
Securing Cloud Data in the New Attacker Model

Ghassan O. Karame1, Claudio Soriente2, Krzysztof Lichota3, Srdjan Čapkun2
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Abstract. The world just witnessed the surge of a new and powerful attacker,

which was able to coerce operators and acquire the necessary keys to break the

privacy of users. Once the encryption key is exposed, the only viable measure to

preserve data confidentiality is to limit the adversary’s access to the ciphertext.

This may be achieved, for example, using multi-cloud storage systems. These

systems spread data across multiple servers in different administrative domains,

to cater for availability and fault tolerance. If the adversary can only compromise

a subset of these domains, multi-cloud storage systems may prevent the adver-

sary from accessing the entire ciphertext. However, if data is encrypted using

existing encryption schemes, spreading the ciphertext on multiple servers does

not entirely solve the problem since an adversary which has the encryption key,

can still compromise single servers and decrypt the ciphertext stored therein.

In this paper, we leverage multi-cloud storage systems to provide data confiden-

tiality against an adversary which has access to the encryption key, and can com-

promise a large fraction of the storage servers. For this purpose, we first introduce

a novel security definition that captures data confidentiality in the new adversarial

model. We then propose Bastion, a primitive that is secure according to our def-

inition and, therefore, guarantees data confidentiality even when the encryption

key is exposed, as long as the adversary cannot compromise all storage servers.

We analyze the security ofBastion, and we evaluate its performance by means of

a prototype implementation. Our results show that Bastion incurs less than 5%

overhead compared to existing semantically secure encryption modes. We also

discuss practical insights with respect to the integration of Bastion in commer-

cial multi-cloud storage systems.

1 Introduction

The year 2013 witnessed the introduction of a new, and extremely powerful attacker

model. Notably, the world became aware of a massive surveillance program which

mined data from operators and ISPs, and performed illegal taps on digital communica-

tion channels [27]. This surveillance program was not hindered by the various security

measures deployed within the targeted services. For instance, although these services

relied on secure encryption mechanisms, the necessary keying material was acquired,

e.g., by means of backdoors, bribe, or coercion.

In addition to the public and governmental outrage, another immediate reaction

from the industry was an even larger apprehension to use third-party services, and in

particular cloud services [15]. If the encryption key is exposed, the only viable counter-

measure is to limit the adversary’s access to the ciphertext, e.g., by spreading it across



multiple administrative domains, in the hope that the adversary cannot compromise all

of them. However, this countermeasure does not entirely solve the problem. Even if

the data is encrypted and dispersed across different administrative domains, an adver-

sary equipped with the appropriate keying material can compromise a single server and

decrypt ciphertext blocks stored therein.

In this paper, we leverage multi-cloud storage systems [2, 4, 13, 14, 26, 28] to pro-

vide data confidentiality against an adversary which knows the encryption key, and can

compromise a large fraction of the storage servers. The adversary can acquire the keys

either by exploiting flaws or backdoors in the key-generation software [27], or by com-

promising the devices that store the keys (e.g., at the user-side or in the cloud). As far

as we are aware, this adversary invalidates the security of most cryptographic solutions,

including those that protect the keys by means of secret-sharing (since the keys are

leaked at generation time).

We start by proposing a novel game-based definition which captures the capabilities

of the new adversarial model. Our definition, called (n−λ) key-exposure or (n−λ)ke,
models an adversary that has access to the encryption key and requires that no plaintext

block can be recovered, as long as the adversary has access to at most (n−λ) ciphertext
blocks, where n is the total number of ciphertext blocks.

