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Abstract. In this paper, we address the problem of privacy preserving delegated
word search in the cloud. We consider a scenario where a data owner outsources
its data to a cloud server and delegates the search capabilities to a set of third party
users. In the face of semi-honest cloud servers, the data owner does not want to
disclose any information about the outsourced data; yet it still wants to benefit
from the highly parallel cloud environment. In addition, the data owner wants to
ensure that delegating the search functionality to third parties does not allow these
third parties to jeopardize the confidentiality of the outsourced data, neither does
it prevent the data owner from efficiently revoking the access of these authorized
parties. To these ends, we propose a word search protocol that builds upon tech-
niques of keyed hash functions, oblivious pseudo-random functions and Cuckoo
hashing to construct a searchable index for the outsourced data, and uses private
information retrieval of short information to guarantee that word search queries
do not reveal any information about the data to the cloud server. Moreover, we
combine attribute-based encryption and oblivious pseudo-random functions to
achieve an efficient revocation of authorized third parties. The proposed scheme
is suitable for the cloud as it can be easily parallelized.

1 INTRODUCTION

The cloud computing paradigm offers clients the ease of outsourcing the storage of their
massive data with the advantage of reducing cost and assuring availability. Large-scale
cloud infrastructures bring up severe security and privacy issues: Apart from traditional
security challenges, the outsourced storage of ”big data” raises the challenge of pro-
cessing it at the cloud in a secure and privacy preserving manner while considering the
cloud provider itself as a potential adversary.

While data owners (i.e. clients) can simply encrypt their data before outsourcing it
to the cloud, traditional confidentiality mechanisms fall short when it comes to min-
ing/processing the data. Recently, several solutions have been proposed to allow the
search of words over encrypted data. In this paper however, we address the problem of
delegated word search whereby in addition to the data owner itself, some authorized
third-parties can perform search operations over private data. In addition to security
and privacy properties that classical search solutions assure under a semi-honest (i.e.,
honest-but-curious) security model, a privacy preserving delegated word search mecha-
nism includes the delegation and revocation operations: The data owner should be able
to remove the search capability of a third party at any point in time through an efficient
revocation mechanism.



We propose a new privacy preserving word search solution whereby as in [5], the
data owner constructs a searchable index with all words listed in its files and similarly to
[3], it applies a private information retrieval to guarantee that the adversary including the
cloud itself does not discover any information about the search query and its result. The
newly proposed solution outperforms existing ones thanks to a combination of Cuckoo
hashing with private information retrieval for the search operation. The use of Cuckoo
hashing helps in assigning one word to a unique position in the index, thus removing the
probability of collisions within the index: The data owner first constructs a confidential
index where each particular element corresponds to a unique word and fills it in with
some private information derived from the actual word. The search operation consists
of the computation of the position corresponding to the queried word using Cuckoo
hashing, and building the corresponding PIR query to be sent to the cloud provider.

Moreover, the delegation operation is assured thanks to the use of attribute based
encryption (ABE) which only allows users holding certain ”attributes” to search over
the data. For example, when companies outsource their logs over the cloud, they can
allow some data protection commissioner to search over them under an audit operation.
Whereas efficient revocation is achieved by a combination of ABE and oblivious pseudo
random functions. The revocation operation does not imply the re-encryption of the
outsourced data and only requires an update of the access policy by the data owner
which can be considered as a negligible cost.

The major contributions of the paper can be summarized as follows:

– We propose a new word search protocol which is based on an efficient word-index
construction thanks to the use of Cuckoo hashing and the transformation of PIR
into privacy preserving word search.

– The newly proposed solution also includes delegation and revocation capabilities
thanks to the use of Attribute Based Encryption and Oblivious Pseudo Random
Functions. The revocation operation does not incur any cost except for the update
of the access policy by the data owner.

– We define the main privacy requirements and further provide a formal analysis of
these properties.

Section 2 introduces the generic problem of privacy preserving delegated word
search and the application scenario. The different privacy requirements are formally
defined in section 3. The first version of the privacy preserving word search solution
is described in section 4. The entire solution including the delegation and revocation
operations is presented in section 5. We analyze the new solution in terms of security
and performance in Sections 6 and 7. Finally, Section 8 reviews the state of the art.

2 BACKGROUND

We consider a scenario where a data owner outsources some privacy sensitive data to a
cloud server and wishes to later on perform some operations over it without revealing
any details about the data. The operation we are focusing on is word search over en-
crypted data and in our scenario the data owner may wish to delegate part of the search
operations to authorized third parties. An illustrative example of such a requirement can



be a scenario wherein due to regulatory matters, some data (such as logs) still need to
be searchable by third parties such as data protection commissioners. The three entities
involved in a privacy preserving delegated word search and the main algorithms are
formally defined in the following sections.

2.1 Entities

A privacy preserving delegated word search involves the following entities:

– Data owner O: It possesses a large file F that it outsources to the cloud server S .
Without loss of generality, we assume that the number of distinct words in F is n
and the corresponding set is defined as Lω = {ω1,ω2, ...,ωn}. Similarly to previous
work such as [3, 6], we assume that once O outsources a file F , it will no longer
modify it.

– Cloud server S : It stores an encrypted version of the outsourced file F and a search-
able index I of the set Lω of “distinct” words present in F .

– Authorized user U: It has access to a set of credentials that enable it to perform
search queries on F . This authorized user could be an auditor which as part of its
auditing task has to search the activity logs of O. We also note that in some cases
an authorized user could correspond to the data owner that wants to perform word
search on its outsourced data.

2.2 Privacy Preserving Delegated Word-Search

In accordance with the work of Curtmola et al. [6], a privacy preserving delegated word-
search comprises the following algorithms:

– Setup(ζ)→ (MK,P ): It is a randomized algorithm that is executed by the data
owner O. It takes as input the security parameter ζ, and outputs a master key MK
and a set of public parameters P that will be used by subsequent algorithms to
perform the word-search.

– Encrypt(MK,F)→ C: This algorithm is run by O. It has as input the master key
MK and the file F , and outputs an encryption C of file F .

– BuildIndex(MK,F)→ I : This algorithm has as input the master key MK and a
file F and outputs an index I of distinct words ωi present in F . This algorithm is
generally run by the data owner O.

– Delegate(MK,Sto, idu) → Ku: This algorithm is executed by O to delegate the
search capabilities on its files to some third party user. On input of the master
key MK, the current state Sto of O and the identifier idu of some user U, Delegate
outputs a secret key Ku that will be provided to U.

– Token(ω,Stu,Ku)→ τ: This algorithm is executed by authorized users or the data
owner O to generate a search token for some word ω. It takes as input the word
ω, the current state Stu of authorized user U and the key Ku and outputs a search
token τ.

– Query(τ)→ Q : It is a randomized algorithm that is run by authorized users to
generate word search queries. On input of a token τ, Query outputs a word search
query Q that will be forwarded to cloud server S .



– Response(Q ,I )→ R : This algorithm is invoked by S whenever S receives a word
search query Q . It takes as input Q and the index I and outputs a word search
response R .

– Verify(R ,Stu)→ b: It is a deterministic algorithm run by authorized users to verify
S ’s responses. On input of S ’s response R and the current state Stu of authorized
user U, Verify outputs a bit b = 1 if ω ∈ F and b = 0 otherwise.

– Revoke(MK,Sto, idu)→ (St′o,St′s): This algorithm is run by the data owner O to
revoke the access of previously authorized users. It has as input the master key
MK, the current state Sto of data owner O and the identifier idu of some previously
authorized user U, and it outputs an updated state St′o for O and an updated state
St′s for cloud server S .

