NREPO:Normal Basis Recomputing with Permuted Operands

Xiaofei Guo*, Debdeep Mukhopadhyay', Chenglu Jin* and Ramesh Karri*
*New York University
{xg243, cj875, rkarri} @nyu.edu
fIndian Institute of Technology Kharagpur
debdeep@cse.iitkgp.ernet.in

Abstract—Hardware implementations of cryptographic algo-
rithms are vulnerable to natural and malicious faults. Con-
current Error Detection (CED) can be used to detect these
faults. We present NREPO, a CED which does not require
redundant computational resources in the design. Therefore,
one can integrate it when computational resources are scarce
or when the redundant resources are difficult to harness for
CED. We integrate NREPO in a low-cost Advanced Encryption
Standard (AES) implementation with 8-bit datapath. We show
that NREPO has 25 and 50 times lower fault miss rate than robust
code and parity, respectively. The area, throughput, and power
are compared with other CEDs on 45nm ASIC. The hardware
overhead of NREPO is 34.9%. The throughput and power are
271.6Mbps and 1579.3. W, respectively. One can also implement
NREPO in other cryptographic algorithms.

I. INTRODUCTION

The Advanced Encryption Standard (AES) is used in a
variety of applications, including smart cards, mobile phones,
sensors, and other embedded systems. The decreasing cost of
VLSI chips and increasing user throughput requirements make
hardware implementation of AES necessary.

In embedded systems such as sensors, medical devices,
and radio frequency identification tags (RFID), cost can be
a significant constraint. To reduce the area and power, 32- or
8-bit instead of 128-bit AES datapath can be implemented [1],
[2]. AES processes each byte with a substitution-box (S-box)
which consumes the largest area [1]. One can reduce the S-box
size by transforming its operations to a composite field with
polynomial basis, normal basis, or mixed bases. The smallest
AES S-boxes use normal basis [3], [4] .

Although AES is difficult to break mathematically, its hard-
ware implementations may contain security vulnerabilities. An
attacker can inject malicious faults into a cryptographic device
and build correlations between the faulty and the correspond-
ing fault-free outputs to extract the key in a short time. This
is known as differential fault analysis (DFA) [5]. DFA has
been shown by injecting transient faults using clock glitches
[6] and by lowering the supply voltage [7]. An attackers may
also inject faults with lasers [8] and electromagnetic pulse [9].

Concurrent error detection (CED) can be used against DFA.
Hardware redundancy duplicates the hardware and detects
faults by comparing the outputs. Time redundancy computes
the input twice on the hardware and compares the results [8].
Information redundancy uses error detecting codes [10]-[12].
Hybrid redundancy uses algorithm properties [13]-[15].

1 [3] has the lowest gate equivalence. [4] has the lowest area for a specific
ASIC library.

Hardware redundancy is not affordable when area is the
limitation. Time redundancy is vulnerable to same faults
injected in both the computation and recomputation [8]. Parity
is low-cost, but provides limited defence against DFA [9].
One example hybrid redundancy [13] has large overhead
if a cipher uses counter mode, output feedback mode, or
cipher feedback mode because only encryption or decryption is
needed [16]. Another example hybrid redundancy [14] shares
hardware between encryption and decryption and interleaves
the encryption and decryption operations in time. But such
sharing is difficult and requires many registers to store results
if the latency of round operations are different.

Recomputing with Permuted Operands (REPO) is another
hybrid redundancy and is effective if the implementation has
several computational resources®. The limitation of REPO is
that if the computation and recomputation are processed by
the same resource, its fault detection capability is the same as
time redundancy which is vulnerable to the same faults in both
the computation and recomputation [16]. Normal basis REPO
(NREPO) overcomes this limitation. While REPO uses byte-
wise permutation, NREPO uses bit-wise permutation. NREPO
is effective even if the hardware only has a single computa-
tional resource. It is useful when computational resources are
scarce or redundant structures are difficult to use for CED.
Our results show that NREPO has much lower fault miss rate
compared to other low-cost schemes.

The paper is organized as follows: Section II introduces the
AES algorithm and normal basis. Section III presents NREPO
and implementation results. Section IV discusses applications
of NREPO. Section V concludes the paper.

