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Abstract. We provide the first provable-security analysis of the Intel Secure Key hardware RNG
(ISK-RNG), versions of which have appeared in Intel processors since late 2011. To model the ISK-
RNG, we generalize the PRNG-with-inputs primitive, introduced Dodis et al. introduced at CCS’13
for their /dev/[u]random analysis. The concrete security bounds we uncover tell a mixed story. We
find that ISK-RNG lacks backward-security altogether, and that the forward-security bound for the
“truly random” bits fetched by the RDSEED instruction is potentially worrisome. On the other hand, we
are able to prove stronger forward-security bounds for the pseudorandom bits fetched by the RDRAND

instruction. En route to these results, our main technical efforts focus on the way in which ISK-RNG
employs CBCMAC as an entropy extractor.
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1 Introduction

In late 2011, Intel began production Ivy Bridge architecture processors, which introduced a new
pseudorandom number generator (PRNG), fully implemented in hardware. Access to this PRNG is
through the RDRAND instruction (pronounced “read rand”), and benchmarks demonstrate a through-
put of over 500 MB/s on a quad-core Ivy Bridge processor [8]. The forthcoming Broadwell architec-
ture will also support an additional instruction, RDSEED (“read seed”), which delivers true random
bits, as opposed to cryptographically pseudorandom ones. Both RDRAND and RDSEED fall under the
Intel Secure Key umbrella, so we will refer to the new hardware as the ISK-RNG [9].

ConditionerHealth Test

DRBG

ES

Entropy source
Deterministic random
bit generator

ES: 
DRBG: 

RDRANDRDRAND

RDSEED

Fig. 1. Overview of Intel’s hardware PRNG.

The ISK-RNG has received a third-party lab
evaluation [7], commissioned by Intel, but has yet
to receive an academic, provable-security treatment
along the lines of that given the /dev/random and
/dev/urandom software RNGs by a line of papers
[6,1,5]. We provide such a treatment.

Our abstract model for the ISK-RNG is that of a
PRNG-with-input (PWI), established by Barak and
Halevi [1] and extended by Dodis et al. [5]. To better
capture important design features of the ISK-RNG
we make several improvements to the PWI abstrac-
tion, which have significant knock-on effects for the
associated security notions. Our results establish the
security of the ISK-RNG relative to these notions.
Doing so requires careful analysis of the security of the underlying components. Our findings are
mixed, suggesting that RDSEED may not be as secure as one might hope, but with stronger results
for RDRAND.

The ISK-RNG architecture. At a high-level, the ISK-RNG consists of four main components, as
shown in Figure 1. At the heart is the hardware entropy source, which provides entropic bits at 3GHz
to a 256-bit raw-sample buffer. This buffer is subjected to a battery of health tests, whose job is to
infer information about the quality of bits provided by the source and, more generally, about the
quality of RDRAND and RDSEED outputs. The buffer is then passed to a conditioner (i.e. an entropy
extractor), whose job is to turn the raw, high min-entropy bits provided by the source into bitstrings
that are close to uniform. These uniform bitstrings are then expanded by a deterministic PRNG,
providing a high-speed source of computationally uniform bits. Calls to the RDRAND instruction will
read from these bits, whereas calls to RDSEED will read from the conditioner output.

Modeling the ISK-RNG. The first step in our analysis of the ISK-RNG is to develop an appropriate
model of it. We take as our starting point the the pseudorandom number generator with input (PWI)
primitive, formalized by Dodis, Pointcheval, Ruhault, Vergniaud and Wichs [5] (hereafter DPRVW)
as a model for /dev/[u]random. At a high level, a PWI surfaces three algorithms: one to initialize
the internal state of primitive, one that turns the current state into (a new state and) an output for
use by calling applications, and one that updates the state as a function of an externally provided
input. Exposing an external input captures the practical situation in which PRNG outputs may
depend up upon external sources of (assumed) entropy.
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One contribution of this paper is to generalize the PWI abstraction in ways that better capture
the ISK-RNG. These include allowances for:

1. Non-uniform PWI state: Real-world PRNGs like ISK-RNG have internal state that is is not
properly modeled as being uniformly random; for example, because it contains counters or fixed
strings. DPRVW made progress in abandoning the restrictions of prior works, whose security notions
mandate that the internal state be indistinguishable from a uniformly random one. However, they
do not go far enough, as they still assume the PWI is initialized with a uniform random state.
This leads to problems: one can construct a PWI that is provably “forward-secure” in the sense
defined by DPRVW, but is clearly not forward-secure in the commonly accepted sense. Conversely,
there are PWIs that seemingly should be considered forward-secure, but are not under the DPRVW
definition. We provide examples in Appendix A.

2. Realistic initialization: Relatedly, the current PWI formalism cannot model setup procedures,
such as those used by the ISK-RNG.

3. Multiple external interfaces: the ISK-RNG API exposes two interfaces that depend on the same
state, namely RDRAND and RDSEED. Hence the model should reflect this. We note that ISK-RNG
isn’t unique in this regard: /dev/random and /dev/urandom also share some state [11], and so
generalizing the PWI model to allow multiple interfaces is a necessary prerequisite to establishing
any positive results there.

4. Blocking behavior: the ISK-RNG and other real-world RNGs (e.g. /dev/random) block when
their tests suggest that they have not accumulated sufficient entropy to generate random numbers
securely. Capturing this behavior allows us to ensure that this mechanism cannot inadvertently
compromise security. We briefly discuss the related issue of availability in Appendix D.

To deal with non-uniform state, we will introduce an analytical tool called a masking function.
Loosely speaking, a masking function M is a tool for specifying what the “ideal” version M(S)
of any given PWI state S would be. This allows us to give general results about PWI security
(e.g. what can be achieved when the state is ideal), yet admits per-scheme specification of what
“ideal” means. We define masking functions, and incorporate them into the security notion given
by DPRVW in such a way that their results can be quickly lifted to our setting. Masking functions
also allow us to frame an appropriate definition for secure initialization.

Summary of security findings. We consider security of the ISK-RNG relative to four PWI-security
notions, adopted (with modifications) from DPRVW, each of which considers the entropy source as
potentially adversarial: resilience, the apparent randomness of RDRAND and RDSEED outputs; forward
security, the apparent randomness of previous RDRAND and RDSEED outputs once the PWI state is
revealed; backward security, the apparent randomness of future RDRAND and RDSEED outputs from
a corrupted PWI state; and robustness, the apparent randomness of RDRAND and RDSEED outputs
when state observation and corruption may happen at arbitrary times.

We prove ISK-RNG’s forward security under assumptions well-motiviated by the hardware.
The concrete bounds, however, are somewhat disappointing. The limiting factor here is the entropy
extractor, which computes CBCMAC over the entropic bits. Even in the random permtuation
model, the best known results for CBCMAC in this role can only guarantee its outputs are a
statistical distance of 2−64 from uniform. This would be fine for a modest number of invocations,
but a hybrid factor quickly pulls it away from a reasonable security level (e.g., 2−40 or 2−30).
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As a result, we can prove stronger bounds when RDSEED (which directly reads extractor outputs)
is not required to return random bits. The interpretation here is that RDRAND (alone) delivers
pseudorandom bits with a strong security bound even if an adversary has access to both RDRAND

and RDSEED. This latter result also has the benefit of applying to Ivy Bridge chips, where RDSEED

is unavailable.
However, ISK-RNG lacks backwards security, and hence lacks robustness, as well. This results

from a combination of its power-saving and output-buffering features: outputs are buffered to reduce
latency, and the entropy source is turned off when the buffers are full. As a result, buffered outputs
and future DRBG seeds can be predicted following a state compromise — even if the system would
otherwise have had time to gather fresh entropy and overwrite stagnant buffers. That being said,
the fact that ISK-RNG is implemented in hardware makes this particular attack vector appear
unlikely. Moreover, we prove that although such attackers will inevitably succeed in predicting a
non-trivial amount of future outputs, ISK-RNG eventually recovers from such compromises.

Analyzing the ISK-RNG entropy extractor. Two core technical results of the paper are concerned
with analyzing the ISK-RNG entropy extractor, which employs CBC-MAC over AES-128, using the
fixed string AES0(1) as the AES key. Although Intel documents [13] appeal to a CRYPTO’02 paper
by Dodis, Gennaro, H̊astad and Krawcyzk [4] for support, this direct appeal is not well founded.
There are significant technical obstacles to overcome before these CBC-MAC results can be applied.
For example, because extractor-dependent state is maintained across extractions (including state
revealed to the adversary by RDSEED), a crucial “seed independence” assumption is violated. We
discuss and resolve these issues in Section 4.

Discussion of the attack model. The DPRVW syntax and security notions, which we take as our
starting point, assume a strongly adversarial operating environment. They treat the entropy source
as adversarial (although not pathologically bad), and allow attackers to observe, even corrupt, the
full internal state of the PWI. One might argue that these choices are inappropriate in the case of
ISK-RNG. After all, the entire RNG is implemented in 22-32nm hardware, so direct observation of
the internal state should require the use of expensive and highly technical equipment, e.g. a state
of the art scanning/tunnelling electron microscope. In addition, Intel material [13] states that the
entire RNG shuts down when it detects that the physical operating environment (e.g. temperature)
has moved outside of an allowed range.

We are sympathetic to this argument, but still find value in adopting the strong attack model.
Even if the entropy source is beyond attacker influence, treating it as adversarial allows us emphasize
the minimal assumptions required of it. Moreover, the model allows us to explore the limits of
ISK-RNG’s security, providing analysis of less pessimistic settings (i.e. resilience security) as a
byproduct.

Summary of contributions. We make important refinements to the DPRVW PWI model, bringing
it more in line with real-world constructions. Specifically, we generalize the model to include PWIs
with non-uniform state, explicitly model initialization procedures (permitting us to formulate ap-
propriate security notions), and allow for both multiple interfaces and blocking. We then map the
ISK-RNG into the new model, and give the first provable-security analysis its properties. From a
technical perspective, our analysis requires a careful consideration of ISK-RNG’s conditioner, so
as to avoid pitfalls that prevent straight-forward application of existing results from the entropy-
extraction literature. Our analysis exposes ISK-RNG’s lack of backward security, and provides a
nuanced discussion of ISK-RNG’s forward security.
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2 Preliminaries

Notation. We denote the set of all n-bit strings as {0, 1}n, and the set of all (finite) binary strings
as {0, 1}∗. Given x, y ∈ {0, 1}∗, both xy and x ‖ y denote their concatenation, and |x| is the length
of x. If |x| = |y|, x⊕ y is the bitwise XOR of x and y. The symbol ε denotes the empty string. The
set Perm (n) denotes the set of permutations on {0, 1}n.

When S is a finite set, we assume that it is equipped with the uniform distribution unless

otherwise specified. For any distribution S, the notation X
$←−S indicates X is a random variable

sampled from S. Similarly, if F is a randomized algorithm, X
$←− F(x1, . . . , xn) means that X is

sampled from the distribution induced by providing F with the indicated arguments. An adversary A
is a randomized algorithm, and we adopt the shorthand A⇒ y to mean that when its execution
halts, it outputs y. When an algorithm P is provided oracle (black-box, unit-time) access to an
algorithm Q, we write PQ.

Entropy and Sources. If X and X ′ are random variables, then the statistical distance between them
is ∆(X,X ′) = 1

2

∑
x |Pr [X = x ]− Pr [X ′ = x ] |, where the sum is over the union of the supports

of X and X ′. The min-entropy of X is H∞ (X) = −maxx (log Pr [X = x ]), and the worst-case
min-entropy of X conditioned X ′ is H∞ (X | X ′) = − log

(
maxx,x′ Pr [X = x | X ′ = x′ ]

)
. When

X is a random variable and E is some event, we denote by X|E the random variable X conditioned
on E ; i.e., for any x in the support of X, Pr [ X|E = x ] = Pr [X = x | E ].

