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Abstract. We present a new transformation of chosen-plaintext secure predicate encryption schemes
with public index into chosen-ciphertext secure schemes. Our construction requires only a universal
one-way hash function and is selectively secure in the standard model. The transformation is not
generic but can be applied to various existing schemes constructed from bilinear groups. Using com-
mon structural properties of these schemes we provide an efficient and simple transformation without
overhead in form of one-time signatures or message authentication codes as required in the known
generic transformations.
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1 Introduction

Traditionally, encryption schemes are used to ensure confidentiality during one to one communica-
tion, whereas modern applications also require encryption schemes which can be applied in much
more sophisticated scenarios. Consequently, various types of encryption schemes for different ap-
plications have been proposed during the last decades in order to meet novel demands. Many of
these schemes fall into the class of predicate encryption schemes with public index (cf. [BSW11]),
which will be considered in this paper.

The goal of predicate encryption schemes with public index is still to ensure confidentiality, but
the sender does not encrypt messages for some specified receiver anymore. Rather, the encrypter
adds some index Y to the ciphertext, whereas the user i obtains a secret key for some index Xi. User
i will be able to decrypt a ciphertext if and only if the ciphertext index and the users key index match
according to some predicate P , that is if P (Xi, Y ) = 1. The class of predicate encryption schemes
with public index covers such schemes as identity-based encryption (IBE) (e.g. [Wat05, BBG05]),
attribute-based encryption (ABE) (e.g. [SW05, GPSW06, Wat11, RW13]), broadcast encryption
(BE) (e.g. [BGW05, BW06]) and others.

It is widely accepted in the cryptographic community, that the notion of chosen-ciphertext
security (CCA-security) is the right notion of security for encryption schemes. Nevertheless, novel
encryption schemes are usually constructed to withstand only chosen-plaintext attacks (CPAs).
Achieving CCA-secure schemes is mostly considered separately due to several reasons. On the one
hand, CPA-secure constructions are already quite complex. On the other hand, in many contexts
there exist generic and quite efficient transformations of CPA-secure encryption schemes into CCA-
secure encryption schemes [BCHK06, YAHK11, YAS+12]. Hence, researchers often just propose to
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apply such transformations and the question of finding specific and possibly more efficient CCA-
secure constructions for novel schemes is often dropped.

Enhancing of CPA-secure encryption schemes in order to achieve efficient CCA-secure schemes
is a laborious but promising work as has been shown for various constructions [BMW05, Kil06a,
Kil06b, PPSS13, BL13]. Hence, the aim of our work was to analyze these constructions and to iden-
tify structural properties useful to provide efficient CCA-secure constructions for various predicate
encryption schemes. Before we discuss our work in more detail we review the related work.

Related work. Fujisaki and Okamoto [FO13] presented a generic transformation to achieve CCA-
secure public key encryption schemes from schemes satisfying some weaker notions of security. Even
though defined for conventional public key encryption schemes and being secure only in the random
oracle model this transformation is often proposed to apply to predicate encryption schemes.

In [BCHK06] a generic transformation from any two-level hierarchical IBE schemes to a CCA-
secure IBE scheme is presented. For attribute-based encryption schemes and for predicate en-
cryption schemes generic transformations from CPA-secure schemes to CCA-secure schemes were
proposed in [YAHK11] and [YAS+12] respectively. All these schemes add some overhead to the
ciphertexts in form of a one-time signature, MAC or commitment scheme with their respective
keys. The schemes in [YAHK11, YAS+12] also make some demands on the original schemes such
as delegatability, verifiability and additional properties of predicates.

The non-generic approach is followed in [BMW05, Kil06a, KG09, PPSS13, BL13], where CCA-
security is achieved directly based on particular CPA-secure encryption schemes. These schemes
are more efficient than CCA-secure constructions achieved from original schemes using generic
transformations. If one looks carefully at these schemes one observes that they are based on the
same general idea and construction. This is the starting point for our work.

Our approach and contribution. We present an efficient and at the same time widely applicable
transformation of CPA-secure predicate encryption schemes into CCA-secure schemes. Our trans-
formation works for schemes constructed from bilinear maps. Moreover, we also need the original
schemes to satisfy some structural properties. We clearly define these properties and show that
many schemes proposed previously have these properties. The resulting constructions are provable
secure in the selective security model.

Although efficient generic transformations are known, our non generic transformation shows
that, using structural properties of the original schemes, it is possible to achieve CCA-security even
at lower costs and surprisingly without a lot of additional work. Concretely, in our constructions
we extend the encryption and the public parameters by a single group element respectively. Ad-
ditionally, we require only a universal one-way hash function and an algorithm that checks some
consistency properties of the original encryption. Since we only use universal one-way hash functions
we need not extend the users secret keys. Although our constructions are not generic, we show that
the required properties are common and many predicate encryption schemes from bilinear groups
meet our demands.

2 Background and definitions

In this section we recall some background and security definitions for constructions in use. For some
probabilistic polynomial time (ppt) algorithm A we denote by [A (x)] the set of all possible outputs
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of A on input x, whereas y ← A (x) denotes a random choice of y according to the distribution
defined through the random choices of A during the execution on input x.

2.1 Predicate key encapsulation mechanism with public index

In this work we consider only predicate encryption schemes with public index, also called payload
hiding predicate encryption schemes. This class of public key encryption schemes covers for example
identity-based encryption, attribute-based encryption and broadcast encryption. However, we do
not consider ciphertext index hiding predicate encryption schemes.

In practice, asymmetric encryption schemes are usually used to encrypt a randomly chosen key
for some symmetric encryption scheme. The actual data is then encrypted using this more efficient
scheme (also called data encapsulation mechanism in this context). The security requirements for
the asymmetric part in this so called hybrid construction are weaker than the usual requirements
for fully functional encryption schemes. This is due to the fact that only randomly chosen keys,
which will be used once, must be encrypted. Key encapsulation mechanisms meet these weaker
security requirements and provide exactly the functionality needed for hybrid constrictions. The
formalization of this basic approach goes back to [Sho00].