The definition of (n − λ)ke shares similarities with the notion of all-or-nothing

transformations (AONT) [5,9,23]. An AONT is a block-wise transform (based on block

ciphers) that cannot be inverted unless all the output blocks are known. AONT is not

an encryption by itself, but can be used as a pre-processing step before encrypting the

data with a block cipher, to ensure that the plaintext can be decrypted by the key holder,

only if all of the ciphertext blocks are available. The resulting encryption—called AON

encryption—was mainly intended to slow down brute-force attacks on the encryption

key. However, AON encryption can also preserve the confidentiality of the plaintext

in case the encryption key is exposed, as long as the adversary has access up to all but

one ciphertext blocks. In other words, given a ciphertext of n blocks, AON encryption is

(n−1)ke secure. Existing AON encryption modes, however, require at least two rounds

of block cipher encryptions on the data: one pre-processing round to create the AONT,

followed by another round for the actual encryption. This results in considerable—often

unacceptable—overhead to encrypt and decrypt large files.

In this work, we proposeBastion, an efficient primitive that requires only one round

of block cipher encryption, followed by a linear transformation. Bastion is (n − 2)ke
secure, i.e., it ensures that plaintext data cannot be recovered as long as the adversary

has access up to all but two ciphertext blocks, even when the encryption key is exposed.

As such, Bastion relaxes the notion of all-or-nothing at the benefit of improved perfor-

mance. This is reasonable since, in a multi-cloud storage system, each server is likely

to store more than one ciphertext block. For example, if each server stores at least two

ciphertext blocks, a (n− 2)ke secure scheme clearly preserves data confidentiality un-

less all servers are compromised, even when the adversary has access to the encryption

key. We analyze the security of Bastion, and we compare its performance in a realistic

implementation setup with a number of existing encryption schemes. Our results show

that Bastion only incurs a negligible performance deterioration (less than 5%) when

compared to symmetric encryption schemes (e.g., theCTR encryption mode), and con-



siderably improves the performance (by more than 50%) of existing AON encryption

schemes [9, 23]. Finally, we discuss practical insights with respect to the possible inte-

gration of Bastion in commercial dispersed storage systems.

The remainder of the paper is organized as follows. In Section 2, we define our no-

tation and building blocks. In Section 3, we describe our model and introduce a novel

security definition modeling the new attacker. In Section 4, we present our scheme,

Bastion, and analyze its security. In Section 5, we implement and evaluate Bastion in

realistic settings. In Section 6, we discuss practical insights with respect to the integra-

tion of Bastion within existing dispersed storage systems. In Section 7, we overview

related work in the area, and we conclude the paper in Section 8.

2 Preliminaries

We adapt the notation of [9] for our settings. We define a block cipher as a map F :
{0, 1, }k × {0, 1}l → {0, 1}l, for positive k and l. If Pl is the space of all (2l)! l-
bits permutations, then for any a ∈ {0, 1}k, we have F (a, ·) ∈ Pl. We also write

Fa(x) to denote F (a, x). We model F as an ideal block cipher, i.e., a block cipher

picked at random from BC(k, l), where BC(k, l) is the space of all block ciphers with
parameters k and l. For a given block cipher F ∈ B(k, l), we denote F−1 ∈ BC(k, l)
as F−1(a, y) or as F−1

a (y), for a ∈ {0, 1}k.

Encryption modes. An encryption mode based on a block cipher F/F−1 is given by a

triplet of algorithms
∏

= (K, E ,D) where:

K The key generation algorithm is a probabilistic algorithm which takes as input a

security parameter k and outputs a key a ∈ {0, 1}k that specifies Fa and F−1
a .

E The encryption algorithm is a probabilistic algorithm which takes as input a message

x ∈ {0, 1}∗, and uses Fa and F−1
a as oracles to output ciphertext y.

D The decryption algorithm is a deterministic algorithm which takes as input a cipher-

text y, and uses Fa and F−1
a as oracles to output plaintext x ∈ {0, 1}∗, or ⊥ if y is

invalid.