II. ADVANCED ENCRYPTION STANDARD

We consider 128-bit AES specified by the National Institute
of Standards and Technology [17]. AES encryption contains
10 nearly identical rounds plus an initial round (round 0). The
data and the key are maintained as 4-by-4 matrices, called
state. The rounds consist of SubBytes (SB), ShiftRows (SR),
MixColumns (MC), and AddRoundKey (ARK)>.

AES uses a polynomial basis in GF(2%) where bits are
coefficients of a polynomial and the irreducible polynomial is
q(z) = 2® + 2* + 23 + 2 + 1. SB uses 16 identical S-boxes
to map each byte of state into another byte independently.
S-box outputs are computed by inverses in GF(2%) and an

2Each byte is recomputed by a different resource.
3In round 0, only ARK is performed and in round 10, MC is not performed.

affine transformation. SR cyclic left shift the second, third,
and fourth row of state by one, two, three bytes, respectively.
MC performs a matrix multiplication. ARK performs XOR
with the state and the round key*. Two steps in the S-box are:
o Inversion: Let ¢ = a~' be the multiplicative inverse in
GF(28) (except if @ = 0 then ¢ = 0).
o Affine Transformation: Then the output is s = Mc & b,
with the constant bit matrix M and byte b shown below:

s7 1 11 1 1000 cr 0
S6 01 1 1 1100 Ce 1
S5 001 1 1110 cs 1
s4] 10 0 0 1 1 1 1 1 C4 0
ss| =11 0001 11 1|]es])0
S 110 0 0 1 1 1 Ca 0
S1 1 11 0 0 0 1 1 c1 1
S0 1 1 1 1 0 0 0 1 Co 1
where bit 7 is the most significant. Let A be one

root of g¢(x); then the standard polynomial basis is
[AT A5 A5 A* A3 A% A, 1]. Since inversion in GF(2%) is
difficult to calculate directly, an element G of GF(2%) can
be represented as a linear polynomial (in y) over GF(2%),
as G = v,y + 7, with multiplication modulo an irreducible
polynomial r(y) = y%+71y+wv. All coefficients are in GF(2%).
So [yn, V] represents G' with a polynomial basis [Y, 1] where
Y is one root of r(y). We can also use the normal basis
[Y'16.Y] using both roots of 7(y). We get:

ry) =y +ry+v=>uy+Y)(y+Y'"

7 =Y + Y16 is the trace and v = (Y)(Y9) is the norm.

Similarly, we represent GF(2*) as linear polynomials (in
z) over GF(22), as v = ['pz+ 1", with multiplication modulo
an irreducible polynomial s(z) = 22 + Rz + M, with all the
coefficients in GF(2?). Again, we could use the normal basis
[Z*, Z]. As above, R is the trace and M is the norm of Z.

Lastly, we represent G'F'(22) as linear polynomial in w over
GF(2), as T = gpw + ¢g;, with multiplication modulo t(w) =
w?+w+1, where g;, and g; are single bits. This uses a normal
basis [W?2, W] with W one root of #(w).

We can convert GF(28) operations to GF(2%) operations,

which are expressed in GF(2?) operations®.

ITIT. REPO IN COMPOSITE FIELD
A. Permutation Property in Normal Basis Arithmetic

It is known that normal basis multiplicative inversion and
multiplication in GF(2%™) exhibit a cyclic property [4]. The
authors use it to perform area optimizations for S-box. We
utilize this property to develop a permutation for CED to
protect AES against random faults and fault attacks. We give
a formal proof of the permutation property.

Theorem 1: 1f the elements a and b of GF(2?™) are
represented in a normal basis, it can be represented as (ay,, a;)
and (by,, by), respectively. aj, and by, have the first m bits, while

4Round key generation includes S-box computations, word rotations, and
XOR operations performed on the encryption key.
3 Addition is XOR in these fields.

a; and b; have the second m bits. Permutation P exists such
that the following multiplication hold true:

(ah,al)(bh,bl) :P(P(ah,al)P(bh,bl)) (D

The permutation is P(ap, a;) = (ar, ap).