An entropy source D is a randomized algorithm that, on input a state string σ ∈ {0, 1}∗, samples

a tuple (σ′, I, γ, z) ∈ {0, 1}∗ × {0, 1}p × R≥0 × {0, 1}∗. Let (σi, Ii, γi, zi)
$←−D(σi−1) be a sequence

of samples, where σ0 = ε, and i = 1, . . . , qD for some integer qD. We say that entropy source D is
legitimate if H∞(Ij | (Ii, zi, γi)i 6=j) ≥ γj . In this paper, we assume all entropy sources are legitimate.

In this definition, σ, σ′ ∈ {0, 1}∗ represent the current and new states for D, respectively. The
string I ∈ {0, 1}p is what will be to be fed as input to the PWI, and should provide fresh entropy.
The quantity γ ∈ R≥0 is an estimate for the amount of entropy contained in I. We note that γ
is strictly a convenient book-keeping device in our PWI model, and is not intended to reflect an
actual output of the entropy source being modeled. Our security notions will formalize attacker
capabilities of interest, but we also allow for side-information (about I) that an attacker might
obtain through means not explicit in the notions model (e.g. timing or power side-channels). This
side information will be captured in the string z.

Cryptographic building blocks. A blockcipher is a function E : {0, 1}κ×{0, 1}n → {0, 1}n such that
for each key K ∈ {0, 1}κ, E(K, ·), written EK(·), is a permutation on {0, 1}n. Given IV ∈ {0, 1}n,
K ∈ {0, 1}κ, and Xi ∈ {0, 1}n for i ∈ [0..ν], define

CTRIV
K (X0 · · ·Xν) = (X0 ⊕ EK(IV)) ‖ · · · ‖ (Xν ⊕ EK(IV + ν)).

(We define the + operator on {0, 1}n as addition modulo 2n on the unsigned integers encoded

by the operands.) Further define CBCMACIV
K (X0 · · ·Xν) = CBCMAC

EK(IV ⊕X0)
K (X1 · · ·Xν), and

CBCMACIV
K (ε) = IV. Describing the standard CBCMAC algorithm in this manner simplifies de-

scriptions of programs that compute CBCMAC online. We omit an explicit IV from the notation
when IV = 0n. In this paper, the implicit blockcipher E will always be AES-128 (κ = n = 128).

The pseudorandom-permutation (PRP) advantage of an adversary A attacking a blockcipher E :
{0, 1}` × {0, 1}n → {0, 1}n is defined as

Advprp
E (A) = Pr

[
K

$←− {0, 1}` : AEK ⇒ 1
]
− Pr

[
π

$←− Perm(n) : Aπ⇒ 1
]
.
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Fig. 2. Block diagram for Intel’s RDRAND implementation. The CBCMAC computation uses AES-128 with the fixed
key K′ = AES0(1). The DRBG runs AES-128 in counter mode to produce {0, 1}128·3 bits of output; the first 256 bits
are used to update the key K and IV; the final 128 bits are sent to the output buffer, which is read by the RDRAND

instruction.

3 The ISK-RNG architecture

This section describes the design of the ISK-RNG. Unless otherwise noted, this information comes
from the CRI report [7]. The design can be divided roughly into three phases: entropy generation,
entropy extraction, and expansion. Raw bits from the generation phase are fed into an entropy
extractor, which is tasked with turning biased or correlated bits into uniform random strings. The
expansion step uses these strings to seed a deterministic PRNG, which can produce cryptographi-
cally pseudorandom outputs at high speeds.

The design is shown in Figure 2. In this figure, rectangular boxes indicate we consider part of
the ISK-RNG state, hexagons indicate procedures that read and modify the state, and the shaded
arrows indicate assembly instructions that allow (unprivileged) processes to read from designated
buffers.

Entropy generation, Health Tests, and “Swellness”. The hardware entropy source (labeled ES) is
a dual differential jamb latch with feedback; thermal noise resolves a latch formed by two cross-
coupled inverters, generating a random bit before the system is reset. Bits from the entropy source
are written into a 256-bit shift register.

Every 256 writes, the contents of the register are subjected to a series of health tests. These
count how many times certain specified bit strings appear, and verifies that the resulting counts
are within normal limits. For example, the string 010 may occur between 9 and 57 times, inclusive.
If the current ES register fails one of the tests, that 256-bit source-sample is flagged as unhealthy.
(For reference, a uniformly random 256-bit string would be flagged as unhealthy approximately 1%
of the time.) We refer interested readers to the CRI report [7] for a more detailed description; for
our purposes, it suffices to say there is some fixed set H ⊆ {0, 1}256 of strings that pass the health
tests. The health-history register tracks how many of the last 256 samples passed the health test.
This is a first-in first-out buffer, where a 1-bit means that a sample was deemed healthy, and a
0-bit mean that a sample was deemed unhealthy. The global health of the ISK-RNG is captured
by a property call swellness.

Definition 1 (Swell ISK-RNG). The ISK-RNG is said to be swell if at least 128 of the last 256
samples were healthy, i.e. if the health-history register contains at least 128 1s. ut
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Whether or not the current sample passes the health test, it is appended to the Online Self-
Tested Entropy (OSTE) queue, and it is the OSTE queue that provides input to the extraction
phase.

Extraction. Strings in the OSTE queue are not assumed to be uniformly random. Instead, each
256-bit entry is assumed to have a certain amount of min-entropy. The CBCMAC construction, over
AES with key K ′ = AES0(1) [10], is employed as an entropy extractor, in order to turn strings
in the OSTE queue into two 128-bit conditioned entropy (CE) strings. These are held in the CE
buffer, which is initially all zeros, and are used to service RDSEED instructions and to reseed the
DRBG. An important property of the CE buffer is its availability.

Definition 2 (Available CE). The CE buffer is available if (1) the ISK-RNG is swell, and (2)
since the last RDSEED call or the last DRBG reseeding (whichever was most recent), both 128-bit
halves (CE0 and CE1) have been updated using m healthy OSTE values. For Ivy Bridge chips, m = 2;
for Broadwell chips, m = 3 [10]. ut

When the CE buffer is not available, the hardware will replenish the OSTE buffers with fresh
entropy and feed them into a running CBCMAC calculation until a sufficient number of healthy
samples have been conditioned. So if at some point CE0 = X and then the CE buffer is used to
service a RDSEED instruction (making the CE buffer unavailable), the hardware will collect entropy
strings I1, I2, I3, . . . ∈ {0, 1}256 and reassign CE0 ← CBCMAC0(XI1I2I3 · · · ) online until there exist
i1 < i2 < · · · < im such that Iij ∈ H for j ∈ [1..m] and the ISK-RNG is swell. Then the processes
will repeat for CE1.

The particulars of the way CBCMAC is used in the ISK-RNG extractor, and the notions of
swellness and availability, will play a large part in Section 4.

Expansion. To reseed the DRBG, the contents of CE0 and CE1 are used to generate a key and IV
(respectively) for counter mode encryption over AES. This reseeding process only happens when
the CE buffer is available. It takes the current key and IV, (K, IV), and updates them by computing
K ‖ IV ← CTRIV

K (CE1 ‖ CE2). Initially, K = IV = 0128. However, using CTR with this non-random
key is not a problem as long as the CE buffer is (close to) uniformly random: since the CE buffer
is XORed into the CTR keystream, it can act as a one-time pad.

A pseudorandom value R is generated by computing R ‖ K ‖ IV ← CTRIV
K (03·128). (Note that

this process also irreversibly updates K and IV, which helps provide forward security.) The RNG
writes R to an output buffer, which is read by RDRAND. The FIFO output buffer [8] can contain up
to eight 64-bit values. ISK-RNG allows a maximum of 511 64-bit values to be generated between
reseeding operations; after this, it will only return 0s and will clear the carry bit to signal an error.

Setup. When the ISK-RNG powers on, the ISK-RNG performs a series of known-answer, built-in
self-tests. Then the conditioned entropy (CE) buffer is cleared and the deterministic random bit
generator (DRBG) is reseeded four times [10]. Each reseeding operation requires reconditioning
the CE buffer until it is available. Finally, the system populates the eight output buffers using the
DRBG.

Standards compliance. Intel states [12] that ISK-RNG is compliant with NIST’s SP800-90B & C
draft standards. Whereas RDRAND can provide bit strings with “only” a 128-bit security level (since
it uses AES-128 in CTR mode), RDSEED has no such limitation.
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4 Analysis of the ISK-RNG extractor

As we will see, the PWI-security results for the ISK-RNG are not as strong as one might hope.
Much of this is due to weak concrete bounds on the entropy extractor. Let us explain.

Previous CBC-MAC results are not (directly) helpful. A paper by Dodis, Gennaro, H̊astad, Kraw-
cyzk and Rabin [4] analyzes the security of CBC-MAC as an entropy extractor, and their results are
cited by Intel documents [13] to support the ISK-RNG design. Because generic PRFs-as-entropy-
extractors results [3] are too weak to be useful, the analysis of [4] takes place in the random
permutation model. That is, instead of considering CBC-MAC over a blockcipher with a random
key, they consider CBC-MAC over a random permutation. This model is a heuristic: even, say,
AES equipped with a random key would not be a random permutation. In fact, CBC-MAC within
the ISK-RNG uses AES with a fixed key K ′ = AES0(1) (on all chips). This fact may strike one as
alarming. But we believe that a “nothing-up-my-sleeve” value for the extractor seed is a reasonable
choice. (Generating the seed from the entropy source would be highly suspect from a theoretical
perspective, because one requires that the extractor seed be “independent” of the entropy distri-
bution.)

Anyway, our primary goal here is to identify what we can say about ISK, even if we’re forced
to use a heuristic model. Dodis et al.[4] provide the following theorem:

Theorem 1 (CBCMAC entropy extractor [4]). Fix positive integers k and L. Let I ∈ {0, 1}Lk

be a random variable, R
$←− {0, 1}k be a uniform random string, and let π

$←− Perm (k) be a random

permutation. Then ∆((π,R), (π,CBCMACπ(I)) ≤ 1
2

√
2k−H∞(I) + O(L2)

2k
.

Unfortunately, one cannot simply apply this theorem to the CBC-MAC-based extractor used
in ISK-RNG, without attending to the following two significant obstacles:

(1) As we noted in Section 3, the CBCMAC-based extractor uses its own previous output as the
first block of its next input. Consequently, the CBCMAC inputs are not independent of the seed.
This is necessary for leftover-hash-lemma style results like Theorem 1, and furthermore prevents
us from employing a black-box hybrid argument to lift the results to the multiple-query setting.

(2) The O(L2) term is particularly problematic. It contributes a O(L/2k/2) term to the final
result.1 We note that this is signficantly worse than the familiar O(L2/2k) “birthday bound” —
although the two both become vacuous when L ≈ 2k/2, the former violates a desired security level
ε � 1 much sooner (hidden constants being equal). The weak bound is exaccerbated by the fact
that L may grow very quickly in the ISK-RNG during periods of time when the CE buffer is not
available.

Analyzing the CBC-MAC extractor. In this section we present results that allow us to overcome
these hurdles, bringing Theorem 1 into scope. In particular, the main technical result of this section
is the following theorem. Loosely, it says that we can still obtain a hybrid-like bound, even though a
black-box hybrid argument isn’t possible. Moreover, we can avoid “runaway” input strings (resulting
in large L) by, in effect, truncating them.