For correctness, we require that for any key a ← K(1k), for any message x ∈

{0, 1}∗, and for any y ← EFa,F
−1

a (x), we have x← DFa,F
−1

a (y).
Security is defined through the following chosen-plaintext attack (CPA) game adapted

for block ciphers:

Expind∏ (A, b)
F ← BC(k, l)
a← K(1k)

x0, x1, state← AEFa,F−1
a (find)

yb ← E
Fa,F

−1

a (xb)
b′ ← A(guess, yb, state)



In the ind experiment, the adversary has unrestricted oracle access to EFa,F
−1

a dur-

ing the “find” stage. At this point, A outputs two messages of equal length x0, x1, and

some state information that are passed as input when the adversary is initialized for

the “guess” stage (e.g., state can contain the two messages x0, x1.) During the “guess”

stage, the adversary is given the ciphertext of one message out of x0, x1 and must guess

which message was actually encrypted. The advantage of the adversary in the ind ex-

periment is:

Advind∏ (A) = |Pr[Expind∏ (A, 0) = 1]− Pr[Expind∏ (A, 1) = 1]|

Definition 1. An encryption mode
∏

= (K, E ,D) is ind-secure if for any polynomial-
time adversary A, we have Advind∏ (A) ≤ ǫ, where ǫ is a negligible function in the

security parameter.

All or Nothing Transformations. An All or Nothing Transformation (AONT) is an ef-

ficiently computable transformation that maps sequences of input blocks to sequences

of output blocks with the following properties: (i) given all the output blocks, the trans-

formation can be efficiently inverted (i.e., the original input can be computed), and (ii)

given all but one of the output blocks, it is infeasible to compute any of the original

input blocks. The formal syntax of an AONT is given by a pair of polynomial-time

algorithms
∏

= (E,D) where:

E The encoding algorithm is a probabilistic algorithm which takes as input a message

x ∈ {0, 1}∗, and outputs a pseudo-ciphertext y.
D The decoding algorithm is a deterministic algorithm which takes as input a pseudo-

ciphertext y, and outputs either a message x ∈ {0, 1}∗ or ⊥ to indicate that the

input pseudo-ciphertext is invalid.

For correctness, we require that for all x ∈ {0, 1}∗, and for all y ← E(x), we have
x← D(y).

The literature comprises a number of security definitions for AONT (e.g., [5,9,23]).

In this paper, we rely on the definition of [9] which uses the aont experiment below. This

definition specifies a block length l such that the pseudo-ciphertext y can be written as

y = y[1] . . . y[n], where |y[i]| = l and n ≥ 1.

Expaont∏ (A, b)
x, s← A(find)
y0 ← E(x)
y1 ← {0, 1}

|y0|

b′ ← AYb(guess, state)

On input j, the oracle Yb returns yb[j] and accepts up to (n − 1) queries. The aont
experiment models an adversary which must distinguish between the encoding of a

message of its choice and a random string (of the same length), while it is allowed all

but one encoded blocks. The advantage of A in the aont experiment is given by:



Advaont∏ (A) = |Pr[Expaont∏ (A, 1) = 1]− Pr[Expaont∏ (A, 0) = 1]|

Definition 2. An All-or-Nothing Transformation
∏

= E,D is aont-secure if for any

polynomial-time adversaryA, we haveAdvaont∏ (A) ≤ ǫ, where ǫ is a negligible function
in the security parameter.

Proposed AONTs. Rivest [23] suggested the package transform which leverages a

block cipher F/F−1 and maps m block strings to n = m + 1 block strings. The first

n−1 output blocks are computed by XORing the i-th plaintext block with FK(i), where
K is a random key. The n-th output block is computed XORing K with the encryption

of each of the previous output blocks, using a key K0 that is publicly known. That is,

given x[1] . . . x[m], the package transform outputs y[1] . . . y[n], with n = m+1, where

y[i] = x[i]⊕ FK(i), 1 ≤ i ≤ n− 1,

y[n] = K

n−1⊕

i=1

FK0
(y[i]⊕ i).

Desai [9] proposed a faster version where the block cipher round which uses K0 is

skipped and the last output block is set to y[n] = K
⊕n−1

i=1 y[i]. Both AONTs are secure
according to Definition 2 [9].

