod 4), we can represent the elements of Fp2 as Fp2 = Fp[i]/(i

2 + 1).
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Note that if α = a + bi ∈ Fp2, then αp = a − bi. A distortion map for E in the sense of
Verheul [33] is

Ψ : (X, Y ) 7→ (−X, iY ).

Let G and GT denote the order-n subgroups of E(Fp) and F
∗

p2, respectively. The (reduced)
Tate pairing is a map

e : G×G→ GT

defined as

e(P,Q) = fn,P (Ψ(Q))(p
2−1)/n = fn,P (Ψ(Q))4(p−1),

where the Miller function fn,P is a rational function defined over Fp with divisor (fn,P ) =
n(P ) − (nP ) − (n − 1)(∞). The Miller function value fn,P (Ψ(Q)) can be computed using
Algorithm 1. The exponentiation by 4(p− 1) is relatively inexpensive since

(a+ bi)p−1 =
a− bi

a+ bi

for all a+ bi ∈ F
∗

p2 .

Algorithm 1 Computing the Miller function value fn,P (Ψ(Q)), where P,Q ∈ G.

1: Write n =
∑s−1

j=0 nj2
j with nj ∈ {0, 1} and ns−1 = 1

2: T ← P , f ← 1
3: for j from s− 2 downto 0 do

4: Let L denote the tangent line to E at T
5: T ← 2T
6: f ← f 2 · L(Ψ(Q))
7: if nj = 1 and j 6= 0 then

8: Let L denote the line through T and P
9: T ← T + P
10: f ← f · L(Ψ(Q))
11: end if

12: end for

13: return f

Let GΦ denote the order-(p+ 1) subgroup of F∗

p2. Now, a+ bi ∈ Fp2 belongs to GΦ if and

only if (a+ bi)p+1 = a2 + b2 = 1. Hence, the elements of GΦ are in 1-1 correspondence with
the points on the unit circle over the integers modulo p. It is well known [31] that these
points are in 1-1 correspondence with the integers in the interval [0, p], a bijection ρ being:

p 7→ (0,−1), and λ 7→

(

−2λ

1 + λ2
,
1− λ2

1 + λ2

)

for λ ∈ [0, p).

The inverse of ρ is given by:

(0,−1) 7→ p, (0, 1) 7→ 0, and (a, b) 7→ 2(b− 1)/a for a 6= 0.
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This suggests the following probabilistic embedding algorithm. Let t denote the bitlength
of p, and let ℓ = t − 21. The message space isM = {0, 1}ℓ. To encode a message m ∈ M,
repeatedly append randomly chosen bitstrings of length 20 to m until the resulting bitstring
m′ satisfies ρ(m′) ∈ GT ; then the embedding of m is ρ(m′). Membership of an element
α ∈ GΦ in GT can be determined by checking whether αn = 1. Since [GΦ : GT ] = 4, we
expect to perform four iterations of the procedure before ρ(m′) ∈ GT . Note that m can be
efficiently recovered from ρ(m′) by computing ρ−1(ρ(m′)) and then discarding the 20 padding
bits.

Remark 1. BN curves yield the most efficient pairings for implementing pairing-based
protocols at the 128-bit security level. For these pairings, GT is the order-n subgroup of F∗

p12

where p = 36z4+36z3+24z2+6z+1 and n = 36z4+36z3+18z2+6z+1 are 128-bit primes
(for an appropriately chosen BN parameter z). The natural representation for elements of
Fp12 is as univariate polynomials of degree less than 12 over Fp. However, we were unable to
identify any property of the subset of those polynomials belonging to GT that would yield
an efficiently-computable (and invertible) embedding.

Remark 2. Scott [29] described the implementation of asymmetric pairings derived from
ordinary elliptic curves E over prime fields Fp with embedding degree k = 2. In these
pairings, GT is the order-n subgroup of F∗

p2 where the bitlength of n is significantly smaller
than that of p; for example, one could select 160-bit n and 512-bit p in order to achieve the
80-bit security level. However, we were unable to construct an efficiently-computable (and
invertible) embedding into GT .

