
On Decomposition of an NFSR into a Cascade

Connection of Two Smaller NFSRs∗

Tian Tian and Wen-Feng Qi†‡

July 9, 2014

Abstract

Nonlinear feedback shift registers (NFSRs) are an important type of sequence

generators used for building stream ciphers. The shift register used in Grain, one

of eSTREAM finalists, is a cascade connection of two NFSRs, which is also known

as nonlinear product-feedback shift registers proposed in 1970. This paper provides

a series of algorithms to decompose a given NFSR into a cascade connection of two

smaller NFSRs. By decomposing an NFSR into a cascade connection of two smaller

NFSRs, some properties regarding cycle structure of the original NFSR could be

known.

Keywords: stream ciphers, nonlinear feedback shift registers, cascade connec-

tion, Grain

Mathematics Subject Classifications (2000): 94A55, 94A60

∗This work was supported by the National Natural Science Foundation of China (Grant 61100202,

61272042).
†Tian Tian and Wen-Feng Qi are with the department of Applied Mathematics, Zhengzhou Informa-

tion Science and Technology Institute, Zhengzhou, P.R.China. (e-mail: tiantian d@126.com and wen-

feng.qi@263.net).
‡Corresponding author: Tian Tian

1

2

1 Introduction

Linear feedback shift registers (LFSRs) are the most popular building block used to design

stream ciphers, for they have very good statistical properties, efficient implementations

and well studied algebraic structures. Yet over the years, stream ciphers based on LFSRs

have been found to be susceptible to algebraic attacks and correlation attacks. Therefore,

many recently proposed stream ciphers adopt nonlinear sequence generators. Nonlinear

feedback shift registers (NFSRs) are an important type of nonlinear sequence generators

with more than 40 years of research. Grain and Trivium, two eSTREAM hardware-oriented

finalists, use NFSRs as a main building block, see [1, 2]. Despite that NFSRs are frequently

appeared in stream cipher designs and have a quite long time of research, many algebraic

properties of NFSRs are essentially unknown. In this paper we are concerned with a type of

decomposition of NFSRs proposed in 1970 [3], namely cascade connections of two NFSRs.

Let f1(x) and f2(x) be two polynomials over F2, the finite field of two elements. It is

known that a sequential circuit made up from a cascade connection of the LFSR with char-

acteristic polynomial f1(x) into the LFSR with characteristic polynomial f2(x) outputs the

same family of sequences as the LFSR with characteristic polynomial f1(x)f2(x) [3]. Thus

a product LFSR (an LFSR with a composite characteristic polynomial) can be interpreted

as a cascade connection of its factors.

In [3] the author demonstrated such equivalence for the nonlinear case by introducing an

order increasing multiplication to Boolean functions which is denoted by “∗” in the following

paper to distinguish from traditional multiplication “·” (see Section 2). For example, the

nonlinear primitive used in Grain is a cascade connection of a 80-stage LFSR into a 80-stage

NFSR. It was shown in [3] that a cascade connection of the NFSR F1 with characteristic

function f1(x0, x1, . . . , xn) into the NFSR F2 with characteristic function f2(x0, x1, . . . , xm)

outputs the same family of sequences as the NFSR F3 with characteristic function f1 ∗ f2.

Moreover, if the NFSR F1 can generate all zero sequence, i.e., f1(0, 0, . . . , 0) = 0, then the

family of outputting sequences of F2 is a subset of that of F3. In such case, we say that F1 is

3

a factor of F3 and F3 is reducible, as what we do in the LFSR domain. As for cryptographic

applications, an NFSR is expected to be irreducible or at least the outputting sequences

used to produce keystreams should not drop into the subfamily of sequences generated by

one of its factor NFSRs. So far how to do this is still open.

In [4], the authors studied a very special decomposition case of ∗-product, that is, the

decomposition of an NFSR into the cascade connection of an NFSR into an LFSR. In this

paper, we consider the general decomposition problem. We present a series of algorithms to

decompose an NFSR F into a cascade connection of two others F1 and F2, where F , F1, F2

could output the all-zero sequence. For the special case that F2 is an LFSR, our algorithms

are similar with those given in [4] but not the same. Combining the two ideas could

lead to a better algorithm for the decomposition of an NFSR into the cascade connection

of an NFSR into an LFSR. The theories behind the algorithms are elementary and the

computation involved in the algorithms are simple. Generally the algorithms are efficient

for an NFSR whose characteristic function is sparse and has small degree, though the time

complexity of the worst case is exponential.

Throughout the paper, the set {0, 1, 2, . . .} of nonnegative integers is denoted by N,

the set {1, 2, . . .} of positive integers is denoted by N∗, and the symbol ⊕ denotes addition

modulo 2. We use the abbreviation w.r.t. for the phrase “with respect to”.

2 Preliminaries

In this section, we briefly review Boolean functions and nonlinear feedback shift registers

respectively. We remark that a nonlinear feedback shift register can be described by a

Boolean function called characteristic function.

4

2.1 Boolean functions

Let n ∈ N∗. An n-variable Boolean function f(x0, x1, . . . , xn−1) is a function from Fn
2 into

F2 and the set of all n-variable Boolean functions is denoted by Bn. It is known that an n-

variable Boolean function f(x0, x1, . . . , xn−1) can be uniquely represented as a multivariate

polynomial of the form:

f(x0, x1, . . . , xn−1) =
⊕

α=(α0,α1,...,αn−1)∈{0,1}n
uα ·

(
n−1∏
j=0

x
αj

j

)
,

where uα ∈ F2, which is called the algebraic normal form (ANF) of f . The algebraic

degree of f , denoted by deg(f), is the global degree of the ANF of f . If deg(f) = 1 and

f(0, 0, . . . , 0) = 0, then we say f is linear. If deg(f) ≥ 1, then the highest subscript i for

which xi occurs in the ANF of f is called the order of f and denoted by ord(f).

A product of the form xα0
0 xα1

1 · · · x
αn−1

n−1 ∈ Bn with (α0, α1, . . . , αn−1) ∈ {0, 1}n is called

a term; in particular, 1 = x0
0x

0
1 · · · x0

n−1 is a term. Let us denote the set of all terms in Bn
by T (x0, x1, . . . , xn−1). The term order, inverse lexicographical order ≼, is used throughout

the paper, which is defined by

xα0
0 xα1

1 · · · x
αn−1

n−1 ≼ xβ0

0 xβ1

1 · · · x
βn−1

n−1

if and only if

α0 + α1 · 2 + · · ·+ αn−1 · 2n−1 ≤ β0 + β1 · 2 + · · ·+ βn−1 · 2n−1

holds. Moreover, for t, s ∈ T (x0, x1, . . . , xn−1), we write t ≺ s if t ≼ s and t ̸= s. In

particular, we have that

1 ≺ x0 ≺ x1 ≺ · · · ≺ xn−1.

