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Abstract

Universally composable secure computation was assumed to require trusted setups, until it
was realized that parties exchanging (untrusted) tamper-proof hardware tokens allow an alter-
native approach (Katz; EUROCRYPT 2007). This discovery initialized a line of research dealing
with two different types of tokens. Using only a single stateful token, one can implement general
statistically secure two-party computation (Döttling, Kraschewski, Müller-Quade; TCC 2011);
though all security is lost if an adversarial token receiver manages to physically reset and rerun
the token. Stateless tokens, which are secure by definition against any such resetting-attacks,
however, do provably not suffice for arbitrary secure computations (Goyal, Ishai, Mahmoody,
Sahai; CRYPTO 2010).

We investigate the natural question of what is possible if an adversary can reset a token at
most a bounded number of times (e.g., because each resetting attempt imposes a significant risk
to trigger a self-destruction mechanism of the token). Somewhat surprisingly, our results come
close to the known positive results with respect to non-resettable stateful tokens. In particular,
we construct polynomially many instances of statistically secure and universally composable
oblivious transfer, using only a constant number of tokens. Our techniques have some abstract
similarities to previous solutions, which we grasp by defining a new security property for pro-
tocols that use oracle access. Additionally, we apply our techniques to zero-knowledge proofs
and obtain a protocol that achieves the same properties as bounded-query zero-knowledge PCPs
(Kilian, Petrank, Tardos; STOC 1997), even if a malicious prover may issue stateful PCP oracles.
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1 Introduction

The model of untrusted tamper-proof hardware was introduced by [Kat07] to circumvent trusted
setup assumptions and has proven to be a strong tool for creating cryptographic protocols, especially
in the context of universally composable (UC-secure) [Can01] multi-party computation. In the
tamper-proof hardware model, (possibly malicious) parties can create tokens and send them to
other parties, who then can interact with the tokens but not access any internal secrets.

In this line of research, there are two different types of tokens considered: stateful and state-
less/resettable tokens. Studies of the latter are usually motivated by so-called resetting-attacks,
meaning that an adversarial receiver could physically reset a token’s internal state (e.g., by cutting
off the power supply). [DKMQ11] implemented multiple instances of statistically UC-secure oblivi-
ous transfer (OT), using only a single stateful token. On the downside, [GIMS10] showed that with
any number of stateless tokens statistical OT is impossible, even if one only goes for stand-alone
security. In fact, only a few statistically secure protocols based on stateless tokens have been pro-
posed, namely stand-alone secure commitments [GIMS10] and a UC-secure variant [DS13]. These
positive results are complemented again by [GIMS10], showing that unconditional non-interactive
commitments cannot be performed by using only stateless tokens. Since all known approaches
based on stateful tokens completely break down if only a single resetting attempt is successful, and
strong impossibility results hold with respect to arbitrarily resettable tokens, it seems a natural
question what is still possible if an a priori bound for successful resettings is known. Therefore,
similar in nature to the well-studied problems of bounded leakage [KV09, DKW11], bounded-
resettable zero-knowledge [KP01, MR01, ZDLZ03, BLV06], and bounded-query zero-knowledge
PCPs [KPT97, IMS12], we propose a bounded-resettable hardware model.

In particular, the new model can be seen as a variant of the PCP model [FGL+91, AS92]
or interactive PCP model [KR08], depending on whether a considered protocol contains direct
interaction between the token issuer and the token receiver. The difference to the (interactive)
PCP model is that maliciously issued tokens/oracles can be stateful. This seems very reasonable,
since it is hard to verify that a maliciously issued token is stateless. We show that this weakened
version of the PCP model still allows non-interactive zero-knowledge and even general (interactive)
secure two-party computation.

Our Results. We define a bounded-resettable hardware model and show that in this model to a
large extent the positive results known for stateful tokens can still be achieved. This is surprising,
because all previous techniques that achieved such results are susceptible to resetting-attacks. In
particular, we provide protocols for
• multiple commitments, based on a single token issued by the commitment sender,
• a single string-commitment, based on a token issued by the commitment receiver,
• multiple instances of OT, based on O(1) tokens issued by the OT-sender, and
• a bounded-resettable zero-knowledge proof of knowledge, with O(1) tokens from the prover.

All constructions are statistically UC-secure. The first commitment protocol can be made non-
interactive, sacrificing UC-security against a corrupted sender, remaining statistically binding. Also
the zero-knowledge protocol can be implemented such that the verifier does not communicate
directly with the prover but only with tokens sent by the prover. Moreover, if we assume that even
malicious provers can only issue stateless tokens, then all token functionalities in the zero-knowledge
protocol can be combined on a single token and we end up with the same result as [KPT97].

Our Techniques. The main technical difficulty we have to deal with is that a malicious token
issuer can store an arbitrarily complicated function an a token. We enforce (to some extent) honest
programming by a simple challenge-response protocol. The domain of allowed token functionalities
is chosen such that it is a linear space. The token receiver announces a random linear projection and
the token issuer has to reveal the token functionality under this projection. The receiver can then
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check if the token reacts consistently. Since the projection is dimension decreasing, there is part
of the secret stored on the token left to serve as a basis for secure computations. We put forward
an abstract notion of this technique, which we call oracle validation. It has previously been used
in a more ad-hoc manner by [DKMQ11, CKS+14], though their space of token functions is quite
different from ours. They use affine functions that map length-n bit-vectors to (n×n)-matrices,
whereas we use higher-degree univariate polynomials that just operate on a large finite field.

The composability proof for one of our commitment schemes also requires some constructive
algebraic geometry, namely efficient uniform sampling from large finite varieties [CS09].

Related Work. The notion of resettable zero-knowledge was introduced by [CGGM00]. In
this model, a malicious verifier is allowed to reset the prover arbitrarily and rerun the protocol.
Constant-round black-box zero-knowledge protocols with resettable provers were only achieved in
various public key models where the verifier has to register a public key, like Bare Public Key Model
[CGGM00, CPV04a, YZ07, DL08], Upperbounded Public Key (UPK) Model [ZDLZ03], Weak Pub-
lic Key (WPK) Model [MR01] and Counter Public Key Model [CPV04b]. UPK and WPK assume
that the amount of resets is a priori bounded, similar to our model. [BGGL01] provided the first con-
struction of a (non-black-box) resettably-sound zero-knowledge argument system, where soundness
for a resettable verifier is achieved. This work was later improved [BP13, CPS13] and generalized to
simultaneously resettable zero-knowledge protocols [DGS09, DFG+11, COSV12, BP13, COPV13].
Since then resettability has found its way into general multi-party computation [GS09, GM11].

Early works concerning tamper-proof hardware made computational assumptions and assumed
stateful tokens [Kat07, GKR08]. This was later relaxed to resettable or stateless tokens [CGS08,
DMMQN13, CKS+14] and/or unconditional security [MS08, GIS+10, GIMS10, DKMQ11, DS13].

2 Preliminaries

2.1 The UC-framework

We state and prove the security of our protocols in the Universal Composability (UC) framework
of [Can01]. In this framework security is defined by comparison of a real model and an ideal model.
The protocol of interest Π is running in the former, where an adversary A coordinates the behavior
of all corrupted parties. We assume static corruption, i.e., the adversary A cannot adaptively
change corruption during a protocol run. In the ideal model, which is secure by definition, an ideal
functionality F implements the desired protocol task and a simulator S tries to mimic the actions of
A. An environment Z is plugged either to the ideal or the real model and has to guess which model
it is actually plugged to. Denote the random variable representing the output of Z when interacting
with the real model by RealΠA(Z) and when interacting with the ideal model by IdealFS (Z). Protocol
Π is said to UC-implement F , if for every adversary A there exists a simulator S, such that for all
environments Z the distributions of RealΠA(Z) and IdealFS (Z) are indistinguishable. Since we aim at
statistical security, all entities are computationally unbounded. However, the (expected) runtime
complexity of the ideal model has to be polynomial in the runtime complexity of the real model.

2.2 Definitions and notations

We write ∆(x, y) for the statistical distance between x and y. The inner product of x, y is denoted
〈x | y〉 and their concatenation x‖y. By Fq we denote the finite field with q elements.

We canonically extend the notion of polynomials over a field F as follows. By Fn[X] we denote
the set of all n-tuples of polynomials p1, . . . , pn ∈ F[X]. Each polynomial p := (p1, . . . , pn) ∈ Fn[X]
defines a function F → F

n, x 7→
(
p1(x), . . . , pn(x)

)
, whose degree is deg(p) := maxni=1(deg(pi)).

We treat Fn[X] as an F-linear vector space in the natural way.
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Protocol Πval
k-ind

Implicitly parametrized by a finite field F and a dimension n ∈ N. The sender’s input domain consists of
all polynomials p ∈ Fn[X] of degree at most k − 1. The security parameter is ` := log |F|.

1. Sender: Let p ∈ Fn[X] be the sender’s input. Pick p′ ∈ Fn[X] of degree at most k − 1 uniformly at
random. Program the oracle such that on input x ∈ F it outputs

(
p(x), p′(x)

)
.

2. (a) Receiver: Pick λ ∈ F uniformly at random and send it to the sender.

(b) Sender: Compute p̃ := λ · p+ p′ and send it to the receiver.

3. Receiver: Let x ∈ F be the receiver’s input. Input x into the oracle; let (y, y′) denote the response.

4. Receiver: Verify that deg(p̃) ≤ k − 1 and λ · y + y′ = p̃(x). If so, output y; otherwise reject.

Figure 1: Construction of a query-once validation scheme for a k-wise independent oracle.

Further notations are only used in the appendices and are introduced there. All (close to)
standard ideal functionalities for the UC-framework can be found in Appendix A.

3 Query-Once Oracle Validation

We introduce now our abstract notion of enforcing honest token programming. Consider a scenario
consisting of an honest receiver party, a (possibly) malicious sender party, and an oracle which
is arbitrarily programmable by the sender in a setup phase. All entities are computationally un-
bounded. The security feature we aim at, is that the sender has to choose the oracle functionality
from some predefined class and otherwise is caught cheating, even though the receiver queries the
oracle only once. If this is achieved, we speak of a query-once oracle validation scheme. More par-
ticularly, such a scheme consists of four stages (for a concrete example protocol, where the domain
of allowed functions consists of bounded degree polynomials over a finite field, see Figure 1):

1. The sender programs the oracle.
2. Sender and receiver run an interactive protocol which is independent of the receiver’s input.
3. The receiver chooses his input and queries the oracle.
4. The receiver either rejects or produces some output.