Remark 3. Let E be an elliptic curve defined over Fq, and let n be a prime divisor of #E(Fq).
Suppose that the embedding degree of E with respect to n is k > 1, and let GT denote the
order-n subgroup of F∗

qk . Then GT is a proper subgroup of the algebraic torus Tk(Fq), where
#Tk(Fq) = Φk(q) = h · n and where Φk(X) denotes the k-th cyclotomic polynomial. It is
known that efficiently computable and invertible embeddings into Tk(Fq) exist if one can
contruct an efficient rational parameterization of Tk(Fq). In fact, it is known that Tk(Fq) is
rational if k is a prime power, or the product of two prime powers. And, efficient rational
parameterizations of Tk(Fq) are known for k = 2, 6; see [26]. However, generalizations of
these embeddings from Tk(Fq) to proper subgroups GT are not known, in particular if the
cofactor h is large. This gives evidence that efficient and invertible embeddings into GT may
not exist for BN curves and for the curve in Remark 2.

3. Fault attacks on the k = 2 supersingular pairing

We demonstrate that the Page-Vercauteren [25] and Whelan-Scott [35] fault attacks can
be successfully mounted on the k = 2 supersingular pairing. The former attack changes the
number of iterations of the loop in Algorithm 1, for example by causing it to end prematurely.
The latter attack corrupts a data item in some way.
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3.1. Page-Vercauteren fault attack. The basic idea of the Page-Vercauteren fault attack
[25] is to obtain two faulty pairing values

fn±d,P (Ψ(Q))4(p−1) and fn±d+1,P (Ψ(Q))4(p−1)

for some known d, and then use the ratio of these values to deduce Q.
We consider the scenario where the adversary causes the loop in Algorithm 1 to end

prematurely. Recall that n =
∑s−1

j=0 nj2
j . Let n′ =

∑s−1
j=ℓ nj2

j−ℓ for some ℓ ≥ 1. Note
that the binary representation of n′ can be obtained from the binary representation of n by
deleting the last ℓ bits of the latter. Without loss of generality, suppose that n′ is odd.

The adversary causes the loop in Algorithm 1 to terminate prematurely at the end of the
iteration with j = ℓ, thereby obtaining the faulty pairing value

e′(P,Q) = fn′,P (Ψ(Q))4(p−1).

In a subsequent iteration of the attack, the adversary causes the loop in Algorithm 1 to
terminate prematurely after step 6 in the iteration with j = ℓ, thereby obtaining the faulty
pairing value

e′′(P,Q) = fn′−1,P (Ψ(Q))4(p−1).

The ratio of these pairing values is

R =

(

fn′,P (Ψ(Q))

fn′−1,P (Ψ(Q))

)4(p−1)

= (L(Ψ(Q)))4(p−1) = (−aXQ + bYQi+ c)4(p−1),

where L(X, Y ) = aX+bY +c is the equation of the line through the points (n′−1)P and P ,
and where Q = (XQ, YQ). Since P , n′ and R are known, the adversary’s task is to determine
Q given a, b, c ∈ Fp and R ∈ Fp2.

Noting that

R =

(

−aXQ − bYQi+ c

−aXQ + bYQi+ c

)4

,

the adversary computes a fourth root T of R in Fp2; the other fourth roots are −T , iT and
−iT . For each fourth root t1 + t2i, the adversary finds X, Y ∈ Fp that satisfy

(2) t1 + t2i =
−aX − bY i+ c

−aX + bY i+ c

and also the curve equation Y 2 = X3 − 3X . This can be accomplished by clearing the
denominator of (2) and then equating real parts1 to obtain the linear equation

(3) (a− at1)X − bt2Y − c(1− t1) = 0.

Multiplying both sides of (3) by (a− at1)X + bt2Y − c(1− t1) yields

((a− at1)X − c(1− t1))
2 − (bt2Y )2 = 0.