Usually it is more convenient for us to write a term xα0
0 xα1

1 · · · x
αn−1

n−1 in the form xi1xi2 · · · xik ,

and we always assume that i1 < i2 < · · · < ik.

For f ∈ Bn we denote the head term of f with respect to the term order by HT(f) and

denote the set of all terms occurring in the ANF of f by T (f). If all terms of f have the

5

same degree, then we say f is homogenous. Otherwise, f can be written as a finite sum of

homogenous Boolean functions: f =
⊕deg(f)

d=0 f[d], where f[d] is the summation of all terms

of f that have degree d. Next, we extend the term order to an order on Bn. Let f, g ∈ Bn.

Then we define f ≼ g if and only if f = g or HT(f ⊕ g) ∈ T (g). Moreover, we write f ≺ g

if f ≼ g and f ̸= g.

Let m ∈ N∗. For f ∈ Bn and g ∈ Bm, let us denote

f ∗ g = f(g(x0, . . . , xm−1), g(x1, . . . , xm), . . . , g(xn−1, . . . , xn+m−2)), (1)

which is an (n + m − 1)-variable Boolean function. Note that the operation ∗ is not

commutative, that is, f ∗ g and g ∗ f are not the same in general. If h = f ∗ g, then we

say f is a left ∗-factor of h and g is a right ∗-factor of h, denoted by f ∥L h and g ∥R h

respectively. Clearly for all h ∈ Bn, we have that h = h ∗ x0 = x0 ∗ h, and so h and x0 are

called trivial ∗-factors of h.

The following properties of the operation ∗ are directly deduced from its definition (1),

which will be frequently used in the following paper.

Proposition 1 Let f, g, q ∈ Bn. Then

(i) (f · q) ∗ g = (f ∗ g) · (q ∗ g);

(ii) f ∗ g =
⊕

t∈T (f) (t ∗ g) ;

(iii) (f ⊕ 1) ∗ g = f ∗ g ⊕ 1;

(iv) f ∗ g =
⊕

t∈T (f)

⊕
s∈T (g) t ∗ s if f is linear.

In the next subsection, we will give the cryptographic background for this ∗-product of

Boolean functions.

Finally, for a linear Boolean function f = c0x0 ⊕ c1x1 ⊕ · · · ⊕ cn−1xn−1, define

ϕ(f) = c0 ⊕ c1x⊕ · · · ⊕ cn−1x
n−1 ∈ F2[x]. (2)

6

x0 x1 · · ·
xn−2 xn−1

f0(x0, x1, · · · , xn−1)

Figure 1: An n-stage NFSR

The function ϕ maps a linear Boolean function to a univariate polynomial over F2, which

is a one-to-one correspondence. It can be seen that for two linear Boolean functions f, g,

ϕ(f ∗ g) = ϕ(f)ϕ(g).

2.2 Nonlinear feedback shift registers

Let n ∈ N∗. A diagram of an n-stage NFSR with characteristic function

f(x0, x1, . . . , xn) = f0(x0, x1, . . . , xn−1)⊕ xn ∈ Bn+1

is given in Figure 1, denoted by NFSR(f), where f0(x0, x1, . . . , xn−1) is usually called the

feedback function of the NFSR in the literature. An output sequence s = (st)t≥0 of the

NFSR(f) is a binary sequence satisfying the following recurrence relation

st+n = f0(st, st+1, . . . , st+n−1), for t ≥ 0.

In particular, if f(x0, x1, . . . , xn) is linear, then the NFSR(f) is also known as an LFSR

with characteristic polynomial ϕ(f). The set of all 2n sequences generated by the NFSR(f)

is denoted by G(f). It is well known that all sequences in G(f) are (strictly) periodic if and

only if f(x0, x1, . . . , xn) is nonsingular, namely f(x0, x1, . . . , xn) = x0⊕f1(x1, x2, . . . , xn−1)⊕

xn, see [5, Chapter VI]. For convenience, let us denote

C = {f | f(x0, x1, . . . , xr) = x0 ⊕ f1(x1, x2, . . . , xr−1)⊕ xr ∈ Br+1, r ∈ N∗},

the set of all nonsingular characteristic functions. We further denote

C∗ = {f(x0, x1, . . . , xr) ∈ C | f(0, 0, . . . , 0) = 0 },

7

x0 x1 · · · xm−2 xm−1

g0(x0, x1, · · · , xm−1)

+ y0 y1 · · · yn−2 yn−1

f0(y0, y1, · · · , yn−1)

Figure 2: The cascade connection of NFSR (f) into NFSR(g)

the set of nonsingular characteristic functions which outputs the all-zero sequence.

Let m ∈ N∗ and g(x0, x1 . . . , xm) = g0(x0, x1, . . . , xm−1)⊕ xm ∈ Bm+1. The Galois NF-

SR shown in Figure 2 is called the cascade connection of the NFSR(f) into the NFSR(g),

denoted by NFSR(f, g), where to distinguish the registers of two NFSRs, the registers be-

longing to the NFSR(f) are labeled y0, y1, . . . , yn−1. An output sequence of the register

labeled x0 is called an output sequence of the NFSR(f, g) and the set of all output se-

quences of the NFSR(f, g) is denoted by G(f, g). It was early known that the NFSR(f, g)

is equivalent to the NFSR(h) where h = f ∗ g, namely G(f, g) = G(h), see [3] and [6].

Here the notation f ∗ g is the same as what D.H. Green and K.R. Dimond in [3] called the

product of f and g denoted by f · g.

In the following, we consider how to decompose an NFSR in C∗ into a cascade connection

of two others in C∗. Thus, all factorizations w.r.t. ∗-product are assumed to be in C∗ in

the following paper.

3 Algorithms

Given a Boolean function h ∈ C∗, in this section we shall show how to find all Boolean

function pairs (f, g) ∈ C∗ ×C∗ such that h = f ∗ g. A sketch of the main idea is illustrated

in Table 1.

As a preparation, in Subsection 3.1 we derive some properties of Boolean functions

w.r.t. ∗-product. In Subsection 3.2, 3.3, and 3.4, we discuss the specific subalgorithms to

implement the algorithm MAIN of Table 1. In Table 2, we list all the subalgorithms and

8

their functions appearing in the following.