It is not hard to see, that hybrid constructions for predicate encryption lead to fully functional
CCA-secure schemes. The equivalent statement has been proven for identity-based encryption by
[BFMLS08] and for attribute-based encryption by [GBN10], with main ideas going back to [CS03].
For predicate encryption the proof is analogous and we drop it in this version of our work. Since
CCA-security is widely accepted as the right notion of security for encryption schemes used in
practice, CCA-secure schemes are often presented in form of key encapsulation mechanisms (KEMs).
Therefore, we provide our constructions in this form, but we note that with minor modifications
they also work for fully functional encryption schemes.

Definition 1. A relation family R is a set of relations R = {Ri : Ki × Ii 7→ {0, 1} | i ∈ N}, where
{Ki} and {Ii} are the key index spaces and the ciphertext index spaces respectively.1

Definition 2. A predicate key encapsulation mechanism with public index for relation family R
and for symmetric key space K consists of the following ppt (in 1λ) algorithms:
– Setup

(
1λ, n

)
→ (msk,ppn): Given a security parameter 1λ and n ∈ N, the master secret key

and the public parameters supporting Rn are generated.
– KeyGen (ppn,msk,X)→ skX: Given a key index X ∈ Kn, a secret key for X is generated.
– Encaps (ppn, ind) → (k, cind): Given a ciphertext index ind ∈ In, an encapsulation of a key
k ∈ K, that is chosen uniformly at random, is generated.

– Decaps (ppn, skX, cind) → k: Given a secret key and an encapsulation, the algorithm outputs a
key k ∈ K or an error symbol ⊥ /∈ K.

Correctness: We require, that the algorithms satisfy the following correctness property: For ev-
ery (meaningful) λ and n ∈ N, every (msk, ppn) ∈

[
Setup

(
1λ, n

)]
, every X ∈ Kn and skX ∈

[KeyGen (ppn,msk,X)], every ind ∈ In and (k, cind) ∈ [Encaps (ppn, ind)] it holds

Decaps (ppn, skX, cind) =

{
k if Rn (X, ind) = 1

⊥ if Rn (X, ind) = 0.

1 We implicitly assume the existence of efficient checks for k ∈ Ki and ind ∈ Ii for every i ∈ N in the definitions of
KeyGen, Encaps and Decaps algorithms.
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Remark 1. We assume that, given cind, ind is known. Indeed, this is not always the case even for
predicate encryption schemes with public index. For example, the encapsulations in identity-based
schemes do not contain the identity. In fact, we only need to require that, given some key index X
and cind, we can efficiently check if Rn (ind,X) = 1.2

Next, we define the notion of public verifiability of encapsulations, or just public verifiability.

Definition 3. A predicate key encapsulation mechanism Π with public index for symmetric key
space K is called publicly verifiable if there exist a ppt (in 1λ) algorithm PubVrfy that requires as
input ppn and a (possibly malformed) encapsulation cind and outputs 1 if and only if there exists
k ∈ K such that (k, cind) ∈ [Encaps (ppn, ind)].

2.2 Security definitions

Formally, in the security experiments against chosen-ciphertext attacks the adversary is provided
with a decapsulation oracle. For conventional public key schemes the adversary just specifies an
encapsulation for such an oracle, whereas in identity-based settings she additionally outputs an
identity. The general settings of predicate encryption schemes are even more complex, since there
is no unique secret key in question and there might even exist different secret keys labeled with the
same key index. This property will be modeled in the security experiment (compare the security
experiments for BE in [PPSS13] and for ABE in [BL13]).

Furthermore, there exist two different security notions for predicate encryptions (PEs), selective
security and adaptive security. The first one is easy to achieve, but it does not really reflect reality.
Namely, in this model the adversary has to define the target of her attack before the system is
initialized. Adaptive security is the right notion of security, where the adversary has to break an
existing scheme. The research on selectively secure schemes did not stop even in contexts where
adaptively secure schemes are known. Novel techniques and ideas are easy to present in the selective
security model and almost all adaptively secure predicate encryption schemes are constructed from
schemes first presented in the selective security model.

In Section 3 we will prove that our constructions lead to CCA-secure schemes in the selec-
tive security model. Even if the original scheme is adaptively CPA-secure, our constructions do
not directly lead to adaptive CCA-secure schemes. However, the adaptively CCA-secure schemes
in [KG09, PPSS13] can be seen as extensions of selectively CCA-secure schemes achieved from
corresponding CPA-secure schemes using our constructions.

Definition 4. The selective indistinguishability experiment sIND-P-KEMaCCA
Π,A (λ, n) for predicate

key encapsulation mechanism Π is as follows:
– Init: Adversary A on input 1λ and n outputs a ciphertext index ind∗ ∈ In.
– Setup: The challenger C generates (msk, ppn) ← Setup

(
1λ, n

)
and gives ppn to A. Further-

more, C initializes an empty set L.
– Phase 1: A has access to the following oracles:
• CoveredKeyGen (X, i) for X ∈ Kn and i ∈ N: The challenger generates

skX ← KeyGen (ppn,msk,X), (re)stores (i,X, skX) in L and returns nothing.
• Open (i) for i ∈ N: If (i,X, skX) ∈ L and Rn (X, ind∗) = 0 the challenger returns skX.
• Decapsulate (cind, i) for i ∈ N: If (i,X, skX) ∈ L the challenger returns

Decaps (ppn, skX, cind).

2 We do not require a secret key for X!
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– Challenge: When A asks for the challenge, C chooses b ← {0, 1}, generates k0 ← K and(
k1, c

∗
ind∗
)
← Encaps (ppn, ind∗), defines k∗ := kb and returns

(
k∗, c∗ind∗

)
.