Then, substituting Y 2 = X3 − 3X gives a cubic equation

(4) −b2t22X
3 + a2(t1 − 1)2X2 + (−2act21 + 3b2t22 + 4act1 − 2ac)X + c2(t1 − 1)2 = 0,

1Equating imaginary parts of (2) yields a linear equation that is linearly dependent on (3).
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which can be easily solved for X ∈ Fp.
Thus, for each fourth root t1 + t2i, we obtain at most three candidate points (X, Y ). If

only one of these points has order n in E(Fp), then that point is the secret point Q. If there
is more than one such point, then Q can be determined by computing the pairing value
e(P,Q) and comparing it with the value obtained from a legitimate run of the protocol.

We note that the adversary need only find the ratio R of the faulty pairing values e′(P,Q)
and e′′(P,Q), and not the values themselves.

Example 1. We chose p = 21502 + 3965739, with n = (p+ 1)/4 being a 1500-bit prime and
s = 1500.2 We ran 10 experiments with randomly-chosen elliptic curve points P,Q ∈ G and
with ℓ = 19. In each experiment we found, for each fourth root t1 + t2i of R, the points
Q1 ∈ Fp×Fp that satisfy the cubic equation (4). Among these points, we determined which
points Q2 are in G. Finally, among the points Q2, we determined the points Q3 that yield the
correct pairing value, i.e., e(P,Q3) = e(P,Q). Our results are summarized in the following
table where #Qi denotes the number of points Qi for i = 1, 2, 3.

Experiment #Q1 #Q2 #Q3 Experiment #Q1 #Q2 #Q3

1 6 3 1 6 5 2 1
2 7 3 1 7 6 2 1
3 5 3 1 8 3 2 1
4 3 1 1 9 6 2 1
5 3 1 1 10 3 1 1

3.2. Whelan-Scott fault attack. Whelan and Scott [35] consider the situation where the
adversary is able to change the sign bit of an Fp-component of a single line function value
L(Ψ(Q)).

For the sake of concreteness, suppose that nℓ = 1 where ℓ ∈ [1, s−1], and suppose that the
adversary flips the sign of the imaginary part of the line function value L(Ψ(Q)) in step 10
of iteration j = ℓ of Algorithm 1. Then the ratio of the correct pairing value and the faulty
pairing value is

R =

(

−aXQ + bYQi+ c

−aXQ − bYQi+ c

)2ℓ·4(p−1)

,

where L(X, Y ) = aX + by + c is the equation of the line through nP and P , and where
n = −1+

∑s−1
j=ℓ nj2

j−ℓ and Q = (XQ, YQ). Since P , n and R are known, the adversary’s task
is to determine Q given a, b, c ∈ Fp and R ∈ Fp2 .

Noting that

(5) R =

(

−aXQ − bYQi+ c

−aXQ + bYQi+ c

)2ℓ+3

,

2For real-world implementations of the pairing derived from k = 2 supersingular elliptic curves, the prime p
should be randomly chosen to avoid attacks on the discrete logarithm problem in Fp2 that exploit the low
Hamming weight of p [28].
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the adversary computes all the 2ℓ+3-th roots of R in Fp2. For each such root t1 + t2i, the
adversary solves (2) for X, Y ∈ Fp as described in §3.1, and determines which solution (X, Y )
is the secret point Q. To solve (5), one notes that ((−aXQ− bYQi+ c)/(−aXQ + bYQi+ c))4

is an element of GT . Hence, finding the 2ℓ+3-th roots of R in Fp2 is equivalent to finding the
fourth roots of Rm in Fp2 , where m is the multiplicative inverse of 2ℓ+1 modulo n.

Example 2. As in Example 1, we chose p = 21502 + 3965739 with n = (p + 1)/4 being a
1500-bit prime and s = 1500. We ran 10 experiments with the same elliptic curve points
P,Q ∈ G as were chosen in Example 1, and with ℓ = 19. In each experiment we found, for
each fourth root t1 + t2i of R

m, the points Q1 ∈ Fp × Fp that satisfy the cubic equation (4).
Among these points, we determined which points Q2 are in G. Finally, among the points Q2,
we determined the points Q3 that yield the correct pairing value, i.e., e(P,Q3) = e(P,Q).
Our results are summarized in the following table where #Qi denotes the number of points
Qi for i = 1, 2, 3.