Let g denote the sender input and x the receiver input. We demand the following properties:

Efficiency: All computations by honest entities have polynomial complexity.

Correctness: If the sender is honest, then the receiver always outputs g(x) and never rejects.

Privacy: The receiver does not learn anything else about g than g(x).

Extractability: Even if the sender is corrupted, an extractor Ext with access to the oracle program
T∗ and the message transcript τ of Stage 2 can compute a valid sender input g such that
a receiver R with uniformly random input x with overwhelming probability (taken over the
randomness of x and all of R’s and Ext’s random choices) either rejects or outputs g(x). The
extractor has to be efficient in the sense that its expected runtime on any input (τ,T∗) is
asymptotically bounded by (` · |T∗|)O(1) · ρ−1, where ` is a security parameter, |T∗| is the size
of the oracle program, and ρ is R’s accept probability conditioned to τ (still with random x).

Note that g(x′) can be information-theoretically reconstructed from the receiver’s view for any
input x′ that matches his oracle query. It follows by the privacy property that his input x must be
uniquely determined by his message to the oracle. Thus, w.l.o.g. he just sends x to the oracle.

Next, we show that the oracle validation scheme Πval
k-ind is indeed extractable—efficiency, cor-

rectness, and privacy are straightforward to see. The extractor construction is the main ingredient
for our upcoming UC proofs.
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Lemma 3.1. Figure 1 describes an oracle validation scheme. In particular, there exists an extractor
Ext, such for every pair (S∗,T∗) of a corrupted sender S∗ and a corrupted oracle T∗ it holds:

• Provided arbitrarily rewindable access to T∗ and given a transcript τ = (λ, p̃) of the messages
between S∗ and an honest receiver R (i.e., with uniformly random λ ∈ F), Ext computes a
polynomial p ∈ Fn[X] of degree at most k − 1.

• If R’s input x is uniformly random, then with some overwhelming probability 1 − ρ′ (taken
over the randomness of λ, x, and Ext’s random tape), R either rejects or outputs p(x). In
particular, we have a failure probability ρ′ ≤ |F|−Ω(1).

• For every possible transcript τ , the expected number of queries from Ext to T∗ is k ·ρ−1, where
ρ is R’s accept probability conditioned to τ and averaged over all inputs x ∈ F. The rest of
Ext’s calculations have an overall time complexity which is polynomial in n · k · log |F|.

Proof. The extractor Ext runs a simple trial-and-error approach. It repeatedly samples a uniformly
random oracle input x ∈ F, until it has found inputs x1, . . . , xk such that the corresponding oracle

outputs (yi, y
′
i) := T∗(xi) pass the consistency checks λ · yi + y′i

?
= p̃(xi). Then, Ext computes and

outputs the minimal-degree interpolation polynomial p ∈ Fn[X] with p(xi) = yi for i = 1, . . . , k.
There are two things to show. Firstly, we have to show that R on random input x basically either

rejects or produces output p(x). Secondly, we have to estimate the expected number of queries from
Ext to T∗. We start with the latter. The sampling of each xi is a stochastic process with geometric
distribution of the number of oracle queries: Given that ρ is R’s accept probability conditioned to
some transcript τ , the expected number of queries for sampling one xi is

∑∞
j=1 j ·(1−ρ)j−1 ·ρ = ρ−1.

The sampling of x1, . . . , xk hence requires k · ρ−1 queries to T∗ on average.
Next, we turn to the question of how well the extracted polynomial p approximates the func-

tionality of a real protocol run. W.l.o.g., S∗ follows a deterministic worst-case strategy and we can
consider it as a function that maps each possible challenge λ ∈ F to a polynomial p̃λ ∈ Fn[X] with
deg(p̃λ) ≤ k − 1. Analogously, T∗ implements a deterministic function by assumption. Thus, for
each combination of λ and x it is fixed whether R finally rejects or not. This defines a relation
between challenges λ and oracle inputs x. It can be represented as a bipartite graph, where a left-
hand vertex λ is adjacent to a right-hand vertex x if R does not reject the corresponding protocol
run. Our proof now boils down to show that there exists a subset of “bad” edges E′ such that

1. uniformly random λ and x are adjacent via a “bad” edge only with negligible probability,
namely |E′|/|F|2 ≤ |F|−Ω(1), and

2. after removal of all “bad” edges from the graph, T∗ implements on each neighborhood of a
possible challenge λ a polynomial function of degree at most k − 1.

For the existence proof of E′ see Appendix B (Corollary B.5). The key observations used there are
• that T∗ implements a polynomial function of low degree on the common neighborhood
N (λ) ∩N (λ′) of any distinct challenges λ, λ′ and
• that after removal of only a few edges, our graph decomposes into a disjoint collection of

complete bipartite subgraphs.
Once E′ is shown to exist, we finally need to argue that the following event has probability |F|−Ω(1):
• The receiver does not reject and
• one of the oracle inputs x1, . . . , xk sampled by Ext is adjacent via a “bad” edge to the challenge
λ given by τ , or xi = xj for some i 6= j.

It then follows that ρ′ ≤ |F|−Ω(1). However, since |E′|/|F|2 ≤ |F|−Ω(1), we already have with
probability 1−|F|−Ω(1) (taken over the randomness of λ) that the given challenge λ is only adjacent
to an |F|−Ω(1)-fraction of all inputs x ∈ F or λ is adjacent to |F|Ω(1) edges of which only an |F|−Ω(1)-
fraction is “bad”. This implies that the event above has the claimed negligible probability.
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Functionality Fb-r
wrap

Implicitly parametrized by a query bound q. The variable resets left is initialized by resets left ← q − 1.

Creation:

1. Await an input (create,M, b) from the token issuer, where M is a deterministic Turing program
and b ∈ N. Then, store (M, b) and send (created) to the adversary.

2. Await a message (delivery) from the adversary. Then send (ready) to the token receiver.

Execution:

3. Await an input (run, w) from the receiver. Run M on input w. When M halts without generating
output or b steps have passed, send a special symbol ⊥ to the receiver; else send the output of M.

Reset (adversarial receiver only):

4. Upon receiving a message (reset) from a corrupted token receiver, verify that resets left > 0. If so,
decrease resets left by 1 and go back to Step 3; otherwise ignore that message.

Figure 2: The wrapper functionality by which we model bounded-resettable tamper-proof hard-
ware. The runtime bound b is merely needed to prevent malicious token senders from providing a
perpetually running program code M; it will be omitted throughout the rest of the paper.

4 Bounded-Resettable Tamper-Proof Hardware

In this section we define and discuss the ideal functionality for bounded-resettable tamper-proof
hardware (q.v. Figure 2). It is a slightly modified version of the Fwrap-functionality introduced
by [Kat07]. The token sender provides a (w.l.o.g., deterministic) Turing machine and the receiver
can then run it once on an input word of his choice, staying oblivious of any internal secrets. A
malicious receiver can reset the token and query it repeatedly, until some bound q is reached and
the functionality does not respond any more. The query bound q models an estimation for how
often an adversary could reset a token that is meant to shut down for good after the first query.
All our protocols rely on q being polynomially bounded in the security parameter and a smaller
bound q implies better efficiency.

We stress that tokens are not actually required to contain a state that counts the number of
queries. Our definition of Fb-r

wrap is just the most general way to model any kind of token for which an
upper bound of resets can be derived. E.g., it suffices that (1−ρ)q is negligible, where ρ is an upper
bound for the probability that the token successfully self-destructs after a query. As well, the token
could try to delete its program M or make it inaccessible but an adversarial receiver could slow
down that process or interrupt the deletion before it is complete, so that several queries are possible
before M becomes finally out of reach for him. One can also imagine that security is only needed
for some limited time (which is usually the case for the binding property of commitments) and
hence it suffices to estimate the number of queries within this time. The latter seems particularly
feasible, because it relies on the minimum possible response time of an honestly generated token.

Further note that our definition can be canonically extended to tokens that can be queried more
than once also by honest users. However, our approach has the advantage to be trivially secure
against maliciously issued tokens that change their functionality depending on the input history.

Our model is weaker than the stateful-token model in the sense that no previously known
protocol with stateful tokens can tolerate even a single reset. They would be all completely broken.
Therefore, none of the known positive results for stateful tokens does carry over to our model (unless
q = 1). In turn, bounded-resettable tokens can be trivially implemented from unresettable stateful
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Protocol Πs-o
COM

Implicitly parametrized by a token query bound q, a commitment number n, and a commitment length `.
The security parameter is `. For any vector v = (v1, . . . , vn) and I ⊆ {1, . . . , n} let vI := (vi)i∈I .

Setup phase:

1. Sender: Pick two uniformly random polynomials p, p′ ∈ Fn
2` [X] of degree at most q. Program a token

T which on input x ∈ F2`\{0} outputs
(
p(x), p′(x)

)
and ignores input x = 0. Send T to the receiver.

2. Receiver: Pick λ ∈ F2` uniformly at random and send it to the sender.

3. Sender: Compute p̃ := λ · p+ p′ and send it to the receiver.

Commit phase:

4. Sender: Let s := (s1, . . . , sn) ∈ Fn
2` be the sender’s input. Send r := s+ p(0) to the receiver.

5. Receiver: Input a uniformly random x ∈ F2` \{0} into T; let (y, y′) denote the response.

Unveil phase:

6. Sender: Let I ⊆ {1, . . . , n} indicate the commitments to be opened. Send (I, pI) to the receiver.

7. Receiver: If deg(p̃) ≤ q and λ · y + y′ = p̃(x) and pI(x) = yI , output ŝI := rI − pI(0); else reject.

Figure 3: Statistically UC-secure commitment scheme where the sender is the token issuer.

tokens. So, our results are strictly stronger than the corresponding results for stateful tokens. On
the other hand, bounded-resettable tokens are strictly more powerful than arbitrarily resettable
(i.e., standard stateless) tokens, since non-interactive commitments and statistically secure OT are
possible with the former but impossible with the latter.