Specification: S ←− MAIN(h)

Given: a Boolean function h ∈ C∗

Find: a finite set S of Boolean function pairs (f, g) ∈ C∗ × C∗ such that h = f ∗ g

begin

S ←− ∅

for d from 1 to deg(h) do

find a set Sd of Boolean function pairs (f, g) such that h = f ∗ g

and deg(g) = d

S ←− S ∪ Sd

end for

return(S)
Table 1. Algorithm MAIN

Algorithm Name Algorithm Function

FIND-RIGHT-FACTOR(h, f)
Given h ∈ C∗ and a linear function f , find

g ∈ C∗ such that h = f ∗ g.

EQUAL-DEGREE(h)
Given h ∈ C∗, find all (f, g) ∈ C∗ × C∗ such

that h = f ∗ g and deg(h) = deg(g).

FIND-LEFT-LINEAR(h, g)
Given h, g ∈ C∗ with deg(h) = deg(g), find

f ∈ C∗ such that h = f ∗ g.

FIND-LEFT-FACTOR(h, g) Given h, g ∈ C∗, find f ∈ C∗ such that h = f ∗ g.

GIVENDEG(h, d) (together with

SUBALG-FOR-GIVENDEG)

Given h ∈ C∗ and d ∈ N∗ with d ≤ deg(h), find

all (f, g) ∈ C∗ × C∗ such that h = f ∗ g and

deg(g) = d.
Table 2. A list of Subalgorithms for MAIN

9

3.1 Theoretical Bases

Lemma 2 Let m,n ∈ N∗, g(x0, . . . , xm) = g0(x0, . . . , xm−1) ⊕ xm ∈ Bm+1, and t =

xi1xi2 · · · xik ∈ T (x0, . . . , xn), where k ≥ 1. Then

(i) HT(t ∗ g) = t ∗ xm =
∏k

j=1 xm+ij ;

(ii) deg(t ∗ g) ≥ deg(g) + deg(t)− 1. In particular, the equality holds for k = 1.

Proof. (i) Since

t ∗ g =
k∏

j=1

(
g0(xij , . . . , xm−1+ij)⊕ xm+ij

)
, (3)

it follows that

HT(t ∗ g) =
k∏

j=1

xm+ij .

(ii) The assertion is trivially true for k = 1. We suppose k > 1. By (3), t ∗ g can be

written

t ∗ g = (g0(xi1 , . . . , xm−1+i1)⊕ xm+i1) ·

(
k∏

j=2

xm+ij

)
⊕ u(xi1 , . . . , xm+ik), (4)

where
k∏

j=2

xm+ij - s for all s ∈ T (u).

Since for j = 2, 3, . . . , k,

m+ ij > m+ i1 = ord(g0(xi1 , . . . , xm−1+i1)⊕ xm+i1),

it follows from (4) that

s ·
k∏

j=2

xm+ij ∈ T (t ∗ g)

for all s ∈ T (g0(xi1 , . . . , xm−1+i1)⊕ xm+i1). Let

s∗ ∈ T (g0(xi1 , . . . , xm−1+i1)⊕ xm+i1)

10

such that deg(s∗) = deg(g). Then we have that

s∗ ·
k∏

j=2

xm+ij ∈ T (t ∗ g), (5)

and

deg(s∗ ·
k∏

j=2

xm+ij) = deg(s∗) + k − 1 = deg(g) + deg(t)− 1. (6)

Thus the assertion follows from (5) and (6) for k > 1.

Remark 3 If g is not of the form described in Lemma 2, then the results may not hold.

For instance, (x3x4) ∗ (x1x2 ⊕ x2) = 0.

Corollary 4 Let m ∈ N∗ and g(x0, . . . , xm) = g0(x0, . . . , xm−1) ⊕ xm ∈ Bm+1. Then for

any Boolean function f which is not a constant, f ∗ g ̸= 0 and HT(f ∗ g) = HT(f) ∗ xm.

Proof. The assertion follows from Lemma 2 (i) and the fact f ∗ g =
∑

t∈T (f) t ∗ g.

If g, f1, f2 ∈ C∗ such that f1 ∗ g = f2 ∗ g, then it follows from Corollary 4 that f1 = f2

since (f1 ⊕ f2) ∗ g = 0. Thus we have the following corollary.

Corollary 5 Let h, g ∈ C∗. If g ∥R h, then there exists a unique Boolean function f ∈ C∗

such that h = f ∗ g.

As for a linear left ∗-factor, the requirement on the form of the function g in Lemma 2

can be relaxed and the uniqueness can be extended to right ∗-factors.

Lemma 6 Let h, g be two Boolean functions which are not constants, and let f be a linear

Boolean function with ord(f) = n. If h = f ∗ g, then deg(h) = deg(g), h[i] = f ∗ g[i], and

HT(h[i]) = xn ∗ HT(g[i]) for 1 ≤ i ≤ deg(h).

Proof. Since f is linear, it can be seen that f ∗t is a homogenous Boolean function of degree

deg(t) for any term t ̸= 1 and HT(f ∗t) = xn∗t. Then this and the fact f ∗g =
⊕

t∈T (g) f ∗t

imply that the lemma holds.

11

Lemma 7 Let h ∈ C∗ and f a linear Boolean function. If f ∥L h, then there exists a

unique Boolean function g ∈ C∗ such that h = f ∗ g.

Proof. Suppose there is another Boolean function g′ ∈ C∗ and g′ ̸= g such that h = f ∗ g′.

Then by Proposition (iv)

0 = f ∗ g ⊕ f ∗ g′ = f ∗ (g ⊕ g′),

a contradiction to Lemma 6.

Lemma 8 Let f, g ∈ C∗. Then deg(f ∗ g) ≥ deg(g). Moreover, the equality holds if and

only if deg(f) = 1.

Proof. If deg(f) = 1, then by Lemma 6 deg(f ∗ g) = deg(g). Suppose deg(f) > 1. Then

Nf =

deg(f)⊕
k=2

f[k] ̸= 0,

and so by Corollary 4 and Lemma 2 (ii), we have that Nf ∗g ̸= 0 and deg(Nf ∗g) > deg(g).

Since

f ∗ g = f[1] ∗ g ⊕Nf ∗ g

and deg(f[1] ∗ g) = deg(g) if f[1] ̸= 0, it can be seen that

deg(f ∗ g) = deg(Nf ∗ g) > deg(g).

This completes the proof.