Experiment #Q1 #Q2 #Q3 Experiment #Q1 #Q2 #Q3

1 6 3 1 6 4 1 1
2 3 3 1 7 5 2 1
3 6 3 1 8 5 1 1
4 8 3 1 9 2 2 1
5 3 2 1 10 6 2 1

4. Protocols

Let e : G × G → GT be a symmetric pairing derived from a k = 2 supersingular elliptic
curve, where G and GT are groups of prime order n. In this section, we shall assume that G
is written multiplicatively.

We observe that many pairing-based protocols are not vulnerable to fault attacks whose
objective is to let an adversary determine a secret point Q ∈ G by obtaining information
about faulty pairing values e′(P,Q). This is because these protocols generally apply a cryp-
tographic hash function H to the pairing value e(P,Q). As a consequence, the adversary
is only able to obtain information about the hash H(e′(P,Q)) of faulty pairing values. The
application of H destroys any exploitable algebraic relationship between e′(P,Q) and the
correct pairing value e(P,Q), rendering the fault attack ineffective.

To illustrate this, consider the basic version of the Boneh-Franklin identity-based encryp-
tion scheme [8]. Let g be a fixed generator of G. The Private Key Generator selects a
private key t ∈R [1, n − 1] and computes its public key T = gt. A party with identifier ID
is assigned the public key Q = H(ID), where H : {0, 1}∗ → G is a hash function, and is
given the private key d = Qt. To encrypt a message m ∈ {0, 1}ℓ for that party, a user selects
r ∈R [1, n− 1] and computes Q = H(ID), R = gr, and c = m⊕H(e(T,Q)r); the ciphertext
is C = (R, c). To decrypt, the party possessing private key d computes m = c⊕H(e(R, d)).
Suppose that an adversary selects m, computes C = (R, c), and sends C to the decryptor.
Suppose also that the adversary is able to induce a fault while the decryptor is computing
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e(R, d), and is subsequently able to obtain the faulty plaintext m′. The adversary can then
compute m′⊕ c = H(e′(R, d)) and e(R, d) = e(T,Q)r. However, the adversary is apparently
unable to recover d from these values.

In §4.1, §4.2 and §4.3, we show that fault attacks that target the computation of a pairing
value are indeed effective on the Boyen-Mei-Waters public-key encryption scheme [10], Gen-
try’s identity-based encryption scheme [16], and an oblivious transfer protocol [12]. These
schemes were specifically designed to avoid the random oracle assumption in their reduc-
tionist security proofs, and consequently do not hash pairing values.

4.1. Boyen-Mei-Waters public-key encryption scheme. In [10], Boyen, Mei and Wa-
ters proposed a CCA-secure public key encryption scheme based on theWaters IBE scheme [34].
The original scheme is described in the asymmetric pairing setting. However, as we have
already noted, no efficient embedding is currently known in the asymmetric pairing set-
ting. We first present the Boyen-Mei-Waters public key encryption scheme in the symmetric
pairing setting and then show that the protocol is vulnerable to fault attacks.

4.1.1. Boyen-Mei-Waters scheme. Let g be the fixed generator of G. Let Hs : GT × G →
{0, 1}k be a family of collision-resistant functions where k ≈ lg(n).

Key generation. The user selects α ∈R [0, n− 1] and sets h = gα and Z = e(g, h). The
user selects y′ ∈R [0, n−1] and a random vector −→y = (y1, . . . , yk) with entries from [0, n−1]
and computes u′ = gy

′

and ui = gyi for 1 ≤ i ≤ k. The user also selects a random functionHs.
The private key is (h, y′, y1, . . . , yk) and the corresponding public key is (Hs, Z, u

′, u1, . . . , uk).

Encryption. To encrypt a message m ∈ GT , the sender selects r ∈R [0, n−1] and computes
C0 = m · Zr = m · e(g, h)r and C1 = gr. She then derives a k-bit string w = Hs(C0, C1)

and computes C2 = (u′
∏k

i=1 u
wi

i )r where wi ∈ {0, 1} is the i-th bit in w. The ciphertext is
C = (C0, C1, C2).