Proof: Let (ap,a;) and (by, b;) be the coordinates of two
elements of GF(22™). Let T = v® + v and N = v°v be the
trace and norm of v, where v is an element of GF(2%™) and
e = 2™, Then {v® v} is a normal basis of GF(2?™).

The product c,v® + v is:
= (apv® + ajv)(bpv® + byv)
= ahthZE + (ahbl + albh)veﬂ + albl’U2
= ahbh(T’l}e + N) + (ahbl + albh)veH + albl(Tv + N)
= apbpTv® + (ah + al)(bh + bl)NT_l(’Ue + ’U) + (alblT)v
= (ahth + (ah + al)(bh + bl)NTil)’Ue
+ (et T + (ap + a;)(by, + bl)NTil)v
Therefore, we get:
cn = apbp T + (an + ap)(by + b)) NT ™!)
e = aiT + (ap + ap)(by + b)) NT ! 3)
If we permute (ap,a;) and (b, b;), we get
P(a;“ al)P(b;“ bl) = (alve + CLh’U)(blUE + bh'l})
= C;L =T + (ah + al)(bh + bl)NT_l =
=4 C; = apbpT + ((lh + al)(bh + bl)NT71 =cp
< (an, a)(bn, bi) = P(P(an, a)P(bp, br))

“4)

|
Theorem 2: The same permutation in Theorem 1 makes the
following hold true:

(an,a1)~" = P((P(an,a))"") 5)

Proof: Let (ap,a;) be the coordinates of an element
of GF(22™). The inverse element (dj, d;) has the following

property:
1 = (apv® + av)(dpv® + dv)

= apdpv®® + (ardp, + ahdl)veJrl + a;dv?

= apdp(Tv® + N) + (a;dp, + apd;)N + aydi(Tv + N)
andyTve + aydyTv + [(an + ap)(dp + d)) N]T~*(v¢ +v)
((andnT + (an + a;)(dp + d)NT 1o+
(aydyT + (an, + a;)(dp, + d))NT Yo = T71(v° 4+ v)

Therefore we have:
71 = ((ahth + (ah + al)(dh + dl)NTil)
71 = ((adiT + (ap, + a;)(dp + dl)NTfl)
Solving the above equation, we get:
dn, = (apaT? + (a2 + a})N) 'y (6)
d; = (apayT? + (a} + a?)N) " tay, @)
If we permute (ap,a;), we get

(dy,dy) = (Plan, @)™ = (as,an) ™"

(} UO!lJUnj] (; UO!lOUan

Fig. 1: Upper left: function f is protected by NREPO. P is the permutation. The modules in green are used in NREPO. Bottom
left: NREPO and NREPO with DDR. Right: 8-bit AES is protected by NREPO. The SB, SR, MC, and ARK are shown in the
dotted boxes. The mux in green shows the added NREPO protections. The duplicated registers are not shown.

dy, = ((anatT? + (a} + a})N)Vay, = d;
d; = ((apaT? + (a} + af)N) Vay = dy,
& P((P(an, @)™ ") = (an,a) ™"

|

Theorems 1 and 2 show such permutation holds in SB

and MC with normal basis multiplication and inversion. Such

permutation also holds for SR and ARK since the former is
wire permutation and the latter is bit operation.

B. NREPO Architecture

The NREPO architecture is shown in Fig. 1. An NREPO
example is on the upper left. Let the input of function f be X.
The permuted input is Pz. In the normal clock cycle, the input
is computed by f and stored in a register. In the check clock
cycle, the input is permuted and computed by f. Then, the
output is inverse permuted and checked with the value in the
register. The wire that connects to the checking circuit is C'y.
The green modules are the redundant circuits. f can be any
byte-wise round operations in the AES. For S-box, there is an
affine transformation after the inversion. Thus we connect the
inversion to the affine transformation and the permuted affine
transformation. Then we select the outputs from a mux.