– Phase 2: As Phase 1 under the following restriction: Decapsulate
(
c∗ind∗ , i

)
is not allowed if

(i,X, skX) ∈ L and Rn (X, ind∗) = 1.
– Guess: A outputs a bit b′. The output of the experiment is 1 if b′ = b.

One can easily adapt this experiment to the case of chosen-plaintext attacks, where the adversary
does not have access to the decapsulation oracle. In this case all the oracles from above can be
replaced by a single oracle KeyGen (X) for X ∈ Kn such that Rn (X, ind∗) = 0. In order to reply
to such a query the challenger generates a new key for every query. The security definitions are as
usual and hence, we present only one of the definitions explicitly:

Definition 5. A predicate key encapsulation mechanism Π is called selectively secure against
adaptive chosen-ciphertext attacks if for every ppt adversary A there exists a negligible function
negl such that Pr

[
sIND-P-KEMaCCA

Π,A (λ, n) = 1
]
≤ 1

2 + negl (λ) .

For our CCA-secure constructions we will require that the original chosen-plaintext secure
(CPA-secure) schemes have some additional properties. One of these properties will be, that the
scheme remains CPA-secure even if the ppt adversary is given additional power in form of an oracle
to some function f . Next, we define this formally.

Let f be an arbitrary function. We define the experiment sIND-P-KEMf-CPA
Π,A (λ, n) as extension

of sIND-P-KEMCPA
Π,A (λ, n), where the adversary gets access to an oracle for f in Phase 1 and 2 of

the experiment.

Definition 6. A predicate key encapsulation mechanism Π is called immune to function f in
experiment sIND-P-KEMCPA

Π,A (λ, n), if for every ppt adversary A there exists a negligible function

negl such that Pr
[
sIND-P-KEMf-CPA

Π,A (λ, n) = 1
]
≤ 1

2 + negl (λ) .

2.3 Bilinear groups

In this paper we use the standard terminology for bilinear groups (see e.g. [BF03]) and consider only
predicate encryption schemes which are constructed from bilinear groups. The security assumptions
for these groups are defined according to a group generator G, which given a security parameter out-
puts the description of a (symmetric) bilinear group: (p,G,GT , e : G×G→ GT , g ∈ G) ← G

(
1λ
)
,

where p is a prime such that log (p) ≥ λ; G and GT are cyclic groups of order p; e is a map linear in
both components; g is a generator in G. We assume the reader to be familiar with bilinear groups.

2.4 Hash Functions

Our constructions require universal one-way hash functions (UOWHFs) as introduced in [NY89].
The notion of UOWHF was shown to be strictly weaker than collision resistance [RS04]. In fact,
UOWHF can be constructed from one-way functions [Rom90], whereas for collision resistant hash
functions such a construction is not known. In practice, both types of hash functions are instantiated
by dedicated cryptographic hash function like SHA-2 (cf. [CS03]).

Definition 7. (cf. [Gol04]) Let UOWHF =
{
hs : {0, 1}∗ → {0, 1}l(|s|)

}
s∈{0,1}∗ with l : N → N

be a collection of efficiently computable keyed functions. UOWHF is called a family of universal
one-way hash functions if there exists a ppt algorithm I such that for all ppt adversaries A the
probability to win the following game is negligible in λ:
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– A on input 1λ outputs x.
– A is given s← I(1λ).
– A outputs x′ and wins the game if x′ 6= x but hs (x′) = hs (x).

In our constructions we need to hash ciphertexts of predicate encryption schemes into Zp. Hence,
for each concrete scheme we require an injective encoding of ciphertext space through bit strings.
We will not explicitly mention this in our constructions. Furthermore, we write UHF← UOWHF
and mean with this notation, that a random key is chosen for the hash function.

3 Chosen-ciphertext secure predicate key encapsulation mechanism

In this section we present our method to convert predicate key encapsulation mechanisms (P-KEMs)
selectively secure against chosen-plaintext attacks into schemes which withstand chosen-ciphertext
attacks. In order to achieve this stronger notion of security, we require a hash function and extend
the public parameters and the encapsulations by a single group element respectively. Hence, our
constructions are very efficient from this point of view. However, we also require a kind of consistency
checks for the encapsulations. The efficiency of the corresponding algorithm depends on the original
scheme. In order to achieve an efficient but still widely applicable conversion technique, we explicitly
looked at structural properties of predicate encryption schemes based on bilinear groups. These
schemes are very similar in their basic structure and we exploit this in our constructions. Next, we
formally define the properties necessary for our technique. At first, some of these properties might
seem to be very specific, but we will show that many well known schemes have these properties.

3.1 Required properties

Let Π = (Setup,KeyGen,Encaps,Decaps) be a selectively CPA-secure P-KEM. Our main con-
struction requires the following properties of Π:

1. Π is defined over prime order bilinear groups (p,G,GT , e : G×G→ GT , g ∈ G). The symmetric
key space of Π is GT .

2. (Commitment property) The public parameters contain generators υ ∈ G and Y ∈ GT ; for
every ind ∈ In and every (k, cind) ∈ [Encaps (ppn, ind)] there exists s ∈ Zp such that k = Y s

and c′ = υs, where c′ is contained in cind.3 Furthermore, s must be explicitly chosen by the
encapsulation algorithm.

3. (f -immunity) The public parameters contain some ω ∈ G such that Π is immune to the partial
function f : G×G→ GT ,

f (x, y) 7→

{
Y r if ∃r : x = vr ∧ y = wr

⊥ otherwise

in experiment sIND-P-KEMCPA
Π,A (λ, n).

4. (Verifiability) There is a ppt (in 1λ) algorithm Vrfy that requires as input ppn, X ∈ Kn

and a (possibly malformed) encapsulation cind. Vrfy outputs 1 if and only if for every skX ∈
[KeyGen (pp,msk,X)] it holds Decaps (pp, skX, cind) = Y s, where s is defined through c′ ∈ cind,
c′ = υs.