3.2 Find right ∗-factors of h of the same degree with h

Given h ∈ C∗ with deg(h) = d, in this subsection, we discuss how to find all Boolean

function pairs (f, g) ∈ C∗ × C∗ such that h = f ∗ g and deg(h) = deg(g). By Lemma 8, we

know that f must be linear in such case.

12

First, suppose we know a linear Boolean function f with ord(f) = n such that f∥Lh.

We discuss how to determine g satisfying that h = f ∗ g. By Lemma 6, we have that

h[i] = f ∗ g[i] for 1 ≤ i ≤ d.

This shows that g[i] is only related to h[i] and f for 1 ≤ i ≤ d, and so g[1], g[2], . . . , g[d] can

be solved independently. Assume 1 ≤ i ≤ d is fixed. Since by Lemma 6

HT(h[i]) = xn ∗ HT(g[i]), (7)

it follows that if h[i] ̸= 0, then

HT(g[i]) = xj1−nxj2−n · · · xji−n

where HT(h[i]) = xj1xj2 · · · xji ; otherwise, g[i] = 0. This means that HT(g[i]) can be easily

determined from h and f . Then set

h
(1)
[i] = h[i] ⊕

(
f ∗ HT(g[i])

)
and g

(1)
[i] = g[i] ⊕ HT(g[i]).

It follows from (7) that

h
(1)
[i] = f ∗ g(1)[i] ,

and so HT(g
(1)
[i]) can be derived from HT(h

(1)
[i]). Continuing this process, it can be seen that

g[i] can be solved term by term. Based on this idea, we give the following Theorem 9. We

remark that since the procedures of solving g[1], g[2], . . . , g[d] are independent, we can solve

g[1], g[2], . . . , g[d] in any order.

For a positive integer k and k terms t1, t2, . . . , tk, let us denote by min{t1, t2, . . . , tk} the

minimum term w.r.t. ≼ among t1, t2, . . . , tk.

Theorem 9 Let h ∈ C∗ and f a linear Boolean function. Then the algorithm FIND-

RIGHT-FACTOR of Table 3 computes the unique Boolean function g ∈ C∗ such that h =

f ∗ g if g exists.

13

Proof. Suppose there are N ∈ N∗∪{∞} runs through the while-loop, where h(i) is converted

into h(i+1) and g(i) is converted into g(i+1) in the ith run for 1 ≤ i ≤ N .

Termination: Let

A = {p is a Boolean function | p ≺ h}.

It is clear that A is a finite set. Since, in the while-loop, we have that

h(i+1) ≺ h(i) for 1 ≤ i ≤ N,

the while-loop must terminate within |A| steps. Thus N ≤ |A|.

Correctness: First, if h = f ∗ g for some Boolean function g, then it is clear that the

algorithm will output g by the discussions before this lemma. Note that the order of solving

g[1], g[2], . . . , g[d] used in Table 3 is:

g[j1], g[j2], . . . , g[ja],HT(g[j1]) ≼ HT(g[j2]) ≼ · · · ≼ HT(g[ja])

where {g[j1], g[j2], . . . , g[ja]} = {g[j] | g[j] ̸= 0, 1 ≤ j ≤ d}.

Second, we show that if h(N+1) = 0 when the while-loop terminate, then h = f ∗ g(N+1).

We conclude that

f ∗ g(i) = h⊕ h(i) for 1 ≤ i ≤ N + 1. (8)

It is trivially true for i = 1 since g(1) = 0 and h(1) = h. Now suppose (8) is true for

1 ≤ i ≤ N . At the ith run, we have that

g(i+1) = g(i) ⊕ xj1−nxj2−n · · · xjk−n,

h(i+1) = h(i) ⊕ (f ∗ (xj1−nxj2−n · · · xjk−n)) ,

where xj1xj2 · · · xjk = min{HT(h(i)
[l]) | h

(i)
[l] ̸= 0, 1 ≤ l ≤ d}. Since f ∗g(i) = h⊕h(i), it follows

that

f ∗ g(i+1) = f ∗ (g(i) ⊕ xi1−nxi2−n · · · xik−n)

= f ∗ g(i) ⊕ f ∗ (xi1−nxi2−n · · · xik−n)

= h⊕ h(i) ⊕ h(i+1) ⊕ h(i)

= h⊕ h(i+1).

14

Therefore (8) holds for the i + 1. It immediately follows from (8) that if h(N+1) = 0, then

h = f ∗ g(N+1), and so g(N+1) is the desirable Boolean function.

Specification: v = (v(1), v(2))←− FIND-RIGHT-FACTOR(h, f)

Given: a Boolean function h ∈ C∗ and a linear Boolean function f

Find: a Boolean function g ∈ C∗ such that h = f ∗ g if g exists

begin

g ←− 0

n←− ord(f)

while h ̸= 0 do

d←− deg(h)

t←− min{HT(h[l]) | h[l] ̸= 0, 1 ≤ l ≤ d}

(assume deg(t) = k and t = xj1xj2 · · · xjk)

if i1 ≥ n then

g ←− g ⊕ xj1−nxj2−n · · · xjk−n

h←− h⊕ (f ∗ (xj1−nxj2−n · · · xjk−n))

else return(False, 0)

end if

end while

return(True, g)
Table 3. Algorithm FIND-RIGHT-FACTOR

Remark 10 Let us denote by ≼d the term order which first compares total degrees and

then breaks ties by the inverse lexicographical order. The strategy of the selection of the

term t in Table 2 during executions of the while-loop can be replaced by

t1 ←− HT(h) w.r.t. ≼ or t2 ←− HT(h) w.r.t. ≼d .

However, for a false Boolean function f , i.e., h ̸= f ∗ g for any Boolean function g, the

strategy used in the algorithm may yield a faster termination of the while-loop since the

selected term t satisfies that t ≼ t1 and t ≼ t2.

15

Remark 11 Usually, during the algorithm, |T (h)| decreases for a right f , while |T (h)|

increases for a false f . Generally speaking, |T (g)| is less than |T (h)|. Hence, when the

run time is too long, setting an upper bound for the number of rounds (say, |T (h)|) of the

while-loop will not affect the results of the algorithm in general and make the algorithm

terminate faster. Similar principle can be used for the algorithm of Table 5.

Next, we show how to obtain linear functions f such that f ∥L h. Let d ∈ N∗. For a

homogeneous Boolean function

h =
N⊕
j=1

xij,1xij,2 · · · xij,d , ij,1 < ij,2 < · · · < ij,d,

of degree d, define Φ(h) to be the gcd of the following d polynomials determined by h in

F2[x]:

ph,k(x) = ϕ(xi1,k ⊕ xi2,k ⊕ · · · ⊕ xiN,k,
), 1 ≤ k ≤ d, (9)

where ϕ is defined by (2), i.e.,

Φ(h) = gcd(ph,1(x), ph,2(x), . . . , ph,d(x)) ∈ F2[x].