3 ADVERSARY MODEL

The crucial privacy challenge to address when designing a privacy preserving delegated
word search is assuring privacy against a misbehaving cloud server. Indeed, the cloud
server may attempt to infer sensitive information about the outsourced files (and their
owners thereof) from the ciphertexts and indexes it keeps. It may also try to derive
information about those files from the word search queries it processes. Thus, it is of
utmost importance to ensure that the ciphertexts and the indexes that the cloud stores
together with the word search queries it processes do not leak any information about
the data owners’ files.

Furthermore, the delegation of search capabilities to third party users inherently
raises the requirements of access authorization and revocation, and therewith the re-
quirement of privacy against revoked users. For example, a previously authorized user
may exploit the information it collected during its word search operations that occurred
when it was still authorized to conduct lookup operation after its revocation so as to
learn new information about the outsourced files. Therefore, one should ensure that
even if revoked users can still issue valid search queries to the cloud server, they should
not be able to decode the cloud server’s responses.

Along these lines, we provide in the subsequent sections formal models for the
notions of both privacy against cloud servers and privacy against revoked users, which
we will employ to assess the security of our scheme in the appendix of this paper. Of
course, solutions protected against misbehaving clouds and revoked users are inherently
secure against any other type of external adversaries.

3.1 Privacy against Cloud Server

In accordance with the work of Blass et al. [3] and Curtmola et al. [6], we assume that
the cloud server S is semi-honest: Although interested in discovering the content of the
data and the queries, S still performs all the required operations correctly.

A privacy preserving delegated word search should ensure that the semi-honest
cloud server S does not discover any information about the content of an outsourced
file from either its encryption or its index. This means that in addition to not being able
to break the confidentiality of the outsourced data, S should neither be able to mount



Algorithm 1: Learning phase of the storage privacy game
// S calls oracles Oencrypt and Oindex a polynomial
// number of times
Fi← S ;
Ci← Oencrypt(Fi,MK);
Ii← Oindex(Fi,MK);
//S returns a challenge word
ω∗← S ;

statistical attacks on the outsourced files (e.g. occurrence of words) nor to tell whether
two files contain (or do not contain) the same words. In compliance with the work of
[3], we refer to this requirement as storage privacy. Moreover, a solution for privacy
preserving delegated word search should as well guarantee query privacy: during the
lookup phase, cloud server S should not be able to derive any useful information about
the queries of authorized users. Namely, S should not be able to tell whether any two
word search queries were issued for the same word or not (cf. [3]).

To formally capture the adversarial capabilities of S in the subsequent privacy defi-
nitions, we assume that S is given access to the following oracles:

– Oencrypt(F,MK)→C: This oracle takes a file F and the master key MK of some data
owner O as inputs and computes an encryption C of file F by calling the algorithm
Encrypt.

– Oindex(F,MK)→ I : On inputs of file F and the master key MK, this oracle executes
the algorithm BuildIndex and returns the index I associated with file F .

– Osearch,s(I ,ω)→ views: Cloud server S invokes this oracle whenever it wants to
receive and process a word search query. On inputs of index I and word ω, this
oracle starts an execution of the word search protocol with cloud server S to check
whether ω is in I or not. At the end of the word search operation, Osearch,s returns
the view views = (Sts, rands,M1,s,M2,s, ...,Ml,s) of cloud server S during the word
search, where Sts is the current state of cloud server S , rands is its internal random-
ness that it used to generate its word search response and Mi,s is the ith message
that S received during the word search from oracle Osearch,s.

Storage Privacy We define storage privacy using an indistinguishability-based game
that comprises two phases: A learning phase (cf. Algorithm 1) and a challenge phase
(cf. Algorithm 2). The goal of cloud server S in this game is to tell whether a challenge
file F∗b contains some word ω∗. To this effect, cloud server S calls the oracles Oencrypt

and Oindex for a polynomial number of times in the learning phase. By the end of this
phase, S outputs a challenge word ω∗.

Let F∗0 and F∗1 be two files such that F∗1 contains ω∗ while F∗0 does not.
Now in the challenge phase, cloud server S is provided with the encryption C∗b and

the index I ∗b of file F∗b where b is picked randomly from {0,1}. At the end of the
challenge phase, S outputs its guess b∗ for the bit b. We say that S succeeds in the
storage privacy game if b = b∗.



Algorithm 2: Challenge phase of the storage privacy game
// Let F∗0 and F∗1 be two files s.t. F∗1 contains ω∗ // while F∗0 does not
b←{0,1};
C∗b ← Oencrypt(F∗b ,MK);
I ∗b ← Oindex(F∗b ,MK);
b∗← S ;

Algorithm 3: Learning phase of the query privacy game
// S calls oracles Oencrypt, Oindex, and Osearch,s

// a polynomial number of times
(Fi,ωi)← S ;
Ci← Oencrypt(Fi,MK);
Ii← Oindex(Fi,MK);
views,i← Osearch,s(I ,ωi);
//S outputs achallenge file F∗ and two distinct
// words ω0 and ω1

(F∗,ω∗0,ω
∗
1)← S ;

Definition 1 (Storage privacy). Let ΠS
success denote the probability that S succeeds in

the storage privacy game. We say that a word search protocol assures storage privacy,
iff for any cloud server S , ΠS

success ≤ 1
2 + ε, where ε is a negligible function in the

security parameter ζ.

Query Privacy Similarly to storage privacy, we formalize query privacy through an
indistinguishability-based game that runs in two phases: A learning phase and a chal-
lenge phase. In the learning phase as depicted in Algorithm 3, cloud server S picks
adaptively a polynomial number of file and word pairs (Fi,ωi). For each selected pair
(Fi,ωi), S calls first the oracles Oencrypt and Oindex to encrypt F and build the corre-
sponding index respectively, then it queries the oracle Osearch,s to receive and process a
search query for word ωi in Fi. At the end of the learning phase, S outputs a challenge
file F∗ and two challenge words ω∗0 and ω∗1.

In the challenge phase (cf. Algorithm 4), cloud server S queries the oracles Oencrypt

and Oindex which provide S with the encryption and the index of the challenge file F∗

respectively. Then, the oracle Osearch,s executes an instance of the word search protocol
for word ω∗b with S , where b is a randomly selected bit. Finally, S outputs its guess b∗

for the bit b. We say that S succeeds in the query privacy game if b = b∗.

Definition 2. Let ΠS
success denote the probability that S succeeds in the query privacy

game. We say that a word search protocol ensures query privacy, iff for any cloud server
S , ΠS

success ≤ 1
2 + ε, where ε is a negligible function in the security parameter ζ.



Algorithm 4: Challenge phase of the query privacy game

C∗← Oencrypt(F∗,MK);
I ∗← Oindex(F∗,MK);
b←{0,1};
view∗s ← Osearch,s(I ∗,ω∗b);
b∗← S ;

3.2 Privacy against Revoked Users (”forward privacy”)

Ideally, a privacy preserving delegated word search should assure that when an autho-
rized user is revoked, it can no longer look for words in the cloud server’s files (this does
not imply that the revoked user cannot query the server’s database, rather it means that
it cannot successfully interpret the cloud server’s responses). In other words, a privacy
preserving delegated word search should make sure that even if a revoked user is able
to issue word search queries, it cannot infer any new information about the outsourced
files that it did not learn before its revocation. This requirement resembles the notion
of forward secrecy whereby a user cannot have access to any data after its revocation.
In the context of word search in addition to the content of the data, the revoked user
should not infer any additional information from future queries as well.

Since in this paper we only focus on static data (i.e. the data owner does not update
its file once outsourced to the cloud server), we argue that the above intuition can be
captured by assuring that revoked users cannot look up a word for which they did not
issue a search query when they were still authorized.

Without loss of generality, we assume that there is a data owner O that outsources its
file F and the corresponding index I to cloud server S , and that a user U is interested in
searching the file F even after its revocation. To this effect, U may behave maliciously
during the execution of the word search protocol. Namely, U may provide bogus word
search queries to cloud server S .