1 A set of slides published by Intel [13] claims a much stronger result based on Theorem 1. However, in addition
to failing to account for point (1) above, the difference appears to stem from a mistake in translating notation.
Specifically, the above theorem from [4] writes the second term under the radical as K · ε(L,K), where ε(L,K) =
O(L2/K2) and in our notation K = 2k. The Intel slides, however, appear to have mistranscribed this term as
L · ε(L,K) (in their notation, L = b and K = 2n). Since L � K for values of interest, Intel’s claim significantly
overestimates the concrete security bound.
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Theorem 2. Fix positive integers L, q and k. For i ∈ [1..q], let Ii ∈ {0, 1}∗ be random variables

with length divisible by k, and sample Ri
$←− {0, 1}k. Fix π

$←− Perm (k). Define ILi and IRi to be the
unique strings such that

∣∣ILi ∣∣ = min {|Ii| , Lk} and Ii = ILi I
R
i . Let Ci = CBCMACπ(Ci−1 ‖ Ii), where

C0 = 0k. Then:

∆((π,C1, . . . , Cq), (π,R1, . . . , Rq)) ≤
1

2

q∑
i=1

√
2k−H∞(ILi | (Ij)j>i,IRi ) +

O ((L+ 1)2)

2k
.

Proof. Setting R0 = 0k, define:

δi = ∆((π,R1, . . . , Ri−1, C
i
i , C

i
i+1, . . . , C

i
q), (π,R1, . . . , Ri−1, Ri, C

i
i+1, . . . , C

i
q)).

where Cij = CBCMACπ(Ri−1‖Ii) if j = i, and Cij = CBCMACπ(Cij−1‖Ij) if j > i. As a consequence,
we have ∆((π,C1, . . . , Cq), (π,R1, . . . , Rq)) ≤

∑q
i=1 δi. Since each Ri is independent and uniform

and Cij can be computed from π, Ri−1, and I>i = (IRi , Ii+1, Ii+2, . . . , Iq) whenever j > i,

δi ≤ ∆((π,Ri−1, Ri, I>i), (π,Ri−1, C
i
i , I>i))

≤
∑
r,s

∆((π, r,Ri, s), (π, r, C
i
i

∣∣
(Ri−1,I>i)=(r,s)

, s)) · Pr [Ri−1 = r ] Pr [ I>i = s ] .

Let P be the event (Ri−1 = r) ∧ (I>i = s); then Cii
∣∣
P = CBCMACπ(r ‖ ILi

∣∣
P ‖ c

R), where cR is the

first component of s, corresponding to the (now fixed) value of IRi . Note that Ii|P is distributed
identically to Ii|I>i=s. Define R′i = CBCMACπ(r ‖ ILi

∣∣
P). This now brings the results of Theorem 1

into scope:

∆((π, r,Ri, s), (π, r,R
′
i, s)) ≤

1

2

√
2k−H∞(ILi | I>i) +

O((L+ 1)2)

2k
.

Now, Cii
∣∣
P = CBCMACR

′
π (cR). However, given that cR is fixed, τπ,cR(·) = CBCMAC

(·)
π (cR) is a

permutation for every possible π. Therefore since Ri is uniformly distributed,

∆((π, r,Ri, s), (π, r, C
i
i

∣∣
P , s)) =

1

2

∑
(ρ,x)

∣∣Pr [ (π,Ri) = (ρ, x) ]− Pr
[

(π, Cii
∣∣
P) = (ρ, x)

]∣∣
=

1

2

∑
(ρ,x)

∣∣∣∣ 1

2k
− Pr

[
Cii
∣∣
P = x | π = ρ

]∣∣∣∣Pr [ π = ρ ]

=
1

2

∑
(ρ,x)

∣∣∣∣ 1

2k
− Pr

[
R′ = τ−1

ρ,cR
(x) | π = ρ

]∣∣∣∣Pr [ π = ρ ]

=
1

2

∑
(ρ,x)

∣∣Pr [ (π,Ri) = (ρ, x) ]− Pr
[

(π,R′i) = (ρ, x)
]∣∣

= ∆((π, r,Ri, s), (π, r,R
′
i, s)),

with summations over (ρ, x) ∈ Perm (k)× {0, 1}k. This completes the proof. ut

It remains to show that, with high probability, the (potentially) truncated extractor input
contains sufficient min-entropy. Note that making reasonable min-entropy assumptions regarding
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the entropy source is not sufficient to conclude this; for example, the approximate 1% false-positive
rate of the health tests on uniformly random 256-bit strings implies that there are at least 2249

unhealthy strings. Therefore the entropy source could produce only unhealthy samples, resulting
in unbounded L, and still have high min-entropy. In order to avoid such pathological behavior, we
will later (in Section 7.2) need to introduce additional assumptions regarding the rate at which the
entropy source produces healthy samples. Ultimately, we will choose L such that we have a high
probability of never needing more that L/2 samples, but such that L/2k/2 is small, as this term
will dominate Theorem 2.

5 Modeling the ISK-RNG as a PWI

Building upon DPRVW, here we define the syntax of a PWI. We give the syntax first, and then
discuss what it captures, pointing out where our definition differs from DPRVW.

Definition 3 (PWI). Let n, p, and ` be non-negative integers, and let IFace,Seed,State be the
non-empty sets. A PRNG with input (PWI) with interface set IFace, seed space Seed, and state
space State is a tuple of deterministic algorithms G = (setup, refresh, next, tick), where

– setup takes no input, and generates an initial PWI state S0 ∈ State. Although setup itself is
deterministic, it may be provided oracle access to an entropy source D, in which case its output
S0 will be a random variable determined by the coins of D.

– refresh : Seed×State×{0, 1}p → State takes a seed seed ∈ Seed, the current PWI state S ∈ State,
and string I ∈ {0, 1}p as input, and a returns new state.

– next : Seed×IFace×State→ State×({0, 1}`∪{⊥}) takes a seed, the current state, and an inter-
face label m ∈ IFace, and returns a new state, and either `-bit output value or a distinguished,
non-string symbol ⊥.

– tick : Seed×State→ State takes a seed and the current state as input, and returns a new state.

ut

We will typically omit explicit mention of the the seed argument to refresh, next and tick, unless
it is needed for clarity

The setup algorithm captures the initialization of the PWI, in particular its internal state. Unlike
DPRVW, whose syntax requires setup to generate the PWI seed, we view the seed as something
generated externally and provided to the PWI. Permitting an explicit setup procedure is necessary
to correctly model ISK-RNG and, more generally, allows us to formulate an appropriate security
definition for PWI initialization.

The refresh algorithm captures the incorporation of new entropy into the PWI state. Like
DPRVW, we treat the entropy source as external. This provides a clean and general way to model
the source as untrusted to provide consistent, high-entropy outputs.

Our next algorithm captures the interface exposed to (potentially adversarial) parties that
request PWI outputs. By embellishing the DPRVW syntax for next with the interface set interface,
we model APIs that expose multiple functionalities that access PWI state. This is certainly the
case for the ISK-RNG, via the RDRAND and RDSEED instructions. We also explicitly allow next to
return ⊥, capturing blocking behavior.

The tick algorithm is entirely new, and requires some explanation. In the security notions
formalized by DPRVW, the passage of “time” is implicitly driven by adversarial queries. (This is
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Variable Bits Description

ESSR 256 Entropy source shift register
window 8 Counts new bits in the ESSR
OSTE1 256

}
Online self-tested entropy buffers

OSTE2 256
CE1 128

}
Conditioned entropy buffers

CE2 128
ptr 1 Tracks CE buffer to condition next
health 256 Tracks health of last 256 ES samples
K 128 DRBG key (For AES-CTR)
IV 128 DRBG IV (For AES-CTR)
out1,...,8 512 Eight 64-bit output buffers
outcount ≥ 4 Counts number of full output buffers
count ≥ 9 Counts DRBG calls since reseeding
CEfull 1 Set if CE buffers are available
block 1 Set if reseed has priority over RDSEED

Table 1. Table describing the state of Intel’s HWRNG.

typical for security notions, in general.) But real PRNGs like the ISK-RNG may have behaviors
that update the state in ways that are not cleanly captured by an execution model that is driven
by entropy-input events (refresh calls), or output-request events (next calls). The tick algorithm
handles this, while allowing our upcoming security notions to retain the tradition of being driven
by adversarial queries: the adversary will be allowed to “query” the tick oracle, causing one unit of
time to pass and state changes to occur.

Mapping the ISK-RNG to the PWI syntax. We now turn our attention to mapping the ISK-RNG
specification into the PWI model. Table 1 summarizes the state that our model tracks. Figure 3
provides our model for the PWI setup, refresh, next, and tick oracles. Two additional procedures,
DRBG and reseed, are used internally.

6 PWI Security

We now turn our attention to security notions for PWIs. The basic notions are those of DPRVW,
with a few notable alterations. However, to handle issues of non-uniform state and (more) realistic
initialization procedures, we introduce a new technical tool – masking functions. We will see that
our formalization of masking functions simultaneously provides a clean way to deal with the issues
we just mentioned, and allows us to leverage the definitional results from DPRVW.

6.1 Basic notions

Here we define four PWI-security notions, in the game-playing framework [2]. In each there is a
(potentially adversarial) entropy source D, and an adversary A. The latter is provided access to the
oracles detailed in Figure 4 (top), and what distinguishes the four notions are restrictions applied
to the queries of the adversary A. In particular, we consider the following games:
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Oracle setup(ES):

01 for i = 1, 2, 3, 4 do
02 S.CE0 ← CBCMACK′(S.CE0)
03 while S.ptr = 0 do

04 I
$←− ES

05 S ← refresh(S, I)
06 S.CE1 ← CBCMACK′(S.CE1)
07 while S.ptr = 1 do

08 I
$←− ES

09 S ← refresh(S, I)
10 S ← reseed(S)
11 for i = 1, 3, 5, 7 do
12 (S,R)← DRBG(S)
13 S.outi ‖ S.outi+1 ← R
14 S.outcount← 8
15 return S

Oracle DRBG(S):

16 S.IV← S.IV + 1
17 R← CTRVK(0128)
18 if S.CEfull then
19 S ← reseed(S)
20 else if S.count < 512
21 S.K ‖ S.V ← CTRS.V+1

S.K (0256)
22 S.count← S.count + 1
23 else
24 return (S,⊥)
25 return (S,R)

Oracle tick(S):

26 if S.CEfull and S.count > 0 then
27 S ← reseed(S)
28 return S
29 if S.count < 512 and S.outcount < 8 then
30 S.outcount← S.outcount + 1
31 (S,R) = DRBG(S)
32 S.outoutcount ← R
33 return S
34 return S

Oracle refresh(S, I):

35 S.ESSR← shift(S.ESSR, I)
36 S.window← S.window + 1 mod 256
37 if S.window = 0 then
38 S.health← shift(S.health, isHealthy(S.ESSR))
39 S.OSTE2 ← S.OSTE1

40 S.OSTE1 ← S.ESSR
41 i← S.ptr
42 Iij ← Iij ‖ S.OSTE2 // Record-keeping for proofs

43 S.CEi ← CBCMACS.CEiK′ (OSTE2)
44 if sum(S.health) ≥ 128 and isHealthy(OSTE2) then
45 S.samples← S.samples + 1
46 if S.samples = m then
47 S.samples← 0
48 if S.ptr = 0 then
49 S.ptr← 1
50 else
51 S.ptr← 0; S.CEfull← 1
52 C0

j ‖ C1
j ← S.CE // Record-keeping for proofs

53 j ← j + 1; // Record-keeping for proofs
54 return S

Oracle reseed(S):

55 S.K ‖ S.V ← CTRV+1
K (S.CE)

56 S.CE0 ← CBCMACK′(S.CE0)
57 S.CE1 ← CBCMACK′(S.CE1)
58 S.count← 0; S.CEfull← 0; S.ptr← 0; S.block← 0
59 return S

Oracle next(interface, S):

60 if interface = RDRAND then
61 if S.outcount = 0 then return (S,⊥)
62 R← LSB64(S.out1)
63 for i = 1, . . . , 7 do
64 S.outi ← S.outi+1

65 S.outcount← S.outcount− 1
66 return (S,R)
67 else if interface = RDSEED

68 if S.CEfull = 0 or (S.block = 1 and S.count > 0) then
69 return (S,⊥)
70 R← S.CE0 ‖ S.CE1