Remark 1. Although the majority of proposed AONTs are based on block ciphers (e.g.,

[9, 23]), an AONT is not an encryption scheme. In particular, there is no secret-key

information associated with an AONT. That is, given all the output blocks of the AONT,

any party can recover the original input without knowledge of any secret.

3 (n − λ) Key-Exposure Security

In this section, we detail our model, and we introduce the notion of (n−λ) key-exposure
security.

3.1 Model

We consider a multi-cloud storage system which can leverage a number of commod-

ity cloud providers (e.g., Amazon, Google) with the goal of distributing trust across

different administrative domains. This “cloud of clouds” model is receiving increasing

attention nowadays [2, 4, 28] with leading cloud storage providers such as EMC, IBM,

and Microsoft, offering products for multi-cloud systems [13, 14, 26].

In particular, we consider a system of s storage servers S1, . . . , Ss, and a collection

of users. We assume that each server appropriately authenticates users. For simplicity

and without loss of generality, we focus on the read/write storage abstraction of [18]

which exports two operations:



Fig. 1. The new attacker model. We assume a powerful adversary which can acquire all the cryp-

tographic secret material, and can compromise a large fraction (up to all but one) of the storage

servers.

write(v) The write routine splits v into s pieces {v1, . . . , vs} and sends 〈vj〉 to server

Sj , for j ∈ [1 . . . s].
read() The read routine fetches the stored value v from the servers. For each j ∈

[1 . . . s], piece vj is downloaded from server Sj and all pieces are combined into v.
We assume that the initial value of the storage is a special value ⊥, which is not a

valid input value for a write operation.

We assume that each user encrypts the data before invoking the write() routine.

To store file f , a user generates an encryption key K, encrypts f into v ← EK(f),
and invokes write(v). Key K is stored at the user’s machine. At a later time, the user

invokes read() to fetch v and runs f ← DK(v) to recover f .

The New Attacker Model. We assume the existence of a computationally-bounded ad-

versaryA which can acquire all cryptographic keys. The adversary may do so either (i)

by leveraging flaws or backdoors in the key-generation software [27], (ii) by compro-

mising the cloud infrastructure, or (iii) by compromising the user-device that stores the

keys.

Since multi-cloud systems spread data across different domains, we assume that the

adversary can compromise a large fraction (up to all but one) of the storage servers (cf.

Figure 1). We model this adversary assuming that it has access to all but λ ciphertext

blocks, where λ is a parameter of the encryption mode.While confidentiality with λ = 0
is clearly not achievable4, our goal is to design encryption modes where λ is as close as

possible to 1.
Note that if the adversary additionally learns the user’s credentials, logs into the

storage servers, and acquires all the ciphertext blocks, then no cryptographic mecha-

nism can preserve data confidentiality. However, we stress that compromising the en-

cryption key does not necessarily imply the compromise of the user access credentials.

4 Any party with access to all the ciphertext blocks and the encryption key can recover the

plaintext.



For example, encryption can occur on a specific-purpose device (e.g., [7]), and the key

can be leaked, e.g., by the manufacturer; in this scenario, the user credentials to access

the cloud servers are clearly not compromised.

3.2 The Notion of (n − λ) Key-Exposure Security

Existing security notions for encryption modes (e.g., Definition 1) capture data confi-

dentiality against an adversary which does not have the encryption key. That is, if the

key is leaked, the confidentiality of data is broken. We argue that the surge of “the new

attacker model”—where the attacker has unrestricted access to the encryption key—

clearly motivates the re-design of existing security notions. We capture the notion of

confidentiality in the new attacker model with a new game-based definition for encryp-

tion modes, that we call (n − λ) key-exposure or (n − λ)ke. Similar to [9], (n − λ)ke
specifies a block length l such that a ciphertext y can be written as y = y[1] . . . y[n]
where |y[i]| = l and n ≥ 1.