In order to formalize privacy against revoked users, we use a privacy game that
similarly to the two previous games consists of a learning and a challenge phase. In
addition to the oracles Oencrypt and Oindex, user U has access to the following oracles.

– Odelegate(MK)→ Ku: On input of the data owner O’s master key MK, the oracle
Odelegate executes the algorithm Delegate to allow U to perform word search on
O’s file F and outputs the secret key Ku.

– Orevoke: This oracle revokes the right of U to search the file F by executing the
algorithm Revoke which updates the states of data owner O and cloud server S .

– Osearch,u(I ,ω)→ viewu: U calls this oracle whenever it wants to perform a word
search on the index I . It takes as input an index I and a word ω and outputs the
view viewu = (Stu, randu,M1,u,M2,u, ...,Ml′,u) of user U during the word search,
where Stu is the current state of user U and randu is its internal randomness that it
used to generate its word search query, whereas Mi,u corresponds to the ith message
that U received from Osearch,u during the word search.

– Ochal,u(I ,ω)→ chalu,b: When called with an index I and word ω, this oracle flips
a random coin b ∈ {0,1}. If b = 1, then Ochal,u returns the actual view chalu,1 =



Algorithm 5: Learning phase of the privacy game against revoked users

I ← Oindex(F,MK);
Ku← Odelegate(I );
// U calls Osearch,u for a polynomial number of
// times
ωi←U;
viewu,i← Osearch,u(I ,ωi);
Orevoke(U);
// U calls Osearch,u for a polynomial number of
// times after revocation
ω′i←U;
view′u,i← Osearch,u(I ,ω′i);
//U returns a challenge word that is not in file F
ω∗←U ;

Algorithm 6: Challenge phase of the privacy game against revoked users

I ∗← Oindex(F ∪{ω∗},MK);
chal∗u,b← Ochal,u(I ∗,ω∗);
b∗←U;

viewu = (Stu, randu,M1
1,u,M

1
2,u, ...,M

1
l′,u) of user U during the word search for ω,

such that Stu is the current state of user U and randu is its internal randomness,
whereas Mi,u corresponds to the ith message that U received from Osearch,u during
the word search. If b = 0, then Ochal,u outputs chalu,0 =(Stu, randu,M0

1,u,M
0
2,u, ...,M

0
l′,u),

where Stu is the current state of user U and randu is its internal randomness, and
M0

i,u are generated randomly by Ochal,u.

Once user U enters the learning phase of the privacy game (see Algorithm 5), it
first calls the oracle Oindex with a file F of its choosing to get the corresponding index
I . Next user U invokes the oracle Odelegate which supplies U with the secret key Ku.
This key will enable U to execute the word search protocol with cloud server S on
the index I and therewith on file F . Then user U queries the oracle Osearch,u for a
polynomial number of words ωi of its choosing. Next, the oracle Orevoke revokes U.
After the revocation, U can still issue a polynomial number of word search queries on
file F by calling Osearch,u. Finally, U outputs a challenge word ω∗ that is not present in
file F .

In the challenge phase (see Algorithm 6), U queries the oracle Ochal,u with the
word ω∗ and the index I ∗ that corresponds to F ∪{ω∗}. The oracle Ochal,u in turn flips
a random coin b ∈ {0,1} and outputs the challenge view chal∗u,b. At the end of the
challenge phase, revoked user U outputs a guess b∗ for bit b.

We say that U succeeds in the game of privacy against revoked users if i.) b = b∗

and if ii.) U did not issue a search query for the challenge word ω∗ before calling the
oracle Orevoke (i.e. ω∗ 6= ωi, ∀i).



Definition 3. Let ΠU
success denote the probability that U succeeds in the privacy game

against revoked users. We say that a delegated word search mechanism provides privacy
against revoked users iff for any revoked user U, ΠU

success≤ 1
2 +ε, where ε is a negligible

function in the security parameter ζ.

4 PRIVACY PRESERVING WORD SEARCH

In this section, we describe the first version of the proposed word search solution which
does not offer any delegation capabilities and therefore only assures privacy against
honest-but-curious cloud providers. Similarly to [3, 5], to assure query privacy against
a semi-honest cloud server, we rely on Private Information Retrieval (PIR) to build
our word-search scheme. Actually, PIR allows a user to retrieve a data block from a
server’s database without disclosing any information about the sought block. However,
PIR protocols assume that the user know beforehand the position in the database of
the data block to be retrieved, and therefore, they cannot be used directly in privacy
preserving word search wherein a user only holds a list of words to look for. Fortunately,
Chor et al. [5] proposed a technique that transforms any PIR mechanism into a protocol
for private information retrieval by keyword, and thereby, into a privacy preserving
word-search. The main idea is to first construct an index of all the distinct words present
in the outsourced data and then apply a PIR to this index. As shown in [5], this can be
achieved by representing the index by a hash-table that maps each word to a unique
position in the table. During the search phase, the user first computes the position of the
requested word in the hashtable (i.e. the index) and further runs PIR to fetch the block
stored at that position. While the construction of [5] can be easily transformed into a
privacy preserving word search, we believe that it can be further optimized by using
Cuckoo hashing to build the hashtables (i.e. the indexes) of the words in the outsourced
files.

Along these lines, we first formalize and describe the PIR and the Cuckoo hashing
algorithms that will underpin our word search solution.

4.1 Building Blocks

Trapdoor Private Information Retrieval For efficiency purposes, we opt for a PIR
mechanism called trapdoor PIR which was proposed by Trostle and Parrish [16], and
whose security is based on the trapdoor group assumption. We stress however that this
particular PIR can be interchanged by any other efficient PIR algorithm.

In compliance with the work of Trostle and Parrish [16], we model the server’s
database on which private information retrieval is performed by a binary (k, l)−matrix
M . Trapdoor PIR allows a user to retrieve the bit b at position (x,y) in M as follows:

– PIRQuery(x)→ α: The user picks a secret large number p (typically |p| = 200
bits) and selects randomly u ∈ Z∗p and k other values ai ∈ Zp. Next, it computes
the k following values: ex = 1 + 2 · ax and ∀ i 6= x, ei = 2 · ai, and sends the vector
α = (αi)k

i=1 = (u · ei mod p)k
i=1 to the cloud.

– PIRResponse(α,M )→ β: On receiving α, the server computes the matrix product
β = (β1,β2, ...,βl) = α ·M .



– PIRAnalysis(β,y)→ b: After receiving the server’s response β = (β1,β2, ...,βl), the
user computes γy = βy ·u−1 mod p, and retrieves b by computing γy mod 2.

Cuckoo Hashing Cuckoo hashing was first proposed by Pagh and Rodler [14] to build
efficient and practical data indexes. It ensures worst-case constant look-up and deletion
time and amortized constant insertion time while minimizing the storage requirements.

In order to store n elements in some index I , Cuckoo hashing uses two hash tables
T and T ′ containing L entries each, and two hash functions H : {0,1}∗→ {1,2, ...,L}
and H ′ : {0,1}∗ → {1,2, ...,L}. Now, an element τi is either stored in entry H(τi) in
hash table T , or in entry H ′(τi) in hash table T ′ but never in both.

