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Léo Ducas and Daniele Micciancio

University of California, San Diego
{lducas,daniele}@eng.ucsd.edu

Abstract

We present a signature scheme provably secure in the standard model (no random oracles) based on the
worst-case complexity of approximating the Shortest Vector Problem in ideal lattices within polynomial
factors. The distinguishing feature of our scheme is that it achieves short signatures (consisting of a
single lattice vector), and relatively short public keys (consisting of O(logn) vectors.) Previous lattice
schemes in the standard model with similarly short signatures, due to Boyen (PKC 2010) and Micciancio
and Peikert (Eurocrypt 2012), had substantially longer public keys consisting of Ω(n) vectors (even when
implemented with ideal lattices). We also present a variant of our scheme that further reduces the public
key size to just O(log log n) vectors and allows for a tighther security proof by making the signer stateful.

1 Introduction

Lattice based cryptography [Ajt04, AD97], originally an area of primarily theoretical interest, has seen a
tremendous growth during the last decade, due both to substantial efficiency improvements obtainable using
lattices with algebraic structure [HPS98, Mic07], and to the enormous versatility afforded by the Learning
with Errors (LWE) problem [Reg09]. One of the problems that has received most attention so far, is that of
lattice based signatures [LM08a, GPV08, Lyu09, Boy10, Rüc10, GLP12, Lyu12, DDLL13, BG14]. From a
theoretical point of view, digital signatures can be constructed from any one-way function [Rom90, Lam79].
So, the existence of digital signature schemes based on the hardness of lattice problems directly follows
from Ajtai’s seminal work [Ajt04]. But generic constructions are rather inefficient. Inputs and outputs of
lattice based cryptographic functions typically consist of one or more Ω̃(n)-dimensional vectors, where n is
the security parameter. Generic digital signature constructions require n parallel applications of a one-way
function. So, even if each one-way function takes as input a single vector, the resulting digital siguatures
consist of n vectors, and require Ω̃(n2) storage even when using algebraic lattices [Mic07]. So, finding efficient
constructions of signatures directly based on hard lattice problems has been an important problem since the
early days of lattice cryptography, with the main goal of finding “short” signatures, i.e., lattice signatures
consisting of a single lattice vector.

The first direct constructions of lattice signatures were given in [LM08a] and [GPV08]. Both schemes
achieved “short” signatures, consisting of a single lattice vector, but each work had its own pros and cons. On
the one hand [LM08a] gave a scheme provably secure in the standard model of computation, and with very
simple signing/verification procedures, but only provided a direct construction of one-time signatures: digital
signature schemes that can be used to sign a single message. Such schemes can be turned into general purpose
signature schemes with only a logarithmic loss in efficiency using standard tree constructions. However, these
transformations can be quite expensive in practice, because they lead to signatures consisting of O(log n)
vectors. Given that signature size is often the most critical efficiency parameter affecting the practicality of
a scheme, such signatures can no longer be considered “short”. On the other hand, [GPV08] gave a scheme
that allowed to produce short signatures for arbitrarily many messages, but only offered heuristic security
in the random oracle model. Moreover, the scheme of [GPV08] was not entirely practical, involving a rather
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complex signing algorithm based on sampling lattice vectors with gaussian distribution, a problem that only
recently has found more satisfactory solutions [MP12].

Two lines of research have evolved from [GPV08], trying to address either the security or efficiency
limitations of that work:

• A first line of research [Lyu09, Lyu12, GLP12, DDLL13, BG14, HPS+13] kept investigating lattice sig-
nature in the random oracle model, with the goal of achieving the highest possible levels of performance,
and schemes that are efficient enough to be used in practice.

• A second line of work, [CHKP12, Boy10, MP12] kept pursuing the important goal of obaining security in
the standard model of computation (no random oracles) while at the same time improving the efficiency
and potential practicality of previous schemes. Our work is part of this second line of research, which
we describe in more detail.

The current state of the art, when it comes to short lattice signatures in the standard model, is given by
the scheme of Boyen [Boy10], with additional security and efficiency improvements described in [MP12]. This
scheme achieved the important goal of “short” lattice signatures (consisting of a single lattice vector), without
resorting to the random oracle model. The main drawback of this scheme was the huge public key involved.
Lattice public keys, even in the random oracle model [GPV08, Lyu09, Lyu12, GLP12, DDLL13, BG14],
consist of one or more n × m matrices, each of which typically requires Ω̃(n2) storage. For the sake of
comparison, we consider natural adaptations of [CHKP12, Boy10, MP12] to the algebraic/ring setting, where
n ×m matrices can be implicitly described by a single m-dimensional vector. Going back to the signature
scheme of [Boy10, MP12], public keys consist of Ω(n) matrices, and therefore require at least quadratic
Ω̃(n2) total storage even when using “compact” algebraic lattices. We remark that digital signature schemes
can be efficiently constructed out of identity based encryption (IBE) by using ciphertexts as signatures, and
lattice based IBE with short ciphertexts are also known [CHKP12, ABB10b, ABB10a]. However, lattice IBE
schemes are built on top of the signature techniques from [CHKP12, Boy10], and bear the same limitations
when it comes to public key size: lattice IBE [CHKP12, ABB10b, ABB10a] use public keys consisting of
Ω(n) matrices, and result in Ω̃(n2) or even Ω̃(n3) pubic key size depending on the type of lattices employed.

Reducing the size of, not only the signatures, but also the public key, was the main open problem
left by [CHKP12, Boy10, MP12, ABB10b, ABB10a]. We remark that the last few years have seen major
efficiency progress on lattice signatures in the random oracle model [GPV08, Lyu09, Lyu12, GLP12, DDLL13,
BG14], leaving a substantial gap between random oracle and standard model signatures. Still, designing
efficient signature schemes without random oracles is an important and well established problem, both for
the theory and practice of cryptography. A recent work in this direction is the paper of Bohl et al. [BHJ+13a,
BHJ+13b, Seo12], which formalized1 a general “confined guessing” technique applicable to a variety of (not
only lattice) settings. Here we describe their results, limited to the case of lattice signatures, and specialized
to algebraic/ring lattices. Among other things, [BHJ+13a] gives a standard model lattice signature with
public keys consisting of a single matrix, and therefore requiring only O(m) = Ω̃(n) storage when using
algebraic/ring lattices. However, this comes at a substantial cost in terms of signature size: the digital
signatures of [BHJ+13a] consist of O(log n) vectors. While a O(log n) increase may not seem much, it is
quite a high cost when it comes to signature size, both in theory and in practice. In fact, a similar trade-off
was already known since the very first direct construction of lattice signatures [LM08a], which, as alredy
discussed, produced general signatures consisting of O(log n) vectors (as well as short public keys). In other
words, just like [LM08a], the lattice signatures of [BHJ+13a] are not “short”. (The main contribution of
[BHJ+13a] over the classic scheme of [LM08a], is that the results of [BHJ+13a] also apply to general lattices.)

Our results. We present the first standard model construction of short signatures based on (algebraic/ring)
lattices with relatively small public keys: Similarly to [Boy10, MP12], we achieve signatures consisting of
a single vector without resorting to random oracles. At the same time, we substantially reduce the public
key size from the Ω(n) vectors2 of previously best short lattice signatures [Boy10, MP12] to just O(log n)

1The technique first appeared in the work of Hohenberger and Waters [HW09b, HW09a] and was also used in [BK10].
2 Remember we are in the ring setting, so only one vector is required to represent each matrix.
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Scheme Pub. Key Secret Key Signature Reduction SIS parameter β
R1×k
q mat. Rk×kq mat. Rkq vec. loss

[GPV08](ROM) 1 1 1 1 Ω̃(n)

[LM08a](Trees) 1 1 log n Q Ω̃(n2)

[CHKP12] n n n Q Ω̃(n3/2)

[Boy10, MP12] n n 1 Q Ω̃(n7/2), Ω̃(n5/2)

[BHJ+13a] 1 1 logc n O(Q2/ε)c Ω̃(n5/2)

Stateless Scheme (Sec. 3) logc n logc n 1 O(Q2/ε)c Ω̃(n7/2)

Stateful Scheme (Sec. 4.1) 2 logc(log n) 2 logc(log n) 1 2Qc Ω̃(n3/2)

Rq = Zq[X]/f(X) for some (cyclotomic) polynomial f of degree n, q = nO(1), and k = O(log q). Q denotes
the number of signature queries made by the attacker and ε is its success probability. The value c > 1 is an
arbitrary constant that governs the security/efficiency trade off. The reduction loss is the ratio ε′/ε between
the success probability ε′ of the reduction and the success probability ε of the attacker.