3 Y can be also defined implicitly through two generators in G.
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Note, that the correct form of the input values x, y for the function f can be easily checked using

the pairing e: e (x, ω)
?
= e (υ, y). Furthermore, f is defined through υ, ω, Y ∈ ppn and consequently,

in Phase 1 and in Phase 2 of security experiment this function is well defined.
The commitment property is based on the fact, that the encapsulation of key Y s has to provide

decrypter with information about s. The element c′ can be seen as commitment to s. Almost all
PE schemes satisfy the commitment property or can be easily extended in order to satisfy it (see
Section 4 for examples). Furthermore, publicly verifiable schemes satisfy the last property through
the algorithm PubVrfy. Nevertheless, the required properties of algorithm Vrfy are weaker and for
some concrete schemes such an algorithm can be implemented more efficiently (see Section 4 for
examples).

The most tricky property is the f -immunity. For some schemes one can directly see, that this
property is satisfied, since for an appropriate generator ω the function f will be efficiently com-
putable from the public parameters. But in many cases this is more involved, since we have to
consider the original security proof, identify an appropriate generator ω and prove that ppt adver-
saries can not make use of the oracle f . Some schemes even have to be extended in order to satisfy
this property. See Section 4 for more details and examples.

3.2 Construction

Let Π = (Setup,KeyGen,Encaps,Decaps) be a predicate key encapsulation mechanism with public
index for relation family R = {Ri : Ki × Ii → {0, 1} | i ∈ N} such that Π has the four properties
from Section 3.1. Furthermore, let UOWHF be a family of universal one-way hash functions.
Construct a P-KEM Π ′ = (Setup′,KeyGen′,Encaps′,Decaps′) for R as follows:

– Setup′
(
1λ, n

)
:

• Compute (msk,ppn)← Setup
(
1λ, n

)
.

• Choose h← G and UHF← UOWHF such that UHF : CΠ → Zp, where CΠ is the ciphertext
space of Π.
• Output the master secret msk and the public parameters pp′n = (ppn, h,UHF).

– KeyGen′
(
pp′n,msk′,X

)
= KeyGen (ppn,msk,X).

– Encaps′ (pp′n, ind) with ind ∈ In. Extend the original encapsulation algorithm as follows:
• Let (Y s, cind) be the result of the original computation of Encaps (ppn, ind). Compute t :=

UHF (cind) and c′′ :=
(
ωt ·h

)s
.

• Output (Y s, (cind, c
′′)).

– Decaps′ (pp′n, skX, (cind, c
′′)) works as follows:

• Check Vrfy (ppn,X, cind)
?
= 1.

• Compute t := UHF (cind) and check:

e
(
c′, ωt ·h

) ?
= e

(
υ, c′′

)
. (1)

• If both tests succeed, output Decaps (ppn, skX, cind).

First, we show that Π ′ is well defined. From the commitment property and f -immunity we
know that the original public parameter ppn contain υ, ω ∈ G and Y ∈ GT . Furthermore, by the
commitment property the encapsulation of key Y s contains c′ = υs and s ∈ Zp is known to the
encapsulation algorithm. Hence, c′′ can be computed and all the elements in Equation 1 are well
defined.
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Correctness: Let (cind, c
′′) be a correctly generated encapsulation of key Y s. Correctness of Π

implies that Decaps (pp, skX, cind) = Y s and hence, by definition of verifiability Vrfy (ppn,X, cind) =
1. Consequently, Decaps′ does not abort in the first step. Next, c′ = υs for some s ∈ Zp by the
commitment property and c′′ =

(
ωt ·h

)s
by construction. Hence, Equation 1 is also satisfied. Last,

as already mentioned Decaps (pp, skX, cind) = Y s and hence, the output of Decaps′ is correct.

Theorem 1. Let UOWHF be a family of universal one-way hash functions and Π be a predicate
key encapsulation mechanism with four required properties from Subsection 3.1. If Π is selectively
CPA-secure under some security assumptions, then Π ′ constructed from Π is selectively CCA-secure
under the same security assumptions.

Proof. We prove, that if there exists an adversary A with significant advantage in experiment
sIND-P-KEMaCCA

Π′,A (λ, n), then there exists an algorithm B with significant advantage in the ex-

periment sIND-P-KEMf-CPA
Π,A (λ, n). Assume, that such an algorithm A exists; algorithm B is as

follows:
Init-Phase: B on input 1λ and n ∈ N outputs ind∗ ← A

(
1λ, n

)
.

Setup-Phase: The challenger C sends B the public parameters ppn, that include υ, ω, Y . Then,
B asks for the challenge and gets

(
k∗, c∗ind∗

)
, where c∗ind∗ includes c′∗. Next, B chooses UHF ←

UOWHF and ξ ← Zp, computes t∗ := UHF
(
c∗ind∗

)
and sets h := υξ ·ω−t∗ . B sends the public

parameters pp′n := (ppn, h,UHF) to A. Furthermore, B precomputes c′′∗ := (c′∗)ξ for the challenge.
The generator h is correctly distributed due to ξ.

Challenge: When A asks for the challenge, B outputs
(
k∗,
(
c∗ind∗ , c

′′∗)). It is easy to check, that
the precomputed c′′∗ is correct for c∗ind∗ :

c′′∗
def
=
(
ωt
∗ ·h
)s∗

=
(
ω t∗ · υξ ·ω−t∗

)s∗
=
(
c′∗
)ξ
,

where s∗ is unknown but uniquely defined through c′∗ = υs
∗
. B is able to compute the correct value

c′′∗ without knowledge of s∗, due to the definition of h.
Phase 1 and Phase 2: B initializes an empty set L and answers the queries of A as follows:

CoveredKeyGen (X, i) with X ∈ Kn and i ∈ N:
– If Rn (X, ind∗) = 0, B queries its own oracle KeyGen (X), receives

skX ← KeyGen (ppn,msk,X), (re)stores (i,X, skX) in L and returns nothing.
– If Rn (X, ind∗) = 1, B (re)stores (i,X,⊥) in L.