The lookup operation in I is therefore simple: When given an element τ ∈ {0,1}∗,
the two entries at positions H(τi) and H ′(τi) are queried in tables T and T ′ respectively.
To delete an element τi from I , the entry corresponding to τi is removed. Finally, to
insert a new element τi ∈ {0,1}∗ into I , we first check whether the entry of T at position
H(τi) is empty. If it is the case, then τi is inserted in this entry of T and the insertion
algorithm converges. Otherwise, if that entry is already occupied by another element τ j,
then τ j will be removed from its current entry in T and relocated to its other possible
entry H ′(τ j) in T ′. Now, if there is an element τk in the entry H ′(τ j) of T ′, then τ j
will be inserted in entry H ′(τ j) in table T ′ while τk will be moved to its other possible
entry H(τk) in T . This insertion process is repeated iteratively until the insertion of all
elements in either T or T ′. If this process of insertion does not converge (i.e., there is an
element that cannot be inserted), or it takes too long to converge, then all the elements
in I will be rehashed with new hash functions H and H′.

An analysis of Cuckoo hashing [13] shows that if L ≥ n, then there is a family of
universal hash functions that guarantees a small rehashing probability of order O( 1

n )
and a constant expected time for insertion. For a more comprehensive analysis of the
performance of Cuckoo hashing, the reader may refer to [14].

4.2 Protocol Description

We recall that in this first version, the data owner O wants to upload a large file F to
cloud server S and once its data uploaded O wants to further search for some words
within the file without revealing any information to the semi-honest cloud server. The
set of all distinct words within F is defined as Lω = {ω1,ω2, ...,ωn}. The proposed
protocol can be divided into two main phases:

– During the upload phase, before outsourcing its data, O builds the index corre-
sponding to the n distinct words present in file F and encrypts F using a semanti-
cally secure symmetric encryption.

– During the search phase, O computes the position of the requested word ω in F’s
index and perform a PIR query to retrieve the information stored at that position in
the index. Upon reception of server S ’s PIR response, O verifies this response and
decides accordingly whether ω is present in F or not.



Setup The data owner O calls the Setup algorithm which takes as input the security
parameter ζ and outputs a master key MK and a set of public parameters P such that:

– The master key MK is composed of a symmetric encryption key Kenc and a MAC
key Kmac.

– The public parameters P comprise a MAC Hmac : {0,1}ζ×{0,1}∗→ {0,1}κ and
a cryptographic hash function H : {0,1}∗→{0,1}t .

Upload The file upload phase consists of i.) Encrypting the file F using a semanti-
cally secure encryption such as AES in counter mode (cf. Encrypt) and ii.) building a
searchable index for Lω (cf. BuildIndex).

The data owner O first generates a unique file identifier fid for file F and then
encrypts F by calling the algorithm Encrypt. This algorithm takes as inputs secret
key Kenc and file F and outputs a semantically secure encryption C = Enc(Kenc,F)
of F . Next, O invokes the algorithm BuildIndex which on input of master key MK
(more precisely MAC key Kmac), file identifier fid and the list of distinct words Lω =
{ω1,ω2, ...,ωn} present in F outputs a list of MACs LH = {h1,h2...,hn}, such that
hi = Hmac(Kmac,ωi||fid) where || denotes concatenation. Then the algorithm BuildIndex
constructs an index I for LH = {h1,h2...,hn} using Cuckoo hashing. In order to opti-
mize the performance of the PIR underlying our word-search scheme, our index will
differ from traditional Cuckoo hashing indexes by comprising two sets of t binary (rect-
angular) matrices {M j}t

j=1,{M ′
j}t

j=1 of size (k, l) rather than two hash-tables T and
T ′. Namely, instead of using two hash functions that hash into {1,2, ...,L}, we employ
two hash functions H and H ′ that hash into {1,2, ...,k}×{1,2, ..., l}. For an element
h ∈ {0,1}∗, the hash function H (H ′ resp.) returns a position (x,y) ((x′,y′) resp.) in
matrices {M j} ({M ′

j} resp.). More precisely, the algorithm BuildIndex executes the
following:

– First BuildIndex generates two sets of t binary matrices {M j} and {M ′
j} (1≤ j≤ t)

of size (k, l) each, where each element is initialized to 0.
– BuildIndex then picks two hashes H and H ′ that map each element hi in LH to

either a position (xi,yi) = H(hi) in matrices {M j} or to a position (x′i,y
′
i) = H ′(hi)

in matrices {M ′
j}, by following the Cuckoo hashing algorithm described in Section

4.1. We recall that in order to ensure worst-case constant look-up using Cuckoo
hashing, k and l have to be chosen such that kl ≥ n, where n is the size of LH .

– BuildIndex subsequently fills the binary matrices {M j} and {M ′
j} (1 ≤ j ≤ t) as

follows:
• For each hi, BuildIndex computes H(hi) = (bi,1,bi,2, ...,bi,t), where H is a

t−bits cryptographic hash function.
• Now, if hi is mapped to a position (xi,yi) = H(hi) in M j (or to a position

(x′i,y
′
i) = H ′(hi) in M ′

j resp.), then the bit at position (xi,yi) in M j (the bit at
position (x′i,y

′
i) in M ′

j resp.) will be set to bi, j. Hence, if hi is mapped to a
position (xi,yi) = H(hi) in {M j} (1≤ j ≤ t), then:

H(hi) = (M1(xi,yi),M2(xi,yi), ...,Mt (xi,yi))



– Finally, BuildIndex outputs the searchable index I = {H,H ′,M,M′} such that M =
{M1,M2, ...,Mt} and M′ = {M ′

1 ,M ′
2 , ...,M ′

t }.

At the end of this phase, data owner O sends the file identifier fid, the encryption C
and the index I to cloud server S .

Word Search The search phase is divided into the three following steps:

Search Query To look for a word ω in file F , O calls the algorithm Token which
computes the MAC h = Hmac(Kmac,ω||fid). Further, O runs the algorithm Query which
computes H(h) = (x,y) and H ′(h) = (x′,y′). We recall that (x,y) and (x′,y′) correspond
to the potential position of h in {M j} and {M ′

j} respectively. Next, algorithm Query
outputs two PIR queries α = PIRQuery(x) = (α1,α2, ...,αk) and α′ = PIRQuery(x′) =
(α′1,α

′
2, ...,α

′
k) that will allow O to retrieve the xth and x′th rows respectively of (k, l)

binary matrices, as depicted in Section 4.1. Finally, O sends its search query Q = (α,α′)
to server S .

Search response On receiving O’s search query Q =(α,α′), S runs algorithm Response
which on input of Q , M = {M1,M2, ...,Mt} and M′= {M ′

1 ,M ′
2 , ...,M ′

t }, computes two
sets of t PIR responses R = {β1,β2, ...,βt} and R′ = {β′1,β′2, ...,β′t} such that for all
1≤ j ≤ t:

β j = PIRResponse(α,M j) = α ·M j

β
′
j = PIRResponse(α′,M ′

j ) = α
′ ·M ′

j

S sends then its word search response R = {R,R′} to O.

Verification To verify whether ω is in file F , the data owner O runs the algorithm Verify.
When called, algorithm Verify unblinds the yth element of each vector β j by executing
PIRAnalysis(y) and the y′th element of each vector β′j by running PIRAnalysis(y′), as
was shown in Section 4.1. This allows Verify to derive a bit b j from β j and a bit b′j from
β′j respectively for all 1≤ j ≤ t.

We denote by b and b′ the string of bits (b1,b2, ...,bt) and (b′1,b
′
2, ...,b

′
t) respectively.

After obtaining b and b′, algorithm Verify computes the hash H(h) and checks whether
b = H(h) or b′ = H(h). If so, then Verify outputs 1 meaning that ω ∈ F ; otherwise,
Verify outputs 0.

5 PRIVACY PRESERVING WORD SEARCH WITH
DELEGATION

In this section we describe the entire solution including the delegation capabilities. We
recall that data owner O wants to: i.) upload a large file F that contains n distinct words
Lω = {ω1,ω2, ...,ωn} to cloud server S , ii.) delegate the search capabilities on file F to
third party users and finally iii.) be able to revoke these third party users at any point
of time. Therefore the final solution involves in addition to the previously mentioned



two phases from the basic protocol (i.e. Upload and WdSearch), a Delegation and a
Revocation phase. We modify the Upload and Word Search phases so as to allow
the data owner to upload the necessary material that will enable authorized users to
perform search operations, whereas during the newly defined Delegation phase, the
data owner provides authorized users with the MAC key used to build the index. Finally,
the Revocation phase is defined in order to grant the data owner the capability to revoke
authorized users efficiently.