C. Integrate NREPO in low-cost AES

Our baseline architecture is the compact ASIC implemen-
tation in [2]. In this architecture, the sequence of the SR
and the SB operations are switched without affecting the
AES functionality, and all the paths are 8-bit wide. On the
right side in Fig. 1, we integrate NREPO into this low-cost
AES implementation. The SB has an S-box. The SR are
implemented as shift registers. We convert the MC into normal

basis and it contains two constant multipliers® and several
XOR gates. ARK contains XOR gates. The key expansion
contains an S-box, shift registers, and XOR gates. To simplify
the diagram, we did not show all the redundant hardware such
as the details of the checking hardware.

Pz (1 <z <6) shows the permuted inputs. Cy (1 <y <
7) shows the outputs that connect to the checking circuits.
All combinational circuits are protected by NREPO. Since the
CED computation is independent from the original computa-
tion, we employ the double-data-rate (DDR) [18] to improve
the throughput of our technique. As shown on the bottom
left in Fig. 1, the registers connected to the combinational
logic directly are duplicated and share the same computation
units. The duplicated registers are triggered by the negative
edge. All the permuted inputs are selected at the same clock
cycle. The plaintext and key are fed at data_in and key_in
one byte per clock cycle and they propagate through shift
registers in the first four clock cycles. When the fourth clock
cycle rising edge comes, the first plaintext and key bytes are
XORed by ARKI1. The permuted input from the P1 and P2
are processed by duplicated XORed gates and the results are
compared with the ARKI result at C'1. We did not compute
the permuted data on the original XORs because duplication
has less hardware overhead for simple XOR gates. Then the
plaintext bytes propagate through SR. At the input of SB, the
data can be permuted. The redundant computation results are
compared at C2, C3, C4, and C5 to check faults in MC and
SB. The permuted data is computed by the S-box through
P4 in the key expansion. P5 and P6 are added to protect
XOR gates in key expansion and ARK2. Rcon are wires with

©The original constants {02} and {03} in polynomial basis correspond to
{A9} and {56} in the chosen normal basis.

02
0.5/ st e ciiene)5 \\::"'-"' """ S VAR . - Parity 1 [10]] 025 \\
o -~ Parity L [10]] = Parity 1 [10]]| ,0.15 ~ Robustcoder— 7y -~ Parity 1 [10]
=04 - Parity 2[11]] 504 - Parity 2 [11]]| E RREFO £ 0270 = Robustcode| |
2 - o 2 —Robustcode|| 2 [TN_ _ ——~— % Y - —
203 —NREPO _ H 403 ZRREPO HE 0.1 == == ——= F0.15—%
e £ g e - E .
o2~ S02C S~_——1F Z 01 AN
. = 0,05 =0 N
0.1 0.1 0.0 S <
% 20 0 0 GyT————¢—5 5 0 2 40 60 0 R S SR E
Number of injections (x10°) Number of faulty bits Number of injections (xlOB) Number of faulty bits
(@ (b) (© (d)

Fig. 2: Simulation results of burst faults show that the FMR of NREPO is superior to that of the parity [10], [11] and robust
code [12]. (a) FMR in SB (b) FMR in SB classified by the number of faulty bits (c) FMR in MC and ARK (d) FMR in MC

and ARK classified by the number of faulty bits.

- - Parity 1 [10] 0.25 . " 0.5y
05 A o= - 0.5 - Parity 2 [11] N N =<~) -~ Parity 1 [10]]
- - Parity 1 [10]{ |~ Robust code Y 0.2/ = 0.4+ — Robust code[—|

204 Parity 1 [11]] 04— NREPO R M NNT Parity [0 | o |\ —NREPO | |
N Coranty £04 \ g P — Robust code s \
2 — Robustcodef{ « [20.15H - 1 203
2 % 2 NREPO 2 T
£0.3 b= — NREP 203 kY g — = \
= e T e = o Z \\ o T S = EOZ \
E] 5 NSNS =~ —~ = 01~ =0.
Fu2 Fym S e

01 e 0.1 —— 0.054 0.1P = ~_

S L L L — t L ~ N SN~~~ _
025 50 75 100 50 G s 0 5 0 5 0 5 1% D T I T
Number of injections (x107) Number of faulty bits Number of injections (xlOS) Number of faulty bits
(@) (b) © (d)

Fig. 3: Simulation results of random faults show that the FMR of NREPO is superior to that of the parity [10], [11] and robust
code [12]. (a) FMR in SB (b) FMR in SB classified by the number of faulty bits (c) FMR in MC and ARK (d) FMR in MC

and ARK classified by the number of faulty bits.

constant values and are also duplicated with a permuted one.
The data permuted at P3, P4, and P5 are compared at C'7
after processed by two S-boxes and XOR gates.