Furthermore, based on this notation, for any Boolean function h of degree d without a

constant term, define

Φ∗(h) = gcd(Φ(h[1]),Φ(h[2]), . . . ,Φ(h[d])) ∈ F2[x].

Lemma 12 Let h, f, g ∈ C∗ such that h = f ∗ g. If f is linear, then ϕ(f) divides Φ∗(h) in

F2[x].

Proof. Let deg(h) = d. Clearly it suffices to prove that ϕ(f) divides Φ(h[i]) for i =

1, 2, . . . , d. By Lemma 6 h[i] = f ∗ g[i] for i = 1, 2, . . . , d. Thus without loss of generality,

we assume that both h and g are homogeneous of degree d.

Let

g =
N⊕
j=1

xij,1xij,2 · · · xij,d and f = c0x0 ⊕ c1x1 ⊕ · · · ⊕ cnxn.

16

Then

h = f ∗ g =
n⊕

l=0

N⊕
j=1

clxij,1+lxij,2+l · · · xij,d+l.

It follows that for k = 1, 2, . . . , d,

ph,k(x) = ϕ

(
n⊕

l=0

N⊕
j=1

clxij,k+l

)
= ϕ

(
f ∗

(
N⊕
j=1

xij,k

))
= ϕ(f)pg,k(x),

where ph,k(x) and pg,k(x) are defined by (9). This implies that ϕ(f) divides ph,k(x) in F2[x]

for k = 1, 2, . . . , d, and so ϕ(f) divides Φ(h).

Lemma 12 implies that by factoring Φ∗(h) in F2[x], we can get all the linear functions

f such that f ∥L h. Then the following theorem immediately follows from Theorem 9 and

Lemma 12.

Theorem 13 Let h ∈ C∗. Then the algorithm EQUAL-DEGREE of Table 4 computes all

Boolean function pairs (f, g) ∈ C∗ × C∗ such that h = f ∗ g and deg(f) = 1.

Specification: S ←− EQUAL-DEGREE(h)

Given: a Boolean function h ∈ C∗

Find: a finite set S of Boolean function pairs (f, g) ∈ C∗ × C∗ such

that h = f ∗ g and f is linear

begin

S ←− ∅

Ω ←− {ϕ−1(a(x)) | a(x) is a divisor of Φ∗(h) in F2[x] }

for all f ∈ Ω do

v ←− FIND-RIGHT-FACTOR(h, f)

if v(1) = True then

S ←− S ∪ {(f, v(2))}

end if

end for

return(S)
Table 4. Algorithm EQUAL-DEGREE

17

3.3 Find the unique left ∗-factor corresponding to a given right

∗-factor

Given h ∈ C∗ with deg(h) = d and a right ∗-factor g of h. In this subsection, we discuss

how to find a Boolean function f such that h = f ∗ g. By Corollary 5, we know that the

function f is unique.

First, we consider the case deg(g) = deg(h). In this case, we have that f is linear by

Lemma 8. Since by Lemma 6

h[i] = f ∗ g[i] for 1 ≤ i ≤ d,

it follows that if

HT(g[k]) = min{HT(g[1]),HT(g[2]), . . . ,HT(g[d])}, 1 ≤ k ≤ d,

then

HT(h[k]) = min{HT(h[1]),HT(h[2]), . . . ,HT(h[d])}

= HT(f) ∗min{HT(g[1]),HT(g[2]), . . . ,HT(g[d])}. (10)

Let us write

HT(g[k]) = xi1xi2 · · · xik and HT(h[k]) = xj1xj2 · · · xjk ,

where i1 < i2 < · · · < ik and j1 < j2 < · · · < jk. Then (10) implies that

HT(f) = xj1−i1 = xj2−i2 = · · · = xik−jk .

Similarly, we can solve HT(f ⊕ HT(f)), since

h[k] ⊕ HT(f) ∗ g[k] = (f ⊕ HT(f)) ∗ g[k].

Based on this observation we give the following theorem.

Theorem 14 Let h, g ∈ C∗ with deg(g) = deg(h). Then the algorithm FIND-LEFT-

LINEAR of Table 5 computes the unique linear Boolean function f such that h = f ∗ g if

f exists.

18

Specification: v = (v(1), v(2))←− FIND-LEFT-LINEAR(h, g)

Given: two Boolean functions h, g ∈ C∗ with deg(g) = deg(h)

Find: a linear Boolean function f such that h = f ∗ g if f exists

begin

s←− HT(g[k]) = min{HT(g[1]),HT(g[2]), . . . ,HT(g[d])}

(assume s = xi1xi2 · · · xik)

η ←− h[l] where HT(h[l]) = min{HT(h[1]),HT(h[2]), . . . ,HT(h[d])}

f ←− 0

if k = l then

while η ̸= 0 do

t←− HT(η) (assume t = xj1xj2 · · · xjk)

εu ←− ju − iu for u = 1, 2, . . . , k

if ε1 ≥ 0 and ε1 = ε2 = · · · = εk then

η ←− η ⊕ xε1 ∗ g[k]
f ←− f ⊕ xε1

else return(False, 0)

end if

end while

else return(False, 0)

end if

if h = f ∗ g then return(True, f)

else return(False, 0)

end if
Table 5. Algorithm FIND-LEFT-LINEAR

Proof. Termination: Since the term order of HT(η) in the while-loop strictly decreases,

the while-loop will terminate.

Correctness: By the last if-condition, it is clear that if the algorithm output f , then

h = f ∗g. On the other hand, if h = f ∗g for some Boolean function f , then it follows from

19

Corollary 5 and Lemma 8 that f is unique and linear. Finally, it follows from the above

discussions that the algorithm will output f .

For a Boolean function f with deg(HT(f)) = k > 1 and HT(f) = xi1xi2 · · · xik , it is

clear that we can write

f = xi2 · · · xik · p⊕ q

where p, q are Boolean functions such that HT(p) = xi1 and every term of q is not divisible

by xi2xi3 · · · xik . We denote the Boolean function p by Γ(f). Note that the degree of Γ(f)

may be greater than 1. For example, if f = x4x5x6 ⊕ x1x2x5x6 ⊕ x1x5x6 ⊕ x2x6 ⊕ x2x4x5,

then HT(f) = x4x5x6 and Γ(f) = x4 ⊕ x1x2.