The additional two phases are defined thanks to the use of Ciphertext-Policy Attribute-
Based Encryption (CP-ABE) and Oblivious Pseudo Random Functions (OPRF). We
stress here that by combining OPRF and ABE, we do not only allow for seamless revo-
cation but also we ensure the anonymity of authorized users. As opposed to traditional
access control mechanisms, the proposed solution does not require authorized users to
identify and authenticate themselves to the cloud server.

Before providing a detailed description of our scheme, we summarize and formalize
in the next section the algorithms underlying CP-ABE and OPRFs.

5.1 Building Blocks

Ciphertext-Policy Attribute-Based Encryption A ciphertext-policy attribute-based
encryption allows a user to encrypt a message M under some access policy AP in such
a way that only parties possessing attributes that match AP can derive M from the
ciphertext. Actually, a CP-ABE consists of the following algorithms, cf. [2]:

– Setupabe(ζ)→ (MKabe,Pabe): It is a randomized algorithm that takes as input a
security parameter ζ, and outputs a master key MKabe and a set of public parameters
Pabe that will be used by subsequent algorithms.

– Encabe(M,AP)→ C: It is a randomized algorithm that takes as input a message M
and some access policy AP, and outputs a ciphertext C = Encabe(M,AP) such that
only users holding the attributes satisfying the access policy AP can decrypt C.

– CredGenabe(MKabe,Ai)→ credi: It is a randomized algorithm which on input of
master key MKabe and a set of attributes Ai, generates a set of credentials credi that
are associated with Ai. This algorithm is generally executed by a trusted third party
(for instance a certification authority) whose aim is to define a set of admissible
attributes A and to issue credentials credi to any user possessing attributes Ai ⊂ A.

– Decabe(C,credi)→ M̂: It is a deterministic algorithm that takes as input a cipher-
text C and a set of credentials credi. Assume that C encrypts a message M under
the access policy AP (i.e., C = Encabe(M,AP)) and that the credentials credi are
associated with the set of attributes Ai. If the attributes Ai satisfy the access policy
AP, then Decabe decrypts C successfully and outputs M̂ = Decabe(C,credi) = M.
Otherwise, the decryption fails and Decabe outputs M̂ =⊥.

Oblivious Pseudo-Random Functions An OPRF [9, 11] is a two-party protocol that
allows a sender S with input δ and a receiver R with input h to compute jointly the
function fδ(h) for some pseudo-random function family fδ, in such a way that receiver
R only learns the value fδ(h), whereas sender S learns nothing from the protocol inter-
action.



Definition 4 (Oblivious Pseudo-Random Function [9]). A two-party protocol π be-
tween a sender S of input δ and a receiver R of input h is said to be an oblivious
pseudo-random function (OPRF), if there is some pseudo-random function family fδ

such that at the end of the execution of π:

– Receiver R gets fδ(h) while learning nothing about S’s input δ.
– Sender S learns nothing about R’s input h or the value of fδ(h).

In the following, we provide a quick overview of the generic algorithms underpin-
ning an OPRF that evaluates the output of some pseudo-random function family fδ:

– Setupoprf(ζ)→ (δ,Poprf): It is a randomized algorithm that is run by the sender S.
It takes as input the security parameter ζ and outputs an OPRF secret key δ and a
set of public parameters Poprf that will be used by subsequent algorithms.

– Queryoprf(h)→ Qoprf : It is a randomized algorithm that is executed by the receiver
R whenever R wants to generate an OPRF query. This algorithm has as input an
element h ∈ {0,1}κ and outputs a matching OPRF query Qoprf that will be sent
later to sender S.

– Responseoprf(Qoprf ,δ)→ Roprf : It is a randomized algorithm which is operated by
sender S whenever S receives an OPRF query. On input of an OPRF query Qoprf , the
algorithm Responseoprf returns the corresponding OPRF response Roprf that will be
forwarded to the receiver.

– Resultoprf(Roprf ,Str)→ fδ(h): It is deterministic algorithm that is run by receiver
R and takes as input an OPRF response Roprf and the current state Str of R. Without
loss of generality, we assume that R received the response Roprf as a follow-up to
a previous OPRF query that was generated for h ∈ {0,1}κ. Accordingly, the algo-
rithm Resultoprf outputs fδ(h), i.e. the evaluation of the pseudo-random function fδ

at point h.

In the remainder of this paper, we employ the OPRF proposed by Jarecki and Liu
[11] which allows a receiver R and a sender S to compute jointly the evaluation of the
pseudo-random function fδ(h) = g1/(δ+h) for any h ∈ Z∗N , where N is an RSA safe
modulus and g is a random generator of a group G of order N. However for ease of
exposition, we will omit the implementation details of this OPRF and we will only
refer to the generic OPRF algorithms when describing our scheme.

5.2 Protocol Description

In the sequel of this paper and in accordance with the work of Curtmola et al. [6], we
assume that the cloud server does not collude with revoked users. We indicate that if
such a collusion happens, then our protocol will not be able to deter revoked users from
searching the outsourced files.

Without loss of generality, we also assume that there is some certification authority
which is in charge of: i.) defining the universe of admissible attributes A = {att1,att2, ...},
ii.) providing potential data owners and potential authorized users with their credentials
credi that match their attributes Ai ⊂ A following for instance the CP-ABE scheme
proposed by Bethencourt et al. [2].



Setup As in the first version of the protocol, the data owner O calls the Setup algorithm
which takes as input the security parameter ζ and outputs a master key MK and a set of
public parameters P such that:

– The master key MK is composed of a symmetric encryption key Kenc, a MAC key
Kmac and an OPRF secret key δ.

– The new public parameters P comprise a MAC Hmac : {0,1}ζ ×{0,1}∗ → Z∗N
(where N is a safe RSA modulus), a cryptographic hash function H : {0,1}∗ →
{0,1}t and the public parameters Poprf of the OPRF fδ(h) = g1/(δ+h).

Upload The file upload phase amounts to i.) Encrypting the file F using AES encryp-
tion (cf. Encrypt) ii.) building a searchable index for Lω (cf. BuildIndex). Now instead
of building the index I based on LH = {h1,h2...,hn} as was done previously, the index
will be constructed using the OPRF values fδ(hi) = g1/(δ+hi). Since the computation of
OPRF is deemed to be demanding, we suggest that BuildIndex be executed jointly by
O and the semi-honest cloud server S in such a way that O is only required to com-
pute symmetric operations (e.g. hash functions and AES encryption) whereas the cloud
server performs the more computationally intensive operations (i.e. OPRF and Cuckoo
Hashing). Henceforth, we denote BuildIndexO the sub-algorithm of BuildIndex that is
executed by data owner O and BuildIndexS the sub-algorithm of BuildIndex that is op-
erated by cloud server S .

Processing at the data owner As in the previous protocol, data owner O first gener-
ates a unique file identifier fid for file F and then encrypts F by calling the algorithm
Encrypt which outputs an AES encryption C = Enc(Kenc,F) of F . Then, O invokes
the algorithm BuildIndexO which outputs a list of MACs LH = {h1,h2...,hn}, such that
hi = Hmac(Kmac,ωi||fid). Next, O defines the access policy AP that will be associated
with file F and finally forwards (via a secure channel) the file identifier fid, the en-
cryption C, the list of MACs LH = {h1,h2, ...,hn}, the access policy AP and the OPRF
secret key δ to cloud server S .