Exp
(n−λ)ke∏ (A, b)

a← K(1k)

x0, x1, state← AEFa,F−1
a (find)

yb ← E
Fa,F

−1

a (xb)

b′ ← AYb,E
Fa,F−1

a (guess, state)

The adversary has unrestricted access to EFa,F
−1

a in both the “find” and “guess”

stages. On input j, the oracle Yb returns yb[j] and accepts up to n − λ queries. On the

one hand, unrestricted oracle access to EFa,F
−1

a captures the adversary’s knowledge of

the secret key. On the other hand, the oracle Yb models the fact that the adversary has

access to all but λ ciphertext blocks. This is the case when, for example, λ ciphertext

blocks are stored in a server that the adversary cannot compromise (cf. Figure 1). The

advantage of the adversary is defined as:

Adv
(n−λ)ke∏ (A) = Pr[Exp

(n−λ)ke∏ (A, 1) = 1]− Pr[Exp
(n−λ)ke∏ (A, 0) = 1]

Definition 3. An encryption mode
∏

= K, E ,D is (n−λ)ke-secure if for any polynomial-

time adversary A, we have Adv
(n−λ)ke∏ (A) ≤ ǫ, where ǫ is a negligible function in the

security parameter.

Definition (n − λ)ke resembles Definition 2 but has two fundamental differences.

First, (n− λ)ke refers to a keyed scheme and gives the adversary unrestricted access to

the encryption/decryption oracles. Second, (n−λ)ke relaxes the notion of all-or-nothing
and parameterizes the number of ciphertext blocks that are given to the adversary. As

we will show later, this relaxation allows us to design encryption modes that are con-

siderably more efficient than existing modes which offer a comparable level of security.



We stress that (n − λ)ke does not consider confidentiality against “traditional” ad-

versaries (i.e., adversaries which do not know the encryption key). Therefore, we seek

for an encryption mode
∏

with the following properties:

1.
∏

must be ind-secure against an adversary which does not know the encryption

key (cf. Definition 1).

2.
∏

must be (n− λ)ke-secure against an adversary which knows the encryption key
(cf. Definition 3).

Possible Solutions: In what follows, we briefly overview several encryption modes

and argue about their security according to Definition 1 and to Definition 3.

CPA-encryption modes. Traditional CPA-encryption modes, such as the CTR mode,

provide ind-security but are only 1ke secure. That is, an adversary equipped with the

encryption key must only fetch two ciphertext blocks to break data confidentiality.5

CPA-encryption and secret-sharing. Another option is to rely on the combination of

CPA-secure encryption modes and secret-sharing. In particular, a file f is first encrypted

using a CPA-secure encryption mode. The resulting ciphertext is then secret-shared in n
shares with the reconstruction threshold set to (n−1). This scheme is clearly (n−1)ke
secure and is also secure according to Definition 1. However, the resulting ciphertext is

n times larger than the size of f , which makes it impractical for storing large files. We

also point out that secret-sharing the encryption key does not provide better security

against the adversary we consider. This is because, in our model, the adversary has

access to the encryption key at generation time, and before the key shares are distributed

across the servers.

AON encryption. Another alternative is to pre-process a message with an AONT and

then encrypt its output with a CPA-secure encryption mode.6 This paradigm is referred

to in the literature as AON encryption and was first suggested by [23]. Existing AON

encryption schemes require at least two rounds of block cipher encryption with two

different keys: the first round is the actual AONT that embeds the first encryption key

in the pseudo-ciphertext (cf. Section 2); a second round uses another encryption key that

is kept secret to guarantee CPA-security. AON encryption increases the storage size by a

single block. However, two encryption rounds constitute a considerable overhead when

encrypting and decrypting large files.

Clearly, all existing solutions are either not satisfactory in terms of security or incur

a large overhead and may not be suitable to store large files in a multi-cloud storage sys-

tem. In what follows, we introduce our solution, Bastion, which considerably improves

the performance of existing solutions.