Open (i) with i ∈ N:
– If (i,X, skX) ∈ L output skX. Otherwise output ⊥.

Decapsulate ((cind, c
′′) , i) with i ∈ N and c′ = υr ∈ cind for some unknown r ∈ Zp. B answers as

follows:
1. If (i,X, skX) in L return Decaps′ (pp′n, skX, (cind, c

′′)). Output ⊥ if there is no entry for i.
2. If Rn (X, ind) 6= 1 output ⊥, where (i,X,⊥) ∈ L.
3. If (cind, c

′′) =
(
c∗ind∗ , c

′′∗) in Phase 1, abort.
4. If Vrfy (cind) = 0 or e

(
c′, ωt ·h

)
6= e (υ, c′′) output ⊥, where t := UHF (cind).

5. If t = t∗ ∧ cind 6= c∗ind∗ abort.
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6. Use the oracle for f and return f

(
c′,
(
c′′ · (c′)−ξ

)(t−t∗)−1)
.

By construction, B never queries its key generation oracle for X if Rn (X, ind∗) = 1. Furthermore,
the opening oracle simulation is consistent, because A is not allowed to open keys if Rn (X, ind∗) = 1
and if there is no entry for i in L.
B aborts in Step 3 only with negligible probability over the random choice of c′∗ ∈ c∗ind∗ ,

because in Phase 1 the view of A is independent of this value. In Phase 2 a query with (cind, c
′′) =(

c∗ind∗ , c
′′∗) ∧Rn (X, ind) = 1 is not allowed, whereas Rn (X, ind) 6= 1 was already caught in Step 2.

B outputs ⊥ in Step 4 only if one of the tests from the decapsulation algorithm is not satisfied. In
Step 5, B aborts with negligible probability, because of the properties of a universal one way hash
function.

The case t = t∗∧cind = c∗ind∗ is caught in Step 3, since in this case holds c′′ = c′′∗ by construction

and thus (cind, c
′′) =

(
c∗ind∗ , c

′′∗). Hence, in the last step (t− t∗)−1 is well defined. Furthermore, by
the consistency check for c′′ in Step 4 we have c′′ =

(
ωt ·h

)r
and thus(

c′′ ·
(
c′
)−ξ)(t−t∗)−1

=
((
ωt ·h

)r · (υr)−ξ)(t−t∗)−1

=
((
ωt · υξ ·ω−t∗

)r
· υ−ξ·r

)(t−t∗)−1

=
(
ω(t−t∗)·r

)(t−t∗)−1

= ωr .

Hence, the input of the query to oracle f in Step 6 is valid and the oracle returns Y r. By the
verifiability property and the fact that Vrfy (cind) = 1 after Step 4 this is the correct answer to the
decapsulation query.

Guess: Output the output of A.
The simulation provided by B is not perfect, since in some cases B aborts. But this happens

only with negligible probability. Furthermore, B wins if A wins and hence, the theorem follows.

3.3 Improvement

In this subsection we present our second construction. For many schemes this construction leads to
more efficient CCA-secure schemes. The idea for this construction is to hash only those components
of an encapsulation, which uniquely define the remaining elements. In combination with public
verifiability this is sufficient to achieve CCA security.

Required properties: The first three properties remain unchanged. Instead of the verifiability
we require public verifiability according to Definition 3. The additional property is:

5. (Hash uniqueness) There exists a deterministic polynomial time (in 1λ) algorithm HInput that
gets as input the public parameters and a correctly generated encapsulation cind and outputs
some ĉind. We require that (k1, cind,1) , (k2, cind,2) ∈ [Encaps (ppn, ind)] and cind,1 6= cind,2 imply
HInput(ppn, cind,1) 6= HInput(ppn, cind,2).

Note, that we do not require that HInput outputs parts of the original encapsulation. Rather,
HInput can be any function on encapsulations as long as, restricted to a ciphertext index, it is
injective.
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Modified construction. Modify the construction of Π ′ in such a way, that the encapsulation and
decapsulation algorithms compute the hash value for encapsulation cind ∈ Cind as

t := UHF (HInput (cind))

instead of t := UHF (cind). Furthermore, use the algorithm PubVrfy instead of Vrfy. We call such
a modified scheme Π ′′.

Theorem 2. Let UOWHF be a family of universal one-way hash functions and Π be a predicate
key encapsulation mechanism with five required properties from above. If Π is selectively CPA-secure
under some security assumptions, then Π ′′ constructed from Π is selectively CCA-secure under the
same security assumptions.

Proof. We have to slightly modify the proof of Theorem 1. The hash value t∗ in the setup phase
and the hash values t during the decapsulation queries should be computed according to the new
construction using HInput. We also use the algorithm PubVrfy instead of the algorithm Vrfy.
Furthermore, Case 5 for decapsulation queries should be modified to:

5. If t = t∗ but HInput (cind) 6= HInput
(
c∗ind∗

)
abort.

Also in this case B found a collision and aborts only with negligible probability. All the com-
putations in Step 6 work as before, but we have to consider the case t = t∗ ∧ HInput (cind) =
HInput

(
c∗ind∗

)
. Also for this construction this case can not arise. Namely, due to the public ver-

ifiability cind is correctly formed and hence, by hash uniqueness cind = c∗ind∗ . This again implies
(cind, c

′′) =
(
c∗ind∗ , c

′′∗).
4 Application to some known schemes

All schemes considered in this section are defined over prime order groups and thus already satisfy
the first required property of our constructions. The public parameters of these schemes includes the
description of the bilinear groups (p,G,GT , e : G×G→ GT , g ∈ G).4 We briefly recall the schemes
in question in their KEM versions and adapt them to our notation. We refer to the original papers
for complete descriptions.