Decryption. To decrypt C = (C0, C1, C2), the receiver first obtains w = Hs(C0, C1) and

computes w′ = y′ +
∑k

i=1 yiwi mod n where wi is the i-th bit in w. The receiver then tests

whether C2 = Cw′

1 . If the test is successful then the receiver computes

(6) m = C0 · e(C1, h)
−1.

4.1.2. Fault attack. We assume that the adversary A can induce a Whelan-Scott sign-change
fault (see §3.2) while the pairing values in (6) are being computed, and is subsequently able
to obtain the decrypted message.

The attack proceeds as follows:

(i) A selects a plaintext message m ∈ GT and computes the ciphertext C = (C0, C1, C2).
(ii) A sends C to the receiver.
(iii) While the receiver computes the pairing value e(C1, h) in (6), A induces a sign-change

fault which causes the receiver to compute the faulty pairing value e′(C1, h).
(iv) A obtains the (faulty) decryption m′ = C0 · e

′(C1, h)
−1.
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(v) A computes
m′

m
=

e(C1, h)

e′(C1, h)
,

and thereafter computes h as described in §3.2. Note that, if it is needed, the adver-
sary can compute the correct pairing value since e(C1, h) = C0 ·m

−1.

With the knowledge of h, the adversary can now decrypt any ciphertext that is encrypted un-
der the corresponding public key. The other components of the private key, i.e., y′, y1, . . . , yk
are used during decryption only for the purpose of checking the validity of the ciphertext
and are not needed to recover the plaintext.

Remark 4. The Boyen-Mei-Waters scheme also succumbs to the Page-Vercauteren fault
attack described in §3.1. The adversary obtains two faulty decryptions m′ = C0 · e

′(C1, h)
−1

and m′′ = C0 · e
′′(C1, h)

−1, and thereafter computes m′/m′′ = e′′(C1, h)/e
′(C1, h).

4.2. Gentry’s identity-based encryption scheme. Gentry [16] presented an identity-
based encryption scheme and a reductionist security proof that does not invoke the random
oracle assumption. The scheme assumes that plaintext messages are elements of GT .

4.2.1. Gentry’s scheme.

Setup. The Private Key Generator (PKG) selects g, h1, h2, h3 ∈R G, α ∈R [0, n− 1], and a
hash function H from a family of universal one-way hash functions. It computes g1 = gα.
The public parameters are (g, g1, h1, h2, h3, H), and the PKG’s private key is α.

Key extraction. To generate a private key for the party with identifier ID ∈ [0, n − 1],
the PKG selects r1, r2, r3 ∈R [0, n− 1] and computes di = (hig

−ri)1/(α−ID) for i = 1, 2, 3. The
party’s private key is (r1, r2, r3, d1, d2, d3).

Encryption. To encrypt a message m ∈ GT for the party with identifier ID, the sender
selects s ∈R [0, n − 1] and computes u = gs1g

−s·ID, v = e(g, g)s, w = m · e(g, h1)
−s, and

y = e(g, h2)
s · e(g, h3)

sβ, where β = H(u, v, w). The ciphertext is C = (u, v, w, y).

Decryption. To decrypt C = (u, v, w, y), the receiver who possesses the private key (r1, r2, r3,
d1, d2, d3) corresponding to identifier ID computes β = H(u, v, w) and tests whether y =

e(u, d2 · d
β
3 ) · v

r2+r3β. If the test is successful, then the receiver computes

(7) m = w · e(u, d1) · v
r1 .

4.2.2. Fault attack. We assume that the adversary A can induce a Whelan-Scott sign-change
fault (see §3.2) while the pairing value in (7) is being computed, and is subsequently able
to obtain the decrypted message. We also assume that A is able to mount a conventional
timing [22] or simple power analysis [23] attack while the receiver is computing vr1 in (7).

The attack proceeds as follows:

(i) A selects a plaintext message m ∈ GT and computes the ciphertext C = (u, v, w, y).
(ii) A sends C to the receiver.
(iii) While the receiver computes vr1 in (7), A mounts a timing or simple power analysis

attack and learns r1.
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(iv) While the receiver computes the pairing value e(u, d1) in (7), A induces a sign-change
fault which causes the receiver to compute the faulty pairing value e′(u, d1).

(v) A obtains the (faulty) decryption m′ = w · e′(u, d1) · v
r1 .