5 We assume that the CTR encryption routine uses a random IV that is incremented at every

block encryption.
6 Recall that AONT alone, is not an encryption scheme and does not require the decryptor to

have any key material.



Fig. 2. Encryption in Bastion.

1: procedure E(K,x = x[1] . . . x[m])
2: n = m+ 1
3: y′[n]← {0, 1}l ⊲ y’[n] is the IV

for CTR
4: for i = 1 . . . n− 1 do

5: y′[i] = x[i]⊕ FK(y′[n] + i)
6: end for

7: t = y′[1]
8: for i = 2 . . . n do

9: t = t⊕ y′[i]
10: end for

11: for i = 1 . . . n do

12: y[i] = y′[i]⊕ t

13: end for

14: return y ⊲ y = y[1] . . . y[n]
15: end procedure

Fig. 3. Decryption in Bastion.

1: procedure D(K, y = y[0] . . . y[n])
2: t = y[n]
3: for i = 1 . . . n− 1 do

4: t = t⊕ y[i]
5: end for

6: for i = 1 . . . n do

7: y′[i] = y[i]⊕ t

8: end for

9: for i = 1 . . . n− 1 do

10: x[i] = y′[i]⊕ F−1

K
(y′[n] + i)

11: end for

12: return x ⊲ x = x[1] . . . x[n− 1]
13: end procedure

4 Bastion: An Efficient (n − 2)ke Primitive

In this section, we present an efficient (n − 2)ke secure encryption scheme, called

Bastion. Bastion first encrypts the data with one round of block cipher encryption, and

then applies an efficient linear post-processing to the ciphertext. By doing so, Bastion
relaxes the notion of all-or-nothing encryption at the benefit of increased performance.

4.1 Description

On input a security parameter k, the key generation algorithm of Bastion outputs a

key K ∈ {0, 1}k for the underlying block-cipher. Bastion leverages block cipher en-

cryption in the CTR mode, which on input a plaintext bitstream x, divides it in blocks

x[1], . . . , x[m], where m is odd7 such that each block has size l.8 The set of input

blocks is encrypted under key K, resulting in ciphertext y′ = y′[1], . . . , y′[m + 1],
where y′[m+ 1] is randomly chosen from {0, 1}l.

Next, Bastion applies a linear transformation to y′, inspired by [25]. Let n = m+1
and assume A to be an n-by-n matrix where element ai,j = 0l if i = j or ai,j = 1l,
otherwise.9 Bastion computes y = y′ · A, where additions and multiplications are

implemented by means of XOR and AND operations, respectively. That is, y[i] ∈ y is

computed as y[i] =
⊕j=n

j=1 (y
′[j] ∧ aj,i), for i = 1 . . . , n.

Given key K, inverting Bastion entails computing y′ = y · A−1 and decrypting y′

usingK.10

7 This requirement is essential for the correctness of the subsequent linear transformation on the

ciphertext blocks. That is, if m is not odd, then the transformation is not invertible.
8 l is the block size of the particular block cipher used.
9 0l and 1l denote a bitstring of l zeros and a bitstream of l ones, respectively.
10 Matrix A is invertible and A = A−1.



The pseudocode of the encryption and decryption algorithms of Bastion are shown

in Figure 2 and Figure 3, respectively. We efficiently implement the linear transform

using 2n XOR operations by computing:

t = y′[1]⊕ y′[2]⊕ · · · ⊕ y′[n],

y[i] = t⊕ y′[i], 1 ≤ i ≤ n.

Note that y′[1] . . . y′[n] computed up to line 6 is the output of the CTR encryption

mode, where y′[n] is the initialization vector. Similar to CTR encryption mode, the

final output of Bastion is one block larger than the original input.

Remark 2. We point out that Bastion is not restricted to the CTR mode and can be

instantiated with other ind-secure block cipher encryption modes (e.g., CBC, OFB).