Fuzzy-IBE [SW05] and KP-ABE of [GPSW06], the large universe constructions. Both schemes
differ only in the key generation algorithms. Hence, we can consider these schemes together. The
public parameters are defined as ppn = (g1, g2, t1, . . . , tn+1), where all the elements are from group
G. The public parameters implicitly define Y = e (g1, g2). The elements {ti}n+1

i=1 define a publicly
computable function T : Zp → G. The encapsulation of key Y s for identity ind ⊂ Zp, |ind| ≤ n has
the form

cind =
(
ind, c′ = gs, {ci = T (i)s}i∈ind

)
.

– The schemes satisfy the commitment property for υ = g and Y as above.

– The scheme has f -immunity for ω = g1, because given υr = gr and ωr = gr1 the adversary can
compute herself e (ωr, g2) = e (g1, g2)

r = Y r from ωr only. Hence, the oracle f is useless for A.

4 Note, that g is explicitly a part of the public parameters.
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– The Vrfy algorithm for these schemes checks for every i ∈ X ∩ ind:

e
(
c′, T (i)

) ?
= e (g, ci) .

These checks ensure that all the elements ci which are relevant for the decapsulation using the
secret key with key index X are correctly formed. Hence, the decapsulation algorithm given
any skX ∈ [KeyGen (ppn,msk,X)] outputs Y s, even if some of the remaining elements are mal-
formed. Note, that this verification algorithm can be performed more efficiently in a randomized
manner, combining all the checks in a single one (cf. for example with [BL13]):
• Choose for every i ∈ X ∩ ind an element ri ← Zp and then check:

e

(
c′,

∏
i∈X∩ind

T (i)ri

)
?
= e

(
g,

∏
i∈X∩ind

crii

)
.

Malformed elements pass this randomized test only with negligible probability over the random
choice of the elements ri.

Note, that ind and c′ uniquely define all the other elements of the encapsulation. Hence, we can
use our second construction and hash only these elements. In this case we have to use the PubVrfy
algorithm, which checks all the elements ci.

The authors of [BL13] presented a CCA-secure extension of key-policy ABE (KP-ABE) of
[GPSW06]. Their scheme corresponds to the scheme that we get from our second construction with
a single exception. Namely, they even proved that it is sufficient to hash the number of attributes
instead of the ciphertext index itself. This is not covered by our second construction, since the
inputs of the hash functions are not unique in their construction. The scheme of [BL13] can be
seen as an extension of the scheme achieved from our second construction using further specific
properties of the scheme.

HIBE of [BBG05] with constant size ciphertext. The structure of this scheme is very similar to that
of the large universe construction of [GPSW06]. Note however, that the identity is not contained in
the encapsulation. But given an identity, one can easily check if the encapsulation is created for this
identity (see also Remark 1). The public parameters are defined as ppn = (g1, g2, g3, h1, . . . , hn),
where all the elements are from G. The public parameters implicitly define Y = e (g1, g2). The
elements {hi}ni=1 and g3 define a publicly computable function F : Z≤np → G. The original encap-

sulation of key Y s for identity ind ∈ Z≤np has the form(
c′ = gs, c = F (ind)s

)
,

– The scheme satisfies the commitment property for υ = g and Y as above.
– The scheme has f -immunity for ω = g1. Given υr = gr and ωr = gr1 the adversary can compute

herself e (ωr, g2) = e (g1, g2)
r = Y r from ωr only. Hence, the oracle f is useless for A.

– For this scheme the algorithm Vrfy performs a single check:

e
(
c′, F (ind)

) ?
= e (g, c) .

As long as the identity is not a part of the encapsulation this scheme is not publicly verifiable and
hence, our second construction can not be applied. If we extend the encapsulation by identity as
suggested in [BSW11], we have to hash the identity too. In this case for our second construction
we do not have to hash the element c.
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IBE of [Wat05]. The public parameters for this scheme are ppn = (g1, g2, t
′, t1, . . . , tn), where all

the elements are from group G. The public parameters implicitly define Y = e (g1, g2). The elements
{ti}ni=1 and t′ define a publicly computable function T : S → G, where S is the power set of [n].
The encapsulation of key Y s for identity ind ⊆ [n] has the form(

c′ = gs, c = T (ind)s
)

The verification of the required properties is as for HIBE from [BBG05].
The original scheme is proven to be adaptively CPA-secure. Furthermore, Galindo and Kiltz

[KG09] presented an extension, which is also adaptively CCA-secure. Their construction is exactly
the same as the resulting construction from our first scheme with a single exception that they
hash only c′. This element is independent of ciphertext index and hence, the hash value for the
challenge can be computed in the setup phase without knowledge of ind∗. Furthermore, we note
that the second element of the encapsulation does not have to be hashed due to the security
properties of this concrete scheme. Namely, given c′ and c, the adversary is not able to compute the
corresponding value c for another identity. This shows that in some cases our resulting constructions
can be enhanced to preserve adaptive security.

Broadcast encryption of [BGW05]. The public parameters in this scheme supporting n users are
defined as ppn = (v, g1, . . . , gn, gn+2, . . . , g2n), where all the elements are from G; the element Y
is implicitly set to e (g1, gn). The elements {gi}ni=1 and v define a publicly computable function
T : S → G, where S is the power set of [n]. The encapsulation of key Y s for ind ⊆ [n] is:(

c′ = gs, c = T (ind)s
)

The verification of the required properties is similar to the last two constructions.
In the original work the CPA-secure scheme is enhanced to achieve CCA-security applying

the ideas of [BCHK06]. Later, a direct CCA-secure variant has been proposed in [PPSS13]. Their
technique is similar to ours, but they did not add the element c′′ to the encapsulation, but in-
cluded the hash value t = UHF (c′) directly into the value c. In fact, for their scheme c is defined
as
(
gt1 · T (ind)

)s
. Hence, in their scheme the ciphertext space is not extended. Furthermore, in

[PPSS13], this scheme was also proven adaptively secure but under some extended security as-
sumptions. We did not consider such extensions in our work.