4.1 Commitments from the token sender to the token receiver

The basic idea how the token issuer can commit himself to some secret s is quite simple. He just
stores a random degree-q polynomial p on the token and sends the token together with r := s+p(0)
to the receiver. The token lets the receiver evaluate p on arbitrary challenges x, except for x = 0.
To unveil s, the sender just sends a description of p. The scheme is perfectly hiding, because even
a corrupted receiver can query the token on at most q inputs, receiving only randomness that is
statistically independent of p(0). The scheme is statistically binding, because for any two distinct
unveil messages p, p′ and a uniformly random token input x it holds with overwhelming probability
(namely at least 1 − q

|F|−1 , where F is the finite field in which all computations take place) that

p(x) 6= p′(x) and thus at least one unveil message will be inconsistent with the receiver’s view.
Unfortunately, the scheme as stated above is not UC-secure against a corrupted sender. The

reason for this is that the sender simulator must be able to extract the secret s from the token
program and the commit message r. If the token is issued honestly and thus implements a degree-q
polynomial p, the simulator can evaluate the token code on q+ 1 different inputs, then reconstruct
p, and compute s = r − p(0). However, a maliciously issued token can implement an arbitrarily
complicated function, which behaves like a degree-q polynomial only on a vanishing but still non-
negligible fraction of inputs. It is at the very least unclear, if one can extract the correct polynomial
from such a token efficiently. Therefore, we employ our oracle validation scheme from Section 3
to make the token extractable. See Figure 3 for the resulting commitment protocol, which even
implements many commitments using only one token.
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Lemma 4.1. The protocol Πs-o
COM UC-implements F s-o

COM (q.v. Appendix A.2).

Proof-sketch. We start with the case of a corrupted receiver. The main issue in this case is that the
simulator has to equivocate commitments in the unveil phase. He can do so by picking polynomials
p̂, p̂′ ∈ Fn

2`
[X] such that

•
(
p̂(x), p̂′(x)

)
=
(
p(x), p′(x)

)
for all inputs x on which the simulated token was queried so far,

• λ · p̂+ p̂′ = p̃, deg(p̂, p̂′) ≤ q, and
• p̂I(0) = ŝI , where ŝI is the desired result of the equivocation,

and reprogramming the token such that on input x it now outputs
(
p̂(x), p̂′(x)

)
. The unveil message

for equivocating the commitment to ŝI is just (I, p̂I). Since the corrupted receiver can query the
token at most q times, this is in his view perfectly indistinguishable from a proper commitment.

Now we show security against a corrupted sender. The simulator has to extract commitments
in the unveil phase. He can do so by running the extractor Ext from Lemma 3.1 on the transcript
of the setup phase and with rewindable access to the token code T∗. The extracted polynomial
p allows the simulator to reconstruct the committed secret s from the corrupted sender’s commit
message r as s = r − p(0). However, Ext is not guaranteed to be always efficient. So, some care
must be taken to avoid super-polynomial simulation complexity. Therefore, the simulator brings

forward the consistency check λ ·y+y′
?
= p̃(x) from the unveil phase and only if the check is passed,

Ext is started. Since Ext has complexity
(
` · |T∗|

)O(1) · ρ−1, where ρ is just the probability that the

consistency check is passed, this yields an expected simulation complexity of
(
` · |T∗|

)O(1)
.

Remark 4.2. The commitment scheme Πs-o
COM is statistically binding, even if λ is fixed and known to

the sender. This yields a statistically secure non-interactive commitment scheme in the bounded-
resettable hardware model, which was proven impossible in the stateless-token model [GIMS10].

4.2 Commitments from the token receiver to the token sender

For a commitment from the token receiver to the token sender we need a slightly more sophisti-
cated approach. As in our previous commitment scheme, the token implements a random degree-q
polynomial p. The token receiver can then commit to some secret s by inputting a random x into
the token, thus learning p(x), and announcing a commit message that consists of
• a fraction of bits of p(x), say the first quarter of its bit-string representation,
• a 2-universal hash function h, and
• m := s+ h(x).

To unveil s, he just needs to announce the used token input x. We briefly sketch now why this
scheme is hiding and binding. We start with the latter. Due to the query-bound q, the token
acts just like a perfectly random function. Thus, a corrupted commitment sender may only with
negligible probability find two distinct unveil messages x, x′ such that p(x) and p(x′) agree on the
first quarter of their bit-string representation. This establishes the binding property. The token
issuer, however, learns only several bits of information about x during the commit phase, so that
from his view x has still linear entropy afterwards. Since h is a 2-universal hash function, this means
that he cannot predict h(x) and thus the commitment is hiding. Still, we need to employ our oracle
validation scheme from Section 3 again to make the token extractable, as otherwise we have no
UC-security against a corrupted commitment receiver. See Figure 4 for the resulting protocol.

Lemma 4.3. The protocol Πrev
COM (q.v. Figure 4) implements FCOM (q.v. Appendix A.1) UC-secure

against a corrupted commitment sender.

Proof-sketch. We just have to exploit that the simulator sees all token inputs. As the number of
token queries by the commitment sender is upper bounded by q, the token acts from his views like
a perfectly random function. Hence, with overwhelming probability his announcement of ỹ in the
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Protocol Πrev
COM

Implicitly parametrized by a token query bound q and a commitment length `. The security parameter
is `. Let σ : F24` → F

4
2` , x 7→

(
σ1(x), . . . , σ4(x)

)
be the canonical F2` -vector space isomorphism.

Setup phase:

1. Receiver: Pick two uniformly random polynomials p, p′ ∈ F24` [X] of degree at most q and program
a token T which on input x ∈ F24` outputs

(
p(x), p′(x)

)
. Send T to the sender.

2. Sender: Pick λ ∈ F24` uniformly at random and send it to the receiver.

3. Receiver: Compute p̃ := λ · p+ p′ and send it to the sender.

Commit phase:

4. Sender: Let s ∈ F2` be the sender’s input. Input a uniformly random x ∈ F24` into the token T;
let (y, y′) denote the response. If λ · y + y′ = p̃(x), pick a uniformly random h ∈ F4

2` and compute
m := s+ 〈h |σ(x)〉 and ỹ := σ1(y) and send (m,h, ỹ) to the receiver; otherwise abort.

Unveil phase:

5. Sender: Send x to the receiver.

6. Receiver: Verify that deg(p̃) ≤ q and ỹ = σ1(p(x)). If so, output ŝ := m−〈h |σ(x)〉; otherwise reject.

Figure 4: Statistically UC-secure commitment scheme where the receiver is the token issuer.

commit phase either corresponds to a unique input x already sent to the token or he is caught
cheating in the unveil phase. In the former case, the simulator can find x just by scanning through
the token’s input history, compute the correct secret s = m − 〈h |σ(x)〉 and send it to the ideal
commitment functionality FCOM. In the other case, the simulator can just send anything to the
ideal functionality, because only with negligible probability he might need to unveil it later.

Proving UC-security against a corrupted commitment receiver, i.e. providing a simulator that
equivocates commitments, is more challenging. Note that even after extracting a polynomial p that
approximates the token functionality, it is still nontrivial to find a token input x̂ such that the
first quarter of bits of p(x̂) matches the given commit message (m,h, ỹ) while m − h(x) = ŝ for a
new secret ŝ. This problem can be expressed as a polynomial equation system. Here the efficient
algorithm of [CS09] for sampling random solutions comes into play. (See Appendix C for a brief
explanation that all preconditions of [CS09, Theorem 1.1] are met.) In addition, the simulator has
to make sure that the sampled solution x̂ is actually possible in the real model: He has to (re)sample
x̂ until p(x̂) agrees with the token functionality and the consistency check in Step 4 of the commit
phase of Πrev

COM is passed. See Figure 5 for the detailed simulator description. The resampling of x̂
imposes some extra difficulty for the runtime estimation, but we postpone the technical calculation
to Appendix D. Next, we show that our scheme is statistically hiding. This is needed for the UC
proof and has further application later in our construction of resettable zero-knowledge.

Lemma 4.4. The protocol Πrev
COM is statistically hiding, even if λ is fixed.

Proof. Let λ and p̃ be arbitrary but fixed. Let t, t′ : F24` → F24` represent the (possibly) corrupted
token functionality in the sense that the token maps x 7→

(
t(x), t′(x)

)
. Moreover, let Z := F2`∪{⊥}

and for each z ∈ Z let Mz denote the set of all token inputs x that lead to a commit message
(m,h, ỹ) with ỹ = z. I.e., Mz = {x ∈ F24` |λ · t(x) + t′(x) = p̃(x) ∧ σ1(t(x)) = z} for z ∈ F2` and
M⊥ = {x ∈ F24` |λ · t(x) + t′(x) 6= p̃(x)}. For uniformly random x ∈ F24` and the corresponding ỹ
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Simulator for a corrupted token issuer that receives commitments

Setup phase: Simulated straightforwardly, using a simulated version of the complete real model where
the simulated adversary is wired to the ideal model’s environment in the canonical way. Store (λ, p̃)
and the token program T∗ sent by the corrupted commitment receiver to the simulated functionality Fb-r

wrap.

Commit phase: Simulated straightforwardly, with random sender input s. Store (m,h, ỹ).

Unveil phase: If the simulated commitment sender has already aborted, do nothing. Otherwise, upon
receiving (opened, ŝ) from FCOM replace the stored unveil information x in the simulated sender’s memory
with x̂, computed by the following equivocation program, and let him then proceed with the protocol.

1. Setup the extractor Ext from Lemma 3.1 with parameters F := F24` , n := 1, and k := q+ 1. Provide
Ext with the transcript τ := (λ, p̃) and rewindable access to the token code T∗.

2. Start Ext. If Ext queries T∗ more than 2` times, give up; otherwise let p denote Ext’s output.

3. Compute the unique polynomial p1 ∈ F2` [X1, . . . , X4] such that deg(p1) ≤ deg(p) and σ1 ◦p = p1 ◦σ,
where “◦” denotes the function composition operator. Then pick a uniformly random solution
x̂ ∈ F24` of the following polynomial equation system, using the efficient algorithm of [CS09]:

p1(σ(x̂)) = ỹ

〈h |σ(x̂)〉 = m− ŝ

Resample x̂ until p(x̂) = t(x̂) and p̃(x̂) = λ · t(x̂) + t′(x̂), where t, t′ : F24` → F24` such that

T∗(x̂) =
(
t(x̂), t′(x̂)

)
. Give up, if more than 2

√
` iterations are required.

4. Replace x in the simulated sender’s memory by x̂.

Figure 5: Simulator for a corrupted token issuer in the protocol Πrev
COM (q.v. Figure 4).