4.2 Security Analysis

In what follows, we analyze the security of Bastion.

Lemma 1. Bastion is ind-secure.

Proof Sketch 1. Bastion uses an ind-secure encryption mode (CTR mode) to en-

crypt a message, and then applies a linear transformation on the ciphertext blocks. It is

straightforward to conclude that Bastion is ind-secure.

Lemma 2. Given any n− 2 blocks of y[1] . . . y[n] as output by Bastion, it is infeasible
to compute any y′[i], for 1 ≤ i ≤ n.

Proof Sketch 2. Let y = y[1], . . . , y[n] ← E(K,x = x[1] . . . x[m]). Note that given
any n− 1 blocks of y, the adversary can compute one block of y′. In particular, y′[i] =⊕j=n

j=1,j 6=i y[j], for any 1 ≤ i ≤ n. As it will become clear later, with one block y′[i] and
the encryption key, the adversary has non-negligible probability of winning the game

of Definition 3.

However, if only (n − 2) blocks of y are given, then each of the n blocks of y′

can take on any possible values in {0, 1}l, depending on the two unknown blocks of y.
Recall that each block y′[i] is dependent on n− 1 blocks of y and it is pseudo-random

as output by the CTR encryption mode. Therefore, given any (n− 2) blocks of y, then
y′[i] could take any of the 2l possibilities, for 1 ≤ i ≤ n.

Lemma 3. Bastion is (n− 2)ke secure.

Proof Sketch 3. The security proof ofBastion resembles the standard security proof of

the CTR encryption mode and relies on the existence of pseudo-random permutations.

In particular, given an adversaryAwhich has non-negligible advantage in the (n−λ)ke
experiment with λ = 2, we can construct an adversary B which has non-negligible

advantage in distinguishing between a true random permutation and a pseudo-random

permutation. Appendix A provides the details of the proof.

Remark 3. Bastion is not (n − 1)ke secure. As shown in the proof of Lemma 2, the

adversary can recover one block of y′ given any (n − 1) blocks of y. If the adversary
recovers y′[n] that is used as an IV in the CTR encryption mode, the adversary can

easily win the (n − 1)ke game. Recall that our security definition allows the adversary

to learn the encryption key.



4.3 Performance Analysis

Table 1 compares the performance of Bastion with the encryption schemes considered

so far, in terms of computation, storage and security.

Given a plaintext of m blocks, the CTR encryption mode outputs n = m + 1
ciphertext blocks, computed with (n − 1) block cipher operations and (n − 1) XOR
operations. The CTR encryption mode is ind-secure, but only 2ke secure.

Rivest AONT outputs a pseudo-ciphertext of n = m+1 blocks using 2(n−1) block
cipher operations and 3(n−1) XOR operations. Desai AONT outputs the same number

of blocks but requires only (n−1) block cipher operations and 2(n−1)XOR operations.

Both Rivest AONT and Desai AONT are, however, not ind-secure since the encryption

key used to compute the AONT output is embedded in the output itself.11 Encrypting

the output of Rivest AONT or Desai AONT with a standard encryption mode (both [9]

and [23] use the ECB encryption mode), requires additional n block cipher operations,

and yields an AON encryption that is ind-secure12 and (n− 1)ke secure. Secret-sharing
encryption (cf. 3.2) is ind-secure and (n− 1)ke secure. It requires (n− 1) block cipher
operations and n XOR operations if additive secret sharing is used. However secret-

sharing encryption results in a prohibitively large storage overhead of n2 blocks.

Bastion also outputs n = m+1 ciphertext blocks. It achieves ind-security and (n−
2)ke security with only (n− 1) block cipher operations and (3n− 1) XOR operations

(n− 1) XOR operations for the CTR encryption and 2n XOR operations for the linear

transformation).

We conclude thatBastion achieves a solid tradeoff between the computational over-

head of existing AON encryption modes and the exponential storage overhead of secret-

sharing techniques, while offering a comparable level of security. In Section 5, we con-

firm the superior performance of Bastion by means of implementation.