Figure 1: Comparison to previous work on lattice signatures in the ring setting.

vectors. Our scheme is stateless, i.e., all signatures can be produced independently by running the signing
algorithm on input the secret key and message to be signed. We also give an even more efficient scheme
that further improves the public key size from O(log n) to just O(log log n) vectors (and at the same time
also improves the tightness of the reduction,) almost matching the asymptotic performance of schemes in
the random oracle model [GPV08, Lyu09, Lyu12, GLP12, DDLL13, BG14]. This last improvement comes
at the cost of statefulness: the signer has to keep some state information between signatures. However the
state information is extremely simple: all that the signer has to do is to maintain a counter keeping track of
how many signatures have already been produced.

We remark that it is always possible to reduce the public key size by increasing the size of the signatures,
simply by compressing the public key using a collision resistant hash function (which is easily built from
lattices [LMPR08, ADL+08, LM06, PR06]), and including the original public key in each signature. So, our
first scheme (with O(log n) vectors in the public key and short signatures) subsumes the results of [BHJ+13a]
in the algebraic/ring lattice setting with O(log n) vectors per signatures.

The efficiency of our lattice constructions, compared to previous schemes (all adapted to the ring setting),
is detailed in Figure 1.The trick leading to our stateful signature scheme can also be applied to improve the
generic construction of [BHJ+13a]. The description of our generic results is deferred to Section 4.2, Figure 4.3.

Techniques. Our results are obtained by combining several techniques previously used in the construction
of lattice-based signatures. Most notably, we use the “vanishing trapdoor” technique from [Boy10], and
the more recent “confined guessing” method of [BHJ+13a, HW09b, HW09a]. In fact, the key generation,
signing and verification algorithms bear strong similarities with previously proposed schemes. However, the
combination appears to be novel and nontrivial. In particular, while both the results in [Boy10] and those
in [BHJ+13a] are presented for general lattices, the way they are combined in our work makes essential use
of the commutativity properties of ring/algebraic lattices. More specifically, our proof of security exploits a
key homomorphic property of lattice trapdoors (see Lemma 13) which requires certain matrix products to
commute. This is trivially verified in the ring setting, where one of the matrices corresponds to a ring scalar,
but glamorously fails when the construction is adapted to arbitrary lattices.

Open problems. Interestingly, the methods employed in this paper to obtain short lattice signatures with
small public key seem specific to the ring/algebraic lattice setting. Only our generic result of Section 4.2 with
signatures of log log n many vectors applies to arbitrary lattices. We remark that the question of reducing the
public key size is mostly important in the ring setting: when using general lattices, even a single matrix takes
quadratic storage, so there is little hope to reduce the public key size to linear or quasilinear in the security
parameter. Still, it would be nice to achieve results similar to those in our paper, but for general lattices:
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is there a standard model signature scheme based on general lattices with short signatures (consisting of a
single vector) and small public keys (consisting of O(log n) matrices)?

Another important open problem is to further improve the efficiency of our scheme, and obtain short
signatures where the public key is just O(1) matrices (or vectors, in the ring setting). Indeed, schemes
offering both short public key and short signatures3 in the standard model have been constructed based on
the Computational Diffie-Hellman (CDH) and RSA problems [HW09b, HW09a]. The technique used for
short signatures from RSA and CDH, and the obstruction to adapt it to lattices are discussed Section 4.3.

2 Preliminaries

2.1 Signatures

We recall the definition of digital signature scheme.

Definition 1 (Signatures Scheme). A signature scheme SS is a triple (KeyGen,Sign,Verif) of PPT (prob-
abilistic polynomial time) algorithms, together with message spaces Mn. It is correct if, for all mes-
sages µ ∈ Mn, Verif(pk, µ, σ) = 1 holds true, except with negligible probability (in n) over the choice of
(sk, pk)← KeyGen(1n) and σ ← Sign(sk, µ).

The standard definitions of security for digital signature schemes (under adaptive and non-adaptive
attacks) is given in Figure 2.

EUF-naCMASS(n,A) EUF-CMASS(n,A)

A chooses q messages (µ(j)) ∈Mn

(sk, pk)← KeyGen(1n)
For all j = 0 . . . Q− 1, σ(j) ← Sign(sk, µ(j)).
A receives pk, σ(0) . . . σ(Q−1).
A sends an attempted forgery (µ♦ , σ♦)
A wins if Verif(pk, µ♦ , σ♦) = 1 and µ♦ /∈ {µ(j)}.

(sk, pk)← KeyGen(1n), A receives pk
For j = 0 . . . Q− 1:
A chooses µ(j)

A receives σ(j) ← Sign(sk, µ(j))
A sends an attempted forgery (µ♦ , σ♦)
A wins if Verif(pk, µ♦ , σ♦) = 1 and µ♦ /∈ {µ(j)}.

A signature scheme SS = (KeyGen,Sign,Verif) is EUF-naCMA-secure (or Existentially Unforgeable under
non-adaptative Chosen Message Attacks) if no PPT adversary A wins the EUF-naCMASS game (left)
with non-negligible probability n−O(1). The scheme is EUF-CMA-secure (or Existentially Unforgeable
under adaptative Chosen Message Attacks) if no PPT adversary A wins the EUF-CMASS game (right)
with non-negligible probability n−O(1).

Figure 2: Definition of security for digital signature schemes.

From Non-Adaptive to Full Security There are two standard techniques to transform non adaptively-
secure signature schemes to fully secure ones: Chameleon Hashing and One Time Signatures both of which
can be implemented using lattices [LM08b, GPV08]. For a description of the solution based on Chameleon
Hashing see Appendix B.

2.2 Lattices and Gaussian Distributions

A (full rank) n-dimensional lattice is the set Λ = L(B) = {Bz : z ∈ Zn} of all integer linear combinations of n
basis vectors B = [b1, . . . ,bn] ∈ Rn×n. We use notation (x1, . . . , xn) for column vectors, and similarly write
(A,B) for the result of vertically stacking two matrices. The dual lattice Λ∗ is the set of all v ∈ Rn such
that 〈v,x〉 ∈ Z for every x ∈ Λ. If B is a basis of Λ, then B∗ = B−t is a basis of Λ∗. Many cryptographic
applications use a particular family of so-called q-ary integer lattices, which contain qZm as a sublattice for

3Here by “short” we mean consisting of O(1) group elements.
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some (typically small) integer q. For positive integers n, and q, let A ∈ Zn×mq be arbitrary and define the
following full-rank m-dimensional q-ary lattices:

Λ⊥(A) = {z ∈ Zm : Az = 0 mod q}
Λ(A) = {z ∈ Zm : ∃ s ∈ Znq s.t. z = Ats mod q}.

It is easy to check that Λ⊥(A) and Λ(A) are dual lattices, up to a q scaling factor: q · Λ⊥(A)∗ = Λ(A),
and vice-versa. For any u ∈ Znq admitting an integral solution to Ax = u mod q, define the coset (or

“shifted” lattice) Λ⊥u (A) = {z ∈ Zm : Az = u mod q} = Λ⊥(A) + x. In the Small Integer Solution problem
(SISp,n,m,β), one is given a matrix A ∈ Zn×mq and is asked to find a nonzero vector s ∈ Λ⊥(A) such that

‖s‖ ≤ β where ‖s‖ =
√∑

i s
2
i is the euclidean norm. The geometric quality of a matrix A ∈ Rm×n is

measured by its spectral norm s1(A) = supx ‖Ax‖/‖x‖.
The n-dimensional Gaussian function ρs : Rn → (0, 1] is defined as ρs(x) = exp(−π · ‖x/s‖2). For any

(countable) set X ⊆ Rn, let ρs(X) =
∑

x∈X ρs(x). The smoothing parameter of a lattice ηε(Λ) [MR07] is
the smallest s such that ρ1/s(Λ

∗) ≤ 1 + ε. The discrete gaussian distribution DΛ,s over a lattice Λ is defined
as DΛ,s(x) = ρs(x)/ρs(Λ) for all x ∈ Λ.