D. Fault Analysis
Fault miss rate (FMR) is calculated as:

Tun etecte
FMR =1 — fault coverage = detected

Ttotal - Tcor'r‘ect
where T, detecteq 18 the number of tests in which faults are
excited but not detected. T}, is the total number of tests
we applied. Tiorrect represents the tests in which the faults
are not excited. We simulated multiple bit faults for NREPO
and compared the FMR with parity 1 [10], parity 2 [11], and
robust code [12]. We use burst and random fault models, and
these models cover both natural faults and fault attacks [18].
Burst faults occur at the 8-bit operation input or output
in the AES encryption. This includes both bit set and reset
faults. The size, location, and type of the burst are randomly
generated. The simulation results of the AES encryption are
shown in Fig. 2. The dot-dash line respresents the FMR of
parity 1 [10]. The dotted line represents the FMR of parity
2 [11] in the AES S-box’. The dash line represents the FMR
of robust code in [12]. The solid line represents the FMR of
NREPO. We analyze the FMR of SB and that of MC and ARK

"This scheme is for the S-box and we compare the one for normal basis.

separately. Since none of the four techniques are designed for
the shift registers in SR, one needs to apply other techniques
such as time redundancy. Thus we consider the FMR for SR
are the same for all four techniques. For SB, we injected
60,000 burst faults at the operation inputs and outputs. As
shown in Fig. 2(a), the FMR for [10], [11], and [12] is around
0.5, 0.5, and 0.25, respectively. The FMR of NREPO is around
0.01; a reduction of 25 to 50 times. Fig. 2(b) shows a detailed
analysis when we inject a specific number of faulty bits. The
FMR of [10], [11], and [12] are 25 to 50 times of that of
NREPO. For MC and ARK, we did similar experiments as
illustrated in Fig. 2(c) and Fig. 2(d). The FMR of NREPO is
superior than that of [10] and [12]. When the number of faulty
bits increases in Fig. 2(d), the FMR of [10] and [12] are close
to each other and close to NREPO. Both [10] and [12] protect
the MC and ARK by XORing the result of the four state bytes
in a column before MC, the corresponding four bytes of the
key, and the corresponding four bytes of the output.

Random faults are injected at random locations, i.e., any
wire inside the netlist. We injected 150,000 random faults. Fig.
3(a) shows the FMR for the four schemes. The FMR of [10]
and [12] are similar to the burst fault results. The FMR of [11]
is 0.1 and is lower than that of the burst fault, because this
parity technique divides the S-box into five logic levels and
implements a parity bit for each level. Thus, a 2-bit fault can
also be detected if each bit appears at a different logic level.

TABLE I: CED implementations on 45nm ASIC [22]. a.
hardware redundancy b. MC and ARK are protected by
the parity scheme in [11] c. robust code

Scheme Gates Freq. Thro. Power(uW)
(overhead) | (MHz) | (Mbps) | (overhead)
Original 1,125 628 314.2 1,058.7
a 2,184 2,476.5
H.W. (94.1%) 584 292.2 (134.0%)
1,850 2,282.4
DDR [18] (64.4%) 609 304.5 (115.5%)
. 1,255 1,328.3
Parity 1 [10] (11.6%) 628 3184 (25.5%)
. b 1257 1427.9
Parity 2 [11] (11.7%) 652 326.4 (34.9%)
c 1,367 1,594.1
Rob. [12] (21.5%) 577 288.6 (50.6%)
1,534 1917.2
REPO [16] (36.4%) 607 303.7 (81.1%)
1,517 1,579.3
NREPO (34.9%) 543 271.6 (49.1%)

Fig. 3(b) shows the FMR of a specific number of faulty bits.
The FMR of NREPO is between 0.008 and 0.18, while that of
[10] and [12] are around 0.5 and 0.25, respectively. The FMR
of MC and ARK are shown in Fig. 3(c) and 3(d).