Lemma 15 Let g ∈ C∗ with ord(g) = m, and let h, f be two Boolean functions which are

not constants. If h = f ∗ g and deg(HT(h)) > 1, then Γ(h) = Γ(f) ∗ g.

Proof. Let HT(f) = xi1xi2 · · · xik where k ≥ 1. Then by Corollary 4

HT(h) = xi1+mxi2+m · · · xik+m, (11)

and so k > 1. Note that f can be written

f = Γ(f) · (xi2xi3 · · · xik)⊕ q

where t ≺ xi2xi3 · · · xik for all t ∈ T (q). Then

h = f ∗ g = (Γ(f) ∗ g) · ((xi2xi3 · · · xik) ∗ g)⊕ q ∗ g. (12)

Since

HT(Γ(f)) = xi1 ≺ xi2 and HT(q) ≺ xi2xi3 · · · xik ,

it follows from Corollary 4 that

HT(Γ(f) ∗ g) ≺ xi2 ∗ xm = xi2+m (13)

and

HT(q ∗ g) ≺ (xi2xi3 · · · xik) ∗ xm = xi2+mxi3+m · · · xik+m. (14)

20

On the other hand, by Corollary 4

HT((xi2xi3 · · · xik) ∗ g) = xi2+mxi3+m · · · xik+m. (15)

Then (13) and (15) imply that

(Γ(f) ∗ g) · ((xi2xi3 · · · xik) ∗ g) = (Γ(f) ∗ g) · xi2+mxi3+m · · · xik+m ⊕ p,

where no term in p is divisible by xi2+mxi3+m · · · xik+m, and (14) implies that no term in q∗g

is divisible by xi2+mxi3+m · · · xik+m. Hence it can be seen from (12) that Γ(h) = Γ(f) ∗ g.

Theorem 16 Let h, g ∈ C∗ with deg(h) ≥ deg(g). Then the algorithm FIND-LEFT-

NONLINEAR of Table 6 (see page 28) computes the unique Boolean function f such that

h = f ∗ g if f exists.

Proof. Termination: Since the term order of HT(h) strictly decreases, the while-loop will

terminate.

Correctness: If deg(h) = deg(g), then the assertion follows from Theorem 14. Thus we

need only to consider the case deg(h) > deg(g).

Suppose there are N runs through the while-loop, where h(i) → h(i+1) and f (i) → f (i+1)

for 0 ≤ i < N . Similar with the proof of Theorem 9, it can be shown that

f (i) ∗ g = h⊕ h(i), 0 ≤ i ≤ N. (16)

Hence if h(N) = 0, then h = f (N) ∗ g.

Next, we show if h = f ∗ g for some Boolean function f , then the while-loop will

terminate with h(N) = 0. For 0 ≤ i ≤ N − 1, taking h = f ∗ g into (16) yields

(
f (i) ⊕ f

)
∗ g = h(i).

21

This shows that i1 in Table 6 is not less than m. Furthermore, if deg(HT(h(i))) > 1, then

by Lemma 15

Γ(h(i)) = Γ
(
f (i) ⊕ f

)
∗ g,

which implies that v(1) is always true if FIND-LEFT-LINEAR(Γ(h), g) is executed. Thus

one of the three if-conditions in the while loop is satisfied for each round until h(N) = 0 is

attained.

Finally the uniqueness follows from Corollary 5.

3.4 Find all right ∗-factors of a given degree

Given h ∈ C∗ and an integer d, in this subsection, we shall show how to obtain all Boolean

function pairs (f, g) ∈ C∗×C∗ such that h = f ∗ g with deg(g) = d. It follows from Lemma

8 that we need only to consider d ≤ deg(h). Moreover, in Subsection 3.2, we have solved

the case d = deg(h). Thus the main aim of this subsection is to solve the case d < deg(h).

We first introduce some notations. Let f be a Boolean function which is not a constant.

For any given term s = xi1xi2 · · · xik , where k ≥ 1, let us denote

⟨f
s
⟩ =

⊕
t≺xi1

and t·s∈T (f)

t,

which is 0 if no such term t exists. For any positive integer j ≤ deg(f), denote

f≥[j] =

deg(f)⊕
i=j

f[i].

Based on the above two notations, for any positive integer d, denote

∆d(f) =

 ⟨
f≥[2]

xn
⟩, if deg(f) ≥ d;

f , otherwise,

where n = ord(f≥[d]). Furthermore, for any e ∈ N∗, define ∆e
d(f) = ∆d

(
∆e−1

d (f)
)
where

∆0
d(f) = f , composition of the function ∆d. In particular, if e is the first nonnegative

integer such that deg(∆e
d(f)) < d, then define ∆∗

d(f) = ∆e
d(f).

22

Example 17 Let f = x3x6x7 ⊕ x4x5x6 ⊕ x1x3x4x6 ⊕ x2x4x6. Then

⟨ f

x4x6

⟩ = x1x3 ⊕ x2 and ⟨ f

x3x6

⟩ = 0.

Example 18 Let f = x9 ⊕ x1x9 ⊕ x6x7x8 ⊕ x4x5x6x8 ⊕ x2x4x7 ⊕ x1. Then

∆3(f) = ⟨
f≥[2]

x8

⟩ = x6x7 ⊕ x4x5x6 and ∆2
3(f) = ⟨

f≥[2]

x6x8

⟩ = x4x5.

Moreover, we have that ∆∗
3(f) = ∆2

3(f).

Lemma 19 Let h, f, g be three Boolean functions such that g is nonsingular and h = f ∗g.

If deg(h) > deg(g), then

∆d+1(h) = ⟨
f[1] ∗ g≥[2]

xr

⟩ ⊕∆2(f) ∗ g, (17)

where d = deg(g) and r = ord(h≥[d+1]).

Proof. Let ord(f≥[2]) = n and ord(g) = m. Since deg(h) > deg(g), it follows from Lemma

8 that deg(f) > 1. Then f can be written

f = f[1] ⊕ f≥[2] = f[1] ⊕∆2(f) · xn ⊕ q,

where t ≺ xn for all t ∈ T (q). Thus

h = f ∗ g = f[1] ∗ g ⊕ (∆2(f) ∗ g) · (xn ∗ g)⊕ q ∗ g. (18)

Since by Lemma 8 deg(f[1] ∗ g) = d, it can be seen that

ord
(
h≥[d+1]

)
= ord

(
((∆2(f) ∗ g) · (xn ∗ g)⊕ q ∗ g)≥[d+1]

)
.