(meaning that ỹ = σ1(t(x)) if λ · t(x) + t′(x) = p̃(x) and else ỹ = ⊥) it holds:

maxe:Z→F
24`

Pr[x=e(ỹ)] = E(|Mỹ|−1) =
∑

z∈Z
Pr[x∈Mz]·|Mz|−1 =

∑
z∈Z

1
|F

24`
| = 2−3`+2−4`

Hence, for uniformly random u ∈ F2` we can conclude by the Leftover hash lemma (Lemma E.1):

∆
(
(〈h |σ(x)〉, h, ỹ) , (u, h, ỹ)

)
≤ 1

2

√
maxe:Z→F

24`
Pr[x=e(ỹ)] · |F2` | = 1

2

√
2−2` + 2−3` < 2−`

It directly follows now that the statistical distance between a commitment on any secret s and a
commitment on uniform randomness is also upper bounded by 2−`.

Corollary 4.5. The protocol Πrev
COM implements FCOM (q.v. Appendix A.1) UC-secure against a

corrupted receiver. The simulation depicted in Figure 5 is indistinguishable from the real model.

Proof. Consider the following sequence of experiments.

Experiment 1: This is the real model.

Experiment 2: The same as Experiment 1, except that the commitment sender commits to pure
randomness in the commit phase and runs in the unveil phase a complete search over all
token inputs to equivocate the commitment to his real input (which requires to reset the
token exponentially many times).

Experiment 3: The same as Experiment 2, except that the complete search in the equivocation
step is only over token inputs x on which the token functionality x 7→

(
t(x), t′(x)

)
coincides

with the mapping x 7→
(
p(x), t′(x)

)
, where p denotes the polynomial computed by Ext from

the token program and the transcript of the setup phase.
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Experiment 4: The ideal model, conditioned to the event that the simulator does not give up.

Experiment 5: This is the ideal model.

Experiment 1 and Experiment 2 are indistinguishable, because the commitment is statistically
hiding (Lemma 4.4). Indistinguishability between Experiment 2 and Experiment 3 follows from
the negligibility of Ext’s failure probability ρ′ (Lemma 3.1). Experiment 3 and Experiment 4 are
indistinguishable by construction of the simulator—here we need that by [CS09] one finds solutions
for a polynomial equation system that are statistically close to random solutions (cf. Appendix C).
Experiment 4 and Experiment 5 are indistinguishable, since the simulator has polynomial expected
runtime complexity (Lemma D.1) and thus gives up only with negligible probability.

5 Multiple OT from O(1) Tokens

5.1 Multiple OT with combined abort

We adapt and enhance a protocol idea by [GIMS10] for a single OT instance in the stateless-token
model. It works as follows. The OT-receiver first commits to his choice bit. The OT-sender then
programs a token TOT and provides it with all his random coins and the message transcript of
the commitment protocol. The token implements the following functionality. Upon receiving an
unveil message for a bit c, the token checks if the unveil is correct; if so, it will provide an OT
output sc. The token TOT is transferred to the receiver, he unveils to it his choice bit and learns
the corresponding OT output.

Since the commitments of [GIMS10] in the stateless-token model require the commitment re-
ceiver to access some token in the unveil phase, they need the OT-sender to encapsulate tokens
into each other. We can circumvent this by our commitment scheme Πrev

COM, where the commitment
receiver does not access any tokens at all. So far, we can implement one OT instance with two
tokens. Now, if we implement many OT instances in parallel the straightforward way, i.e. letting
the receiver unveil all his choice bits to the token TOT, we run into trouble: Each of the many OT
outputs by TOT can arbitrarily depend on all choice bits. Therefore, we let the sender first commit
to the OT outputs via our construction Πs-o

COM. The token TOT then merely unveils the requested
OT outputs. Still, TOT can abort depending on all the choice bits, but we are fine with this for
the moment and deal with it in the next section. Thus, our OT construction implements a flawed
version of the ideal multiple-OT functionality, where a corrupted sender can additionally upload a
predicate that decides whether the receiver’s choice bits are accepted (cf. Appendix A.3). A similar
level of security was achieved by [IKO+11] in the context of non-interactive secure computation.

There is one further refinement of the protocol, by which we achieve that all tokens can be
issued independently of the parties’ OT inputs. So far, the program code of TOT depends on the
message sent by the OT-receiver for the Πrev

COM-commitment on his choice bits. Instead, the token
sender can give the receiver an information-theoretic MAC for this message, the receiver can input
it together with the unveil message into TOT, and the code of TOT thus needs to depend only
on the MAC-key—note that by construction of Πs-o

COM, the unveil messages that TOT outputs are
independent of the committed secrets. The complete OT protocol is given in Figure 6.

Lemma 5.1. The protocol Πc-ab
MOT UC-implements Fc-ab

MOT (q.v. Appendix A.3).

Proof-sketch. We first show UC-security against a corrupted OT-receiver. In this case, the simulator
can fake a real protocol run, exploiting extractability of Πrev

COM-commitments and equivocality of
Πs-o

COM-commitments. The simulation basically works as follows. Step 1 of Πc-ab
MOT is simulated

straightforwardly with random input for the simulated sender. In Step 2, the corrupted receiver’s
choice bits (c1, . . . , cn) can be extracted (using the sender simulator for Πrev

COM) and sent to the
ideal functionality Fc-ab

MOT. Then, Step 3 again is simulated straightforwardly. Finally, in Step 4, the
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Protocol Πc-ab
MOT

Implicitly parametrized by the number n of single OTs to be implemented. Based upon our commitment
schemes Πs-o

COM and Πrev
COM and a statistically secure message authentication scheme MAC, e.g. from [WC81].

1. Sender: Let (s
(1)
0 , s

(1)
1 ), . . . , (s

(n)
0 , s

(n)
1 ) be the sender’s n OT-inputs. Sample a key k for the message

authentication scheme MAC. Commit to the 2n values s
(i)
0 , s

(i)
1 via Πs-o

COM and prepare a hardware
token TOT with the following functionality and send it to the receiver:

• On input (c, w, τ, σ), verify that c ∈ {0, 1}n, σ = MACk(τ), and w is a correct Πrev
COM-unveil of

c with commit phase transcript τ . If so, return the Πs-o
COM-unveil messages for s

(1)
c1 , . . . , s

(n)
cn .

2. Receiver: Let c = (c1, . . . , cn) be the receiver’s choice bits. Commit to c via Πrev
COM.

3. Sender: Take the message transcript τ of Step 2, compute σ = MACk(τ), and send σ to the receiver.

4. Receiver: Let w be the Πrev
COM-unveil message for c. Input (c, w, τ, σ) into TOT; let (r1, . . . , rn)

denote the response. Verify that r1, . . . , rn are correct unveil messages for the corresponding Πs-o
COM-

commitments from Step 1 indexed by c. If so, output the unveiled values; otherwise abort.

Figure 6: Reduction of multiple OT with combined abort to our commitment protocols.

unveil messages output by the simulated token TOT are replaced (using the receiver simulator for

Πs-o
COM) such that the commitments from Step 1 are equivocated to the OT-outputs ŝ

(1)
c1 , . . . , ŝ

(n)
cn

received from Fc-ab
MOT. Indistinguishability of the simulation from the real model follows from the

UC-security of Πs-o
COM and Πrev

COM and the unforgeability of the message authentication scheme MAC.
Next, we show UC-security against a corrupted OT-sender. The simulator works as follows. In

Step 1 of Πc-ab
MOT, the corrupted sender’s OT inputs (s

(1)
0 , s

(1)
1 ), . . . , (s

(n)
0 , s

(n)
1 ) can be extracted (using

the sender simulator for Πs-o
COM). Step 2 and Step 3 of Πc-ab

MOT are simulated straightforwardly with
random input for the simulated receiver. Then the simulator has to send the extracted OT inputs

(s
(1)
0 , s

(1)
1 ), . . . , (s

(n)
0 , s

(n)
1 ) together with an abort predicate Q to the ideal functionality Fc-ab

MOT. The
predicate Q is defined by the following program, parametrized with the Πs-o

COM-commitments and
the token code T∗OT obtained in Step 1 of Πc-ab

MOT, the transcript τ of Step 2, and σ from Step 3:

1. Upon input c ∈ {0, 1}n, use the receiver simulator for Πrev
COM to obtain an unveil message ŵ

that equivocates τ to c.

2. Run T∗OT on input (c, ŵ, τ, σ); let (r1, . . . , rn) denote the response.

3. Simulate the check in Step 4 of Πc-ab
MOT, i.e., verify that r1, . . . , rn are correct unveil messages

for the corresponding Πs-o
COM-commitments indexed by c. If so, accept; otherwise reject.

Indistinguishability of the simulation from the real model just follows from the UC-security of
Πs-o

COM and Πrev
COM.

Remark 5.2. Though stated as a three-token construction, our protocol Πc-ab
MOT can as well be

implemented with two tokens, if one allows a token to be queried twice. In particular, the token
TOT gets with w a complete transcript of the messages sent to the token used in the subprotocol
Πrev

COM anyway. Hence, even if maliciously issued tokens can keep a complex state, it does not
compromise security if these two tokens are combined into one query-twice token.

5.2 How to get rid of the combined-abort flaw

The question of how to implement ideal oblivious transfer from the flawed version Fc-ab
MOT is closely

related to the research field of OT combiners. However, an OT combiner needs access to independent
OT instances, some of which may be corrupted. In contrast, Fc-ab

MOT leaks a predicate over the
receiver’s joint inputs for the multiple OT instances. Therefore we need an OT extractor, as
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defined in [IKOS09], rather than an OT combiner. However, the scope of [IKOS09] is skew to ours.
They consider semi-honest parties, which follow the protocol, and only the leakage function is
chosen maliciously. In this setting they aim at a constant extraction rate. In contrast, we consider
malicious parties that may try to cheat in the extraction protocol, but we do not care much about
the rate. For our purpose it suffices to implement n ideal OT instances from nO(1) flawed instances.