71 S.CEfull← 0; S.ptr← 0
72 S.CE0 ← CBCMACK′(S.CE0)
73 S.CE1 ← CBCMACK′(S.CE1)
74 S.block← 1
75 return (S,R)

Fig. 3. The above oracles describe the behavior of ISK-RNG from within the PWI model. See Table 1 for a description
of the state variables S.∗. All bits are initially zero. For Ivy Bridge chips, m = 2, and for Broadwell chips m = 3. The
key K′ = AES0(1) is fixed across all chips.
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Oracle D-refresh:

01 (σ, I, γ, z)
$←−D(σ)

02 S ← refresh(S, I)
03 c← c+ γ
04 if c ≥ γ∗ then
05 corrupt← false
06 return (γ, z)

Oracle next-ror(m):

07 if corrupt then
08 return ⊥
09 (S,R0)← next(m,S)
10 if R0 = ⊥ then
11 R1 ← ⊥
12 else
13 R1

$←− {0, 1}`
14 return Rb

Oracle get-next(m):

15 (S,R)← next(m,S)
16 if corrupt then
17 c← 0
18 return R

Oracle wait:

19 S ← tick(S)
20 return ε

Oracle get-state:

21 c← 0
22 corrupt← true
23 return S

Oracle set-state(S∗):

24 c← 0
25 corrupt← true
26 S ← S∗

Procedure initialize:

01 σ ← 0; seed
$←− Seed; i← 0

02 S ← setupES

03 c← n; corrupt← false

04 b
$←− {0, 1}

05 return (seed, (γj , zj)
i
j=1)

Oracle ES:

06 i← i+ 1

07 (σ, I, γi, zi)
$←−D(σ)

08 return I

Procedure finalize(b):

09 if b = b∗ then
10 return 1
11 else
12 return 0

Fig. 4. Top: Oracles for the PWI security games. Bottom: the shared intialize and finalize procedures for the PWI
security games. Recall that the output of initialize is provided to adversary A as input, and the output of finalize is
the output of the game.

Robustness (ROB): no restrictions on queries.

Forward security (FWD): no queries to set-state are allowed; and a single query to get-state is
allowed, and this must be the final query.

Backward security (BWD): no queries to get-state are allowed; a single query to set-state is
allowed, and this must be the first query.

Resilience (RES): no queries to get-state or set-state are allowed.

See DPRVW for additional discussion. We note that all games share common initialize and finalize
procedures, shown in Figure 4 (bottom). Thus, the robustness-advantage of A in attacking G is
defined to be Advrob

G,D(A) = 2 Pr [ ROBG,D(A) = 1 ] − 1. The forward security, backward security,

and resilience advantages Advfwd
G,D(A), Advbwd

G,D (A), and Advres
G,D(A) are similarly defined. It is clear

that robustness implies forwards and backwards security, and both of these independently imply
resilience.

We note that, because the PRNG cannot reasonably be expected to produce random-looking
outputs without sufficient entropy or with a known or corrupted state, the various security experi-
ments track (1) a boolean variable corrupt and (2) a value γ measuring the total entropy that has
been fed into the PRNG since corrupt was last set. These serve as book-keeping devices to prevent
trivial wins. The corrupt flag is cleared whenever γ exceeds some specified threshold γ∗.

6.2 Masking functions and Updated Notions

As noted earlier, the DPRVW security definitions assume the PWI state is initially uniformly
random. However, this does not realistically model the behavior of real-world PWIs, notably ISK-
RNG, which do not attempt to reach a pseudorandom state; for example, they may maintain
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counters. (Indeed one can construct PWIs that would be secure when starting from a uniformly
random state, but that are insecure in practice because they are unable to ever reach a point where
their state becomes pseudorandom; see Appendix A.) Yet, clearly, some portion of the PWI state
must be unpredictable to an attacker, as otherwise one cannot expect PWI outputs to look random.

To better capture real-world characteristics of PWI state, we introduce the idea of a masking
function. A masking function M over state space State G is a randomized algorithm from State
to itself. As an example, if states consist of a counter c, a fixed identifier id, and an buffer B
of (supposedly) entropic bits, then M(c, id, B) might be defined to return (c, id, B′) where B′ is
sampled by M according so some distribution.

A masked state is meant to capture whatever is a “good” state of a PWI, i.e. after it has
accumulated a sufficient amount of externally provided entropy. Informally, for any state S, we
want that (1) a PWI with state M(S) should produce pseudorandom outputs, and (2) after the
PWI has gathered sufficient entropy, its state S should be indistinguishable from M(S).

To the second point, the initial PWI state S0 is of particular importance. In the following defini-
tion, we characterize masking functions M such that the initial S0 and M(S0) are indistinguishable.

Definition 4 (Honest-initialization masking functions). Let D be an entropy source and let
G = (setup, refresh, next) be a PWI with state space State, and let M : State→ State be a masking
function. Let (seed, Z) be the random variable returned by running the initiailize() procedure of
Figure 4 (using G and D), and let S0 be the state produced by this procedure. Given an adversary A,
define Advinit

G,D,M (A) = Pr [A(S0, seed, Z)⇒ 1 ]−Pr [A(M(S0), seed, Z)⇒ 1 ] . If Advinit
G,D,M (A) ≤ ε

for any adversary A running in time t, then M is a (G,D, t, ε)-honest-initialization masking function.
ut

Note that the above definition is made with respect to a specific D. The assumptions required
of D (e.g., that it will provide a certain amount of entropy within a specified number of queries)
will depend on the PWI in question, but should be as weak as possible.

We now defining “bootstrapped” versions of the PWI security goals, which always begin from
a masked state. This will allow us to reason about security when the PWI starts from an “ideal”
state, i.e. what we expect after an secure initialization of the system.

Definition 5 (Bootstrapped security). Let G be a PWI and M be a masking function. For

x ∈ {fwd,bwd, res, rob}, let Adv
x/M
G,D (A) be defined as AdvxG,D(A), except with line 02 of the

initialize procedure (Fig. 4) changed, to execute instead S′
$←− setupES;S

$←−M(S′). ut

6.3 PWI-Security Theorems

Bootstrapped security notions are useful, because they allow the analysis to begin with an idealized
state. However, this comes at a cost: we need to ensure that the masking function is honest in the
sense that it accurately reflects the result of running the setup procedure. The following theorem
states the intuitive result that, if the masking function is secure (and honest), then security when
the PWI begins in a masked state M(S) implies security when the PWI begins in state S. We omit
the simple proof, which follows from a standard reduction argument.

Theorem 3. Let G be a PWI, D be an entropy source, and M be a masking function. Suppose M
is a (G,D, t, ε)-honest initialization mask. Then for any x ∈ {fwd, bwd, res, rob} there exists some
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adversary B(·) such that for any adversary A, AdvxG,D(A) ≤ Adv
x/M
G,D (B(A)) + ε. Further, if it

takes time t′ to compute M , and A makes q queries and runs in time t, then B(A) makes q queries
and runs in time O(t) + t′.

For a second general result, we revisit a nice theorem by DPRVW and adapt it to our model.
The theorem states that if a PWI possesses two weaker security properties — roughly, the ability
to randomize a corrupted state after harvesting sufficient entropy and the ability to keep its state
pseudorandom in the presence of adversarial entropy — then it is robust. These definitions, however,
again assume that a state “should” appear uniformly random. We present modified definitions that
instead use masking functions, and prove an analogous theorem. While the transition involves a
couple subtleties — in particular, we require an idempotence property of the masking function —
the proof is essential identical to the one in [5]; therefore we make an informal statement here and
defer the formal treatment to Appendix B.

Theorem 4 (Informal). Let G be a PWI. Suppose there exists a mask M such that: (1) When
starting from an arbitrary initial state S of the adversary’s choosing, the final PWI state S′ is
indistinguishable from M(S′) provided the PWI obtains sufficient entropy; (2) When starting from
an initial state M(S) (for adversarially chosen S), the final PWI state S′ is indistinguishable
from M(S′), even if the adversary controls the intervening entropy input strings; (3) G produces
pseudorandom outputs when in a masked state. Then G is robust.

7 Security of the ISK-RNG as a PWI

We are now positioned to analyze the security of ISK-RNG. To begin, we demonstrate some simple
attacks that violate both forwards and backwards security (hence robustness, too). Next, we show
that by placing a few additional restrictions on adversaries — restrictions that are well-motivated
by the hardware — we can recover forward security. As we said in our introduction, the concrete
security bounds we prove are not as strong as one might hope, due to some limitations of CBCMAC’s
effectiveness as an entropy extractor in the ISK-RNG. However, we are able to prove somewhat
better results when legitimate parties use only the RDRAND interface, even when attackers also have
access to RDSEED. This means that, e.g., a hostile process can’t use its access to RDSEED to learn
information about RDRAND return values used by a would-be victim; the result also implies stronger
results for Ivy Bridge chips, where RDSEED is not available.

For the remainder of Section 7, we fix the following constants: p = 1 is the length of each
entropy input; k = 128 is the length of each CBCMAC input block (since ISK-RNG uses AES);
IFace = {RDSEED, RDRAND} are the ISK-RNG interfaces; m = 2, 3 is the number of healthy samples
required by Ivy Bridge and Broadwell, respectively, before the CE buffer is available; and ` = 64
is the length of the PWI outputs. Although RDRAND also allows programs to request 16 or 32 bits,
this is implemented by fetching then truncating a 64-bit output, and similarly with RDSEED [10].
Therefore we assume without loss of generality that the adversary only requests the full 64 bits.

Recall that in the PWI model, the entropy source leaks information γ about each input string.
We assume that every 256th such string (each one a single bit, p = 1) leaks the health of the
corresponding 256 bit string (as determined by the online health test). Hence the adversary will
always know the health of the OSTE buffers and the value of the health buffer. This is not simply a
convenience: because the CE buffer is not available until it has been reconditioned with m healthy
samples, RDSEED may leak health information through a timing side channel.
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When the CE buffer is available, it can be used to reseed the DRBG or to service a RDSEED

instruction. Priority is given to whichever was not last used [10]. However, because the PWI model
cannot describe pending RDSEED instructions, the adversary must explicitly use its wait oracle to
yield when it has priority: a wait invocation uses the CE to reseed, while a RDSEED invocation
returns its contents.

The adversary’s wait oracle also allows us to account for the fact that updating the eight 64-bit
output buffers is not an atomic operation. By using the tick function (invoked by wait) to only fill
one at a time, we conservatively allow the adversary to control if a reseeding operation intervenes.
Note that tick will reseed rather than fill an output buffer if reseeding is desired (S.count > 0) and
possible (S.CEfull = 1). This reflects the priorities of the hardware [10].

In order to save power, the entropy source goes to sleep if all the output buffers are full, the
CE buffer is available, and no RDRAND instructions have been processed since the last reseed [10].
The PWI model, however, requires that we continue to provide D-refresh access to the adversary.
Our decision to leak health information to the adversary allows us to avoid any problems here:
the adversary knows when the entropy source sleeps, so we can restrict the adversary to not make
D-refresh calls when it does.

To make this power-saving hardware constraint “work” with the PWI model, we assume that
each healthy 256-bit block produced by the entropy source contains at least γ bits of min-entropy.
Formally, define (σi, bi, γi, zi) = D(σi−1) for i ≥ 1 (where σ0 = 0), and let Ii = b256ib256i+1 · · · b256i+255.
We assume there exists γ > 0 such that H∞ (Ii | (σj , Ij , γj , zj)j 6=i, Ii ∈ H) ≥ γ, and require that∑256i+255

j=256i γi ≥ γ whenever Ii ∈ H. We set γ∗ = mγ to demand, in effect, that ISK-RNG delivers
on its implicit promise that m healthy entropy samples are sufficient. At the end of this section,
we will draw from the CRI report’s analysis to find reasonable estimates for γ and discuss the
implications.