We say that a random variable X over R is subgaussian with parameter s > 0 if for all t ∈ R, the (scaled)
moment-generating function satisfies E[exp(2πtX)] ≤ exp(πs2t2). If X is subgaussian, then its tails are
dominated by a Gaussian of parameter s, i.e., Pr[|X| ≥ t] ≤ 2 exp(−πt2/s2) for all t ≥ 0. More generally,
we say that a random matrix X is subgaussian (of parameter s) if all its one-dimensional marginals utXv
for unit vectors u,v are subgaussian (of parameter s). It follows immediately from the definition that the
concatenation of independent subgaussian vectors with common parameter s, interpreted either as a vector
or as a matrix, is subgaussian with parameter s. For any lattice Λ ⊂ Rn and s > 0, the distribution DΛ,s is
subgaussian with parameter s.

We will need the following standard result from the non-asymptotic theory of random matrices; for further
details, see [Ver10].

Lemma 1. Let X ∈ Rn×m be a subgaussian random matrix with parameter s. There exists a universal
constant C ≈ 1/

√
2π such that for any t ≥ 0, we have s1(X) ≤ C · s · (

√
m+

√
n+ t) except with probability

at most 2 exp(−πt2).

2.3 Rings and Ideal Lattices

We consider lattice problems restricted to ideal lattices [Mic07, LM06, PR07]. Most of our results apply to
ideal/module lattices over arbitrary cyclotomic rings, but for simplicity we focus our presentation on so-called
“SWIFFT” rings [LMPR08, ADL+08]. These are rings of the form R = Z[X]/(Φ2n(X)) or Rq = (R/qR),
where n is a power of 2, q is an integer, and Φ2n(X) = Xn + 1 is the cyclotomic polynomial of degree n. For
our construction we will require that Φ2n(X) does not split into low degree polynomials modulo the prime
factors of q. More concretely we choose q = 3k and rely on the following.

Fact 2 (Irreducible factors of Φ2k(X) modulo 3. Corollary of [LN83, Theorem 2.47]). For any k ≥ 3 and
2n = 2k we have Φ2n(X) ≡ (Xn/2 +Xn/4− 1) · (Xn/2−Xn/4− 1) mod 3 and both factors are irreducible in
F3[X].

Lemma 3 (Hensel Lemma for powers of prime integers). Let R = Z[X]/(F (X)) for some monic polynomial
F ∈ Z[X]. For any prime p, if u ∈ Rpe is invertible mod p (i.e. it is invertible in Rp) then u is also invertible
in Rpe .

Corollary 4. let n ≥ 4 be a power of 2, q ≥ 3 a power of 3, and set Rq = Z[X]/(Φ2n(X), q). Then, any
nonzero polynomial t ∈ Rq of degree d < n/2 and coefficients in {0,±1} is invertible in Rq.

Proof. Fact 2 ensures the invertibility of t in R3, which extends to any R3k by Hensel lifting (Lemma 3).
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Elements in R have a natural representation as polynomials of degree n − 1 with coefficients in Z,
and R can be identified (as an additive group) with the integer lattice Zn, where each ring element a =
a0 + a1x + . . . + an−1x

n−1 ∈ R is associated with the coefficient vector (a0, . . . , an−1) ∈ Zn. We use
the identification R = Zn to define standard lattice quantities like the euclidean length of a ring element
‖a‖ =

√∑
i |ai|2, or the spectral norm of a ring element s1(r) = supx ‖r · x‖/‖x‖. The ring R is also

identified with the sub-ring of anti-circulant square matrices of dimension n by regarding each ring element
r ∈ R as a linear transformation x 7→ r · x over (the coefficient embedding) of R. Notice that the definition
of spectral norm of a ring element is consistent with the definition of spectral norm of the corresponding
anticirculant matrix. The following lemma provides a useful bound on the spectral norm of ring elements.

Lemma 5. For any ring element r ∈ R, we have s1(r) ≤ ‖r‖1 =
∑
i |ri|.

Proof. Let ωk = eπı(2k−1)/n (for k = 1, . . . , n) be the complex roots of the cyclotomic polynomial Φ2n. Con-
sider the image of r under the canonical embedding σ : R → Cn, which is defined as σ(r) = (r(ω1), . . . , r(ωn)).
Using the fact that σ : R → Cn is a ring homomorphism (with the product � in Cn defined componentwise)
and a scaled isometry (satisfying ‖σ(r)‖ =

√
n · ‖r‖) we get

s1(r) = sup
x

‖r · x‖
‖x‖

= sup
x

‖σ(r · x)‖
‖σ(x)‖

= sup
x

‖σ(r)� σ(x)‖
‖σ(x)‖

≤ ‖σ(r)‖∞ = max
i
|σ(r)i| .

Since for any i, |ωi| = 1, we have |r(ωi)| =
∣∣∣∑j rjω

j
i

∣∣∣ ≤ ∑ |rj | = ‖r‖1. It follows that s1(r) ≤ ‖σ(r)‖∞ ≤
‖r‖1.

The discrete Gaussian distribution over the ring DR,s ≡ Dn
Z,s is defined as usual by identifying the ring

R with Zn under the coefficient embedding. It follows that the discrete gaussian distribution over the ring
x ← DR,s is subgaussian of parameter s when x is regarded as a vector. For the anti-circulant matrix
representation, we have the following fact, (proof in App. A).

Fact 6. If R← Dw×k
R,s , then with overwhelming probability we have s1(R) ≤ s

√
n ·O(

√
w+
√
k+ω(

√
log n)).

The euclidean length of vectors in Rkq is defined similarly by identifying Zq with the set of representatives

{−(q − 1)/2, . . . ,+(q − 1)/2}. Similarly, we define the q-ary lattices Λ(A) and Λ⊥(A) when A ∈ Rn×mq is
a matrix over the ring Rq using the standard isomorphism of Rq and the sub-ring of anticirculant matrices
in Zn×nq .

Definition 2. In the Small Integer Solution over Rings problem (RingSISq,n,m,β), one is given a row vector

A ∈ R1×m
q , and is asked to find a nonzero vector x ∈ Λ⊥q (A) such that ‖x‖ ≤ β.

Let Um be the uniform distribution overm-dimensional row vectors of ring elements A = [a1,a2, . . . ,am] ∈
R1×m
q . The smoothness proof from [GPV08] can be adapted to this specific ring case (proof in App. A). A

more general ring regularity result can be found [LPR13, Theorem 7.4], but unfortunately it gives a larger
bound (by a factor n) on required standard deviation s than our specialized lemma.

Lemma 7 (Smoothness Lemma). Let Rq = Z[X]/(Φ2n(X), q) for n ≥ 4 a power of 2 and q = 3k a power of

3. Let w ≥ 2dlog2 qe+ 2 and s ≥ ω(
√

lnnw). With overwhelming probability over the choice of A← Uw, if
xi ← DR,s (for i = 1, . . . , w) are chosen independently at random, then the sum

∑
i ai ·xi is within negligible

statistical distance from the uniform distribution over R.

A handy corollary used several time in our proof is the following.

Corollary 8 (Min-entropy bound). Set Rq as above, and let w ≥ 2dlog2 qe+ 3, s ≥ ω(
√

lnnw). With over-
whelming probability over the choice of A← Uw, if xi ← DR,s (for i = 1, . . . , w) are chosen independently at
random, then for any nonzero vector V ∈ Rw \ {0} the conditional min-entropy of

∑
i vi ·xi given

∑
i ai ·xi

is at least Ω(n).
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2.4 Lattice Trapdoors

We use the strong lattice trapdoor construction and algorithms of [MP12]. For a modulus q = 3k and
integer dimension n, define the gadget matrix G =

[
In | 3 · In | . . . | 3k−1 · In

]
∈ Zn×knq .

Definition 3. For any A ∈ Zn×(m+kn)
q , and (invertible) H ∈ Zn×nq , a G-trapdoor for A with tag H is a

matrix R ∈ Zm×knq such that A(R, I) = HG. The definition is extended to trapdoors R ∈ Zm′×knq with

m′ ≤ m by padding them with zero columns so that [R,O] ∈ Zm×knq .

The quality of a trapdoor R is measured by the spectral norm s1(R), and [MP12] gives efficient algorithms
to generate uniformly random matrices A together with high quality trapdoors, and to sample cosets Λ⊥u (A)
with Gaussian distribution Ds for sufficiently large s. Notice that the tag H can immediately be recovered
from A and R as the first block of HG, and does not need to be specified explicitly. But when one says
that R is a trapdoor, it is usually assumed that the associated tag H is an invertible matrix.

Theorem 9 ([MP12]). There is an efficient algorithm SampleD(A,u,R, s) that on input a matrix A ∈
Zn×(m+kn)
q , a syndrome u ∈ Znq , a G-trapdoor R ∈ Zm×knq for A, and parameter s > ω(

√
log n) · s1(R),

produces a sample from the distribution DΛ⊥u (A),s.