Our solution follows the basic idea of [IPS08] to take an outer protocol with many parties and
emulate some of the parties by an inner protocol, such that the security features of both protocols
complement each other. However, before we describe our solution, we briefly sketch why a more
classic OT combiner based on 2-universal hashing would be insecure in our case. Such combiners
are usually built such that the receiver’s ideal-OT choice bits are basically 2-universal hash values
of his flawed-OT inputs, which are uniformly random, and similarly for the outputs. In the Fc-ab

MOT-
hybrid model, such an approach is susceptible to the following generic attack. The sender just

follows the protocol, except that he randomly chooses two of his Fc-ab
MOT-input tuples, say

(
s̃

(i)
0 , s̃

(i)
1

)
and

(
s̃

(j)
0 , s̃

(j)
1

)
, and flips the bits of s̃

(i)
1 and s̃

(j)
1 . Furthermore, he defines the abort predicate Q

such that it rejects the receiver’s choice bits c̃ := (c̃1, c̃2, . . .) if and only if c̃i = c̃j = 1. This attack
has the following effect. With non-negligible probability, the 2-universal hash functions are chosen
such that
• the receiver’s i-th flawed-OT input-output tuple (c̃i, r̃i) influences the calculation of an ideal-

OT input-output tuple (ck, rk), but not (cl, rl), where l is an index such that
• the receiver’s j-th flawed-OT input-output tuple (c̃j , r̃j) influences (cl, rl), but not (ck, rk).

In such a case, it happens with probability 1
2 that (ck, rk) is affected by the bit-flip of s̃

(i)
1 , namely

if c̃i = 1. Likewise, (cl, rl) is affected by the bit-flip of s̃
(j)
1 if c̃j = 1. Both events are statistically

independent of each other, but by definition of the abort predicate Q it will never happen that the
receiver produces regular output while (ck, rk) and (cl, rl) are both affected by the attack. This
correlation between the joint distribution of the receiver’s ideal-OT inputs and outputs and the
event of an abort is not simulatable with an ideal OT.

Our construction is at an abstract level very similar to the OT combiner of [HIKN08]. We
believe that the constructions of [HIKN08] can also be proven secure when based on Fc-ab

MOT, but we
prefer to present a simple combination of results from the literature as opposed to tampering with
the proof details. Our final OT construction consists of three ingredients:

1. Our Fc-ab
MOT implementation,

2. a construction for general, statistically UC-secure two-party computation in the OT-hybrid
model, e.g. from [IPS08], and

3. a statistically UC-secure protocol for multiple OT based on a single untrusted stateful tamper-
proof hardware token, which we take from [DKMQ11].

We take the token functionality from [DKMQ11] and implement it by secure two-party computation
from [IPS08], based on Fc-ab

MOT instead of ideal OT. Note that OT can be stored and reversed
[Bea95, WW06] and therefore it suffices to query Fc-ab

MOT just once in the beginning with the token
receiver being also the OT-receiver. The “emulated token” then replaces all token queries in the
otherwise unchanged protocol of [DKMQ11]. Now, any specification of the abort predicate in Fc-ab

MOT

directly corresponds to a maliciously programmed token that stops functioning depending on its
inputs. Since the construction of [DKMQ11] is UC-secure against any malicious token behavior,
we finally obtain UC-secure OT.

Remark 5.3. Notice that this directly provides an impossibility result for commitments in the
stateless-token model where the unveil phase consists only of a single message from the sender
to the receiver and local computations (without accessing any tokens) by the receiver. Otherwise
our OT construction could be implemented in the stateless-token model (without encapsulation),
contradicting the impossibility result for OT given in [GIMS10].
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6 Bounded-Resettable Zero-Knowledge Proofs of Knowledge

We modify the constant-round zero-knowledge protocol of [GK96] for 3-COLOR such that the
prover becomes resettable and only two tokens have to be sent to the verifier. In the protocol
of [GK96], the verifier first commits to his challenge (the edges determining the vertices that are
to be revealed), then the prover commits to permutations of the colored vertices. The verifier
then reveals the challenge and the prover opens the specified commitments. The main problem
imposed by a resettable prover is that a malicious verifier could try to run the same protocol several
times, each time with different challenges, and hence step by step learn the prover’s witness. The
standard technique to deal with this is to let the prover’s color permutations depend on the verifier’s
commitment in a pseudorandom way. Since we aim for statistical zero-knowledge, we cannot use a
pseudorandom function, but need to replace it by a random polynomial of sufficient degree.

For our construction, we replace the computational commitments in [GK96] with the statisti-
cal commitments presented in the previous sections. Though, our commitment schemes have an
interactive setup phase and become insecure if the token issuer is resettable. However, by fixing

Protocol Πb-r
SZK

Parametrized by a simple 3-colorable graph G = (V,E). Let n = |V |, t = n · |E|, and V = {1, . . . , n}.

Auxiliary input for prover: A 3-coloring of G, denoted ϕ : V → {1, 2, 3}.

Setup phase:

• Prover: Select a random degree-q polynomial f ∈ F2l [X], where l is the number of random bits
needed for token generation in Πs-o

COM for n · t commitments. Further, select a random degree-
q polynomial g ∈ F2k [X], where k is the number of random bits needed to generate t random

permutations over {1, 2, 3}. W.l.o.g., l and k are larger than the commit message length in Π̃rev
COM.

Create two tokens Trev and Ts-o with the following functionalities and send them to the receiver:

– Trev: Just implement the token functionality of Π̃rev
COM.

– Ts-o: Upon input (x, crev), simulate the token generation procedure of Πs-o
COM with randomness

f(crev‖0 . . . 0), evaluate the generated token program on input x, and output the result.

Proof phase:

1. Verifier: Uniformly and independently select a random value λs-o according to the setup phase of
Πs-o

COM and a t-tuple of edges Ē = ({u1, v1}, . . . , {ut, vt}) as a challenge for the zero-knowledge proof.

Use Π̃rev
COM to commit to (Ē, λs-o) and send the corresponding commit message crev to the prover.

2. Prover: Compute r = f(crev‖0 . . . 0) and r′ = g(crev‖0 . . . 0). Use r′ to select t random permutations
π1, . . . , πt over {1, 2, 3} and set φi(v) = πi(ϕ(v)) for each v ∈ V and i ∈ {1, . . . , t}. Use r to simulate
the token generation of Πs-o

COM and compute the corresponding Πs-o
COM-commit message cs-o to commit

to φi(v) for all v ∈ V and i ∈ {1, . . . , t}. Send cs-o to the verifier.

3. Verifier: Send crev and the corresponding Π̃rev
COM-unveil message to the prover, thus unveiling (Ē, λs-o).

4. Prover: If the unveil was not correct, abort. Else, compute r = f(crev‖0 . . . 0) and simulate the token
generation of Πs-o

COM as in Step 2. Compute the response p̃s-o for λs-o according to the setup phase of
Πs-o

COM. Let ws-o be the Πs-o
COM-unveil message for the commitments indexed by Ē. Send (p̃s-o, ws-o)

to the verifier.

5. Verifier: Check the unveiled commitments according to the unveil phase of Πs-o
COM. Also verify for

each edge {ui, vi} ∈ Ē that φi(ui) 6= φi(vi). If all checks are passed, accept the proof; if not, reject.

Figure 7: Construction of a bounded-resettable statistical zero-knowledge proof of knowledge.
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λ in the setup phase of Πrev
COM, the resulting commitment scheme Π̃rev

COM becomes resettable and
remains statistically hiding (cf. Lemma 4.4). Making all the prover’s random choices dependent
on the verifier’s first Π̃rev

COM-commit message crev is the lever we use to obtain resettability. This
particularly has to include the randomness used in Πs-o

COM for token generation. Therefore, we need
to use a modified token in Πs-o

COM with input domain X×C, where C is the set of all possible commit

messages crev in Π̃rev
COM and X is the input space for the original token program in Πs-o

COM. On input
(x, crev), the modified Πs-o

COM-token first simulates the token generation of Πs-o
COM with randomness

crev and then runs the generated token program on input x. See Figure 7 for all further details.

Lemma 6.1. The protocol Πb-r
SZK UC-implements FZK (q.v. Appendix A.4).

Proof-sketch. We first show UC-security against a corrupted verifier, i.e., the simulator must fake a
protocol run without knowing a witness. In Step 1 of Πb-r

SZK, we exploit that Π̃rev
COM is still UC-secure

against a corrupted commitment sender and thus the challenge Ē can be extracted. Then, in Step 2,
the simulated prover can commit to different colorings for each challenged vertex pair {ui, vi} ∈ Ē
and to arbitrary colorings otherwise. The remaining protocol is just simulated straightforwardly.
Indistinguishability from a real protocol run follows, because Πs-o

COM is statistically hiding.
We move on to show UC-security against a corrupted prover, i.e., the simulator has to extract a

witness. The complete simulation just follows the real protocol. If in the end the simulated verifier
accepts, the sender simulator for Πs-o

COM (provided with the corresponding message transcript and
the token code Ts-o) is used to extract the commitments from Step 2 of Πb-r

SZK, which yields t
colorings for the graph G. If none of them is a valid 3-coloring, the simulator gives up; otherwise he
sends a valid one to the ideal functionality FZK. It remains to show that the simulator gives up only
with negligible probability. However, if none of the committed colorings is a valid 3-coloring, then
the proof is accepted by the simulated verifier at most with the following probability (abstracting
from the negligible case that some commitment is successfully broken by the corrupted prover):(

1− 1
|E|
)t

=
(
1− 1

|E|
)n·|E|

= exp
(
n · |E| · log

(
1− 1

|E|
))
≤ exp

(
n · |E| ·

(
− 1
|E|
))

= exp(−n)

Remark 6.2. Furthermore, Πb-r
SZK is bounded-resettably zero-knowledge. The resettability of the

prover follows from two facts. Firstly, the prover’s randomness (r, r′) depends deterministically but
otherwise unpredictable by the verifier on his first message crev. Secondly, by the binding property
of Π̃rev

COM, a corrupted verifier cannot cheat in Step 3 of Πb-r
SZK other than switch to another instance

of the zero-knowledge protocol with unrelated prover randomness (r, r′).

Remark 6.3. Our construction Πb-r
SZK can directly be used to obtain a non-interactive zero-knowledge

proof of knowledge scheme in the bounded-resettable hardware model by storing the prover func-
tionality in another token (or two other tokens, if each token should be queried only once).
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Appendices

A Ideal Functionalities

In this section we provide the ideal functionalities for our security proofs in the UC-framework. For
better readability, we omit session identifiers and cover only the two-party case for each protocol.

A.1 Ideal functionality for a single commitment

Functionality FCOM

Implicitly parametrized by a domain of secrets S.