7.1 Negative Results

We begin with some negative results, showing that the ISK-RNG achieves neither forward, nor
backwards security; this immediately rules out robustness, too.

Theorem 5 (ISK-RNG lacks forward security). There exists an adversary A making one
next-ror query and one get-state query such that for any entropy source D, Advfwd

ISK,D(A) = 1−2−128.

Theorem 6 (ISK-RNG lacks backward security). There exists an adversary A making one
next-ror query and one get-state query such that for any entropy source D, Advbwd

ISK,D(A) = 1−2−128.

In the case of backwards security, the adversary assigns S ← get-state(), makes a sequence
of D-refresh calls to clear the corrupt flag (which, by our previously state assumptions, will hap-
pen as soon as the CE buffer becomes available), and finally assigns X ← next-ror(RDRAND). The
adversary then checks if X = S.out1, and outputs 0 if this is the case and 1 otherwise. For
forward security, the adversary assigns X ← next-ror(RDSEED) followed by S ← get-state(). If
X = AES−10 (S.CE0) ‖ AES−10 (S.CE1), the adversary outputs 0; otherwise, the it outputs 1. (Here,
0 = 0128.)

However, these results are very conservative. In the case of forward security, the hardware will
very quickly recondition the CE buffer, effectively erasing all state that could be used to compute
previous outputs. In the case of backward security, a large but finite number future outputs can
be compromised by examining the buffer; however, here the situation is slightly more complicated
because future DRBG keys are leaked via the ESSR, OSTE, and CE buffers.
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7.2 Positive results

We now turn our attention to restricted, but still conservative, classes of adversary in order to
produce positive results.

Additional assumptions. We further assume that in the forward-security game, adversaries do not
make their get-state query until they have allowed the output buffers to be refilled. This assumption
is motivated by the speed with which the hardware will automatically accomplish this: at the
reported RDRAND throughput of 500 MB/s, all eight 64-bit buffers can be refilled around 8 million
times per second. Formally:

Definition 6 (Delayed adversaries). An adversary A attacking ISK-RNG in the forward-security
game is delayed if after making its last get-next and next-ror queries, A calls D-refresh until the CE
buffer is available, then calls wait nine times before making its get-state query. ut

This will trigger a reseed and then refill any of the eight output buffers.
Moreover, we will assume there is some positive probability β such that each 256-bit block of bits

from the entropy source is healthy with probability at least β. Formally (recall that H ⊆ {0, 1}256
is the set of strings deemed healthy by ISK-RNG’s online health tests):

Definition 7 (β-healthy). Fix β > 0. For i = 1, 2, 3, . . . define (σi, bi, γi, zi) = D(σi−1) (where
σ0 = ε), and for j = 0, 1, 2, . . ., define Bj = b256j ‖ b256j+1 ‖ · · · ‖ b256j+255. Let Hj = 1 if
Bj ∈ H, and set Hj = 0, otherwise. Then D is β-healthy if for all such j and all H ∈ {0, 1}j−1,
Pr [Bj ∈ H | (H`)`<j = H ] ≥ β. ut

It follows that for any positive integers ` and Lm, we can bound the probability that the sequence
B`, B`+1, . . . , B`+(Lm−1) contains fewer than m healthy values using:

Pr [ |{j : Bj ∈ H, ` ≤ j < `+ Lm}| < m ] ≤
m−1∑
i=0

(
Lm
i

)
βi(1− β)Lm−i.

With these assumptions, we are ready to continue on to our positive results. Our first step is
to define an appropriate masking function that describes an “ideal” state, and then to prove that
setup creates such a state. This will later proofs to simply assume we begin in an idealized state
(see Theorem 3).

ISK-RNG masking function. Fix the masking function M : {0, 1}n → {0, 1}n that on input S,
overwrites S.CE, S.K, S.IV, and S.out1,...,8 with independent, uniformly random strings of the
appropriate lengths, leaves all other portions of the state untouched, and returns the result. This
is the ISK-RNG masking function.

The following lemma says that if AES is a secure PRP (against adversaries making three queries)
and each healthy sample from the entropy source has sufficiently large min-entropy, then the ISK-
RNG masking function is honest. That is, that the ISK-RNG setup procedure successfully places
the hardware in a state where (we will show) it can begin producing pseudorandom outputs.

Recall the results of Theorem 2. For convenience, we define

ε(Lm) = O(Lm + 1)/2k/2 and ε̂(Lm) =

m−1∑
i=0

(
Lm
i

)
βi(1− β)Lm−i,
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where the former expression comes from Thoerem 2 and the latter from the above bound on the
probability of obtaining fewer than m healthy samples from Lm trials. Here β is the assumed
probability that the online health test will mark a given sequence of 2k = 256 bits from the entropy
source as “healthy”, m is the number of healthy strings that need to be “conditioned” before the
CE buffer is available, and k = 128 is the block size used by CBCMAC.

Lemma 1 (ISK-RNG masking function is honest). Fix positive integers k and m, and fix
0 < β ≤ 1. Let Lm be a positive integer. Let M be the ISK-RNG masking function, defined above.
Let D be a β-healthy entropy source. Then for any adversary A, there exists an adversary B running
in the same time and making three queries such that Advinit

ISK,D,M (A) ≤ 2(k−mγ)/2+2 + 4ε(Lm) +

8ε̂(Lm) + 5
(
Advprp

AES(B) + 3
2k

)
.

The following proof refers to a large body of pseudocode, found in Figure 3. We are largely free
to choose Lm, and will ultimately set it to an optimal value (increasing Lm increases ε(Lm) but
decreases ε̂(Lm)). Using reasonable estimates for the big-O constant and γ (discussed in Section 7.3)
provides us with an upper bound of roughly 2−60 for the first three terms of the security bound for
both m = 2, 3.

Proof. Recall that Advinit
ISK,D(A) = Pr [A(S, π, z)⇒ 1 ] − Pr [A(M(S), π, z)⇒ 1 ], where S is the

state produced by the setup procedure and z contains any side-channel information leaked to the
adversary during setup. The probabilities are over the coins of initialize(), D, and A. During setup,
ISK-RNG reconditions the CE buffer four times, and reseeds immediately afterwards each time. Let
C = (C0, C1, C2, C3) be the four CE buffer values used to perform these reseeding operations. Note
that X = (S, π, z) is a deterministic function of C, π, and J = (S.OSTE1, S.OSTE2, S.ESSR, z); we
make this explicit by writing X = f(C, π, J). Let R = (R0, R1, R2, R3) be sampled from {0, 1}4k.
We have

Advinit
ISK,D(A) = Pr [A(f(C, π, J))⇒ 1 ]− Pr [A(f(R, π, J))⇒ 1 ]

+ Pr [A(f(R, π, J))⇒ 1 ]− Pr [A(M(S), π, z)⇒ 1 ]

≤ ∆((π,C)|J , (π,R)|J) + (Pr [A(f(R, π, J))⇒ 1 ]− Pr [A(M(S), π, z)⇒ 1 ]) .

For j ∈ [0..3], i = 0, 1, let Iij be defined as in Figure 3; that is, Iij is the string of bits from the
entropy source that gets used to update S.CEi between the jth time and the (j+1)st time that buffer
is available. So, for example, Cj = C0

j ‖C1
j , where Cij = CBCMAC(Cij−1I

i
j) and C0

0 = C1
0 = 0128. For

each i, j, let Iij = Bi
j,1B

i
j,2 · · ·Bi

j,`(j), with each
∣∣∣Bi

j,j′

∣∣∣ = 2k. Let E be the event that for each such

(i, j),
∣∣∣{j′ : Bi

j,j′ ∈ H, j′ < Lm

}∣∣∣ ≥ m. There are eight such (i, j) pairs, so Pr [ ¬E ] ≤ 8ε̂(Lm). (In

cases where `(i) < Lm, Ii necessarily contains m “healthy blocks” because ISK-RNG will only stop
accumulating entropy if this condition holds.) Since π is independent of both E and J , Theorem 2
tells us that

∆((π,C)|J , (π,R)|J) ≤ ∆((π, C|J,E), (π,R)) + Pr [ ¬E ]

≤ 8

(
1

2

√
2k−mγ + ε(Lm)2

)
+ 8ε̂(Lm)

≤ 2(k−mγ)/2+2 + 4ε(Lm) + 8ε̂(Lm).
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We claim that there exists some adversary B making three queries and running in time t such
that

Pr [A(f(R, π, J))⇒ 1 ]− Pr [A(M(S), π, z)⇒ 1 ] ≤ 5

(
Advprp

AES(B) +
3

2k

)
.

Consider the experiment A(f(R, π, J)). During the third reseed, ISK-RNG updates S.K ‖ S.IV by
encrypting S.CE in counter-mode. But at this point in time, S.CE = R3 is uniform random bits,
and thus so are the new key and IV (R3 acts as a one-time pad on the counter-mode keystream).
Let K0 and V0 be the values of S.K and S.IV immediately following this operation. The next reseed
operation creates a new DRGB key and IV, K1 and V1, by computing K1 ‖ V1 ← CTRV0K0

(R4).
Finally, for i ∈ [0..3], the output buffers are filled by computing S.out2i ‖ S.out2i+1 ‖Ki+2 ‖ Vi+2 ←
CTR

Vi+1

Ki+1
(03·128). The proof of our claim concludes with a standard hybrid argument where the

outputs of these five CTR computations are replaced one-by-one with random bits; the 3/2k term
falls out of the PRF-PRP switching lemma. The final CE buffer in the A(f(R, π, J)) experiment is
already uniformly random (R4), and the final step in the hybrid argument completes the masking
function’s task of replacing S.out, S.K, and S.IV with uniform random bits. ut

Remark. The PRP term may be problematic if one takes the view that RDSEED should offer
information-theoretic security. That is, Lemma 2 says that the ISK-RNG initialization procedure
yields state — which includes the CE buffers — that is only computationally indistinguishable from
“ideal”. However, we observe that if one adjusts the masking function to leave the output buffers
unchanged, and demands a post-setup reconditioning (which the hardware endeavors to provide,
anyway), one could indeed use the result to prove information-theoretic RDSEED security. However,
this would be at the expense of not being able to prove security of the RDRAND interface, a task
which necessarily requires computational assumptions.

Forward security. Our exploration of forward security proceeds in two steps. To begin, we introduce
a new game, M -RDRAND, which differs from M -FWD in that the next-ror oracle always returns the
“real” value R0 when queried on the m = RDSEED interface, but behaves normally during queries

to the RDRAND interface. Define Adv
fwd−RDRAND/M
G,D (A) = 2 Pr [M -RDRAND(A)⇒ 1 ] − 1. Proving the

security of this game is not only a useful intermediate step in proving the security of M -FWD, but
also can be interpreted as measuring the strength of RDRAND return values when an adversary also
has access to the RDSEED instruction (which can be used to learn information about the ISK-RNG
state, but that we do not require to return pseudorandom values). This distinction is valuable,
because the concrete bounds on the M -FWD experiment are not as strong as one would hope.

Theorem 7 (M -RDRAND). Let A be a delayed adversary making q queries to RDRAND and running
in time t. Then there exists an adversary B making three queries and running in time O(t) such

that Adv
fwd−RDRAND/M
ISK,D (A) ≤ 2(q + 4)

(
Advprp

AES(B) + 3
2k

)
.