E. Security Analysis against DFA

Low-cost fault attack either manipulates the clock or the
power supply [19]. By lowering the supply voltage or increas-
ing the clock frequency, the critical path should fail first. This
is either caused by the slower rising time of gates or the setup
time violation of the flip flop. NREPO protects combinational
logics and registers that connect to them with the permutation
property. Since this low-cost AES implementation has shift
registers, an attacker may target the registers using other
more costly injection methods such as laser or electromagnetic
wave. In this case, the designer can add protection to registers
using the DDR technique [18].

The FMR for NREPO is around 0.01 for byte faults which
most DFA uses [20], [21]. An attacker can try 100 fault
injections to obtain a single byte fault and thus extract the
secret key. However, the designer can set a threshold counter
to record the number of fault detections, and the circuit fires
a command to erase the key if the threshold is reached.
Compared to to parity and robust code, NREPO gives a much
improved protection. Compared to time redundancy and REPO
which cannot detect faults that last for both the computation
and recomputation, the FMR of NREPO is 0.025 when such
faults are injected.

F. Implementation

The results are shown in Table I. We implement 8-bit
architecture and our S-box is the same as [3]. Hardware
redundancy, DDR [18], parity [10], [11], robust code [12],
REPO [16], and NREPO are compared. The metrics include
(1) the number of gates, (2) gate overhead (ratio of the number
of gates for CEDs over that for AES), (3) clock frequency, (4)

REPO SO S4 S8 S12

compure 57 58] B8 58

NREPO SO S4 S8 S12

compute _[56) 58] B8 5

recompute S12 SO S4 S8 recompute pgq P(S4)p(sg)P(512)
5o B8 88l 59 (58] B8 [

(a) (b)

SO S4 S8 S12

REPO SO S4 S8 S12 NREPO
~—\ // ~\ //
compute compute
P(S0) 554\ P(S8)
recompute S12 SO S4 S8 recompute P(s12) P(54)
~N K \\4 //

© (d)

Fig. 4: A comparison between REPO and NREPO (a) REPO
in 128-bit datapath (b) NREPO in 128-bit datapath (c) REPO
in 8-bit datapath (d) NREPO in 8-bit datapath

throughput, (5) power, and (6) power overhead (ratio of power
consumption for CED schemes over that for AES).

The hardware overhead of NREPO is much lower than that
of hardware redundancy. This overhead mainly comes from
the normal basis implementation of MC and the extra muxes.
The DDR technique has much higher hardware and power
overhead than NREPO because all registers are duplicated
and extra muxes are added. Although NREPO also uses DDR
technique, it only duplicates the registers that are directly
connected to the combinational logic. [10] uses one bit for
each byte, but the FMR is 50 times of that of NREPO.
Although NREPO has slightly higher hardware overhead than
[12], the FMR is 25 times lower than it. Since [11] only
protects the S-box, we implement the protection of MC and
ARK in [10]. Although [11] uses five parity bits for the S-box,
the hardware overhead is 11.7% and is close to [10]. While
it is low cost, the FMR for burst fault is 50 times of that of
NREPO. [12] has around 21.5% hardware overhead and 50.6%
power overhead. Althought the FMR of robust code is lower
than parity in most cases, it is much higher than NREPO. The
hardware overhead of REPO is slightly higher than NREPO
and the power overhead is larger because REPO adds registers
to store the intermediate values so that it can shift the column
order and recompute.