The efficient trapdoor generation algorithm of [MP12] follows immediately from the definition of G-
trapdoor: one simply chooses A′ ∈ Zn×mq uniformly at random, samples a trapdoor matrix R ∈ Zm×nkq

with small entries, and outputs A = [A′,HG −A′R]. As pointed out in [MP12], the algorithm is imme-
diately adapted to ideal lattices, using the observation that the identity matrix In is precisely the matrix
corresponding to the ring element 1 ∈ R, so the gadget matrix G can be regarded as a row vector of ring
elements [1, 3, 9, . . . , 3k−1] ∈ R1×k. The trapdoor generation algorithm is then analyzed using Theorem 7,
and the trapdoor quality is bounded applying Fact 6 to the concatenation of subgaussian random variables
ri ← DR,s ≡ Dn

Z,s. The formal result is stated below.

Theorem 10. There is a polynomial time algorithm GenTrap(A′,H, s) that on input a matrix A′ ∈ R1×w
q ,

tag H ∈ Rq, and parameter s > ω(
√

lnnw), outputs a matrix A′′ ∈ R1×k
q and a G-trapdoor R ∈ Rw×kq for

A = [A′,A′′] with tag H such that s1(R) = s · O(
√
w +
√
k + ω(

√
log n)). Moreover, if w ≥ 2(dlog2 qe+ 1)

then with overwhelming probability over the choice of A′ ← Uw, the distribution of A′′ is statistically close
to uniform.

In order to allow for the generation of trapdoors for multiple matrices that share the same A′, we made
A′ an explicit input to the trapdoor generation algorithm. When A′ ← Uw is chosen freshly at random, we
simply write GenTrap(w,H, s) and let GenTrap output the whole A = [A′,A′′].

Notice that G-trapdoors generated in the ring setting also satisfy the definition of G-trapdoor for general
lattices. So, Theorem 9 can be used as it is, simply by viewing ring trapdoors R ∈ Rw×kq as matrices

R ∈ Zwn×kn under the standard embedding fromR to the subring of anticirculant matrices. For convenience,
we reformulate Theorem 9 as a corollary specialized to the ring setting.

Corollary 11. There is an efficient algorithm SampleD(A,u,R, s) that on input a matrix A ∈ R1×(w+k)
q ,

a syndrome u ∈ Rq, a G-trapdoor R ∈ Rw×kq for A with invertible tag H ∈ R, and parameter s >

ω(
√

log n) · s1(R), produces a sample statistically close to the distribution DΛ⊥u (A),s.

We remark that GenTrap can be called with arbitrary (not necessarily invertible) tags H. The algorithm
still outputs a uniformly random A and small s1(R), but the inversion algorithm of Corollary 11 cannot be
used with such invalid trapdoors.

3 Our Scheme

The scheme is parametrized by an integer n which we assume is a power of 2, and a modulus q = 3k

which we assume to be a power of 3. (Other parameter settings are possible, but we consider these specific
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values for concreteness.) These parameters define the ring Rq = Z[X]/(Φ2n(X), q), where (for n a power
of 2) Φ2n(X) = Xn + 1 is the cyclotomic polynomial of degree n. The scheme also uses the parameters
w = 2dlog2 qe + 2, m = w + k, s = n3/2 · ω(log n)3/2, and a collection of tags defined below. We recall
that the polynomial Φ2n(X) is irreducible in Z[X], but it can be factored in Fp[X] for some primes p. Our
choice of q = 3k ensures that, in F3[X], the polynomial Φ2n(X) factors into the product of just 2 irreducible
polynomials of degree n/2. (See Fact 2.) In particular, by Corollary 4, any nonzero polynomial of degree
less than n/2 with coefficients in {0,±1} is invertible in Rq.

Tags For any real constants c > 1 and α ≥ 1
c−1 (fixed throughout the rest of this section) define the

sets of tag prefixes Ti = {0, 1}ci of (strictly increasing) lengths c0 = 0, ci = bαcic for i ∈ {1, . . . , d} where
d = blogc(n/(2α))c = O(log n). We identify each tag prefix t = [t0, . . . , tci−1] ∈ Ti with a corresponding ring
element t(X) =

∑
j<ci

tjX
j ∈ Rq with binary coefficients tj ∈ {0, 1} and degree less than ci ≤ cd ≤ n/2.

It follows that for any two distinct tag prefixes t, t′ ∈ Ti, the difference (t(X) − t′(X)) is invertible in Rq.
For any full tag t ∈ T = Td and i ≤ d, we write t≤i ∈ Ti for its prefix of length ci, and t[i] for the (ring)
difference t≤i(X)− t≤i−1(X) ∈ Rq.

Unlike previous work using tags [MP12, CHKP12, Boy10], our construction relies not only on the algebraic
(invertibility) properties of tags, but also on their geometric properties, described in the following lemma.

Lemma 12. For any i ≤ d and tags t, t′ ∈ T , one has s1((t− t′)[i]) ≤ ci − ci−1.

Proof. Since the difference (t− t′)[i] is a trinary polynomial with at most ci − ci−1 nonzero coefficients, we
have ‖(t− t′)[i]‖1 ≤ ci − ci−1. It follows from Lemma 5 that s1((t− t′)[i]) ≤ ‖(t− t′)[i]‖1 ≤ ci − ci−1.

3.1 Our Scheme

We are now ready to define our signature scheme.

Key Generation naSS.KeyGen(n): The key generation algorithm runs (A,R) ← GenTrap(w, I, σ) with
σ = ω(

√
log n), and chooses A[0],A[1], . . .A[d],U ∈ R1×k

q and v ∈ Rq uniformly at random. It then outputs
the secret key sk = R, and public key pk = (A,A[0],A[1], . . .A[d],U,v). The public key implicitly defines

a collection of matrices At = [A|A[0] +
∑d
i=1 t[i] ·A[i]] indexed by the tags t ∈ T .

Since σ = ω(
√

log n), by Theorem 10 and Lemma 6, the distribution of A ∈ R1×m
q is statistically

close to Um, and R is a G-trapdoor for A (and therefore also for all At) with invertible tag I and quality
s1(R) ≤

√
n · ω(log n).

Signature naSS.Sign(sk = R,µ ∈ {0, 1}nk ⊂ Rkq ): Parse µ as a vector of Rkq splitting the nk bits into k
binary polynomials. Choose a uniformly random tag t ∈ T , and compute the matrix At and ring element
u = U · µ + v. Then, use the G-trapdoor R to sample a vector s← SampleD(A,u,R, s). Output the pair
σ = (t, s) as the signature.

Verification naSS.Verif(pk,µ ∈ {0, 1}nk ⊂ Rkq , σ = (t, s)): Compute At and u = U · µ + v as in the
signing algorithm. Then, check that ‖s‖ ≤ s

√
nm and that At · s = u.

Correctness The correctness of the scheme is easily verified: Since s > ω(
√

log n) · s1(R), by Corollary 11
the vector s produced during the signature generation process follows the distribution DΛ⊥u (At),s and has

length at most s
√
nm = O(s

√
nk) with overwhelming probability. So, the signature (t, s) is accepted by the

verification algorithm.
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3.2 Security Proof

The security of the scheme is based on the following homomorphic property of G-trapdoors over rings.
We remark that the property makes essential use of the commutativity of matrices corresponding to ring
elements in Rq, so it does not trivially adapts to general lattices, unless one restricts the set of tags to scalar
matrices.

Lemma 13. For i = 0, . . . , d, let R[i] ∈ Rw×k be a G-trapdoor for [A,A[i]] with tag H[i] ∈ Rq, where

A[i] ∈ R1×k
q . Then, any linear combination R =

∑
i ci ·R[i] with ci ∈ Rq is a G-trapdoor for [A,

∑
i ciA[i]]

with tag H =
∑
i ciH[i].

Proof. By definition of G-trapdoor, we know that [A,A[i]](R[i], I) = H[i]G for all i. Therefore[
A,
∑

i
ciA[i]

]
(R, I) = AR +

∑
i
ciA[i] =

∑
i
ci(AR[i] + A[i])

=
∑

i
ci[A,A[i]](R[i], I) =

∑
i
ciH[i]G = HG.

Therefore R is a G-trapdoor with tag H.

We can now prove the security of our signature scheme.