(vi) A computes

m

m′
=

e(u, d1)

e′(u, d1)
,

and thereafter computes d1 as described in §3.2. Note that, if it is needed, the
adversary can compute the correct pairing value since e(u, d1) = e(g, h1)

s · v−r1.

Now, with knowledge of r1 and d1, the adversary can decrypt any ciphertext that is intended
for the party with identifier ID. Note that the other components r2, r3, d2, d3 of the party’s
private key are used during decryption only for the purpose of checking validity of the
ciphertext and are not needed to recover the plaintext.

We note that Gentry’s scheme also succumbs to the Page-Vercauteren fault attack de-
scribed in §3.1.

Remark 5. Gentry’s scheme (and also the Boyen-Mei-Waters public key encryption scheme)
can be modified to resist the fault attack described above. For example, the w component of
the ciphertext could be computed as w = m⊕Gk(e(g, h1)

s). Here, Gk is chosen from a family
G = {Gk}k∈K of keyed hash functions satisfying the so-called entropy smoothing property [30,
§3.4], and the range of each Gk is {0, 1}ℓ where ℓ is the bitlength of plaintext messages. The
description of Gk is included in the PKG’s public parameters. Note that plaintext messages
are no longer represented as elements in GT , and so the scheme can be implemented using
asymmetric pairings derived from BN curves. It remains to be seen whether this modified
scheme enjoys the same provable security properties as Gentry’s original scheme.

Remark 6. Kiltz and Vahlis [20] proposed a variant of Gentry’s scheme that uses a symmetric-
key authenticated encryption scheme E. The fault attack described above will not work on
the Kiltz-Vahlis scheme. However, in the Kiltz-Vahlis scheme, a secret key K ∈ GT is gen-
erated which is then used directly as the key for E. In practice, one needs to use a key
derivation function to map K to a bit string of the appropriate length. See, for example,
[27, 14] for the use of key derivation functions in the context of (hierarchical) identity-based
encryption. It remains to be seen what effect the incorporation of a key derivation function
has on the provable security of the scheme.

Remark 7. It can easily be seen that Page-Vercauteren and Whelan-Scott fault attacks
are effective on the Boyen-Waters anonymous identity-based encryption schemes [11] (see
Appendix A) and the identity-based encryption schemes of Boneh-Boyen [6] and Waters [34]
when these protocols are implemented using symmetric pairings. Strictly speaking, the fault
attacks lie outside the security models considered in [6], [11] and [34]. These security models
only account for indistinguishability of plaintexts against chosen-plaintext attacks and do
not permit decryption queries. However, we note that the fault attacks are key recovery
attacks and hence go beyond the notion of indistinguishability of plaintexts. Moreover, with
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a little extra effort one can mount the fault attack on CCA-secure versions of these schemes
that are obtained using the so-called CHK transformation [13].

4.3. An oblivious transfer protocol. An adaptive oblivious transfer (AOT) protocol is
executed between two parties: a sender S and a receiver R. The sender S has a set of secret
messagesM = {M1, . . . ,MN}. The receiver R adaptively obtains messages one at a time in
such a way that S does not learn any information about which messages are accessed while
R does not learn any information about the messages not yet accessed. Camenisch et al.
[12] proposed a pairing-based AOT protocol secure in the standard model.

The Camenisch et al. AOT protocol is divided into two stages: (i) Initialization and
(ii) Transfer. During Initialization, S generates some public information, masks the
messages in M using the corresponding secret information, and then sends the masked
messages together with the public information to R. Next, R calls Transfer adaptively.
In the j-th round of Transfer, R chooses a secret index ij ∈ {1, . . . , N} and executes
the protocol with S to obtain a “secret key” corresponding to the “encryption” of Mij ,
thus enabling R to decrypt the corresponding message. However, S does not learn any
information about ij while R learns no information about other elements inM.

4.3.1. AOT protocol. The complete description of the Camenisch et al. AOT protocol in-
cludes two proofs-of-knowledge (PoK) and a proof-of-membership (PoM). Here we reproduce
a slightly simplified version of the AOT protocol; see Figure 2 and Appendix B in [12] for a
complete description. The messages Mi are assumed to be elements of GT .