On one hand, since by Lemma 8 deg(∆2(f) ∗ g) ≥ deg(g) = d and

HT(∆2(f) ∗ g) ≺ HT(xn ∗ g) = xn+m,

we have that

ord(p≥[d+1]) = n+m and ∆d+1(p) = ∆2(f) ∗ g, (19)

23

where p = (∆2(f) ∗ g) · (xn ∗ g). On the other hand, since HT(q) ≺ xn, we have that

HT(q ∗ g) ≺ xn+m. (20)

Hence

r = ord(h≥[d+1]) = ord(p≥[d+1]) = n+m

and

∆d+1(h) = ⟨
f[1] ∗ g≥[2]

xn+m

⟩ ⊕∆2(f) ∗ g.

This completes the proof.

We note that the Boolean function

p = ⟨
f[1] ∗ g≥[2]

xr

⟩

appearing on the right hand side of (17) satisfies: (1) deg(p) < deg(g); (2) p = 0 if

deg(g) = 1. These observations lead to the following corollary.

Corollary 20 Let h, f, g be as described in Lemma 19. If g is linear, then

∆2(h) = ∆2(f) ∗ g.

Remark 21 Corollary 20 implies that

∆∗
2(h) = ∆∗

2(f) ∗ g.

Since ∆∗
2(h),∆

∗
2(f), g are linear, we have that

ϕ(∆∗
2(h)) = ϕ(∆∗

2(f)) · ϕ(g)

in F2[x]. Thus, we can find g by factor ϕ(∆∗
2(h)) in F2[x]. This result is distinct from

Theorem 1 in [4], though they look similar.

Corollary 22 Let h, f, g be as described in Lemma 19. Then(
∆∗

d+1(h)
)
[d]

= ∆∗
2(f) ∗ g[d]

where d = deg(g).

24

Theorem 23 Let h ∈ C∗ and d ∈ N∗ with d ≤ deg(h). Then the algorithm GIVENDEG

of Table 7 (see page 29) together with the algorithm SUBALG-FOR-GIVENDEG of Table

8 (see page 30) computes all Boolean function pairs (f, g) ∈ C∗ × C∗ such that h = f ∗ g

and deg(g) = d.

Proof. Termination: It is trivially true that the two algorithms will terminate.

Correctness: If the algorithm of Table 7 outputs S, then the first if-condition of Table

8 implies that h = f ∗ g for all (f, g) ∈ S. In the following, we need only to show that if

h = f ∗ g for some Boolean functions f and g with deg(g) = d, then (f, g) ∈ S.

If d = deg(h), then S = EQUAL-DEGREE(h), and so (f, g) ∈ S by Theorem 13. Thus

we assume that d < deg(h).

Let k be the minimal integer such that ∆∗
d+1(h) = ∆k

d+1(h). Denote

h(i) = ∆i
d+1(h) and f (i) = ∆i

2(f) for i = 0, 1, . . . , k,

and

ord(h) = m0 and ord(h
(i)
≥[d+1]) = mi+1 for i = 0, 1, . . . , k − 1.

It is clear that m0 > m1 > · · · > mk.

First, it can be seen that the while-loop in Table 7 computes ∆∗
d+1(h) = h(k). By

Corollary 22 we have that

h
(k)
[d] = f (k) ∗ g[d].

Since f (k) is linear, it can be seen that (f (k), g[d]) ∈ S1.

Second, if deg (g) = 1, then g[d] = g. Otherwise, we claim that

h(k) ⊕ p = f (k) ∗ g (21)

for some Boolean function p of degree less than d. Moreover, the Boolean function p satisfies

25

that for j = 1, 2, . . . , d− 1,

T (p[d−j]) ⊆ {tp is a term of degree d− j | there are an integer 1 ≤ u ≤ min {k, j},

an integer mk−u+1 − δ̃g < a < mk−u − δ̂g, and a term t ∈ T (g[d−j+u])

such that xa ∗ t = tpxmk
· · · xmk−u+2

xmk−u+1
}, (22)

where δ̃g = mk − 1 − ord(f) and δ̂g = ord(g[d]) + 1, by which it can be seen that p[d−j] is

only related with g[d−j+1], g[d−j+2], . . . , g[d]. In the following we shall prove (21) and (22).

Recursively using Lemma 19 yields

h(1) ⊕ ⟨ p
(1)

xm1

⟩ = f (1) ∗ g, where p(1) = f
(0)
[1] ∗ g≥[2],

h(2) ⊕ ⟨ p(1)

xm2xm1

⟩ ⊕ ⟨ p
(2)

xm2

⟩ = f (2) ∗ g, where p(2) = f
(1)
[1] ∗ g≥[2],

...

h(k) ⊕

(
k⊕

i=1

⟨ p(i)

xmk
· · · xmi+1

xmi

⟩

)
= f (k) ∗ g, where p(k) = f

(k−1)
[1] ∗ g≥[2]. (23)

This shows that (21) holds and

p =
k⊕

i=1

⟨ p(i)

xmk
· · · xmi+1

xmi

⟩. (24)

If tp ∈ T (p) and deg(tp) = d− j, then it follows from (24) that

tp ∈ T

(
⟨ p(k−u+1)

xmk
· · · xmk−u+2

xmk−u+1

⟩
)

for some 1 ≤ u ≤ min{k, j},

and so

tpxmk
· · · xmk−u+2

xmk−u+1
∈ T (p(k−u+1)) = T

(
f
(k−u)
[1] ∗ g≥[2]

)
.

Thus there exist xa ∈ T (f
(k−u)
[1]) and t ∈ T (g≥[2]) such that

tpxmk
· · · xmk−u+2

xmk−u+1
= xa ∗ t. (25)

It follows that

deg(t) = deg(tp) + u = d− j + u (26)

26

and

mk−u+1 − ord(g) < mk−u+1 − ord(t) = a ≤ ord(f
(k−u)
[1]), (27)

On one hand, since by (23)

ord(g) = ord

(
h(k) ⊕

(
k⊕

i=1

⟨ p(i)

xmk
· · · xmi+1

xmi

⟩

))
− ord(f (k))

≤ (mk − 1)− ord(f (k)) = δ̃g,

it follows that

mk−u+1 − ord(g) ≥ mk−u+1 − δ̃g. (28)

On the other hand, since

ord(f
(k−u)
[1]) ≤ ord(f (k−u))

< ord(f (k−u−1))

≤ ord(h(k−u−1))− ord(g)

≤ ord(h(k−u−1))− (ord(g[d]) + 1),

it follows that

ord(f
(k−u)
[1]) < mk−u − δ̂g. (29)

Taking (28) and (29) into (27) leads to

mk−u+1 − δ̃g < a < mk−u − δ̂g. (30)

Thus it follows from (25), (26) and (30) that (22) holds.