Theorem 14 (Security against Existential Forgery under non-adaptive Chosen Messages Attacks). Under
the RingSISn,m,q,β assumption for β = Õ(n7/2), the above scheme naSS is EUF-naCMA secure. More
precisely, if there exists an attacker A against EUF-naCMAnaSS that runs in time T , makes at most Q
queries where 1 ≤ Q ≤ 2o(n) and succeeds with probability ε ≥ 2−o(n), then, there exists an algorithm SA

that runs in time T ′ = T + poly(n), and solves SIS(n,w, q, β) with probability ε′ ≥ Ω
(
ε1+c

Q2c

)
.

The rest of the section is devoted to the proof of the theorem.

Confined Guessing Stage We assume we have an attacker A against the EUF-naCMA security of naSS
that makes at most Q = 2o(n) signature queries, and succeeds with probability ε ≥ 2−o(n). Let i? the smallest
index such that 2Q2/ε ≤ |Ti? |. (Notice that such index exists because 2Q2/ε = 2o(n) ≤ 2b

n
2c c ≤ |T |.) This

guarantees that, if one chooses Q tags at random in Ti? , then they will be all distinct except with probability
at most ε/2.

The simulator S receives Q non-adaptive signature queries µ(0) . . .µ(Q−1) from A. For each message
µ(j), the simulator S chooses a uniformly random tag t(j) ∈ T . If a collision of prefixes happens (i.e., if

t
(j)
≤i? = t

(k)
≤i? for some j 6= k) the simulator aborts. (This happens with probability at most ε/2.) Otherwise, S

chooses a prefix t?≤i? ∈ Ti? uniformly at random. (The rest of the tag t? will be specified later on.) The hope
is that the adversary will output a forgery (t�, s�) such that t�≤i? = t?≤i? . We will make the adversary’s view
statistically independent from the choice of t?≤i? ∈ Ti? , so that t�≤i? = t?≤i? will hold true with probability
1/|Ti? |.

Simulating Key Generation and Signatures The simulator also receives a RingSIS challenge, the
row vector A ← Um, from which it will build the public key. This is done by running (A[i],R[i]) ←
GenTrap(A,H[i], σ

′) with σ′ = ω(
√

log n)) for i = 0, . . . , d and

H[i] =


0 ∈ Rq if i > i?

1 ∈ Rq if 1 ≤ i ≤ i?
−t?≤i? if i = 0.

Since ω(
√

log n) ≤ σ′, by Theorem 10 the matrices A[i] are statistically close to uniform. Moreover, by Fact 6,

each R[i] ∈ Rm×k is a G-trapdoor for [A,A[i]] with s1(R[i]) ≤
√
n · ω(log n). Therefore, by Lemma 13,
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Rt = R[0] +
∑d
i=1 t[i] ·R[i] is a G-trapdoor for At = [A,A[0] +

∑
i t[i] ·A[i]] with tag Ht = t≤i? − t?≤i? . The

quality of this trapdoor is

s1(Rt) ≤ s1(R[0]) +
∑

i
s1(t[i] ·R[i]) ≤

(
1 +

∑
i
s1(t[i])

)
max
i
s1(R[i])

≤
(

1 +
∑

i
(ci − ci−1)

)√
n · ω(log n) = n3/2 · ω(log n)

where we have used the geometric bound s1(t[i]) ≤ ci − ci−1 from Fact 12. So, the simulator can use Rt

as a trapdoor to sign messages with tag t as long as Ht is invertible. We observe that Ht = 0 whenever
t?≤i? = t≤i? (i.e., when t?≤i? is a prefix of t), and it is invertible otherwise. So, the simulator can efficiently

answer all signature queries except at most for one index j such that t
(j)
≤i? = t?≤i? . If such index exists, set

µ? = µ(j) and t? = t(j) (recall that we’ve only chosen the prefix t?≤i? of t? at the confined guessing stage),
otherwise S chooses a random µ? and a random t? extension of t?≤i? . We will use our last degree of freedom v
to “program” a signature for this only message µ?: choose a signature s? ← Dm

R,s, and set v = At?s?−Uµ?.
Applying Lemma 7, we check that v is close to uniform and independent of At? , U and µ. This shows how
to efficiently simulate public key and signatures that are indistinguishable from a real attack.

Notice that we have not specified how to choose U yet. In order to for the simulator to exploit the
forgery, we want U = ARU for some RU with small entries. We can set RU ← DR,σ′ so that, by Lemma 7,
U = ARU is statistically close to uniform, and s1(RU) =

√
n · ω(log n).

Exploiting the forgery After all those shenanigans from the simulators S, with probability at least ε/2,
the adversary outputs a forgery (t�, s�) for some message µ� of his choice. The simulator’s secret hope that
t�≤i? = t?≤i? is fulfilled with probability 1/|Ti? |; if not, S aborts. Otherwise we have

At? · s? = U · µ? + v and At� · s� = U · µ� + v

Recall that for any tag t ∈ T we have At = [A|HtG − ARt] (Rt is a G-trapdoor of At with tag Ht);
additionally the condition t�≤i? = t?≤i? ensures Ht? = Ht� = 0. We derive

[A|−ARt? |−ARU] ·
[

s?1
s?2
µ?

]
= v = [A|−ARt� |−ARU] ·

[
s�1
s�2
µ�

]
.

In particular we obtain Aw = 0 for

w = (s?1 − s�1 − (Rt? · s?2 −Rt� · s�2)−RU(µ? − µ�)) .

Quite obviously, w is small (we will quantify below). Less obviously, it is nonzero, except with negli-
gible probability. We split our analysis into 4 different cases, corresponding to different types of forgeries
(µ?, t?, s?) 6= (µ�, t�, s�):

case 1 s?2 6= s�2. Even revealing RU and all R[i] for i > 0, one has that R[0] · (s?1 − s�1) conditioned on the
knowledge of Ā and A[0] = AR[0] contains at least Ω(n) bits of min-entropy, using Corollary 8. In

particular the probability that w = 0 is less than 2−Ω(n).

case 2 µ? 6= µ�. Even revealing all R[i] for i ≥ 0, one has that RU · (s?1 − s�1) conditioned on the knowledge
of Ā and U = ARU contains at least Ω(n) bits of min-entropy, using Corollary 8. In particular the
probability that w = 0 is less than 2−Ω(n).

case 3 s?1 = s�1, t? 6= t�. Choose some i such that t?[i] 6= t�[i]. Even revealing RU and all R[j] for j 6= i, one

has that R[i] · s?1 conditioned on the knowledge of Ā and A[i] = AR[i] contains at least Ω(n) bits of
min-entropy, using Corollary 8. So does (t?[i] − t

�
[i]) ·R[i] · s?1 since t?[i] − t

�
[i] is an invertible element of

Rq (Corollary 4). In particular the probability that w = 0 is less than 2−Ω(n).

case 4 s?2 = s�2,µ
? = µ�, t? = t�, s?1 6= s�1. In this case one notices that w = s?1 − s�1 6= 0 and concludes.
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Size of the extracted SIS solution Because s?, s� are valid signatures, ‖s?‖, ‖s�‖ ≤ s
√
m ≤ n2w ·

ω(log n)3/2. Additionally s1(Rt) ≤ n3/2 · ω(log n) for any tag t ∈ T , as proved above, and ‖µ?‖, ‖µ�‖ ≤√
m = O(

√
nk) and RU ≤

√
n · ω(log n). Combining all those bounds we obtain

‖w‖ ≤ n7/2 · log n · ω(log n)5/2.

Success probability of the simulation The success probability ε′ of the simulator is at least (ε −
ε/2)/|Ti? | − 2−Ω(n) where

• ε is the success probability of the attacker,

• ε/2 bounds the probability of a collision of tags,

• 1/|Ti? | is the probability that the confined guess is correct, i.e., t�≤i? = t?≤i? , and

• 2−Ω(n) bounds the probability that the extracted SIS solution is zero.

Our choice of i? (see confined guessing stage) guarantees that 2ci?−1 < 2Q2

ε ≤ 2ci? = |Ti? |. We also have

ci? ≤ αci
?

= c(αci
?−1) < c(ci?−1 + 1). Therefore |Ti? | = 2ci? ≤ 2c·(ci?−1+1) ≤

(
4Q2

ε

)c
. Overall the success

probability of solving the SIS instance is at least

ε′ ≥ ε

2

(
ε

4Q2

)c
− 2−Ω(n) = Ω

(
ε1+c

Q2c

)
.

4 Stateful schemes

One drawback of the previous scheme is the success probability loss in its security reduction, that can get
as large as a factor 1/O(ε−cQ2c); moreover, while it is quite common that the loss depends on the number
of signature queries Q, it is a not so desirable aspect of the confined guessing strategy introduced by Bohl
et al. [BHJ+13a, BHJ+13b] that it also depends on success probability ε of the attacker.