KP-ABE of [GPSW06], small universe constructions: The original public parameters are defined
as ppn = (t1, . . . , tn, Y ), where for every attribute i in the universe U there exists an element ti ∈ G
in the public parameters. The original encapsulation of key Y s for identity ind ⊆ U has the form:(

ind, {ci = tsi}i∈ind
)
.

One can easily see, that these schemes do not satisfy our required properties. But we can extend
the original scheme such that our transformation can be applied:

– Add a generator ω ← G to the public parameters.
– Add the element c′ = gs to the encapsulation.

The commitment property is satisfied directly for υ = g and Y from above. Now, we draft the
proof that this extended scheme is CPA-secure and satisfies f -immunity for ω from above. Indeed,
we can extend the original security proof as follows:
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– Set ω := ga. This is possible, since originally Y is simulated as e
(
ga, gb

)
and thus Y and ω stay

independent due to the choice of b.
– Set the additional element of the challenge c′∗ to gc. This is consistent with the definition of

the original challenge.
– Given an oracle query for υr and ωr the simulator can compute f (υr, ωr) := e

(
ωr, gb

)
=

e
(
ga, gb

)r
= Y r.

– The verification algorithm Vrfy given an encapsulation
(
ind, c′, {ci}i∈ind

)
and X ⊆ U checks

∀i ∈ X ∩ ind : e (c′, ti)
?
= e (υ, ci).

The algorithm PubVrfy simply checks all the elements ci.

KP-ABE for non-monotonic access structures of [OSW07] The proof of required properties is very
similar to the proof for the large universe KP-ABE of [GPSW06]. Only the Vrfy algorithm has to
be extended.

The public parameters of the scheme supporting encryption with exactly n attributes are defined
as ppn = (g1, {vi}ni=0 , {ti}

n
i=0), where all the elements are from group G. The public parameters

implicitly define Y = e (g1, v0). The elements {ti}ni=0 and {vi}ni=0 define two publicly computable
functions T : Zp → G and V : Zp → G. The encapsulation of key Y s for identity ind ⊂ Zp, |ind| = n
has the form

cind =
(
ind, c′ = gs, {ci,1 = T (i)s}i∈ind , {ci,2 = V (i)s}i∈ind

)
.

All the properties excepting verifiability are as for the KP-ABE of [GPSW06]. Analogously to the
values ci,1 the verification algorithm has to check the values ci,2:

e
(
c′, V (i)

) ?
= e (g, ci,2) .

Hence, using the randomized test one can check all the element as follows:

– Choose for every i ∈ X ∩ ind elements ri,1, ri,2 ← Zp and then check:

e

(
c′,

∏
i∈X∩ind

T (i)ri,1 · V (i)ri,2

)
?
= e

(
g,

∏
i∈X∩ind

c
ri,1
i,1 · c

ri,2
i,2

)
.

Malformed elements pass this randomized test only with negligible probability over the random
choice of the elements ri,1, ri,2.

HIBE of [BB04] based on DBDH assumption. The public parameters supporting n level are defined
as ppn = (g1, g2, h1, . . . , hn), where all the elements are from group G. The public parameters im-
plicitly define Y = e (g1, g2). The generator g1 and the elements {hi}ni=1 define publicly computable
functions {Fi : Zp → G}ni=1. The encapsulation of key Y s for identity ind ∈ Zlp has the form

cind =
(
c′ = gs, {ci = Fi (indi)

s}ni=1

)
,

– The schemes satisfy the commitment property for υ = g and Y as above.
– The scheme has f -immunity for ω = g1. Given υr = gr and ωr = gr1 the adversary can compute

herself e (ωr, g2) = e (g1, g2)
r = Y r from ωr only. Hence, the oracle f is useless for A.

– The Vrfy algorithm for this scheme checks for every i ∈ {1, . . . , n}:

e
(
c′, Fi (indi)

) ?
= e (g, ci) .

Also for this scheme an efficient randomized test is possible.
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IBE of [BB04] based on BDH Inversion assumption. The public parameters are defined as ppn =
(g1, g2), where g1, g2 ∈ G. The public parameters implicitly define Y = e (g, g). The generators g
and g1 define publicly computable function F : Zp → G. The encapsulation of key Y s for identity
ind ∈ Zp has the form

cind =
(
c′ = gs2, c = F (ind)s

)
,

– The schemes satisfy the commitment property for υ = g2 and Y as above.

– The scheme has f -immunity for ω = g. Given υr = gr2 and ωr = gr the adversary can easily
compute e (ωr, g) = e (g, g)r = Y r from ωr only. Hence, the oracle f is useless for A.

– The Vrfy algorithm for this scheme checks:

e
(
c′, F (ind)

) ?
= e (g2, c) .

Non-monotonic KP-ABE of [ALdP11] with short ciphertext. The public parameters supporting
encryption with less than n attributes are defined as ppn = ({hi}ni=1 , {ui}

n
i=0 , Y ), where Y ∈ GT

and all the elements are from group G. The elements {hi}ni=1 and {ui}ni=0 define publicly computable
functions H : Z<np → G and U : Z<np → G respectively. The encapsulation of key Y s for identity

ind ∈ Zlp with l < n has the form

cind =
(
ind, c′ = gs, c1 = U (ind)s , c2 = H (ind)s

)
,

– The schemes satisfy the commitment property for υ = g.

– The scheme has f -immunity for ω = u1. To see this we have to look at the proof for the original
CPA-secure scheme (see the full version of [ALdP11]). There, the simulator explicitly defines
Y := e (z1, zn)δ0 for some generators z1, zn ∈ G and δ0 ∈ Zp. Furthermore, the generator in
question u1 is explicitly defined as u1 := z1 · gθ1 for some θ1 ∈ Zp. Hence, given an oracle query
for ωr = ur1 and υr = gr, the simulator can compute

e (ωr, zn)δ0

e (υr, zn)δ0·θ1
=
e
((
z1 · gθ1

)r
, zn
)δ0

e (gr·θ1 , zn)
δ0

= Y r

– The Vrfy algorithm for this scheme checks:

e
(
c′, U (ind)

) ?
= e (g, c1) .

and

e
(
c′, H (ind)

) ?
= e (g, c2) .