Initialization.

(i) S chooses g, h ∈R G, x ∈R [0, n− 1], and computes y = gx and α = e(g, h).
(ii) For each i ∈ {1, . . . , N}, S computes Ai = g1/(x+i) and Bi = e(h,Ai) · Mi. The

“ciphertext” corresponding to Mi is Ci = (Ai, Bi).
(iii) Finally, S sends (g, y, α, C1, . . . , Cn) (together with a PoK of h such that α = e(g, h))

to R. Note that S keeps h as its secret key.

Transfer. This protocol is invoked by R adaptively each time it wants to “decrypt” one
of the messages fromM. The j-th round of the protocol proceeds as follows:

(i) R chooses a (secret) index ij ∈ {1, . . . , N}, v ∈R [0, n− 1], and computes V = Av
ij
.

R sends V to S (and a PoK of ij and v such that e(V, y) = e(V, g)−ij · e(g, g)v).
(ii) Given V , S computes

(8) W = e(V, h)

and sends W to R (along with a PoM of h such that α = e(g, h) and W = e(V, h)).
(iii) Upon receiving W , R computes Mij = Bij/W

1/v.

Note that h ∈ G serves as a “master secret”, the knowledge of which allows decryption of
all messages inM.
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4.3.2. Fault attack. We assume that the adversary A can induce a Whelan-Scott sign-change
fault (see §3.2) while the pairing value in (8) is being computed. We consider two invo-
cations of Transfer where the attacker A in the role of R uses the same secret index
i∗ ∈ {1, . . . , N}.

The attack proceeds as follows.

(i) In the first invocation of Transfer, A chooses v1 ∈R [0, n− 1], computes V1 = Av1
i∗ ,

and sends V1 (along with the PoK of (i∗, v1)) to S.
(ii) In response, S is supposed to compute W1 = e(V1, h). However, A induces a sign-

change fault while the computation is in progress so that a faulty pairing value
W ′

1 = e′(V1, h) is computed.
(iii) S sends W ′

1 (along with a PoM of h such that α = e(g, h) and W1 = e(V1, h)) to A.
3

Upon receiving the message, A terminates the protocol.
(iv) In the second invocation ofTransfer, A chooses v2 ∈R [0, n−1], computes V2 = Av2

i∗ ,
and sends V2 (along with the PoK of (i∗, v2)) to S.

(v) In response, S sends W2 = e(V2, h) (together with the PoM). Note that A allows
the protocol to be executed normally, i.e., no fault is applied during the pairing
computation.

(vi) A computes W1 = (W2)
v1v

−1

2 = e(V1, h). From W1 and W ′
1, A recovers h as described

in §3.2 and thereafter computes all the messages inM.

We note that the AOT protocol also succumbs to the Page-Vercauteren fault attack de-
scribed in §3.1.

Remark 8. As observed by the authors in [12], the AOT protocol described above can
be easily modified to encrypt bitstrings. Thereby, the protocol can be instantiated in the
asymmetric pairing setting. In particular, one can use a hash function to map the GT element
e(h,Ai) to a bitstring which is then XORed with the message (see the computation of Bi in
Step (ii) of Initialization). However, the fault attack still succeeds since S has to transmit
the GT element W and a POM of h in Step (ii) of Transfer. This is in contrast to the
fault attacks on Gentry’s IBE and the Boyen-Mei-Waters PKE which can be prevented by
using a hash function in the encryption algorithm. To the best of our knowledge, the AOT
protocol of [12] is the only example of a pairing-based scheme where there is no apparent
countermeasure for the fault attack.

5. Concluding remarks

We have shown that the fault attacks on pairing-based protocols that have been studied
in the literature are effective on only a small number of protocols. Most of these protocols
require an efficient and reversible method for embedding the message space into the group

3The PoM protocol presented in Section B.3 of [12] does not explicitly use W1 = e(V1, h). Hence, the PoM
protocol terminates even though S has computed W ′

1
= e′(V1, h) instead of W1. Of course, A does not care

whether the PoM succeeds or not.
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GT . Since such embeddings are only known for certain symmetric pairings, the fault attacks
are successful only when the protocols are implemented with these symmetric pairings.