In this section, we show that a simple tweak on the previous scheme can greatly improve the security
loss of the proof, in particular removing the dependency in ε. The trick is to include some statefulness (a
simple counter) in the signature to avoid collision without relying on costly probabilities.

4.1 A stateful variant of section 3

We define a variant scheme naSS′ that has a state S ∈ Z initialized to 0; and differs only with naSS of
section 3.1 only for the choice of the tag t ∈ T in the Sign algorithm.

Signature naSS′.Sign(sk = R,µ ∈ {0, 1}nk) :
Set the tag t =

∑
i siX

i ∈ T to be the binary representation of S =
∑
i si2

i.
Update the state S ← S + 1
Continue similarly to naSS′.Sign.

Theorem 15 (Security against Existential Forgery non-adaptive Chosen Messages Attacks). Under the
RingSISn,m,q,β assumption for β = Õ(n7/2), the above scheme naSS′ is EUF-naCMA secure. More pre-

cisely, if there exists an attacker A against EUF-naCMAnaSS′ that runs in time T , makes at most Q ≤ 2c
d

queries and succeed with probability ε, then, there exists an algorithm SA that runs in times T ′ = T+poly(n),

and solves RingSIS(n,w, q, β) with probability ε′ ≥ ε
2

(
1

2Q

)c
.
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Security proof update. The security proof only differs from the original (Sec. 3.2) at the confined guessing

stage. Note that the tag prefix t
(j)
≤i for the jth query (j ∈ {0 . . . Q− 1}) is simply the binary representation

of j mod 2ci ; in particular, setting i? to the smallest index such that 2ci ≥ Q guarantees that no collision

t
(j)
≤i? = t

(k)
≤i? , j 6= k happens; while bounding the tag-space size |Ti? | ≤ 2Qc.

Scheme with improved efficiency While we believe that one shouldn’t dismiss adversaries that have
super-polynomially small success probability from the security reduction, it is much more reasonable to
assume adversaries makes at most a polynomial numbers of signature queries. If ones indeed assumes that
Q ≤ nO(1), one can choose a smaller parameter d: a sufficient condition for the security proof is that
2cd ≥ nω(1) = 2ω(log2 n). One can thus choose d = b2 logc((log2 n)/α)c ≥ logc(ω(log2 n)); and thus reducing
the public key size from about logc(n/(2α)) to 2 logc((log2 n)/α) many Zn×mq matrices.

Moreover, doing so also improves the security reduction, namely this decreased parameter d = 2 logc(log2 n)
gives cd ≤ log2(n)2; this impact the size of the trapdoor matrices. We now can prove that, for any tag t ∈ T :

s1(Rt) ≤
√
n · ω(log n) · (1 + cd) ≤

√
n · (log n)2 · ω(log n).

Overall, this decrease the parameter s and the length of the SIS solution to

s =
√
n · (log n)2 · ω(log n)3/2; β = n3/2 · (log n)5 · ω(log n)5/2

that is as good as the RingSIS reduction of schemes with much larger public key size [CHKP12, Boy10, MP12]
up to log factors.

4.2 Generic stateful scheme

We will use parameters similar to the one of section 3.1: constants c > 1 and α ≥ 1
c−1 (fixed throughout

the rest of this section) and the strictly increasing sequence c0 = 0, ci = bαcic for i ∈ {1, . . . , d} where
d = blogc(n/α)c = O(log n); in particular cd = Ω(n) .

Definition 4 (Tag-based Signatures [BHJ+13a, BHJ+13b]). A tag based signature scheme SSt is a triple
(KeyGent,Signt,Verift) of PPT algorithm, together with message spaces Mn and tag spaces Tn for n > 0. It
is said correct if, except with probability negligible in n, for all message m ∈ Mn and all tags t ∈ Tn, over
the randomness of

(sk, pk)← KeyGent(1
n) and σ ← Signt(sk, µ, t) it holds that Verift(pk, µ, σ, t) = 1.

Definition 5 (Mild-Security m-EUF-naCMA?). A tag based signature scheme SSt = (KeyGent,
Signt,Verift) is said m-EUF-naCMA? secure if no PPT adversaries A wins the following game.

m-EUF-naCMA?SSt
(n,A) :

A chooses Q pairs (µ(j), t(j)) ∈M× T
(sk, pk)← KeyGent(1

n) and σ ← Signt(sk, µ
(j), t(j)). A

receives pk, σ(0) . . . σ(Q−1).
A sends an attempt forgery (µ?, t?, σ?); count C =

∣∣{j|t(j) = t?}
∣∣.

A loose if Verift(pk, µ, σ, t) 6= 1, or µ? = µ(j) for some j, or if C 6∈ {1 . . .m}.

Note that m-EUF-naCMA? security implies m′-EUF-naCMA? security for any m′ ≤ m.

Theorem 16 (Security of the Generic stateful scheme). If SSt is 1-EUF-naCMA?-secure tag-based sig-
nature scheme with tag space T of size at least 2 · 2cd , then SS (Fig. 3) is EUF-naCMA-secure signature
scheme. More precisely, if there exists an attacker A against EUF-naCMASS that runs in time T , makes

at most Q ≤ 2c
d

queries and success with probability ε, then, there exists an algorithm SA that runs in times
T ′ = T +Q · poly(n), and wins against 1-EUF-naCMA?SSt

with probability at least ε− 1
|M| making at most

Q′ ≤ dQ+ 2Qc queries.
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SS.KeyGen(1n) SS.Sign(sk,m) SS.Verif(pk,m, σ)

(pk, sk)← SSt.KeyGent(1
n)

Set state S = −1
Return (pk, sk).

Update state S ← S + 1
For all i = 1 . . . d :

ti ←
(
S mod 2ci , i

)
σi ← SSt.Signt(sk,m, ti)

Return σ = (S, σ1, . . . , σd).

Parse (S, σ1, . . . , σd) = σ
For all i = 1 . . . d :

ti ←
(
S mod 2ci , i

)
Reject if SSt.Verift(pk,m, σi, ti) 6= 1.

Accept.

Figure 3: Generic construction from tag-based signatures SSt to stateful signatures SS

Proof. The simulator S interacts with the adversaryA trying to simulate the game interface EUF-naCMASS

while itself playing against the game 1-EUF-naCMA?SSt
. Notice that, in the definition of SS (Fig. 3), we have

implicitly defined tag spaces Ti = {0 . . . 2ci − 1}× {i} and T =
⋃
i Ti, then check that |T | =

∑
i 2ci ≤ 2 · 2cd .

First, S receives Q messages µ(0) . . . µ(Q−1) from the adversary A. Knowing Q it sets i? to be the
smallest index such that 2ci? ≥ Q (which implies 2ci? ≤ 2Qc). It transmits the following requests to
1-EUF-naCMA?SSt

:(
µ

(j)
, t

(j)
i =

(
j mod 2ci , i

))
for all (j, i) ∈ {0 . . . Q− 1} × {1 . . . d}(

µ†, t
)

for all t ∈ {Q . . . 2bc
i?c − 1} and a fixed value µ† ← U(M)

Notice that the simulator S has made exactly 1 query for each tag t ∈ Ti? . He then receives a public key

pk that he transmit to the adversary A directly; as well as answer to its signature queries. Lets denote σ
(j)
i

the response signature for the query (µ
(j)
, t

(j)
i ), ignoring the response to other queries. It then builds the

signature σ(j) = (j, σ
(j)
1 . . . σ

(j)
d ) and use it to answer A signature query on message µ(j). One checks that

this output distribution matches perfectly the output of the game EUF-naCMASS.
Then, with probability ε, the adversary outputs a valid forgery (µ♦ , σ♦ = (j♦ , σ♦1 . . . σ

♦
d )) such that

µ♦ 6= µ
(j)

for all j; moreover µ♦ 6= µ† except with probability 1/|M|. Because this is a valid forgery for the
scheme SS with public key pk, we have in particular that SSt.Verift(pk, µ

♦ , σ♦i? , t
♦
i?) = 1 where t♦i? = (j♦ mod

2bc
i?c, i?) ∈ Ti? ; in particular this tag ti? appears in exactly one signature queries to 1-EUF-naCMA?SSt

.The
simulator S thus answer (σ♦i? , t

♦
i?) as a forgery and wins the game 1-EUF-naCMA?SSt

.