Proof. During an execution of M -RDRAND(A), the DRBG key S.K is changed during reseeding
or after a get-next call. Let M -RDRANDν(A) be the same as M -RDRAND, but where AESS.K is re-
placed with a random function the first ν times this happens. Then Pr [M -RDRANDν(A)⇒ 1 ] −
Pr
[
M -RDRANDν+1(A)⇒ 1

]
≤ Advprp

AES(Bν) + 3
2k
, for some adversary B making three queries and

running in the same time as A. (Bν simulates M -RDRANDν for A using random functions for the
first ν keys, uses its oracle for key (ν + 1), and then uses AES for the remainder of the experiment;
Bν returns whatever value A does.)
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Let dν = 2 Pr [M -RDRANDν(A)⇒ 1 ]−1. Observe that in Game M -RDRANDν , we can defer assign-
ing b a value until after query ν; until that point, all the coins of the experiment are independent
Then dq+4 = 0 because the final state, revealed by get-state(), is likewise independent of b. Further,

d0 = Adv
fwd−RDRAND/M
ISK,D (A). It follows that d0 ≤ 2

∑q+4
ν=1

(
Advprp

AES(Bν) + 3
2k

)
. Taking B to be the

Bν with maximal advantage completes the proof. ut

Barring an efficient attack on AES (that only uses three queries!) this bound is quite strong. If
q were to grow quite large, say on the order of q ≈ 280, then the bound might begin to approach
2−40, which seems a reasonable safety margin. However, even at the reported rate of around 500
MB/s, ISK-RNG would take over 70 years to reach this point. Moreover, the hybrid factor of q is
likely a conservative artifact of the proof.

Note, however, that this bound applies to ISK-RNG when starting in an “ideal” masked state;
one needs to add in the bound from Lemma 1 to account for initialization. As we mentioned earlier,
reasonable estimates for the big-O constant and γ (see Section 7.3) place this term at roughly 2−60.

We now proceed to the “full” forward-security result, where both the RDRAND and the RDSEED

interfaces are required to produce indistinguishable-from-random outputs. Since RDSEED reads di-
rectly from the CE buffer, this bound relies more heavily on the entropy source and CBCMAC
extractor (and less on the computational security of AES).

Theorem 8. Fix a positive integers k and m, and fix 0 < β ≤ 1. Let Lm be a positive integer.
Let A be a delayed adversary making a combined q queries to get-next and next-ror. Then if D is
β-healthy, there exists some adversary B making three queries and running in the same time as A

such that Adv
fwd/M
ISK,D (A) ≤ (q + 1)

(
2(k−mγ)/2 + ε(Lm) + 2ε̂(Lm)

)
+ 2(q + 4)

(
Advprp

AES(B) + 3
2k

)
.

Proof. For j ∈ [1..q + 1], let Cj = C0
j ‖C1

j be the sequence of available conditioned entropy buffers
produced over the course of the experiment M -FWD, as defined as in Figure 3. Note that because
the outputs of D do not depend on the behavior of A, we are free to fix them, and hence the Cj ,
before the experiment M -FWD begins.

Let C = (C1, . . . , Cq+1). We write Adv
fwd/M
ISK,D (A)C to denote running the experiment using these

values. Let R = (R1, . . . , Rq+1) be independent uniformly random values. Then for any adversary
A,

Adv
fwd/M
ISK,D (A)C −Adv

fwd/M
ISK,D (A)R ≤ 2∆(C,R)

As before, for j ∈ [1..q + 1], i = 1, 2, let Iij be defined as in Figure 3 (so, for example, Cj =

C0
j ‖ C1

j , where Cij = CBCMAC(Cij−1I
i
j) and Ci0 = 0128).

For each i, j, let Iij = Bi
j,1B

i
j,2 · · ·Bi

j,`(j), with each
∣∣∣Bi

j,j′

∣∣∣ = 2k. Let E be the event that for

each such (i, j),
∣∣∣{j′ : Bi

j,j′ ∈ H, j′ < Lm

}∣∣∣ ≥ m. There are 2(q+ 1) such (i, j) pairs, so Pr [ ¬E ] ≤
2(q + 1)ε̂(Lm). (In cases where `(i) < Lm, Ii necessarily contains m “healthy blocks” because
ISK-RNG will only stop accumulating entropy if this condition holds.) By Theorem 2,

∆(C,R) ≤ ∆(C|E , R) + Pr [ ¬E ] ≤ 2(q + 1)

(
1

2

√
2k−mγ + ε(Lm)2

)
+ 2(q + 1)ε̂(Lm).

At this point we apply the argument of Theorem 7 to show

Adv
fwd/M
ISK,D (A)R ≤ 2(q + 4)

(
Advprp

AES(B) +
3

2k

)
,

21



this time allowing the RDSEED interface to return random bits when b = 1. This change, however,
has no bearing on the argument, as the “real” values are now uniformly random anyway.

The only subtly here is that the last value returned by RDSEED may not be independent of the
final contents of the CE buffer. This is why we assume that the adversary invokes D-refresh until
the CE buffer is available: the bound accounts for the fact that the new CE buffer, Rj , must be
statistically close to uniform and independent of (Ri)i<j . Since the buffer can be refreshed at most
once for each get-next and next-ror query, j ≤ q + 1. ut

Corollary 1. Let A be a delayed adversary making a combined q queries to its get-next and next-ror
oracles. If D is β-healthy, then there exists and adversary B making three queries and running
in the same time as A such that Advfwd

ISK,D(A) ≤ (q + 5)
(
2(k−mγ)/2 + ε(Lm) + 2ε̂(Lm)

)
+ (2q +

13)
(
Advprp

AES(B) + 3
2k

)
, where the remaining quantities are defined as in Theorem 8.

The corollary follows from applying Theorem 3 to Theorem 8, and using Lemma 1. We defer
our discussion of this bound to Section 7.3. First, we briefly turn our attention to the questions of
backwards security and robustness.

Backwards security and Robustness. The issue with obtaining backwards security (and hence ro-
bustness) is that future outputs can linger in the output buffers indefinitely: the hardware will
shutdown the entropy source after all the buffers are full and the CE buffer is available. Moreover,
even if RDSEED instructions cause the ES to produce more random bits, those bits will not be used
to reseed the DRBG as long as the buffers remain full. Hence, state remains compromised until
fresh entropy filters through the ESSR → OSTE1 → OSTE2 → CE buffers and is used to reseed the
DRBG, without first being siphoned off by RDSEED.

Consider the worst-case scenario for Ivy Bridge chips, where only the RDRAND interface is avail-
able. Following a state compromise, the next 8 outputs are revealed in the output buffers, the next
511 may be generated using the compromised DRBG seed, the next 511 may be generated using a
DRBG seed determined by the compromised CE buffer, and the next 511 may be generated using
a DRBG key determined by the compromised OSTE and ESSR buffers. This amounts to slightly
more than 12KB worth of outputs that an adversary could potentially predict.

However, we show in Appendix C that if one restricts the model to “read-only” adversaries (by
denying adversaries access to set-state but permitting access to get-state) and one discounts wins
based on the above attacks (by denying adversaries access to next-ror until after the “corrupted”
values have already been replaced) then ISK-RNG is secure. The concrete bounds we obtain are
essentially identical to those provided by Theorems 7 and 8, depending on whether or not one
requires the RDSEED interface to be secure. See the appendix for further discussion of how these
restrictions can be interpretted and a formal theorem statement and proof.

7.3 Discussion of results

Let us examine the bound of Corollary 1 in detail. We specialize to the parameters used by Intel:
k = 128 (a consequence of using AES), m = 2 for Ivy Bridge chips, and m = 3 for Broadwell chips.

To estimate γ, we turn to the CRI report [7]. Hamburg, Kocher, and Marson subjected raw
entropy source bits (using data provided by Intel) to a battery of statistical tests. Using a Markov
model with 12 bits of state, they estimate the entropy source produces approximately 0.65 bits of
min-entropy per bit of output. However, this was an average (some states of the Markov model
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resulted in more predictable bits), and a 12-bit state, though perhaps necessary to collect enough
samples for a meaningful empirical analysis, is not enough for our purposes. Therefore let us suppose
a more conservative rate of 0.5, leading to γ = 128.

This sets the (q+5)2(k−mγ)/2 term of our bound to (q+5)2−64 for Ivy Bridge (where m = 2) and
(q+ 5)2−128 for Broadwell (where m = 3). The latter bound is quite strong, but, given how quickly
q can grow, the former may be worrisome if one wishes to maintain strong security guarantees (e.g.,
one wishes to cap an adversary’s advantage at 2−40). Unfortunately, this is not the dominate term
in the security bound.

We next consider the term (q + 5)(ε(Lm) + 2ε̂(Lm)). If we set the big-O constant2 of ε to c (so
ε(Lm) = cL/264) then we can choose Lm to optimize this expression. Taking β = 1/2, c =

√
10,

which we believe to be conservative, gives an upper bound of (q+5)2−56; a more generous β = 0.99,
c = 1 improves the upper bound to about (q + 5)2−60. (These bounds are accurate for both m = 2
and m = 3, although the corresponding values for Lm differ considerably.)

At this point, limiting an adversary’s advantage to 2−40 is difficult — an adversarial process
gathering random bits at the benchmarked rate of 500 MB/s could issue the maximum allowable
number of queries in under one millisecond. Or at least, this is the case if we demand that RDSEED
produces uniform random outputs. On the other hand, if one only needs RDRAND to be secure,
then Theorem 7 suggests that limiting an adversary’s advantage to 2−40 is entirely reasonable; in
this setting, we only pick up a single 4(ε(Lm) + 2ε̂(Lm)) term even after moving to the unmasked
forward-security setting, with no troublesome multiplicative factor of q.

The remaining term, (2q + 13)(Advprp
AES(B) + 3/2128), is likely to be negligible (recall that B is

permitted only three queries).

Our analysis does not point to any obvious, practical attacks (aside from the trivial ones that
exploit the output buffers, though it seems a stretch to deem those practical). However, it exposes
the CBCMAC extraction process as the likely weakest link, and quantifies the extent of that weak-
ness. An actual attack would need to exploit how the specific output distribution of the entropy
source interacts with CBCMAC under the fixed key K ′. Our goal, though, has been to demand
and seek out positive evidence of security.
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A PWIs with non-pseudo-uniformly random state

We contend the security definitions of [5] are flawed. Recall that in [5], the experiments defining
FWD, BWD, RES, and ROB security begin by sampling a uniform random state. The advantage
of an adversary in, for example, the FWD security definition is equivalent to our definition for
Adv$−fwd, where $(·) returns a fresh random string on each invocation.

Consider following PWI G = (setup, refresh, next) with 2n bits of state. Define setup to return
02n, refresh(S, I) = S, and next(S0 ‖ S1) = (S′0 ‖ S1, R), where |S0| = |S1| = |S′0| = |R| = n,
S′0 ‖R = fS0(0m) ‖ fS0(1m), and f is a PRF. It isn’t hard to show that for any A making q queries,

there exists some B making 2q queries such that Adv
fwd/$
G (A) ≤ Advprf

f (B). However, G cannot
reasonably be said to have forward security because using $(·) to create the initial state does not
reflect anything approximating the behavior of setup.

One could argue that this is simply an artifact of G’s lack of backward security. After all, it is
the adversary’s knowledge concerning the initial state that is problematic here. But this flaw should
not be surfaced in the definition of forward security. Granted, we do need forward security to start
from a “healthy” state. Using an explicit setup procedure allows us to neatly avoid dictating what
that state should be without requiring the security definitions themselves to handle the issue on an
ad-hoc basis.

Further consider the (admittedly pathological) example G′ = (setup′, refresh, next′), where

next′(S0 ‖ S1) =

{
next(S0, S1) If S1 = 0n,
(fS0(0m) ‖ S0, fS0(1m)) otherwise,

and setup′(seed,D) uses an entropy extractor (e.g., the one described in [5]) to produce a random
value R ∈ {0, 1}n, then outputs R ‖0n. Now the state leaks the PRF key used to generate the most
recent next value — unless the right n-bits of state are 0n. Here, starting with a uniform random
state can artificially “break” a PWI that would otherwise have forward security.
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B On proving robustness

When Dodis et al. introduced their PWI model [5], they presented a theorem showing that any
PWI possessing two relatively weak security properties, preserving and recovering security, is also
robust. However, both of these security definitions assume that state should ideally be uniformly
random. The theorem therefore isn’t useful for PWIs like ISK-RNG, for which this assumption is
false (see Appendix A). In this section we present analogous definitions that instead use masking
functions, and prove a corresponding theorem. Although this result cannot be applied to ISK-RNG,
which lacks even backwards security, we offer it as a contribution towards developing a theory for
PWIs.