Third, based on (21) and (22), we prove that SUBALG-FOR-GIVENDEG with last

input given by 1 ≤ j ≤ d− 1 will compute g[d−j]. We remark that j runs from 1 to d− 1.

Note that g[d] has been solved. Suppose that g[d], g[d−1], . . . , g[d−j+1] have been solved.

It can be seen that the first for-loop constructs the set (22)(see Ω in Table 8), and the

second for-loop computes all possible p[d−j] (see
⊕

t∈A t in Table 8). Since f (k) is linear,

(21) implies that

h
(k)
[d−j] ⊕ p[d−j] = f (k) ∗ g[d−j].

27

Thus, g[d−j] can be solved by FIND-RIGHT-FACTOR when the correct p[d−j] is found.

Finally, since one of the branches of the recursive algorithm SUBALG-FOR-GIVENDEG

will yield g, the first if-condition implies that (f, g) ∈ S.

4 Conclusions

In this paper we give a series of algorithms to decompose an NFSR into a cascade connec-

tion of two smaller NFSRs. Although for the worst case, the computation complexity is

exponential in the stage of the NFSR, they are shown to be efficient in practice. By our

algorithms, we completed the search of all possible decompositions in C∗ of the 160-stage

NFSR used in Grain, a cascade connection of a 80-stage LFSR into a 80-stage NFSR, in

about 10 minutes on a single PC, and found that it has no other decomposition. Besides,

the 256-stage NFSR used in Grain-128 also has no other decomposition in C∗.

28

Specification: v = (v(1), v(2))←− FIND-LEFT-NONLINEAR(h, g)

Given: Two Boolean functions h, g ∈ C∗ with deg(h) ≥ deg(g)

Find: a Boolean function f such that h = f ∗ g if f exists

begin

if deg(h) = deg(g) then

v ←− FIND-LEFT-LINEAR(h, g)

return(v)

end if

f ←− 0

m←− ord(g)

while h ̸= 0 do

t←− HT(h) (assume t = xi1xi2 · · · xik)

if i1 ≥ m and deg(t) = 1 then

h←− h⊕ (xi1−m ∗ g)

f ←− f ⊕ xi1−m

else if i1 ≥ m and deg(Γ(h)) > deg(g) then

h←− h⊕ ((xi1−mxi2−m · · · xik−m) ∗ g)

f ←− f ⊕ xi1−mxi2−m · · · xik−m

else if i1 ≥ m and deg(Γ(h)) = deg(g) then

v ←− FIND-LEFT-LINEAR(Γ(h), g)

if v(1) = True then

f ′ ←− v(2) · (xi2−m · · · xik−m)

h←− h⊕ (f ′ ∗ g)

f ←− f ⊕ f ′

else return(False, 0)

end if

else return(False, 0)

end if

end while

return(True, f)
Table 6. Algorithm FIND-LEFT-NONLINEAR

29

Specification: S ←− GIVENDEG(h, d)

Given: a Boolean function h ∈ C∗ and a positive integer d ≤ deg(h)

Find: a finite set S of Boolean function pairs (f, g) ∈ C∗ × C∗ such

that h = f ∗ g and deg(g) = d

begin

S ←− ∅

if deg(h) = d then

S ←− EQUAL-DEGREE(h)

else

k ←− 0

M ←− {ord(h) + 1}

η ←− h

while deg(η) > d do

k ←− k + 1

M ←−M ∪ {ord(η≥[d+1])}

η ←− ∆d+1(η)

end while

if deg(η) = d then

S1 ←− EQUAL-DEGREE(η[d])

for all (f, g) ∈ S1 do

SUBALG-FOR-GIVENDEG(η, h, f, g, S, k, d,M, 1)

end for

end if

end if

return(S)
Table 7. Algorithm GIVENDEG

30

Specification: SUBALG-FOR-GIVENDEG(η, h, f, g, S, k, d,M, j)

(a recursive algorithm)

Given: Boolean functions η, h, f, g; a finite set S of Boolean functions;

k, d, j ∈ N∗; a list of positive integers M = {m0,m1, . . . ,mk}

where m0 > m1 > · · · > mk

Find: no output but all desirable results are added to the set S

begin

Ω←− ∅

δ̃g ←− mk − 1− ord(f)

δ̂g ←− ord(g[d]) + 1

if j = d then

v = FIND-LEFT-NONLINEAR(h, g)

if v(1) = True then

S ←− S ∪ {(v(2), g)}

end if

else

for u from 1 to min{j, k} do

Ω←− Ω ∪ {tp is a term | deg(tp) = d− j and xa ∗ t = tpxmk
· · · xmk−u+2

xmk−u+1

for some term t ∈ T (g[d−j+u]) and some integer

mk−u+1 − δ̃g < a < mk−u − δ̂g}

end for

for all A ⊆ Ω do (include A = ∅)

η′ ←− η ⊕
(⊕

t∈A t
)

v ←− FIND-RIGHT-FACTOR(η′[d−j], f)

if v(1) = True then

g ←− g ⊕ v(2)

SUBALG-FOR-GIVENDEG(η, h, f, g, S, k, d,M, j + 1)

end if

end for

end if
Table 8. Algorithm SUBALG-FOR-GIVENDEG

31

References

[1] Hell M., Johansson T., Meier W.: The Grain family of stream ciphers. In: New Stream

Cipher Designs: The eSTREAM Finalists. Lecture Notes in Computer Science, 4986,

pp. 179–190. Springer-Verlag, New York (2008).

[2] Cannière C., Preneel B.: Trivium. In: New Stream Cipher Designs: The eSTREAM

Finalists. Lecture Notes in Computer Science, 4986, pp. 244–266. Springer-Verlag, New

York (2008).

[3] Green D.H., Dimond K.R.: Nonlinear product-feedback shift registers. PROC. IEE

117(4), pp. 681–686 (1970).

[4] Ma Z., Qi W.F.: On the decomposition of an NFSR into the cascade connection of an

NFSR into an LFSR. To appear in J. Complex. DOI: 10.1016/j.jco.2012.09.003.

[5] Golomb S.W.: Shift Register Sequences, Aegean Park Press, California (1982).

[6] Mykkeltveit J., Siu M.K., Tong P.: On the cycle structure of some nonlinear shift

register sequences. Information and Control 43, 202–215 (1979).