The AOT protocol of [12] is the only example where the fault attack is effective in the
asymmetric pairing setting. A useful direction for future work would be to examine the effec-
tiveness of fault attacks on popular identity-based encryption protocols (such as the Boneh-
Franklin identity-based encryption scheme) when implemented with asymmetric pairings
derived from BN curves.
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Appendix A. Boyen-Waters anonymous identity-based encryption scheme

Boyen and Waters [11] presented an anonymous identity-based encryption scheme and
a reductionist security proof that does not invoke the random oracle assumption. Here,
‘anonymous’ means that the ciphertext does not leak the identity of the intended recipient.
The scheme assumes that plaintext messages are elements of GT .

A.1. Boyen-Waters scheme.

Setup. The Private Key Generator (PKG) selects g, g0, g1 ∈R G and w, t1, t2, t3, t4 ∈R [0, n−
1]. It computes α = e(g, g)t1t2w and vi = gti for i = 1, 2, 3, 4. The public parameters are
(α, g, g0, g1, v1, v2, v3, v4), and the PKG’s private key is (w, t1, t2, t3, t4).
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Key extraction. To generate a private key for the party with identifier ID ∈ [1, n − 1],
the PKG selects r1, r2 ∈R [0, n − 1] and computes d0 = gr1t1t2+r2t3t4 , d1 = g−wt2(g0g

ID)−r1t2 ,
d2 = g−wt1(g0g

ID)−r1t1 , d3 = (g0g
ID
1 )−r2t4 , and d4 = (g0g

ID
1 )−r2t3 . The party’s private key is

(d0, d1, d2, d3, d4).

Encryption. To encrypt a message m ∈ GT for the party with identifier ID, the sender
selects s, s1, s2 ∈R [0, n− 1] and computes C ′ = αs ·m, C0 = (g0g

ID
1 )s, C1 = vs−s1

1 , C2 = vs12 ,
C3 = vs−s2

3 , and C4 = vs24 . The ciphertext is C = (C ′, C0, C1, C2, C3, C4).

Decryption. To decrypt C = (C ′, C0, C1, C2, C3, C4), the receiver who possesses the private
key (d0, d1, d2, d3, d4) corresponding to identifier ID computes

(9) m = C ′ · e(C0, d0) · e(C1, d1) · e(C2, d2) · e(C3, d3) · e(C4, d4).

A.2. Fault attack. We assume that the adversaryA can induce a Whelan-Scott sign-change
fault (see §3.2) while the pairing values in (9) are being computed, and is subsequently able
to obtain the decrypted message.

The attack proceeds as follows:

(i) A selects a plaintext message m ∈ GT and computes the ciphertext C = (C ′, C0, C1,
C2, C3, C4).

(ii) A sends C to the receiver.
(iii) While the receiver computes the pairing value e(C0, d0) in (9), A induces a sign-

change fault which causes the receiver to compute the faulty pairing value e′(C0, d0).
(iv) A obtains the (faulty) decryption m′ = C ′ · e′(C0, d0) · e(C1, d1) · e(C2, d2) · e(C3, d3) ·

e(C4, d4).
(v) A computes

m

m′
=

e(C0, d0)

e′(C0, d0)
.

The adversary is unable to compute the correct pairing value e(C0, d0), but nonethe-
less is able to narrow the choice for d0 to at most 12 points; in practice, this number
is expected to be 1, 2 or 3 (cf. Example 2).

(vi) Steps (i)–(v) are repeated by inserting faults in the computation of each of the other
pairing values in (9), thus yielding a small number of possibilities for each of d1,d2,
d3 and d4.

(vii) For each possible (d0, d1, d2, d3, d4), A decrypts the ciphertext C and checks if the
correct plaintext m is obtained; if so, then A has identified the correct private key
with high probability.

Now, with knowledge of (d0, d1, d2, d3, d4), the adversary can decrypt any ciphertext that is
intended for the party with identifier ID.
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We note that the Boyen-Waters scheme also succumbs to the Page-Vercauteren fault attack
described in §3.1.
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