Commit phase:

1. Await an input (commit, s) with s ∈ S from the sender. Then, store s and send (committed) to the
adversary.

2. Await a message (notify) from the adversary. Then send (committed) to the receiver.

Unveil phase:

3. Await an input (unveil, ŝ) with ŝ ∈ S from the sender. Then, store ŝ and send (opened) to the
adversary.

4. Await a message (output) from the adversary. Then, if ŝ = s, send ŝ to the receiver; otherwise, send
a special reject message ⊥.

A.2 Ideal functionality for multiple commitment with selective opening

Functionality F s-o
COM

Implicitly parametrized by a domain of secrets S and the number n of commitments to be implemented.

Commit phase:

1. Await an input (commit, s) with s = (s1, . . . , sn) ∈ Sn from the sender. Then, store s and send
(committed) to the adversary.

2. Await a message (notify) from the adversary. Then send (committed) to the receiver.

Unveil phase:

3. Await an input (unveil, I, ŝ) with I ⊆ {1, . . . , n} and ŝ = (ŝi)i∈I ∈ S|I| from the sender. Then,
store (I, ŝ) and send (opened) to the adversary.

4. Await a message (output) from the adversary. Then, if ŝ = (si)i∈I , send (I, ŝ) to the receiver;
otherwise, send a special reject message ⊥.
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A.3 Ideal functionality for multiple oblivious transfer with combined abort

Functionality Fc-ab
MOT

Implicitly parametrized by a sender input domain S and the number n of single OTs to be implemented.

• Upon input
(
create, (s

(1)
0 , s

(1)
1 ), . . . , (s

(n)
0 , s

(n)
1 )
)

with (s
(i)
0 , s

(i)
1 ) ∈ S×S from the sender, verify that

the sender is uncorrupted; otherwise ignore that input. Next, store (s
(0)
0 , s

(0)
1 ), . . . , (s

(n)
0 , s

(n)
1 ), send

(sent) to the adversary, and henceforth ignore any further input from the sender.

• Upon input
(
mal create, (s

(1)
0 , s

(1)
1 ), . . . , (s

(n)
0 , s

(n)
1 ), Q

)
with (s

(i)
0 , s

(i)
1 ) ∈ S ×S and a predicate

Q : {0, 1}n → {accept, reject} from the sender, verify that the sender is corrupted; otherwise ig-

nore that input. Next, store (s
(0)
0 , s

(0)
1 ), . . . , (s

(n)
0 , s

(n)
1 ) and Q, send (sent) to the adversary, and

henceforth ignore any further input from the sender.

• Upon input (choice, c) with c = (c1, . . . , cn) ∈ {0, 1}n from the receiver, store c, send (chosen) to
the adversary, and henceforth ignore any further input from the receiver.

• Upon receiving a message (output) from the adversary, check that there are stored inputs

(s
(1)
0 , s

(1)
1 ), . . . , (s

(n)
0 , s

(n)
1 ) from the sender and c from the receiver; else ignore this message. If

the sender is corrupted, compute Q(c) and abort if Q(c) = reject. Next, send (s
(1)
c1 , . . . , s

(n)
cn ) to the

receiver and ignore any further (output)-messages from the adversary.

• Upon receiving a message (notify) from the adversary, check that there are stored inputs

(s
(1)
0 , s

(1)
1 ), . . . , (s

(n)
0 , s

(n)
1 ) from the sender and c from the receiver; else ignore this message. Next,

send an empty output to the sender and ignore any further (notify)-messages from the adversary.

A.4 Ideal functionality for zero-knowledge

Functionality FZK

Implicitly parametrized with an NP -language L and a corresponding NP -problem instance x.

1. Await an input w from the sender. Then, store w and send (sent) to the adversary.

2. Await a message (verify) from the adversary. Then, if w is a witness for x ∈ L, send (accept) to
the verifier; else send (reject).

B Graph Lemmata

B.1 Notations

Throughout Appendix B we use the following notations.

Notation (Vectors of polynomials). Let F be an arbitrary field. We canonically extend the notion
of polynomials over F as follows. By Fn[X] we denote the set of all n-tuples (p1, . . . , pn) of
polynomials p1, . . . , pn ∈ F[X]. Each polynomial p := (p1, . . . , pn) ∈ Fn[X] defines a function
F→ F

n, x 7→
(
p1(x), . . . , pn(x)

)
. We treat Fn[X] as an F-linear vector space in the natural way.

Notation (Interpolation polynomials). Let F be a finite field and let n ∈ N. Given any mapping

f : F → F
n and any non-empty set M ⊆ F, let p̂

(f)
M ∈ Fn[X] denote the unique polynomial of

degree at most |M | − 1, such that p̂
(f)
M (x) = f(x) for all x ∈M .

Notation (Generalization of the degree operator). Let F be a finite field and let n ∈ N. For each
polynomial p := (p1, . . . , pn) ∈ Fn[X] we define its degree as deg(p) := maxni=1(deg(pi)). Further,

given any mapping f : F → F
n and any non-empty set M ⊆ F, let degM (f) := deg(p̂

(f)
M ). For

convenience we set deg∅(f) := −∞ and degM (f, f ′) := max
(
degM (f),degM (f ′)

)
.
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Notation (Bipartite graphs and neighborhoods). We denote a bipartite graph G as a triple (V,U,E),
where V and U are the vertex sets of the two parts of G and E ⊆ V ×U is the set of edges of G.
The neighborhood of any vertex v ∈ V ∪ U in G is denoted as NG(v), or N (v) for short, and its
degree as degG(v) :=

∣∣NG(v)
∣∣. Note that NG(v) ⊆ U for all v ∈ V and NG(u) ⊆ V for all u ∈ U .

B.2 Bounds for distinct check polynomials

Lemma B.1. Let any finite field F, a dimension n ∈ N and two mappings t, t′ : F→ F
n be given.

Further, let some family of polynomials {p̃λ}λ∈F ⊆ Fn[X] be given, let k := maxλ∈F(deg(p̃λ)) and
for each λ ∈ F let Mλ := {x ∈ F |λ · t(x) + t′(x) = p̃λ(x)}. Then it holds for all distinct λ1, λ2 ∈ F
that degMλ1

∩Mλ2
(t, t′) ≤ k.

Proof. We first show:

For each M ⊆ F there exists at most one λ ∈ F with degM (λ · t+ t′) < degM (t, t′). (1)

Note that p̂
(αf+βg)
M = α · p̂(f)

M + β · p̂(g)
M and thus degM (αf + βg) ≤ max

(
degM (f), degM (g)

)
for

arbitrary mappings f, g : F→ F
n and any coefficients α, β ∈ F. Thus, if degM (λ1 ·t+t′) < degM (t)

and degM (λ2 · t+ t′) < degM (t) for some distinct λ1, λ2 ∈ F, we had the following contradiction:

degM ((λ1 − λ2) · t) = degM ((λ1 · t+ t′)− (λ2 · t+ t′)) < degM (t)

Analogously, if degM (λ1 · t + t′) < degM (t′) and degM (λ2 · t + t′) < degM (t′) for some distinct
λ1, λ2 ∈ F, we had the following contradiction:

degM ((λ1 − λ2) · t′) = degM (λ1 · (λ2 · t+ t′)− λ2 · (λ1 · t+ t′)) < degM (t′)

Thus, (1) must be true and can be used to prove our lemma.
Let any distinct λ1, λ2 ∈ F be given. Note that degMλ1

∩Mλ2
(λ1 · t + t′) = degMλ1

∩Mλ2
(p̃λ1) ≤ k

by definition of Mλ1 , and degMλ1
∩Mλ2

(λ2 · t + t′) = degMλ1
∩Mλ2

(p̃λ2) ≤ k by definition of Mλ2 .

Thus, if degMλ1
∩Mλ2

(t, t′) > k, we had that degMλ1
∩Mλ2

(λ1 · t + t′) < degMλ1
∩Mλ2

(t, t′) and also

degMλ1
∩Mλ2

(λ2 · t+ t′) < degMλ1
∩Mλ2

(t, t′), which would contradict (1).

Lemma B.2. Let any finite field F, a dimension n ∈ N and two mappings t, t′ : F→ F
n be given.

Further, let some family of polynomials {p̃λ}λ∈F ⊆ Fn[X] be given, let k := maxλ∈F(deg(p̃λ)) and
for each λ ∈ F let Mλ := {x ∈ F |λ · t(x) + t′(x) = p̃λ(x)}. Then for all λ1, λ2, λ3, λ4 ∈ F with
λ1 6= λ2 and λ3 6= λ4 and Mλ1∩Mλ2 6= Mλ3∩Mλ4 we have that k ≥ |Mλ1∩Mλ2∩Mλ3∩Mλ4 |.

Proof. Let any λ1, λ2, λ3, λ4 ∈ F with λ1 6= λ2 and λ3 6= λ4 be given. Moreover, assume that
k < |Mλ1∩Mλ2∩Mλ3∩Mλ4 |. We have to show that Mλ1∩Mλ2 = Mλ3∩Mλ4 .

Since any two polynomials p, p′ ∈ Fn[X] which coincide on more than max
(
deg(p),deg(p′)

)
nodes are identical, we observe:

1. For all M,M ′ ⊆ F with |M ∩M ′| > max
(
degM (t, t′), degM ′(t, t

′)
)

it holds that p̂
(t)
M = p̂

(t)
M ′

and p̂
(t′)
M = p̂

(t′)
M ′ .

2. For all λ ∈ F and M ⊆Mλ with degM (t, t′) ≤ k < |M | we have that p̃λ = p̂
(t)
M + λ · p̂(t′)

M .

Now, as degMλ1
∩Mλ2

(t, t′) ≤ k and degMλ3
∩Mλ4

(t, t′) ≤ k by Lemma B.1, it follows by our Observa-

tion 1 that p̂
(t)
Mλ1
∩Mλ2

= p̂
(t)
Mλ3
∩Mλ4

and p̂
(t′)
Mλ1
∩Mλ2

= p̂
(t′)
Mλ3
∩Mλ4

. Let p := p̂
(t)
Mλ1
∩Mλ2

and p′ := p̂
(t′)
Mλ1
∩Mλ2

.