Processing at the cloud The processing at the cloud comprises two operations. The
first one is to compute OPRF over the MACs in LH = {h1,h2, ...,hn} using the secret
key δ. The second operation is to build an index with the resulting values using Cuckoo
hashing. More precisely, upon receipt of file identifier fid, ciphertext C, list of keyed
hashes LH = {h1,h2, ...,hn}, access policy AP associated with C and the OPRF key δ,
S calls the algorithm BuildIndexS which proceeds as explained below:

– First, BuildIndexS computes τi = fδ(hi) = g1/(δ+hi) for all 1≤ i≤ n.
– BuildIndexS prepares an index I for T = {τ1,τ2, ...,τn} using Cuckoo hashing.

Namely, BuildIndexS generates two sets of t binary matrices {M j} and {M ′
j}

(1 ≤ j ≤ t) of size (k, l) each, where each element is initialized to 0. BuildIndexS
then selects two hashes H and H ′ that map each element τi in T to either a posi-
tion (xi,yi) = H(τi) in matrices {M j} or to a position (x′i,y

′
i) = H ′(τi) in matrices

{M ′
j}, by executing the Cuckoo hashing algorithm.



– BuildIndexS fills the binary matrices {M j} and {M ′
j} (1 ≤ j ≤ t) similarly to the

previous version of the protocol. The only difference is that instead of storing the
hashes H(hi) in {M j} and {M ′

j}, we store the hashes H(τi).
– Finally, BuildIndexS outputs the searchable index I = {H,H ′,M,M′} such that

M = {M1,M2, ...,Mt} and M′ = {M ′
1 ,M ′

2 , ...,M ′
t }.

Delegation To delegate the word search capabilities on the encrypted file F to third
party users, data owner O encrypts its MAC key Kmac under its access policy AP us-
ing attribute-based encryption and provides cloud server S with the resulting ciphertext
Cmac = Encabe(Kmac,AP). Thereafter, S publishes the ciphertext Cmac and the file iden-
tifier fid.

We note that an authorized user U will in principle possesses a set of attributes A
(and therewith a set of credentials cred) that satisfy the access policy AP. Hence, U
will be able to decrypt the ciphertext Cmac using cred and derives the MAC key Kmac.
This MAC key Kmac will be then used by U to perform word search on O’s file as will
be shown in the next section.

Word Search To search the encrypted file C for some word ω, the authorized user U
performs the following operations:

Token generation The token generation phase consists of executing an OPRF protocol
between the authorized user U and the cloud server S , where U corresponds to the
receiver R and S to the sender S (following the notations in Section 5.1). Consequently,
to generate a token τ for word ω, U executes algorithm Token as follows:

– On inputs of the word ω, the file identifier fid and the MAC key Kmac, the algorithm
Token first computes h = Hmac(Kmac,ω||fid). Then it calls the algorithm Queryoprf

which on input of h outputs an OPRF query Qoprf to evaluate fδ(h) = g1/(δ+h).
Next, the algorithm Token forwards the OPRF query Qoprf to cloud server S .

– Upon receipt of Qoprf , S calls the OPRF algorithm Responseoprf . This algorithm
uses the secret OPRF key δ and the OPRF query Qoprf to output an OPRF response
Roprf .
Here instead of sending the OPRF response Roprf in clear to U, S will obfuscate it
in such a way that only an authorized (i.e. non-revoked) user will be able to derive
Roprf . This obfuscation is performed as follows:
• S picks randomly a symmetric encryption key K′enc and encrypts the OPRF

response Roprf using K′enc and the semantically secure encryption Enc. This
will result in a ciphertext C′ = Enc(K′enc,Roprf).

• Then it computes a CP attribute-based encryption Cenc = Encabe(K′enc,AP) of
the encryption key K′enc under the access policy AP of the data owner O.

Notice that in this manner, we make sure that only authorized users will be able
to decrypt the OPRF response and therewith obtain the token τ = fδ(h) = g1/(δ+h)

necessary to perform the word search.
At the end of this step, S forwards the ciphertexts C′ and Cenc to authorized user U.



– On receiving the ciphertexts C′ and Cenc, the algorithm Token first decrypts Cenc us-
ing the credentials cred that U obtained from the CA and gets K′enc = Decabe(Cenc,cred).
Then it computes the OPRF response Roprf by decrypting the ciphertext Cenc using
the secret key K′enc. Next, the algorithm Token calls the OPRF algorithm Responseoprf

which takes as input Roprf and outputs consequently the word search token τ =
fδ(h) = g1/(δ+h).

Search Query After obtaining the token τ corresponding to the word ω, U runs the
algorithm Query which first computes H(τ) = (x,y) and H ′(τ) = (x′,y′). Then, as in the
previous solution, it computes two PIR queries (α,α′) to retrieve the xth and the x′th row
of a (k, l) binary matrix and sends the word search query Q = (α,α′) to cloud server S .

Search response On receiving U’s search query Q = (α,α′), cloud server S runs al-
gorithm Response which computes the two sets of t PIR responses R = {β1,β2, ...,βt}
and R′ = {β′1,β′2, ...,β′t} such that for all 1≤ j ≤ t:

β j = PIRResponse(α,M j) = α ·M j

β
′
j = PIRResponse(α′,M ′

j ) = α
′ ·M ′

j

S sends then its word search response R = {R,R′} to U.

Verification To verify whether ω is in the encrypted file C, the authorized user U runs
the original algorithm Verify as described in Section 4.2. But after obtaining b and b′,
algorithm Verify computes the hash H(τ) instead of the hash H(h) and checks accord-
ingly whether b = H(τ) or b′ = H(τ). If it is the case, then Verify outputs 1 meaning
that ω ∈ F ; otherwise, Verify outputs 0.

Revocation For sake of simplicity, we assume that the data owner O revokes attributes
atti ∈ A instead of individual users U. We believe that this assumption is sufficient in
the context of our application as described in Section 2, where the data owner delegates
the word search capabilities to regulators or auditors that are not identified by their
identities but by their attributes.

Now to revoke an attribute atti, O runs the algorithm Revoke which outputs a new
access policy AP′ that will be given to the cloud server S . For instance, if we assume
that the initial access policy AP of O states that auditors from EU and the US can
perform word search on O’s files, then a revocation of attribute US will lead to a new
access policy AP′ that says that only auditors from the EU can perform word search. In
this manner, auditors from the US will no longer have access to O’s file.

6 PRIVACY ANALYSIS

In this section, we briefly analyze the privacy properties of the proposed scheme. The
interested reader may refer to the appendix for a more formal analysis.



6.1 Storage Privacy

Our scheme insures storage privacy thanks to the use of semantically secure encryption
and message authentication code during the upload phase. Actually, the semantically
secure encryption assures that cloud server S cannot derive any information about the
file F from its encryption C. In addition, by computing MACs that not only depend on
the words present in the file but also on its unique identifier, we ensure that the index I
does not leak any information about the outsourced file. Notably, cloud server S cannot
tell whether two outsourced files have words in common or not, based on their indexes.

6.2 Query Privacy

Query privacy is assured by the use of both OPRF and PIR. On the one hand, OPRF
allows authorized user U to generate a word search token τ without disclosing anything
to cloud server S about the word ω that U is interested in. On the other hand, PIR
enables U to preform word search on S ’s database while making sure that S learns
nothing about the word search queries or their corresponding results.

6.3 Privacy against Revoked Users

Since in this paper, we only focus on the case where data owner O revokes attributes
instead of individual users, it follows that using for instance the CP-ABE scheme pro-
posed by Bethencourt et al. [2] suffices to ensure efficient revocation. As shown in the
previous section, revocation is achieved by updating the access policy associated with
file F and by exploiting the properties of OPRF: Obfuscating S ’s responses during the
token generation phase (cf. Section 5.2) stops a revoked user from deriving new word
search tokens and consequently from verifying S ’s responses.