First we define idempotent masking functions. This property, which we believe most interesting
masking functions will possess, will be a mathematical convenience in the coming proof. It allows
an adversary in a reduction argument to blindly apply a masking function to a state that may or
may not already be masked without worrying that doing so will cause the simulated environment
and the “expected” environment to diverge.

Definition 8 (Idempotent masking functions). A masking function M : {0, 1}n → {0, 1}n is
idempotent if for any state S ∈ {0, 1}n, M(S) and M(M(S)) are identically distributed random
variables. ut

The security experiments for Recovering security and Preserving security are shown in Figure 5.
We refer to the two games as Recover and Preserve, respectively. Our definitions are equivalent to
those of [5] if one specializes to a M that returns a string sampled from {0, 1}n and considers only
non-blocking PWIs.

Roughly, a PWI has recovering security if even when starting in a compromised state, it will,
after harvesting sufficient entropy, eventually return to a pseudo-random state (as described by
the masking function) and begin producing pseudo-random outputs. It has preserving security if
it can continue to maintain a pseudo-random state and produce pseudo-random outputs even if
given arbitrary, adversarially controlled inputs from the entropy source. Intuitively, these properties
should suffice to ensure robustness, and indeed, this is the case.

Definition 9 ((Witnessed) Recovering-Security). A PWI G = (setup, refresh, next, tick) has
(t, qD, γ

∗, ε)-recovering security, witnessed by the masking function M , if, for any attacker A and
legitimate sampler D, both running in time t, the recovering advantage

Advrec
G;M (A) = 2 Pr [ RecoverG(A,D,M) = 1 ]− 1

is at most ε. �

Definition 10 ((Witnessed) Preserving Security). A PWI G has (t, ε)-preserving security
witnessed by the (possibly randomized) function M : {0, 1}n → {0, 1}n if for any attacker A running
in time t, the preserving advantage Advpres

G;M (A) = 2 Pr [ Preserve(G, A,M) = 1 ]−1 is at most ε. ut

With this setup, we can state our PWI robustness security result. With the above definitions
in place, the proof itself is essentially identical to that of Theorem 1 of DPRVW; our exposition
closely follows theirs, and we include it for the sake of completeness. The only two subtleties are
the need for the idempotence property of masking functions and the change to Preserve that places
the initial (unmasked) state under the adversary’s control.
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Experiment Recover(G, A,D,M):

01 (setup, refresh, next)← G
02 seed

$←−S
03 b

$←− {0, 1}; σ0 ← 0; µ← 0
04 for k = 1, . . . , qD do
05 (σk, Ik, γk, zk)← D(σk−1)

06 (S0, d, σ
′)

$←−Aget-refresh()(seed, γ1, . . . , γqD , z1, . . . , zqD )
07 if µ+ d > qD or

∑µ+d
j=µ+1 γj < γ∗ then

08 return 0
09 for j = 1, . . . , d do
10 Sj ← refresh(Sj−1, Iµ+j , seed)
11 (S∗0 , R

∗
0)← next(Sd)

12 S∗1
$←−M(S∗0 )

13 if R∗0 = ⊥ then
14 R∗1 ← ⊥
15 else
16 R∗1

$←− {0, 1}`

17 b∗
$←−A(σ′, S∗b , Rb, Iµ+d+1, . . . , IqD )

18 if b∗ = b then
19 return 1
20 else
21 return 0

Proc get-refresh():

22 µ← µ+ 1
23 return Iµ

Experiment Preserve(G, A,M):

24 (setup, refresh, next)← G
25 seed

$←−S; b
$←− {0, 1}

26 (S′0, I1, . . . , Id, σ
′)

$←−A(seed)

27 S0
$←−M(S′0)

28 for j = 1, . . . , d do
29 Sj ← refresh(Sj−1, Ij , seed)

30 (S∗0 , R
∗
0)

$←− next(Sd)

31 S∗1
$←−M(S∗0 )

32 if R∗0 = ⊥ then
33 R∗1 ← ⊥
34 else
35 R∗1

$←− {0, 1}`

36 b∗
$←−A(σ′, S∗b , R

∗
b )

37 if b∗ = b then
38 return 1
39 else
40 return 0

Fig. 5. Security experiments for recovering and preserving security, with respect to a witness masking function M .
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Theorem 9. [Formal statement of Thm. 4] Let qN be a positive integer. If there is an idempotent
masking function M : {0, 1}n → {0, 1}n that witnesses the (t, εr)-recovering and (t, εp)-preserving
security of a PWI G, and M is (G,D, t, εh)-honest, then G is (t′, εh + qN (εr + εp))-robust.

Proof. We refer to queries to either the get-next or next-ror oracles as next queries. A next query
is uncompromised if it is made when corrupt = false, and compromised otherwise. If at any point
in the experiment corrupt is true, the next uncompromised next query is a recovering query. The
remaining uncompromised next queries are preserving queries.

When an adversary makes a recovering query, we associate with it a most recent entropy drain
(MRED) query: namely, the most recent query to get-state, set-state, or get-next. (We assume with-
out loss of generality that the adversary never makes a query to next-ror when corrupt = true.) Note
that between any recovering query and its associated MRED query (which set c ← 0), the adver-
sary must have made a series of queries to D-refresh, generating a sequence of recovering samples
I = (Ii, Ii+1, . . . , Ii+d) with the property that the corresponding entropy estimates (γi, γi+1, γi+d)
sum to at least γ∗.

Let M -ROB be the robustness experiment were the post-setup state S is overwritten with M(S).
Define game Gi to be the same as M -ROBG,D except that for the first i next queries:

– If the query is to next-ror, the challenger sets S ← M(S) after Line 9, and always returns R1

(not Rb).
– If the query is to get-next, the challenger sets S ← M(S) after Line 15, and then if R 6= ⊥,

overwrites R
$←− {0, 1}`.

So for the first i next queries, the state gets overwritten with a mask of the state, and the adversary
receives random bits.

Further define Gi+1/2, which behaves like Gi when the (i + 1)st next query is preserving,
and like Gi+1 otherwise. Note that Pr [G0(A) = 1 ] = Pr [M -ROBG,D(A) = 1 ] + εh and that
Pr [GqN (A) = 1 ] = 1/2. (The latter equality holds because in Game GqN , all of the oracle outputs
are independent of b). Therefore:

Pr [M -ROBG,D(A) = 1 ] ≤
qN−1∑
i=0

(∣∣Pr [Gi(A,D) = 1 ]− Pr
[
Gi+1/2(A,D) = 1

]∣∣
+
∣∣Pr
[
Gi+1/2(A,D) = 1

]
− Pr [Gi+1(A,D) = 1 ]

∣∣) .
We show in two following lemmata that the former absolute value is upper bounded by εp, while

the latter is upper bounded by εr. Since
∣∣Pr [ ROBG,D(A) = 1 ]− Pr

[
M -ROBG,D(A) = 1

]∣∣ ≤ εh, this
completes the proof. ut

Lemma 2. Let Game Gi be defined as above, with respect to some PWI G. Then if G is (t′, εp)-
preserving secure,

∣∣Gi(A,D)−Gi+1/2(A,D)
∣∣ ≤ εp for any adversary A running in time t ≈ t′.

Proof. Given A, we will construct an adversary A′ for the recovery game. Note that we may assume
without loss of generality that the (i+1)st next query will be a preserving query, because otherwise
Gi and Gi+1/2 are identical. A′ obtains a seed from the challenger, and uses it along with the code
for D to simulate Gi for A until the (i+ 1)st next query.

Let S0 be the state that A′ uses to simulate Gi for A immediately following the ith next query.
When A makes its (i + 1)st next query, A′ gives the challenger S0 along with the entropy inputs
I1, . . . , Id it generated between A’s ith and (i+1)st next queries. The challenger replies with (S∗b , R

∗
b).
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Next, A′ flips its own coin b′
$←− {0, 1}. If b′ = 0, A′ replies to A’s (i + 1)st next query with

R∗∗ (if this is a get-next query) or with (S∗∗, R∗∗) (if it’s a next-ror query), where if b′ = 0 then
(S∗∗, R∗∗) = (S∗, R∗), and if b′ = 1 then S∗∗ = M(S∗) and

R∗∗ =

{
⊥ if R∗ = ⊥
R otherwise, for R

$←− {0, 1}`.

Finally, A′ uses resumes simulating the environment for A, starting from state S∗∗, and following
the specification of Gi+1. When A outputs b∗, A′ outputs b∗

′
, which is 1 if b∗ = b′, and 0 otherwise.

Now, if the original challenge bit was b = 0, then A′ has exactly simulated Gi for A: the first
i next queries followed the specification of Gi, while the (i + 1)st next query returned the “real”
state and output bits if b′ = 0, and returned uniformly random bits and a mask of the state if
b′ = 1. Further, because M is idempotent, the fact that the challenger applies a mask to S0 does
not change its distribution —Gi calls for the state to be masked after every next query, and so S0
is “already” masked.

On the other hand, if the challenge bit was b = 1, then A′ has exactly simulated Gi+1/2 for A.
It returned uniformly random bits and a mask of the state on the (i+ 1)st query. Our idempotence
assumption again comes into play: when b = 1, A′ receives a state S∗ = M(S) that has already
been masked, and returns S∗∗ = M(M(S)) to A; however, these random variables are identically
distributed.

Consequently,∣∣Pr [Gi(A,D) = 1 ]− Pr
[
Gi+1/2(A,D) = 1

]∣∣ =
∣∣Pr
[
b′ = b∗ | b′ = 0

]
− Pr

[
b′ = b∗ | b′ = 1

]∣∣
=
∣∣∣2 Pr

[
b∗
′

= b
]
− 1
∣∣∣ ≤ εp,

which is what we wanted. ut

Lemma 3. Let Game Gi be defined as above, with respect to some PWI G. Then if G is (t′, εr)-
recovery secure,

∣∣Gi+1/2(A,D)−Gi+1(A,D)
∣∣ ≤ εr for any adversary A running in time t ≈ t′.

Proof. Given A, we will construct an adversary A′ for the recovery game. Note that we may assume
without loss of generality that the (i+1)st next query will be a recovering query, because otherwise
Gi+1/2 and Gi are identical. A′ obtains a seed and information (γj , zj)

qD
j=1 from the challenger,

chooses a challenge bit b′
$←− {0, 1}, and generates an initial state S′

$←− setup. Then A′ simulates Gi
for A, providing A with the seed and using the leaked information it obtained from the challenger
and its get-refresh oracle to simulate the D-refresh oracle for A′.

After the ith next query, however, A′ no longer immediately uses its get-refresh oracle to update
its state in response to a D-refresh query from A. Instead, it simply returns the appropriate (γ, z)
pair. The on the (i+1)st next query, A′ invokes its get-refresh oracle to update its state to the point
immediately following the corresponding MRED. Call this state S0. Next, A′ counts the number
d of D-refresh calls A made after the MRED, and submits (S0, d) to the challenger. A′ receives
the challenge (S∗, R∗) in reply, along with the entropy strings Iν , Iν+1, . . . , IqD it will later use to
resume simulating an environment for A.

If b′ = 0, A′ replies to A’s (i + 1)st next query with R∗∗ (if this is a get-next query) or with
(S∗∗, R∗∗) (if it’s a next-ror query), where if b′ = 0 then (S∗∗, R∗∗) = (S∗, R∗), and if b′ = 1 then
S∗∗ = M(S∗) and
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R∗∗ =

{
⊥ if R∗ = ⊥
R otherwise, for R

$←− {0, 1}`

Finally, A′ uses Iν+1, . . . , IqD to resume simulating the environment for A, starting from state
S∗∗, and following the specification of Gi+1. When A outputs b∗, A′ outputs b∗

′
, which is 1 if b∗ = b′,

and 0 otherwise.
Now, if the original challenge bit was b = 0, then A′ has exactly simulated Gi+1/2 for A: the

first i next queries followed the specification of Gi, while the (i+1)st next query returned the “real”
state and output bits if b′ = 0, and returned uniformly random bits and a mask of the state if
b′ = 1.