Note that deg(p) ≤ k and deg(p′) ≤ k by Lemma B.1. Putting things together, we get by our
Observation 2 that p̃λi = p + λi · p′ for i = 1, . . . , 4. However, as p(x) = t(x) and p′(x) = t′(x) for
all x ∈ (Mλ1∩Mλ2)∪ (Mλ3∩Mλ4) by construction, it follows that Mλi ⊇ (Mλ1∩Mλ2)∪ (Mλ3∩Mλ4)
for i = 1, . . . , 4, and hence Mλ1∩Mλ2 = Mλ3∩Mλ4 .
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B.3 Decomposition of bipartite graphs into complete bipartite subgraphs

Lemma B.3. Let U be some finite universe and let ε, δ ∈ R, such that |U |δ ≤ |U |ε/4. Further, let
m ∈ N>0 and N1, . . . , Nm ⊆ U , such that |Ni| ≥ |U |1−δ and |Ni ∩ Nj | ≤ |U |1−ε−δ for all distinct
i, j. Then we have that m < |U |ε/2.

Proof. W.l.o.g. it suffices to show that m 6=
⌈
|U |ε/2

⌉
. We call x ∈ U a shared element, if x ∈ Ni∩Nj

for some distinct indices i, j. Note that each Ni contains at most (m−1) · |U |1−ε−δ shared elements,
since by assumption |Ni ∩ Nj | ≤ |U |1−ε−δ for all j 6= i. Hence, each Ni must contain at least
|U |1−δ − (m− 1) · |U |1−ε−δ non-shared elements. In other words, if m =

⌈
|U |ε/2

⌉
, we can estimate:

|U | ≥ m ·
(
|U |1−δ − (m− 1) · |U |1−ε−δ

)
> |U |ε

2 ·
(
|U |1−δ − |U |

ε

2 · |U |
1−ε−δ) = |U |1+ε−δ

4

However, since |U |ε−δ ≥ 4 by assumption, this is a contradiction and thus concludes our proof.

Lemma B.4. Let a finite bipartite graph G := (V,U,E) and some constant k ∈ R be given, such
that k ≥

∣∣NG(v) ∩ NG(v̄) ∩ NG(v′) ∩ NG(v̄′)
∣∣ for all vertices v, v̄, v′, v̄′ ∈ V with v 6= v̄ and v′ 6= v̄′

and NG(v) ∩ NG(v̄) 6= NG(v′) ∩ NG(v̄′). Then, for any ε, δ ∈ R with 16 · |U |2δ ≤ |U |ε ≤
√
|U |/k,

there exists a subset of edges E′ ⊆ E such that |E′| < |V | · |U |1−δ + |U |1+ε and each connected
component of G′ := (V,U,E\E′) is either a single vertex or a complete bipartite graph.

Proof. W.l.o.g. we can choose ε such that 16 · |U |2δ = |U |ε, and k such that |U |ε =
√
|U |/k. We

define the auxiliary constants ε′ and δ′ as follows: Let ε′ := δ + log|U | 4, i.e. |U |δ = |U |ε′/4, and

let δ′ := ε′ + δ. Note that |U |δ′ = 4 · |U |2δ = |U |ε/4 and hence k = |U |1−2ε = |U |1−ε−δ′/4 by
construction. Now, by the following three steps, we transform our graph G into G′ by removing
edges—w.l.o.g. we even remove vertices together with all their adjacent edges. We remove at most
|V | · |U |1−δ edges in Step 1 and less than |U |1+ε/2 edges in each of Step 2 and Step 3, which sums
up to less than |V | · |U |1−δ + |U |1+ε removed edges as claimed.

Step 1: We first remove all v ∈ V with |NG(v)| ≤ |U |1−δ, thus deleting at most |V | · |U |1−δ edges.

Step 2: Next, we remove all vertices v ∈ V with maxv′∈V \{v} |NG(v) ∩ NG(v′)| ≤ |U |1−ε′−δ, thus

deleting less than |U |1+ε′/2 edges according to Lemma B.3. Note that |U |1+ε′/2 < |U |1+ε/2,
since even |U |ε′+δ = |U |ε/4 by construction.

Step 3: Finally, we find a mapping σ : V → P(U), where P(U) denotes the power set of U , such
that σ assigns to each vertex v ∈ V a maximum possible set of neighbors N ⊆ NG(v) that can
be written as N = NG(v) ∩ NG(v̄) with v̄ 6= v. Note that |σ(v)| > |U |1−δ′ for all v ∈ V due
to the vertex removal in Step 2. Further note that by construction NG(v) ∩ NG(v′) = σ(v)
for all distinct v, v′ ∈ V with σ(v) = σ(v′). Hence, by the upper bound nature of k it must
hold that σ(v) ∩ σ(v′) ≤ k for all v, v′ ∈ V with σ(v) 6= σ(v′). Since k = |U |1−ε−δ′/4 by
construction, it follows by Lemma B.3 that the image space of σ consists of less than |U |ε/2
different vertex sets N ⊆ U .

Now we are going to remove all edges (v, u), where u /∈ σ(v). This obviously transforms G
into a disjoint composition of complete bipartite graphs (plus some unconnected vertices).
So, there is only left to show that there exist no more than |U |1+ε/2 such edges.

Consider any N ∈ σ(V ). As already mentioned above, we have that NG(v) ∩ NG(v′) = σ(v)
for all distinct vertices v, v′ ∈ V with σ(v) = σ(v′), or in other words, NG(v) ∩ NG(v′) = N
for all distinct v, v′ ∈ σ−1(N). Hence, no u ∈ U \ N can be adjacent to distinct vertices
v, v′ ∈ σ−1(N). I.e., there cannot exist more than |U \N | edges (v, u) ∈ E with σ(v) = N
and u /∈ N . Thus, in this final step we are removing at most

∑
N∈σ(V ) |U \N | edges. We can

estimate this by |U |1+ε/2 however, since we have already shown above that the image space
of σ consists only of less than |U |ε/2 different vertex sets N ⊆ U .
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B.4 Putting things together

Corollary B.5. Let F be a finite field, let n ∈ N, and let G := (V,U,E) be a bipartite graph such
that |V | = |U | = |F|. Let each vertex in V be identifiable with a unique field element λ ∈ F and
likewise let each vertex in U be identifiable with a unique field element x ∈ F. Moreover, let a
mapping S∗ : V → F

n[X], λ 7→ p̃λ and a mapping T∗ : U → F
n×Fn, x 7→

(
t(x), t′(x)

)
be given,

such that (λ, x) ∈ E if and only if p̃λ(x) = λ·t(x)+t′(x). Let k := maxλ∈V (deg(p̃λ)) be polynomially
bounded in log |F|. Then there exists a subset of edges E′ ⊆ E such that |E′| ≤ |F|2−Ω(1) and for
each vertex λ ∈ V we have that degNG′ (λ)(T

∗) ≤ k, where G′ := (V,U,E\E′).

Proof. By Lemma B.2 we have that k ≥
∣∣NG(λ1) ∩ NG(λ2) ∩ NG(λ3) ∩ NG(λ4)

∣∣ for all vertices
λ1, λ2, λ3, λ4 ∈ V with λ1 6= λ2 and λ3 6= λ4 and NG(λ1) ∩ NG(λ2) 6= NG(λ3) ∩ NG(λ4). Now
we pick some arbitrary constants ε, δ ∈ R>0 with 2δ < ε < 1

2 . Assuming a sufficiently large field

F, we get that 16 · |U |2δ ≤ |U |ε ≤
√
|U |/k. This allows us to apply Lemma B.4, whereby we

find a subset of edges E′ ⊆ E such that |E′| < |F|2−δ + |F|1+ε and each connected component of
G′ := (V,U,E\E′) is either a single vertex or a complete bipartite graph. However, this turns out
not sufficient to conclude our proof; we also have to get rid of all vertices x ∈ U with degG′(x) = 1.
So, we also remove the corresponding edges from G′, ending up with a graph G′′ := (V,U,E\E′′)
where |E′′| < |F|2−δ + |F|1+ε + |F|.

Now we show that degNG′′ (λ)(T
∗) ≤ k for all λ ∈ V . Let λ1 ∈ V be arbitrary but fixed.

W.l.o.g., NG′′(λ1) 6= ∅. Since there are no vertices x ∈ U with degG′′(x) = 1 any more, we find
some λ2 ∈ V \{λ1} with NG′′(λ1) ∩ NG′′(λ2) 6= ∅. Since each connected component of G′′ still is
either a single vertex or a complete bipartite graph, it even holds that NG′′(λ1) = NG′′(λ2) and by
Lemma B.1 it follows that degNG′′ (λ1)(T

∗) = degNG′′ (λ2)(T
∗) = degNG′′ (λ1)∩NG′′ (λ2)(T

∗) ≤ k.

C Sampling Uniformly from Varieties of Constant Codimension

We briefly state the main theorem of [CS09], which is used in the proof of Corollary 4.5.

Theorem C.1 ([CS09, Theorem 1.1]). Let k > 0 be a constant integer, n > k and d > 0 be integers,
let p` be a sufficiently large prime power and ε > 0 be an arbitrarily small constant. Suppose that
f1, . . . , fk ∈ Fp` [x1, . . . , xn] are polynomials, each of total degree at most d, and let

V = V (f1, . . . , fk) = {ξ ∈ Fnp` | f1(ξ) = . . . = fk(ξ) = 0}

be the variety defined by f1, . . . , fk. There exists a randomized algorithm that, given the description
of f1, . . . , fk as a list of their nonzero monomials, outputs a random point v ∈ Fn

p`
such that the

distribution of v is 6
p`(1−ε)

-close to the uniform distribution on V . The worst-case runtime complexity

of this algorithm is polynomial in n, d, ` log(p) and the description of f1, . . . , fk.

Concretely, in Corollary 4.5 the field is F2` and n = 4, as elements of F24` are interpreted as
4-dimensional vectors over F2` . The variety V is given by the polynomials (in x = (x1, . . . , x4))

p1(x)− ỹ = 0

〈h |x〉 −m+ ŝ = 0

where p1(x)− ỹ ∈ F2` [x1, . . . , x4] is a polynomial of degree q and 〈h |x〉 −m+ ŝ ∈ F2` [x1, . . . , x4]
is trivially a polynomial of degree 1. Thus the parameters are k = 2, n = 4, p = 2, and d = q.
We can set ε = 1

2 and Theorem C.1 yields an efficient algorithm that samples 6
2`/2

-close to uniform
from V .
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D Expected polynomial runtime of the receiver simulator for Πrev
COM

Lemma D.1. The simulator in Figure 5 (Section 4.2) has expected polynomial runtime complexity.