IV. DISCUSSION
A. What is the difference between NREPO and REPO?

The key difference is that REPO has the same fault detec-
tion capability when only a single computational resource is
available. We show four of 16 S-boxes in a 128-bit datapath
AES with REPO in Fig. 4(a). S0, S4, S8, and S12 are the
bytes in the first row of the state.They are byte-wise permuted
and recomputed on different S-boxes. In Fig. 4(b), NREPO
bit-wise permutes each byte and recomputes the bytes on the
same S-box. In Fig. 4(c), only one S-box is present in an

8-bit datapath AES. Although the byte order is permuted in
recomputation, the bytes are computed by the same S-box.
Therefore, REPO cannot detect faults that last during the
computation and recomputation. Even if there is only one S-
box, each byte is bit-wise permuted and recomputed on the
same S-box in Fig. 4(d). NREPO has 0.025 FMR for those
faults that last for both the computation and recomputation.

B. Can one use NREPO in 32-bit or 128-bit AES datapath?

NREPO has low FMR and area overhead in 8-bit AES
implementation. The property NREPO uses still hold in 32-
bit and 128-bit datapaths. We recommend REPO for 128-
bit datapath since it detects all single byte faults [16]. We
recommend the scheme in [8] for 32-bit datapath since its data
in the computation and recomputation are done in different
modules, which yields a lower FMR than NREPO.

C. Can one use NREPO in the AES decryption?

One can use NREPO in the AES decryption. Although AES
decryption uses InvSubBytes and InvMixColumns, InvSub-
Bytes contains the inversion and affine transformation and In-
vMixColumns can be converted to normal basis multiplication.

D. Can one combine NREPO with other CED techniques to
achieve stronger fault resilience?

NREPO is a technique that exploits the algorithmic property.
As we have shown, one can combine it with DDR to boost the
throughput. One can also implement parity along with NREPO
to achieve even lower FMR but without modifying the parity
scheme since the permutation does not change the parity of
the byte. Most notably, one can also combine NREPO with
REPO to reduce the FMR of REPO in the 128-bit datapath.

E. Can one use NREPO in other cryptographic algorithms?

NREPO uses the permutation property in normal basis
multiplication and inversion. Theorem 1 and 2 show that any
GF(22™) has such property. Block ciphers such as Camellia
[23] and Clefia [24], stream ciphers such as LEX [25], hash
functions such as Grgstl [26] can all integrate NREPO.

V. CONCLUSION

NREPO uses the permutation property in normal basis
arithmetic. We integrate NREPO into the AES circuit, and
evaluated its performance using a 45nm ASIC library. The
throughput of NREPO can be enhanced by DDR. The FMR
is 25 to 50 times lower than parity and robust code. NREPO
is a fine-grained CED primitives that one can use for normal
basis multiplication and inversion. It is particularly suited
for implementations in which the computation resources are
scarce or it is difficult to use redundant resources.

ACKNOWLEDGMENT

This material is based upon work supported by the NSF
CNS program under grant 0831349.

[1]
[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

(10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

[18]

[19]

[20]

[21]

(22]
[23]

[24]
[25]

[26]

REFERENCES

T. Good and M. Benaissa, “AES on FPGA from the fastest to the
smallest,” In Proc. CHES, pp. 427-440, 2005.

P. Hiamilédinen, T. Alho, M. Hénnikidinen, and T. Himéldinen, “Design
and implementation of low-area and low-power AES encryption hard-
ware core,” In Proc. IEEE Euromicro Conf. on Digital System Design,
pp. 577-583, 2006.

D. Canright, “A Very Compact Rijndael S-box,” Technical Report NPS-
MA-04-001, 2004.

S. Nikova, V. Rijmen, and M. Schliffer, “Using normal bases for
compact hardware implementations of the AES s-box,” In Proc. Security
and Cryptography for Networks, pp. 236245, 2008.

A. Barenghi, L. Breveglieri, I. Koren, and D. Naccache, “Fault injection
attacks on cryptographic devices: Theory, practice, and countermea-
sures,” Proceedings of the IEEE, vol. 100, no. 11, pp. 3056-3076, 2012.
M. Agoyan, J.-M. Dutertre, D. Naccache, B. Robisson, and A. Tria,
“When clocks fail: On critical paths and clock faults,” In Proc. CARDIS,
pp. 182-193, 2010.

F. Khelil, M. Hamdi, S. Guilley, J. L. Danger, and N. Selmane,
“Fault analysis attack on an aes fpga implementation,” In Proc. New
Technologies, Mobility and Security, pp. 1-5, 2008.