On the other hand, if the challenge bit was b = 1, then A′ has exactly simulated Gi+1 for A.
It returned uniformly random bits and a mask of the state on the (i + 1)st query. This is where
our idempotence assumption comes into play: when b = 1, A′ receives a state M(S) that has
already been masked, and returns M(M(S)) to A; however, these random variables are identically
distributed.

Consequently,∣∣Pr
[
Gi+1/2(A,D) = 1

]
− Pr [Gi+1(A,D) = 1 ]

∣∣ =
∣∣Pr
[
b′ = b∗ | b′ = 0

]
− Pr

[
b′ = b∗ | b′ = 1

]∣∣
=
∣∣∣2 Pr

[
b∗
′

= b
]
− 1
∣∣∣ ≤ εr,

which was what we wanted. ut

C On the read-only robustness of ISK-RNG

This appendix contains our analysis of the robustness of ISK-RNG against a restricted adversary,
in a somewhat restricted model. We discussed the necessity of limiting the adversary on pg. 22;
in short, future output values persist in output buffers even if the ES produces large amounts of
entropy following a state compromise. Therefore these outputs (and in some cases many more, as we
discussed earlier) will necessarily be compromised. The best we can hope for is that ISK-RNG will
eventually recover, where now “eventually” means after it prodcues a certain number of (unsafe)
outputs, rather than after it accumulates γ∗ bits of entropy.

A second change to the ROB experiment we need to make is that we will not permit the adversary
to make set-state queries. He may, however, make get-state queries without restriction. That is, we
consider adversaries who can learn information about the PWI state, but not adversaries that can
tamper with it. We feel this is a reasonable assumption to make because, in addition to the practical
difficulties of tampering with hardware not accessible to software, an adversary possessing both the
required technical expertise and opportunity to tamper with hardware will have numerous other
attack vectors at his disposal, anyway; attempting to defend against him would be futile.

The distinction between “read-only” adversaries and those with write capabilities may seem
rather fine, perhaps even artificial, in the context of hardware RNGs. Our intent here is not to
speculate on the relative difficulty of such attacks, but rather to determine how damaging they
might be. This being said, we acknowledge that the distinction is likely more important in software
RNGs (for example, the recent Heartbleed vulnerability in OpenSSL permitted attackers to read,
but not modify, the target’s memory); hence, a read-only robustness notion may prove useful in
that domain, as well.
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Returning to ISK-RNG, the reason for a change to “read-only” adversaries is that a set-state
query would permit the adversary to replace otherwise entropic bits with seed-dependent val-
ues, preventing us from leveraging results from the entropy-extraction literature, specifically the
Left-over Hash Lemma and Theorem 1. ISK-RNG would propagate this dependency through all
subsequent reconditionings. We were able to overcome these obstacles in the proof of Theorem 2
by bootstrapping off of the near-uniform randomness of each conditioner output to argue for the
randomness of the next, but this remedy is unavailable here.

We call this new game (arbitrary get-state queries, no set-state queries) ro-ROB, for read-only
robustness.

We call an adversary A slow if after making a get-state or set-state call, A does not make a
next-ror call until it performs the following sequence of steps:

1. Invokes D-refresh until the CE buffer becomes available.
2. Empties the CE buffer (by using the RDSEED interface, or by using RDRAND and then allowing

ISK-RNG to reseed) and makes it available again. At this point, the “compromised” OSTE and
ESSR buffers have been conditioned into the CE buffer, which therefore remains compromised.

3. Empties the CE buffer and makes it available again. One can now hope that its contents are
now information theoretically random and independent of any compromised value.

4. Causes the DRBG to reseed (by using the RDRAND interface, which empties one of the output
buffers, and then invoking wait). If the previous step successfully produced a fresh, random value
for the CE buffer, then this value will act as a one-time pad when generating a new DRBG key
and IV.

5. Flushes the remaining output buffers by invoking RDRAND and invokes D-refresh until the CE
buffer becomes available. (This final step prevents A from invoking get-state to learn the “fresh”
entropy used to reseed the DRBG.)

6. Invokes wait() until the eight output buffers are repopulated.

We note that this seemingly-elaborate sequene of steps will naturally occur once processes
running on the machine dispatch a sufficient number of RDRAND or RDSEED instructions.

Theorem 10 (ISK-RNG is read-only robust against slow adversaries). Let A be a slow
adversary running in time t, making qgs queries to its get-state oracle, and a combined q queries
to its get-next and next-ror oracles. Let Lm be a positive integer. Suppose D is β-healthy for some
β > 0. Then there exists an adversasry B making three queries and running in time O(t) such that

Adv
ro−rob/M
ISK,D (A) ≤ (q + 3qgs)

(
2(k−mγ)/2 + ε(Lm) + 2ε̂(Lm)

)
+ 2(q + 8qgs)

(
Advprp

AES(B) +
3

2k

)
,

where ε(Lm) = O(Lm + 1)/2k/2 and ε̂(Lm) =
∑m−1

i=0

(
Lm
i

)
βi(1− β)Lm−i.

Proof. For i ∈ [0..qgs], define Gi to be the game that behaves identically to ro-ROBISK,D with
challenge bit b = 0 (i.e., the next-ror oracle returns random values) until after i queries to get-state,
and then behaves as though b = 1. So

Adv
ro−rob/M
ISK,D (A) = Pr

[
Gqgs+1(A)⇒ 1

]
− Pr [G0(A)⇒ 1 ] .

Let Si be the state following the ith get-state query in Gi (so Si is not masked). Let Sji be that
same state after the slow adversary A completes Step j above. Then S2

i .CE0 is a permutation as
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a function of Si−1.CE0 for any fixed values of Si−1.ESSR, Si−1.OSTE, and intervening D outputs,
and similarly for S2

i .CE1 with respect to Si−1.CE1. Therefore S2
i .CE is uniformly distributed, and

likewise independent of π and any entropy source outputs.
Define the game G′i to behave identically to Gi, except that after the CE buffer becomes available

during Steps 3 and 5 above, its contents are immediately rewritten with uniform random values. It
follows (cf. the proof of Lemma 1) that

Pr
[
G′i(A)⇒ 1

]
− Pr [Gi(A)⇒ 1 ] ≤ 2

(
2(k−mγ

∗)/2 + ε(Lm) + 2ε̂(Lm)
)
.

Define the game G′′i to behave identically to G′i, except that the output of each AES invocation
during Step 6 is replaced with a uniform random string. Follow the logic of Lemma 1, we have that
there is some adversary B making three queries and running in time t such that

Pr
[
G′′i (A)⇒ 1

]
− Pr

[
G′i(A)⇒ 1

]
≤ 8

(
Advprp

AES(B) +
3

2k

)
.

Finally, let G′′′i be the game that behaves identically to G′′i , except that immediately after A
completes Step 6 after making its ith get-state query, G′′′i overwrites the state S with M(S). But
since S is at this point identically distributed to M(S),

Pr
[
G′′′i (A)⇒ 1

]
− Pr

[
G′′i (A)⇒ 1

]
= 0.

Let qi be the combined number of queries that A makes to get-next and next-ror between its ith
and (i+ 1)st get-state query. It follows that there is some adversary Bi making (qi + 1) queries and
running in time t such that

Pr [Gi+1(A)⇒ 1 ]− Pr
[
G′′′i (A)⇒ 1

]
≤ Adv

fwd/M
ISK,D (Bi).

(There is a subtle issue here: the M -FWD experiment starts by masking some S generated by the
setup proceedure, which is not the case in this reduction; however, the proof of Theorem 8 follows
through cleanly starting from M(S) for arbitrary S.)

Putting everything together,

Adv
ro−rob/M
ISK,D (A) ≤

qgs∑
i=0

(Pr [Gi+1(A)⇒ 1 ]− Pr [Gi(A)⇒ 1 ])

≤
qgs∑
i=0

[
2
(

2(k−mγ
∗)/2 + ε(Lm) + 2ε̂(Lm)

)
+ 8

(
Advprp

AES(B) +
3

2k

)
+ Adv

fwd/M
ISK,D (Bi)

]
≤

qgs∑
i=0

[
(qi + 3)

(
2(k−mγ

∗)/2 + ε(Lm) + 2ε̂(Lm)
)

+ 2(qi + 8)

(
Advprp

AES(B) +
3

2k

)]
≤ (q + 3qgs)

(
2(k−mγ)/2 + ε(Lm) + 2ε̂(Lm)

)
+ 2(q + 8qgs)

(
Advprp

AES(B) +
3

2k

)
.

This completes the proof.
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Discussion. This bound is very similar to the one provided by Theorem 8. Additionally, we note
that if one only requires RDRAND to be secure (as opposed to both RDRAND and RDSEED), then one

could instead obtain a bound similar to that of Theorem 7 by replacing the Adv
fwd/M
ISK,D (Bi) term

in the proof with a Adv
fwd−RDRAND/M
ISK,D (Bi) term, upperbounding it with the value provided by that

theorem.
Consequently, the discussion of Theorems 8 and 7 applies more-or-less intact to Theorem 10

and its RDRAND-only variant. The discussion can be found in Section 7.3 on pg. 22.

D Towards a notion of PWI availability

If a PWI can block, that immediately raises the question of availability. In general, however, any
attempt to estimate the entropy contained in a sequence of input strings will necessarily be heuristic
and subject to failure; imagine, for example, an entropy source that internally generates a random
128-bit AES key, and then begins outputting a CTR mode key stream. As long as AES is secure (as
a PRP and hence a PRF, up until a large number of outputs have been produced), then no efficient
test will be able to distinguish these outputs from random. Yet after the first couple outputs, the
rest have essentially zero conditional min-entropy.

Still, entropy estimation and blocking may be reasonable ways to address specific, foreseeable
failures with the entropy source (perhaps including certain types of hardware failure). Therefore
we propose the following definition as a step toward capturing availability.

A PWI P is (D, t, q, q∗, γ∗, ε)-available if for all adversaries A making q queries and running in
time t, the probability of A winning the above game (which is parameterized by q∗ and γ∗) is at
most ε. (Note that a definition that simply requires the PWI to not block would not be well-suited
for PWIs that endeavor to provide truly random, rather than cryptographically random, bits; this
is the case with the RDSEED interface, and, ostensibly, the /dev/random device in Linux.)

The basic idea is that the PWI should be available as long as it has gathered at least γ∗ bits of
entropy since q∗ queries ago. However, we do not count any entropy gathered prior to the adversary
tampering with state. (We do allow the adversary to view the state without penalty.) By making
the entropy source D non-adversarial, we leave room to prove availability with specific (classes of)
entropy sources.

The question of whether, say, ISK-RNG meets this definition of availability would require as-
sumptions on D beyond simply that it provide high min-entropy See the discussion immediately
following the proof of Theorem 2.
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Oracle D-refresh:

(σ, I, γ, z)
$←−D(σ)

γt ← γt + γ
S ← refresh(S, I)
return (γ, z)

Oracle get-next:

(S,R)← next(S)
if R = ⊥ then

if γµ + γµ+1 + · · · + γt > γ∗

then
b← 1

t← t+ 1
if µ < t− q∗ then
µ← t− q∗

return R

Oracle get-state:

return S

Oracle set-state(S∗):

µ← t
γt ← 0
S ← S∗

Proc initialize:

seed← setup

σ ← 0; S
$←− {0, 1}n

µ← 0; t← 0
γ0 ← γ∗; b← 0

Proc finalize:

return b
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