4.3 Discussion

Assuming that the number of queries Q is polynomially bounded, (but ε might be sub-exponentially small),
and that m is fixed, comparison between our construction and the one of [BHJ+13a] is given in figure 4.3.

Generic transf. to State Assumptions Signature blow-up Queries made by
EUF-naCMA factor d the reduction Q′

[BHJ+13a] m ≥ 1 None m-EUF-naCMA?, PRF logc n 2(2Q)c·(1+1/m)/εc/m

Section 4.2 Counter 1-EUF-naCMA? 2 logc(log2 n) 2Qc + dQ

Figure 4: Generic Transformations from tag-based signatures

To be fair, we mention that the signature blow-up factor of [BHJ+13a] can also be brought down to
2 logc(log2 n) by choosing m = O(n); yet the given constructions of m-EUF-naCMA?-secure scheme based
either on RSA or CDH, requires public key that grows by m elements (and therefore are less efficients than the
ones build in [HW09b, HW09a]). In the lattice case it isn’t yet known how to build m-EUF-naCMA? for any
m > 1 . Technically, building a m-EUF-naCMA?-secure scheme relies on programming a one-way function
to have certain random value on some inputs while still being hard to invert for other values; known techniques
relies on Lagrange interpolation polynomials (a.k.a. Reed-Muller Codes or Shamir’s Secret Sharing) in the
domain of the one-way function. The same technique was also at the core of Hohenberger-Waters proofs.
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While this applies on domain that are field or quasi-fields as for CDH or RSA based construction, it is much
less clear how to adapt this idea for a domain of small norm polynomials.
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A Missing proofs

Fact (Restatement of Fact 6). Let R ← Dw×k
R,s ; with overwhelming probability we have s1(R) ≤ s

√
n ·

O(
√
w +
√
k + ω(

√
log n)).

Proof. For a vector v ∈ Rn over ring R, let Diag(v) denotes the diagonal matrice with entries v1 . . . vn.
Notice that the component wise product of two vectors f � g can be written as the matrix-vector product
Diag(f) · g. This gives the identity σ(f · g) = Diag(σ(f)) · σ(g) for f, g ∈ R with σ : R → Cn denoting the
canonical embedding:

σ : f ∈ R 7→ (f(ω1), . . . f(ω`)) ∈ Cn where ω` = e(2`−1)ıπ/n

. Let R = (ri,j)← Dw×k
R,s ; and set

D =

D1,1 · · · D1,k

...
...

Dw,1 · · · Dw,k

 ∈ Cnw×nk and Di,j = Diag(σ(ri,j)) ∈ Cn×n.
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We extend the canonical embedding σ : R → Cn to vectors in Rd as its componentwise application;
σ(v) = (σ(v1), . . . σ(vk)) ∈ Cnk. With this notation, we have σ(R ·v) = D · σ(v); and because the canonical
embedding σ is a scaled isometry, we have s1(R) = s1(D).

Permuting rows and column, D can be rewritten as the block-diagonal matrix B = Diag(B1, . . .Bn) ∈
Cnw×nk, B` ∈ Cw×k where the coefficients of B` are all the embeddings σ`(ri,j) = ri,j(ω`) for (i, j) ∈
{1 . . . w} × {1 . . . k}. The coefficients of Re(B`) (the real part of B`) are independent and sub-gaussian of
parameter s

√
n. Indeed

Re(B`) =

n−1∑
k=0

Re(ωk` ) · (ri,j)k

where the (ri,j)k are independent and sub-gaussian of parameter s while |Re(ωk` )| ≤ 1. Therefore by Lemma 1

s1(Re(B`)) ≤ s
√
n ·O(

√
w +
√
k + ω(

√
log n))

with overwhelming probability. The same results hold for the imaginary part Im(B`) of B`. We conclude

s1(D) ≤ s1(B) ≤ max
`
s1(B`) ≤ max

`

√
s1(Re(B`))2 + s1(Im(B`))2

≤ s
√
n ·O(

√
w +
√
k + ω(

√
log n)).

Lemma (Smoothness Lemma, Restatement of Lemma 7). Let Rq = Z[X]/(Φ2n(X), q) for n ≥ 4 a power

of 2 and q = 3k a power of 3. Let w ≥ 2(dlog2 qe + 1) and s ≥ ω(
√

lnnw). With overwhelming probability
over the choice of A← Uw, if x(i) ← DR,s (for i = 1, . . . , w) are chosen independently at random, then the
sum

∑
i ai · x(i) is negligibly close to the uniform distribution over R.

Proof. The proof is adapted from [GPV08, Lemma 5.3]. Consider the lattice Λ(A>) spanned by the columns
of A> and the vectors of qZnw; it is the (scaled) dual of Λ⊥(A). We will first show that the minimal distance
λ∞1 (Λ(A>)) is at least q/12 with overwhelming probability, and conclude using [GPV08, Lemma 2.6] that
ηε(Λ

⊥(A)) ≤ ω(
√

lnnw) for some negligible function ε(n).
Recall that the irreducible factors of Φ2n(X) mod 3 are P1(X) = Xn/2 +Xn/4 − 1 and P2(X) = Xn/2 −

Xn/4 − 1. Setting p1 = (P1(X)), p2 = (P2(X)) the nonzero ideals of Rq are exactly p1, 3p1 . . . 3
k−1p1;

p2, 3p2 . . . 3
k−1p2 and (1), (3), (32), . . . (3k−1).

Now, fix some x ∈ R\{0}, et set I = (x), it is one of the nonzero ideal listed above. Let r ≥ n/2 denotes
its rank. Our goal is to prove, that over the randomness of A ∈ R1×w, the probability that Ax falls in in the
hypercube Cw = {v ∈ Rw| ‖v‖∞ < q/12} is less than 2−O(wr). Because x is a generator of I the distribution
of Ax is uniform over Iw. We proceed by bounding the ratio |C ∩ I|/|I|.

Case 1: (I = (3h) for h ∈ {0 . . . k − 1}). Observe that |C ∩ I| ≤ |{3hZ ∩ (−q/12, q/12)}n| ≤ d3k−h/6en;
which leads to

|C ∩ I|/|I| ≤
(

3k−h/6 + 1

3k−h

)n
≤
(

1

6
+

1

3k−h

)n
≤ 2−n.

Case 2: (I = 3hpi for h ∈ {0 . . . k− 1}). Start by noting that any element e of I can be uniquely written

e = Pi(X) · s where s =
∑n/2−1
i=0 siX

i is a polynomial and of degree strictly less than n/2 in the ideal (3h) of
R. Also note that ‖e‖∞ ≤ q/12 implies ‖s‖∞ ≤ q/12, indeed for i ∈ {0 . . . n/4−1} we have ei = −si and for
i ∈ {n/4 . . . n/2− 1} we have ei+n/2 = si. Using a similar counting argument on valid values of s we derive

|C ∩ I|/|I| ≤
(

3k−h/6 + 1

3k−h

)n/2
≤
(

1

6
+

1

3k−h

)n/2
≤ 2−n/2.
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Taking the union bound over all nonzero x we conclude that λ∞1 (Λ(A>)) ≥ q/12 except with probability
qn · 2−nw/2 ≤ 2−Ω(n).

Corollary (Min-entropy bound, restatement of corollary 8). Let Rq be a ring as above, and let w ≥
(dlog2 qe+ 3)/2, s ≥ ω(

√
lnnw). With overwhelming probability over the choice of A← Uw, if x(i) ← DR,s

(for i = 1, . . . , w) are chosen independently at random; for any nonzero vector V ∈ Rw \{0} the min-entropy
of
∑
i vi · x(i) with the knowledge of

∑
i ai · x(i) is at least Ω(n).

Proof. Without loss of generality assume that v1 6= 0. Applying the previous Lemma 7 on
∑
i≥2 ai · x(i),

the knowledge of
∑
i ai ·x(i) = a1 ·x1 +

∑
i≥2 ai ·x(i) reveals only negligible any information about x1. Also

note that x1 mod 3 is negligibly close to uniform (ηε(3Z) ≤ ω(
√

lnn) for some negligible function ε(n)).
Setting I = (v1) 6= (0) we deduce that v1 · x1 mod 3I is almost uniform in I/3I. Recall from the

previous proof that the only nonzero ideals of Rq are exactly p1, 3p1 . . . 3
k−1p1; p2, 3p2 . . . 3

k−1p2 and
(1), (3), (32), . . . (3k−1) where both p1 and p2 are ideals of rank n/2. This implies that |I/3I| = 3n/2 or
3n. We conclude that v1 · x1 has at least Ω(n) bits of entropy and so has

∑
i vi · x(i).