Note also that even if revoked users gain access to the cloud server’s database, they
cannot decrypt the content of the outsourced files as they do not have access to the
encryption key Kenc. All they can achieve is performing a dictionary attack on the index
I using the MAC key Kmac and the OPRF secret key δ, which can be computationally
intensive.

7 PERFORMANCE EVALUATION

During the upload phase, the data owner is only required to encrypt the file to be out-
sourced using a symmetric encryption and to compute a MAC hi for each word ωi ∈Lω.
On the other hand, the cloud server computes the OPRFs (i.e. tokens) τi = fδ(hi) and
builds the corresponding index I by following the algorithm of Cuckoo hashing. Al-
though the computation of the OPRF proposed in [11] may be deemed computationally
demanding as it calls for exponentiations, it can be efficiently parallelized at the cloud
server. Actually, if the cloud server possesses N machines for instance, it can provide
each one of its machines with 1

N fraction of the list of MACs LH = {h1,h2, ...,hn} sup-
plied by the data owner. Each machine will consequently compute n

N exponentiations
whose results will be given back to the cloud server to construct the index I .



While some would argue that using PIR to compute the responses of the cloud
server to word search queries is computationally intensive, we note that this compu-
tation consists of matrix multiplications which can easily be parallelized. Actually, the
cloud server can store at each one of its machine 1

N -fraction of the binary matrices {M j}
and {M ′

j}. Upon receipt of a word search query, S forwards the PIR queries it receives
to its N machines which accordingly compute the corresponding PIR responses.

Furthermore, we emphasize that in this paper we employ PIR to retrieve a hash
of word search tokens instead of their actual values. This fact drastically enhances the
computation and the communication performances of our scheme. For example, if we
instantiate the OPRF in the token generation phase with the OPRF presented in [11],
then we will end up with tokens of size 1024 bits. This means that if we retrieve the
actual values of the token to perform word search, then each search query will consist
of retrieving 1024 bits which is far from being practical. Instead in our protocol, each
search operation consists of fetching t-bit (t is typically 80) hash. We note also that
setting the size (k, l) of the matrices {M j} and {M ′

j} to (
√

tn,
√ n

t ) results in a minimal
communication cost of O(

√
tn).

Finally, we stress that contrary to related work [6], revocation in our protocol does
not require the re-encryption of the outsourced files. Rather, it only calls for an update
of the access policy of the data owner at the cloud server.

8 RELATED WORK

As opposed to the proposed solution, most of existing word search mechanisms be
them asymmetric [1, 4, 17] or symmetric [6, 10, 12, 15] seem to guarantee query pri-
vacy partially: Indeed, in these solutions, although the outsourced data and queries are
encrypted, the cloud can discover the response to any encrypted query. Furthermore
very few of current solutions [6, 7] propose the ability to delegate the search operation;
unfortunately, these solutions provide the authorized user with the data encryption key
and therefore revocation of a user requires the re-encryption of the entirely outsourced
data and the distribution of this new key to the authorized users.

The first solution which transforms an original PIR mechanism into a privacy pre-
serving word-search solution is proposed by Chor et. al. in [5]. Similarly to our solution,
in [5], the owner of the data constructs an index based on all distinct words in the out-
sourced file. This index is a hash-table that is filled according to the perfect hashing
algorithm of Fredman et al. [8]. Our solution outperforms the solution in [5] thanks to
the use of Cuckoo hashing instead of perfect hashing. Namely, in the scheme of [5], a
word search query consists of three PIR queries, whereas in our protocol it is composed
of two PIR queries. Additionally, the PIR queries in the case of Cuckoo hashing are
independent. This implies that the server can execute the two PIR instances in parallel
to respond to the word search query.

Another solution that resembles the proposed solution is PRISM [3] where the cloud
constructs some binary matrices in which each cell represents one or more words with-
out knowing their content and the owner sends PIR requests to retrieve the content of
one of these cells. Thanks to the use of Cuckoo hashing, our solution outperforms the



original PRISM mechanism without lowering the security level. PRISM defines a ma-
trix in which each cell corresponds to one or more words; therefore, two words can
turn out to be represented by the same cell. In order to decrease the probability of such
collisions, the data owner send multiple (q) queries for the same word. In the newly
proposed mechanism, the probability of collisions within the binary matrices is 0 and
the data owner and/or the authorized user need to send a single query for each word.
Additionally, PRISM does not offer any delegation capability and a straightforward del-
egation operation would require the distribution of the data encryption key to authorized
users which can increase privacy risks.

9 CONCLUSION

We introduced a protocol for privacy preserving delegated word search in the cloud.
This protocol allows a data owner to outsource its encrypted data to a cloud server,
while empowering the data owner with the capability to delegate word search opera-
tions to third parties. By employing keyed hash functions and oblivious pseudo-random
functions, we ensure that authorized users only learn whether a given word is in the
outsourced files or not. In addition, we use private information retrieval to make sure
that the cloud server cannot infer any information about the outsourced files from the
execution of the word search protocol. Furthermore, we combine attribute-based en-
cryption and oblivious pseudo-random functions to accommodate efficient revocation.
Finally, the data owner in our protocol is only required to perform symmetric opera-
tions, whereas the computationally intensive computations are performed by the cloud
server, and they can easily be parallelized.
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A Appendix

Storage Privacy

Theorem 1. The protocol presented in Section 5 provides storage privacy under the
semantic security of the encryption Enc and the security of the MAC Hmac employed
during the upload phase to encrypt the outsourced files and to build the corresponding
indexes respectively.

Due to space limitation, we omit the proof of this theorem. Notice that all the server has
access to is the semantically secure encryption and the indexes that are computed using
keyed hashes. Therefore, as discussed in Section 6, the cloud server cannot derive any
information about the outsourced files.



Query Privacy

Theorem 2. The protocol described in Section 5 achieves query privacy under the se-
curity of the trapdoor PIR and the security of the OPRF.

Before introducing the full proof of the above theorem, we present here briefly a
formal definition of the security properties of Private Information Retrieval.

Private Information Retrieval. Let Opir be an oracle that takes as input an (k, l) binary
matrix M and two positions (x0,y0) and (x1,y1), flips a coin bpir ∈ {0,1} and returns a
PIR query to fetch the bit at position (xbpir

,ybpir
) from M as depicted in Section 4.1.

Let S be an adversary that submits two positions pos∗0 = (x∗0,y
∗
0) and pos∗1 = (x∗1,y

∗
1)

to Opir to get a PIR query for pos∗bpir
. Upon receipt of the PIR query, S outputs a guess

b∗pir for the bit bpir.
Let ΠA

success denote the probability that S outputs a correct guess for bpir (i.e. b∗pir =
bpir). We say that a PIR scheme is secure if for any adversary S , ΠA

success ≤ 1
2 + εpir,

where εpir is a negligible function.

Proof. Assume there exists an adversary S which is able to break the query privacy of
our protocol with a non-negligible advantage ε. We here describe an adversary A which
uses S to break the security of the PIR with a non-negligible εpir as long as the OPRF
used in the token generation phase is secure.

Construction. To simulate the query privacy game for adversary S , A picks an encryp-
tion key Kenc, a MAC key Kmac and an OPRF secret key δ which it provides to S .

When S enters the learning phase, A simulates the oracles Oencrypt, Oindex and
Osearch,s using the secret keys Kenc and Kmac.

At the end of the learning phase as shown in Algorithm 3, S outputs a challenge file
F∗ and a pair of challenge words (ω∗0,ω

∗
1).