Proof. There are two steps in the simulation that might take super-polynomial time. One is the
execution of Ext and the other one is the repeated sampling of x̂. We first show that the execution
of Ext is polynomially efficient on average. It suffices to bound the expected number of queries
from Ext to T∗, as all other calculations by Ext are efficient by Lemma 3.1. However, again by
Lemma 3.1, we have that Ext queries T∗ only (q + 1)/ρ times on average, where ρ is exactly the
probability that the protocol is not aborted in the commit phase. Thus, the expected number of
queries from Ext to T∗ is just q + 1.

Now we estimate the expected number of resamplings of x̂. In the following let M denote the
set of token inputs that pass the consistency check and let N denote the subset of token inputs
for which the extracted polynomial p is correct, i.e., M = {x ∈ F24` |λ · t(x) + t′(x) = p̃(x)} and
N = {x ∈ M | t(x) = p(x)}. Let ρ′ be the failure probability from Lemma 3.1. Since ρ′ ≤ 2−Ω(`),
we find some ε ∈ R>0 with ρ′ ≤ 2−ε`, assuming a sufficiently large security parameter `. Note that
ρ′ = E

(
|M \N | · |F24` |−1

)
just by construction. We distinguish the following three cases.

1. It happens that |M | ≤ 2(4−ε/4)`. However, conditioned to any choice of λ we just have that
|M | · |F24` |−1 is the probability of a non-aborted commit phase. Thus, even if the iteration

bound of 2
√
` is always reached, this case contributes only 2

√
`−ε`/4 to the expected number

of resamplings of x̂, which is negligible.

2. It happens that |M \N | ≥ 2(4−3ε/4)`. Since E
(
|M \N |

)
= ρ′ · |F24` | ≤ 2(4−ε)`, this may be

the case at most with probability 2−ε`/4. Thus, even if the iteration bound of 2
√
` is always

reached, this case also contributes only 2
√
`−ε`/4 to the average number of resamplings of x̂.

3. It happens that |M | > 2(4−ε/4)` and |M \N | < 2(4−3ε/4)`. We may consider the simulated
commitment sender’s token input x as uniformly random over M , because x /∈ M means an
abort in the commit phase anyway. Each sampling of x̂ is uniformly random (up to a negligible
statistical distance δ) over the set (σ1 ◦p)−1((σ1 ◦ t)(x))∩{x̂ ∈ F24` | 〈h |σ(x̂)〉 = m− ŝ}. The
distance δ stems from the fact that we only know how to sample almost uniformly from large
varieties. As discussed in Appendix C, we have δ ≤ 6

2`/2
. Note that m and hence also m− ŝ

is uniformly random and independent of (λ, x, h). It follows by Appendix E (Corollary E.3,
instantiated with g := σ1 ◦p and f := σ1 ◦ t) that each sampling of x̂ has the following success
probability:

Pr[x̂∈N ] >
|N |
|F24` |

− |M \N |
|M |

− |F2` |√
|M |
− δ =

|M |
|F24` |

− |M \N |
|F24` |

− |M \N |
|M |

− |F2` |√
|M |
− δ

Since we assumed |M | > 2(4−ε/4)` and |M \N | < 2(4−3ε/4)`, we can estimate:

|M \N |
|F24` |

< 2−3ε`/4 <
2−ε`/2 · |M |
|F24` |

|M \N |
|M |

< 2−ε`/2 <
2−ε`/4 · |M |
|F24` |

|F2` |√
|M |

< 2(ε/8−1)` <
2(3ε/8−1)` · |M |
|F24` |

<
2−5`/8 · |M |
|F24` |

(w.l.o.g., ε < 1)

δ ≤ 6 · 2−`/2 <
6 · 2(ε/4−1/2)` · |M |

|F24` |
<

6 · 2−`/4 · |M |
|F24` |

(w.l.o.g., ε < 1)
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Thus, the success probability for each sampling of x̂ is lower bounded by:

(1− 2−ε`/2 − 2−ε`/4 − 2−5`/8 − 6 · 2−`/4) · |M |
|F24` |

In other words, for large enough ` the success probability is arbitrarily close to |M | · |F24` |−1.
However, this is also exactly the success probability for the consistency check in the protocol’s
commit phase. Let ρ̃ := |M | · |F24` |−1 and ϑ := 1− 2−ε`/2− 2−ε`/4− 2−5`/8− 6 · 2−`/4. Hence
we can upper bound the expected number of sampling steps for x̂ by the following term:

ρ̃ ·
(∑∞

j=1
j · (1− ϑ · ρ̃)i−1 · ϑ · ρ̃

)
= ρ̃ · 1

ϑ · ρ̃
=

1

ϑ

Note that by assumption |M | > 2(4−ε/4)` and therefore ρ̃ 6= 0.

We have shown: The expected number of sampling steps for x̂ is upper bounded by 1 + o(1).

E 2-Universal Hashing Lemmata

We use the following notations throughout Appendix E.

Notation (Random variables). We denote random variables by bold characters, e.g., x.

Notation (Uniform distribution). By x
r← X we denote that x is uniformly distributed over X.

Notation (Statistical distance). We denote the statistical distance between two random variables
x,y by ∆(x,y) := 1

2

∑
α

∣∣Pr[x=α]− Pr[y=α]
∣∣.

Lemma E.1 (Generalized Leftover Hash Lemma [DORS08]). Let any finite sets X,Y, Z and a
tuple of random variables (x̂, z) with arbitrary joint distribution over X×Z be given. Let H be a
family of 2-universal hash functions h : X → Y , and let h

r← H and u
r← Y . Then it holds:

∆
(
(h(x̂),h, z) , (u,h, z)

)
≤ 1

2

√
maxe:Z→X Pr[x̂= e(z)] · |Y |

Proof. This lemma is just a reformulation of [DORS08, Lemma 2.4].

Lemma E.2. Let any finite sets U,M,Z with ∅ 6= M ⊆ U and an arbitrary mapping f : U → Z be
given. Further, let x

r← M and x̂
r← f−1(f(x)), i.e., x̂ is a uniformly random f -preimage (in U)

of f(x). Then, Pr[x̂∈M ] ≥ |M ||U | .

Proof. First note that for any β,A,B ∈ R with B > β > 0 the function α 7→ α2

β + (A−α)2

B−β has a global

minimum at α = βA
B . Thus, given any finite sequences (αz)z∈Z ⊂ R and (βz)z∈Z ⊂ R>0, it follows

by induction on |Z| that
∑

z∈Z
α2
z
βz
≥
∑

t∈Z
αzA
B = A2

B , where A :=
∑

z∈Z αz and B :=
∑

z∈Z βz.

Now for each z ∈ Z, let Uz := f−1(z) and Mz := Uz∩M . Let Z ′ := f(U). By our considerations
above we have: ∑

x∈M

|Mf(x)|
|Uf(x)|

=
∑
z∈Z′

∑
x∈Mz

|Mz|
|Uz|

=
∑
z∈Z′

|Mz|2

|Uz|
≥ |M |

2

|U |

Hence we can conclude:

Pr[x̂∈M ] =
∑
x∈M

Pr[x=x]︸ ︷︷ ︸
= |M |−1

·Pr[x̂∈M |x=x]︸ ︷︷ ︸
= |Mf(x)|·|Uf(x)|−1

≥ |M |
|U |
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Corollary E.3. Let any finite sets U,M,N,Z with ∅ 6= N ⊆M ⊆ U and two mappings f, g : U → Z
be given with f(x) = g(x) for all x ∈ N . Further, let H be a family of 2-universal hash functions
h : U → Z. Finally, let x

r← M , h
r← H, m

r← Z, z := f(x), and x̂
r← g−1(z) ∩ h−1(m) with the

convention that x̂ = ⊥ /∈ U in case of g−1(z)∩h−1(m) = ∅. Then, Pr[x̂∈N ] > |N |
|U | −

|M\N |
|M | −

|Z|√
|M |

.

Proof. We define the following auxiliary random variables:

z′ := g(x) x̂′
r← g−1(z′) ∩ h−1(m) with x̂′ := ⊥, if g−1(z′) ∩ h−1(m) = ∅

m′ := h(x) x̂′′
r← g−1(z′) ∩ h−1(m′)

Note that ∆(z, z′) ≤ ∆
(
(z,x) , (z′,x)

)
= Pr[f(x) 6=g(x)] ≤ Pr[x /∈N ] and therefore, as h and m are

just additional independent randomness, also ∆
(
(m,h, z) , (m,h, z′)

)
≤ Pr[x /∈N ]. Thus we have:

Pr[x̂∈N ] ≥ Pr[x̂′∈N ]− Pr[x /∈N ] = Pr[x̂′∈N ]− |M\N ||M |

Next, note that by Lemma E.1 it holds:

∆
(
(m,h, z′) , (m′,h, z′)

)
≤ 1

2

√
maxe:Z→M Pr[x=e(z′)] · |Z|

However, for any mapping e : Z →M we can estimate Pr[x=e(z′)] as follows:

Pr[x=e(z′)] =
∑
z∈Z

Pr[z′=z]︸ ︷︷ ︸
≤ |M∩g

−1(z)|
|M|

·Pr[x=e(z) |x∈g−1(z)]︸ ︷︷ ︸
≤ |1|
|M∩g−1(z)|

≤ |Z|
|M |

Hence, ∆
(
(m,h, z′) , (m′,h, z′)

)
< |Z|√

|M |
and we can conclude:

Pr[x̂′∈N ] > Pr[x̂′′∈N ]− |Z|√
|M |

and therefore Pr[x̂∈N ] > Pr[x̂′′∈N ]− |M\N ||M | −
|Z|√
|M |

So, we finally need to estimate Pr[x̂′′∈N ]. Note that x̂′′
r← g−1(g(x))∩h−1(h(x)) by construction,

i.e., x̂′′ is a uniformly random preimage of
(
g(x),h(x)

)
under the mapping x 7→

(
g(x),h(x)

)
.

Hence it follows by Lemma E.2 that Pr[x̂′′ ∈M ] ≥ |M |
|U | . However, conditioned to the event that

x̂′′ ∈M , we can consider x̂′′ just as a resampled version of x, which is uniformly distributed. Thus,
Pr[x̂′′∈N | x̂′′∈M ] = |N |

|M | and therefore Pr[x̂′′∈N ] = Pr[x̂′′∈M ] · Pr[x̂′′∈N | x̂′′∈M ] ≥ |N ||U | .
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