Fuzzy-IBE of [SW05], small universe: Originally the scheme is proven CPA-secure under the de-
cision modified BDH assumption, that differ a bit from the standard assumptions. One can show,
that the scheme is CPA-secure under the DBDH assumption. Indeed the scheme is a special case
of KP-ABE encryption scheme of Gayal et al.[GPSW06], that is proven secure under DBDH as-
sumption. In order to apply our CCA construction, we have to extend it similar to the KP-ABE.
See this construction for details.
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CP-ABE schemes of [Wat11] Waters presented in his work several constructions from different
security assumptions. The structural properties of all these schemes are very similar, hence we
show the applicability of our constructions only for the most efficient scheme.

The public parameters supporting attribute universe U ⊂ Zp are defined as pp =
(
g1, {hi}i∈U , Y

)
,

where Y ∈ GT and all the elements are from group G. The encapsulation of key Y s for ac-
cess structure A realized through monotone span program ind = (M,ρ), where M ∈ Zl×dp and
ρ : {1, . . . , l} 7→ U , has the form

cind =

(
ind, c′ = gs,

{
ci,1 = gλi1 · h

−ri
ρ(i), ci,2 = gri

}l
i=1

)
with randomly chosen ri ∈ Zp and vector of shares λ = M · (s, v2, . . . , vd)T with randomly chosen
vi ∈ Zp.

– The scheme satisfies the commitment property for υ = g.

– The scheme has f -immunity for ω = g1. To see this, we have to look at original proof. There,
the simulator sets explicitly

Y := (g1, h) · e (g, g)α
′

for some h ∈ G and α′ ← Zp. Hence, given υr = gr and ωr = gr1 the challenger can compute

(ωr, h) · e (υr, g)α
′

= Y r

and thus reply all the queries of adversary.

– For this scheme the algorithm Vrfy is more involved. Construction of PubVrfy was presented in
[BL13], see this work for more details. The shares λi can be reconstructed in the exponent as
follows:

e (ci,1, g) · e
(
ci,2, hρ(i)

)
= e

(
gλi1 · h

−ri
ρ(i), g

)
· e
(
gri , hρ(i)

)
= e (g1, g)λi .

Then, the method of [BL13] can be applied to verify these shares. Vrfy has to check only the
elements associated with attributes from key index X.

CP-ABE scheme of [RW13] The public parameters supporting attribute universe U = Zp are
defined as pp = (g1, g2, g3, g4, Y ), where Y ∈ GT and all the elements are from group G. The
generators g1 and g2 define a function H : U 7→ G. The encapsulation of key Y s for access structure
A realized through monotone span program ind = (M,ρ), where M ∈ Zl×dp and ρ : {1, . . . , l} 7→ U ,
has the form

cind =

(
ind, c′ = gs,

{
ci,1 = gλi3 · g

ri
4 , ci,2 = H (ρ (i))−ri , ci,3 = gri

}l
i=1

)
with randomly chosen ri ∈ Zp and vector of shares λ = M · (s, v2, . . . , vd)T with randomly chosen
vi ∈ Zp.

– The scheme satisfies the commitment property for υ = g.
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– The scheme has f -immunity for ω = g3. To see this, we have to look at original proof. There,
the simulator explicitly sets

Y := (g3, h) · e (g, g)α
′

for some h ∈ G and α′ ← Zp. Hence, given υr = gr and ωr = gr3 the challenger can compute

(ωr, h) · e (υr, g)α
′

= Y r

and thus reply all the queries of adversary.

– The Vrfy algorithm checks at first for all elements in question:

e (ci,2, g)−1
?
= e (ci,3, H (ρ (i))) .

Then, it reconstructs the shares λi in the exponent as follows:

e (ci,1, g) · e (ci,3, g4)
−1 = e

(
gλi3 · g

ri
4 , g

)
· e (gri , g4)

−1

= e (g3, g)λi

Then, the method of [BL13] can be applied to verify these shares. Vrfy has to check only the
elements associated with attributes from key index X.

KP-ABE scheme of [RW13] The public parameters supporting attribute universe U = Zp are
defined as pp = (g1, g2, g3, Y ), where Y ∈ GT and all the elements are from group G. The generators
g1 and g2 define a function H : U 7→ G. The encapsulation of key Y s for attribute set ind ⊂ U has
the form

cind =
(

ind, c′ = gs,
{
ci,1 = gri , ci,2 = H (i)ri · g−s3

}
i∈ind

)
– The scheme satisfies the commitment property for υ = g.

– The scheme has f -immunity for ω = g3. To see this, we have to look at original proof. There,
the simulator sets explicitly

Y := (g3, h)

for some h ∈ G. Hence, given υr = gr and ωr = gr3 the challenger can compute

(ωr, h) = Y r

and thus reply all the queries of adversary.

– The Vrfy algorithm checks for all elements in question:

e (ci,2, g) · e (ci,1, H (i))−1 = e
(
g−s3 ·H (i)ri , g

)
· e (gri , H (i))−1

= e
(
g−s3 , g

)
?
= e

(
g3, c

′)−1 .
Further schemes: We did not present the complete list of schemes satisfying our required properties.
Rather these schemes show that our required properties are widely common.
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Conclusion: As we have shown, our transformation is not generic but can be applied for many
predicate encryption schemes constructed from bilinear groups. Compared to the generic construc-
tions of [YAHK11] for ABE and [YAS+12] for PE, our constructions use UOWHF and do not
add overhead in form of one-time signatures to the encapsulations. Hence, we provide simple and
efficient technique to achieve CCA-security for predicate encryption schemes in selective security
model. Moreover, for some schemes the resulting constructions can be extended as the examples in
[KG09, PPSS13, BL13] show.
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