G. Canivet, P. Maistri, R. Leveugle, J. Clédiere, F. Valette, and M. Re-
naudin, “Glitch and laser fault attacks onto a secure aes implementation
on a sram-based fpga,” J. Cryptology, vol. 24, 2011.

A. Dehbaoui, J. Dutertre, B. Robisson, and A. Tria, “Electromagnetic
transient faults injection on a hardware and a software implementations
of AES,” In Proc. IEEE FDTC, pp. 7-15, 2012.

M. Mozaffari-Kermani and A. Reyhani-Masoleh, “Concurrent structure-
independent fault detection schemes for the Advanced Encryption Stan-
dard,” IEEE Trans. Computers, vol. 59, no. 5, pp. 608-622, 2010.

M. Mozaffari-Kermani and A. Reyhani-Masoleh, “A lightweight high-
performance fault detection scheme for the Advanced Encryption Stan-
dard using composite field,” IEEE Trans. VLSI, vol. 19, no. 1, pp. 85-91,
2011.

K. J. Kulikowski, M. G. Karpovsky, and E. Taubin, “Robust codes for
fault attack resistant cryptographic hardware,” In Proc. IEEE FDTC, pp.
1-12, 2005.

R. Karri, K. Wu, P. Mishra, and Y. Kim, “Concurrent error detection
schemes of fault based side-channel cryptanalysis of symmetric block
ciphers,” IEEE Trans. CAD, vol. 21, no. 12, pp. 1509-1517, 2002.

A. Satoh, T. Sugawara, N. Homma, and T. Aoki, “High-performance
concurrent error detection scheme for AES hardware,” In Proc. CHES,
pp. 100-112, 2008.

X. Guo and R. Karri, “Invariance-based Concurrent Error Detection for
Advanced Encryption Standard,” In Proc. DAC, pp. 573-578, 2012.

X. Guo and R. Karri, “Recomputing with permuted operands: A con-
current error detection approach,” IEEE Trans. CAD, vol. 32, no. 10,
pp. 1595-1608, 2013.

National Institute of Stardards and Technology (NIST), “Ad-
vanced Encryption Standard (AES),” http://csrc.nist.gov/publications/
fips/fips197/fips-197.pdf, Nov 2001.

P. Maistri and R. Leveugle, “Double-data-rate computation as a counter-
measure against fault analysis,” IEEE Trans. Computers, vol. 57, no. 11,
pp- 1528-1539, Nov 2008.

D. Karaklaji¢, J.-M. Schmidt, and I. Verbauwhede, “Hardware designer’s
guide to fault attacks,” IEEE Trans. VLSI, vol. 21, no. 12, pp. 2295-
2306, 2013.

S. Ali, D. Mukhopadhyay, and M. Tunstall, “Differential fault analysis
of AES: Towards reaching its limits,” J. Crypto. Engineering, pp. 1-25,
2012.

X. Guo, D. Mukhopadhyay, and R. Karri, “Provably secure concurrent
error detection against differential fault analysis,” Cryptology ePrint
Archive, Report 2012/552, 2012, http://eprint.iacr.org/.

“Predicative Technology Model,” http://ptm.asu.edu/.

K. Aoki, T. Ichikawa, M. Kanda, M. Matsui, S. Moriai, J. Nakajima, and
T. Tokita, “Camellia: A 128-bit block cipher suitable for multiple plat-
forms - design and analysis,” In Proc. Selected Areas in Cryptography,
pp- 39-56, 2001.

Sony Corporation, “The 128-bit blockcipher clefia: Algorithm specifi-
cation,” http://www.sony.net/Products/clefia, 2007.

A. Biryukov, “The design of a stream cipher lex,” In Proc. Selected
Areas in Cryptography, pp. 67-75, 2007.

P. Gauravaram, L. R. Knudsen, K. Matusiewicz, F. Mendel, C. Rech-
berger, M. Schliffer, and S. S. Thomsen, “Grgstl-a sha-3 candidate,”
http://www.groestl.info/Groestl.pdf, 2011.