In the challenge phase (see Algorithm 4), A first encrypts and builds the index of
file F∗. Without loss of generality, we denote the resulting ciphertext and index C∗ and
I ∗ = {M∗,M′∗,H∗,H ′∗} respectively.

Now to simulate the oracle Oview,s in the challenge phase, A executes the following
steps:

– First A engages in a token generation with S by performing the OPRF protocol for
word ω∗0.

– Then, it provides the oracle Opir with a binary matrix M of size (k, l) and two posi-
tions (x∗0,y

∗
0) = H( fδ(h∗0)) and (x∗1,y

∗
1) = H( fδ(h∗1)), where h∗i = H(Kmac,ω

∗
i ||fid),

i∈ {0,1}. The PIR oracle picks randomly a bit bpir ∈ {0,1} and returns a PIR query
for the position (x∗b,y

∗
b). This PIR will be used by adversary A to fetch a bit from

the matrices M∗.
– Finally, A prepares another PIR query to retrieve the element at position (x′∗0 ,y′∗0 ) =

H ′( fδ(h∗0)) from the matrices M′∗.



At the end of the challenge phase, adversary S outputs a bit b∗, such that b∗ = 0 if
S thinks that it has been queried for word ω∗0; b∗ = 1 otherwise.

Notice that since we use OPRF to generate search tokens, the token generation
phase does not leak any information about the queried word ω∗0. Therefore, to break
query privacy S has to rely on the PIR queries it receives during the word search phase.

We remark also that when the PIR oracle chooses the bit bpir = 0, then the view
view∗s of S that A simulates above is indistinguishable from the view of S during a word
search protocol execution for word ω∗0 with an actual authorized user. This implies that
whenever bpir = 0, S will be able to output a correct guess for the queried word ω∗0 (i.e.
S will output b∗ = 0) with a non-negligible advantage ε. However, if Opir picks bpir = 1,
then the view of S will correspond to an OPRF execution for ω∗0 and two PIR queries
one for ω∗0 and the other for ω∗1.

Assume that adversary S can detect with some probability π that the PIR queries it
receives when bpir = 1 do not correspond to the same word, and as a result, it aborts the
query privacy game.

It follows that to break the security of the PIR, A outputs b∗pir = b∗ when S does not
stop the query privacy game; otherwise, A outputs b∗pir = 1. Actually, when S aborts
the game, this means that S has received two incompatible PIR queries, i.e., the query
generated by the PIR oracle Opir correspond to position (x∗1,y

∗
1) = H( fδ(h∗1)).

Privacy against Revoked Users

Theorem 3. The protocol presented in Section 5 ensures privacy against revoked users
under the indistinguishability of the OPRF, the security of CP-ABE and the semantic
security of encryption Enc.

Before presenting the formal proof of the above theorem, we provide below a brief
formalization of OPRF indistinguishability.

OPRF indistinguishability. Let A be an adversary against the indistinguishability of
the OPRF. The goal of adversary A is given h∗ ∈ {0,1}κ and σ∗, it should be able to
tell whether σ∗ = fδ(h∗) or not.

Accordingly, A is given access to the following oracles:

– OF
oprf(h)→ Roprf : It is an oracle that acts as the sender in the OPRF protocol. It

takes as input an OPRF query Qoprf for some h ∈ {0,1}κ and outputs an OPRF
response Roprf .

– OI
oprf(h)→ σ: It is an oracle that on input of h, selects randomly a bit boprf ∈ {0,1}.

If b = 1, then OI
oprf outputs σ = fδ(h); otherwise it sets σ to a randomly generated

value.

To break the indistinguishability of the OPRF fδ, A is allowed to issue OPRF
queries to the oracle OF

oprf for a polynomial number of values hi. Next, A chooses
h∗ 6∈ {hi} and submits h∗ to the oracle OI

oprf . Upon receipt of h∗, OI
oprf selects a ran-

dom bit boprf and outputs σ∗ as shown above.
We say that A succeeds in breaking the indistinguishability of the OPRF if given h∗

and σ∗, A is able to output a correct guess b∗oprf for the bit boprf . That is, if A is able



to tell whether σ∗ = fδ(h) or whether it was randomly generated. Hereafter, let ΠA
success

denote the probability that A outputs a correct guess for boprf (i.e. the probability that
b∗oprf = boprf ).

We recall that an OPRF is said to insure indistinguishability if for any adversary A ,
ΠA

success ≤ 1
2 + εoprf , where εoprf is a negligible function.

Proof. Assume there exists a user U that breaks the privacy against revoked users with
a non-negligible advantage ε. We show in the following how to construct an adversary
A which uses U to break the indistinguishability of the OPRF with a non-negligible
advantage εoprf .

Construction. To break the indistinguishability property of the OPRF, adversary A
picks a symmetric encryption key Kenc and a MAC key Kmac that it uses to encrypt file
F and to compute the MACs necessary to build the index I respectively. Without loss of
generality, we denote C the encryption of the challenge file F and LH = {h1,h2, ...,hn}
the MACs of the words present in F . To complete the construction of the index I ,
adversary A invokes the oracle OF

oprf for each hi ∈ LH . This oracle returns for each
hi ∈ LH the corresponding OPRF response from which A derives fδ(hi).

When U enters the learning phase, A first simulates the oracle Odelegate by giving
U the MAC key Kmac and the public parameters of the OPRF. Besides to simulate the
oracle Osearch,u, A proceeds as follows:

– If Osearch,u receives an OPRF query for some MAC hi = Hmac(Kmac,ωi||fid) before
the revocation of U, then A forwards this query to the oracle OF

oprf which in turn
outputs a matching OPRF response. Next, A obfuscates this OPRF response using
CP-ABE and the encryption Enc as was shown in the protocol.

– If Osearch,u receives an OPRF query after the revocation of U, then A generates ran-
domly an OPRF response which it obfuscates using CP-ABE and the semantically
secure encryption Enc. By combining CP-ABE and semantically secure symmetric
encryption, A makes sure that revoked user U cannot tell whether it is receiving an
actual OPRF response or a randomly generated one.

Then, when U issues a PIR query to perform word search, then A computes its PIR
response as expected by U.

Finally, A simulates Orevoke by modifying the access policy in such a way that U is
no longer allowed to perform lookups.

At the end of the learning phase, U outputs a challenge word ω∗ for which it did
not issue a search query when it was still authorized.

Now if ω∗ was already in the challenge file F , then A aborts the game, otherwise
it proceeds with the challenge phase. In the challenge phase, A simulates the oracle
Ochal,u as depicted below:

– A first computes the MAC h∗ = Hmac(Kmac,ω
∗||fid) and calls the oracle OI

oprf with
h∗. This oracle flips a coin boprf and returns σ∗ as depicted above. A then inserts σ∗

into index the challenge index I ∗.
– Upon receipt of the OPRF query from U, A generates randomly an OPRF response

which it obfuscates using CP-ABE and the encryption Enc.



– When A receives the PIR queries from U, it computes its PIR response on index
I ∗ as expected by U.

At the end of the challenge phase, U outputs a bit b∗. To break the indistinguisha-
bility of OPRF, A outputs b∗oprf = b∗.

Note that on the one hand, if b∗ = 1 then this means that fδ(h∗) is in I ∗ (i.e. σ∗ =
fδ(h∗)). On the other hand if b∗ = 0 then this entails that σ∗ 6= fδ(h∗) (i.e. σ∗ was
generated randomly).

We point out here that A breaks the indistinguishability of OPRF if it does not
abort the game of privacy against revoked users and if U outputs a correct guess b∗.
This occurs with probability 1

2 + επ, where π is the probability that A does not stop the
game.

To summarize, if there is an adversary U which breaks the privacy against revoked
users with a non-negligible advantage ε, then there exists another adversary A which
breaks the indistinguishability of OPRF with a non-negligible advantage εoprf = επ.