B Adaptive Security from Chameleon Hash

B.1 Definition of Chameleon Hashes

Our definition might slightly differs from the literature; where for a fixed message µ the function Hash(ek;µ, r)
was (sometime implicitly) assumed to be bijective in the variable r. When this is not the case, it is essential
to specify the preimage sampling distribution of Hash−1(td; y); and this distribution to be independent of
the secret key.

Definition 6 (Chameleon Hash). A Chameleon Hash is a triplet of algorithms CH = (Gen,Hash,Hash−1),
together with efficiently computable distributions Xn,Yn for each positive integer n; the fail symbol ⊥ does not
belong to the support of Yn. The desired properties are listed below (holding except with negligible probability
over the random choice of (ek, td)← Gen(n))

• Uniformity: For any valid message µ, the distribution of Hash(ek, µ, x) for x ← Xn is statistically
close to Yn.

• Preimage Sampling Correctness: For any message µ and any hash value y, the distribution of
x← Hash−1(td, µ, y) is statistically close to the conditional distribution {x← Xn|Hash(ek, µ, x) = y}

• Collision Resistance: For any PPT algorithm A the success probability of A against ColResCH is
negligible in n where ColResCH(n,A) is defined as the following game:

(ek, td)← Gen(n); (µ, r, µ′, r′)← A(ek);

A wins if (µ, r) 6= (µ′, r′) and Hash(ek, µ, r) = Hash(ek, µ′, r′) 6= ⊥.

The Chameleon Hash is said secure if the those three properties hold except with negligible probability over
the random choice of (ek, td)← Gen(n).

B.2 Full Security from Chameleon Hash

Generic Construction of Fully Secure Scheme Let naSS = (KeyGen,Sign,Verif) be a signature scheme,
and CH = (Gen,Hash,Hash−1) be a chameleon hash. We define the following generic construction SS:

• SS.KeyGen(n): Generate (ek, td)← CH.Gen(n) and (pk′, sk′)← naSS.KeyGen(n). Output the key-pair
(pk = (pk′, ek); sk = (sk′, ek))

• SS.Sign(sk, µ): Sample x ← Xn; compute y = CH.Hash(ek, µ, x) and sign y: σ′ = naSS.Sign(sk′, y).
Output the signature σ = (x, σ′)
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• SS.Verif(pk, µ, σ = (x, σ′)): compute y = CH.Hash(ek, µ, x), and check that y 6= ⊥. If the test passes,
run the verification naSS.Verif(pk′, y, σ′).

Theorem 17 (Generic Full security from Chameleon Hash). If naSS is Existentially Unforgeable under
non-adaptive Chosen Message Attack, and CH is a secure Chameleon Hash, then the above construction
SS is Existentially Unforgeable under (adaptive) Chosen Message Attack. More precisely if there exists an
algorithm A against EUF-CMASS that runs in time T , and success with probability ε; then their exists an
adversary SA that runs in time T + poly(n) and succeed with probability at least ε/2−negl(n) either against
EUF-naCMASS or ColResCH.

Remark: This theorem can in fact be generalized to signature scheme naSS that are only Existentially Un-
forgeable under Random Message Attack, if the random message distribution match the output distribution
Xn of the Chameleon Hash CH.

Proof. Let A be an attacker on the scheme SS as above. There can be two types of forgery. The simulator
first guess which type τ ∈ {1, 2} of forgery A will produce.

Type 1: Hash collision. If τ = 1, the simulator S receives an evaluation key ek from CH.Gen(n)
as a challenge to the game ColResCH. He runs (pk, sk) ← naSS.KeyGen(n). The adversary makes Q
adaptive queries for messages µ(i), the simulator answers by: picking a random x(i) ← Xn, computing
y(i) = CH.Hash(ek, µ, x) and returning σ(i) = (x(i), naSS.Sign(sk, µ(i))).

The attacker A then produce a valid forgery (µ, σ = (x, σ′)) with probability ε. If

∃i, (µ, x) 6= (µ(i), x(i)) and CH.Hash(ek, µ, x) = CH.Hash(ek, µ(i), x(i)) = y(i) (1)

then the simulator outputs (µ, x, µ(i), x(i)) as a collision on CH.Hash(ek, ·, ·).

Type 2: Non-Adaptive Forgery. If τ = 2, the simulator S runs (ek, td) ← CH.Gen(n), and generates
q values y(i) ← Yn, and transmits those queries to the EUF-naCMAnaSS challenger. He receives a public
key pk as a EUF-naCMAnaSS challenge, and a signature σ′(i) for each request y(i).

He then interacts with the attackers A; for each signature query µ(i) the simulator use the chameleon
hash trapdoor td to sample x(i) = CH.Hash−1(ek, µ(i), y(i)) and answers with the signature σ(i) = (x(i), σ′(i)).
The attacker A then produce a valid forgery (µ, σ = (x, σ′)) with probability ε. If

∀i, σ′ 6= σ′(i) (2)

then the simulator outputs (µ, σ′) as a forgery to the EUF-naCMAnaSS challenger.

Conclusion. Note that by definition, with probability ε, A outputs a forgery (µ, σ = (x, σ′)) that verifies
either property (1) or (2). Moreover, according to the uniformity and preimage sampling correctness of
the behaviors of the simulation S when τ = 1 and when τ = 2 are statistically indistinguishable from the
adversary A point of view; therefore the simulation makes the correct guess with probability 1/2.

Generalization to schemes naSS secure against Random Message Attacks. Simply note that in
the Type 2 case, the simulator S could receives the x(i) ← Xn from the simulator rather than sampling x(i)

itself.

B.3 Lattice based Chameleon Hash

The parameters are as follows: q = poly(n), k = w = dlog2 qe, σ = ω(
√

log n) s = n · ω(log n); n` is the
length in bits of messages for some ` = O(log n). The underlying distributions are Xn = D2w

R,s and Yn = U1.
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• CH.Gen(n): Sample a uniform matrix A ∈ R1×2w
q together with a G-trapdoor R ∈ Rw×wq : (A,R)←

GenTrap(2w, 1, σ) and a uniform matrix B ∈ R1×`. Out the keys ek = (A,B), td = R.

• CH.Hash(ek,µ ∈ {0, 1}n` ⊂ R`q,x ∈ R2w
q ): Fail if ‖x‖ > s ·

√
2nw : output ⊥. Otherwise, interpret µ

as a vector of R`q whose coefficients are binary polynomials, and output y = B · µ + A · x.

• CH.Hash−1(td,µ ∈ {0, 1}n` ⊂ R`q,y ∈ Rq): Compute u = y−B ·µ. Output x← SampleD(A,R,u, s).

Theorem 18 (Secure Chameleon Hash based on RingSIS). Under a RingSIS assumption, the above Chameleon
Hash is secure. More precisely, it has the uniformity and Preimage Sampling Correctness properties; and if
there exists an algorithm A that succeed against ColResCH in time T with probability ε, then their exists an
algorithm that solves RingSIS(n,w+ `, q, β) for β = Õ(n3/2) in time T + poly(n) and probability ε−negl(n).

Proof. The uniformity property follows from Lemma 7. Preimage Sampling Correctness is exactly the
correctness of algorithm SampleD(A,R,u, s) stated as Theorem 11.

For collision resistance, let [Ā,B] be a RingSIS(n, 2w, q, β) instance. Simulate Gen public key generation
by setting (A,R) ← GenTrap(Ā, 0, σ), and send ek = (B,A). Recall that this sets A = [Ā|Ā · R]. The
adversary outputs (µ, r,µ′, r′) such that B(µ−µ′)+A(r−r′) = 0 but ‖r‖, ‖r′‖ ≤ s

√
m and (µ, r) 6= (µ′, r′).

Splitting r = (r1, r2) and r′ = (r′1, r
′
2) one can rewrite

B(µ− µ′︸ ︷︷ ︸
w1

) + Ā
(
r1 − r′1 + R(r2 − r′2)︸ ︷︷ ︸

w2

)
= 0.

It remains to check that w = [ w1
w2

] is a short non-null vector. Shortness ‖w‖ ≤ β follows from the bound on
s1(R) of Fact 6. Finally, note that r2 = r′2 implies w 6= 0 (otherwise (µ, r) = (µ′, r′)). The remaining case,
r2 6= r′2 implies that R(r2 − r′2), has at least Ω(n) bits of entropy even given ĀR by Corollary 8; therefore,
except with probability negligible in n we indeed have w 6= 0.
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