5 Implementation and Evaluation

In this section, we describe and evaluate a prototype implementation modeling a read-

write storage system based on Bastion.

5.1 Implementation Setup

Our prototype, implemented in C++, emulates the read-write storage model of Sec-

tion 3.1. We instantiate Bastion with the CTR encryption mode (cf. Figure 2) using

both AES128 and Rijandael256, implemented using the libmcrypt.so.4.4.7 library.

Since this library does not natively support the CTR encryption mode, we use it for

the generation of the CTR keystream, which is later XORed with the plaintext.

We compare Bastion with the AON encryption schemes of Rivest [23] and De-

sai [9]. For baseline comparison, we include in our evaluation the CTR encryption

11 Note that removing the pseudo-ciphertext block where the key is embedded would not achieve

ind-security, because the transformation is not randomized.
12 Security according to Definition 1 is achieved because the key used to create the AONT is

always random, even if the key used to add the outer layer of encryption is fixed.



Table 1. Comparison between Bastion and existing constructs. We assume a plaintext of m =
n − 1 blocks. Since all schemes are symmetric, we only show the computation overhead for the

encryption/encoding routine in the column “Computation” (“b.c.” is the number of block cipher

operations; “XOR” is the number of XOR operations.

Computation Storage (blocks) ind-secure (n− λ)ke secure

CTR encryption mode
n− 1 b.c. n yes 1ke
n− 1 XOR

Rivest AONT [23]
2(n− 1) b.c. n no N/A

3(n− 1) XOR

Desai AONT [9]
n− 1 b.c. n no N/A

2(n− 1) XOR

Rivest AON Encryption [23]
3n− 2 b.c. n yes (n− 1)ke

3(n− 1) XOR

Desai AON Encryption [9]
2n− 1 b.c. n yes (n− 1)ke

2(n− 1) XOR

CTR and Secret-sharing
n− 1 b.c. n2 yes (n− 1)ke

2n− 1 XOR

Bastion
n− 1 b.c. n yes (n− 2)ke

3n− 1 XOR

mode and the AONTs due to Rivest [23] and Desai [9], which are used in existing dis-

persed storage systems, e.g., Cleversafe [22]. We do not evaluate the performance of

secret-sharing because of its prohibitively large storage overhead (squared in the num-

ber of input blocks).

We evaluate our implementations on an Intel(R) Xeon(R) CPU E5-2470 running at

2.30GHz. Note that the CPU processor clock frequency might have been higher dur-

ing the evaluation due to the TurboBoost technology of the CPU. In our evaluation, we

abstract away the effects of network delays and congestion, and we only assess the pro-

cessing performance of the encryption for the considered schemes. This is a reasonable

assumption since all schemes are length-preserving (plus an additional block of l bits),
and are therefore likely to exhibit the same network performance. Moreover, we only

measure the performance incurred during encryption/encoding, since all schemes are

symmetric, and therefore the decryption/decoding performance is comparable to that of

the encryption/encoding process.

We measure the peak throughput and the latency exhibited by our implementations

with respect to various file sizes and block sizes. For each data point, we report the

average of 30 independent runs. Due to their small width (in the order of 0.1), we do

not show the corresponding 95% confidence intervals.

5.2 Evaluation Results

Our evaluation results are reported in Figure 4 and Figure 5. Both figures show that

Bastion considerably improves (by more than 50%) the performance of existing (n −
1)ke encryption schemes and only incurs a negligible overhead when compared to ex-

isting semantically secure encryption modes (e.g., the CTR encryption mode) that are

only 2ke secure.
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Fig. 4. Peak throughput comparison. Unless otherwise specified, the underlying block cipher

is AES128. Each data point is averaged over 30 runs. Histograms in dark blue depict encryp-

tion modes which offer comparable security to Bastion. Light blue histograms refer to encryp-

tion/encoding modes where individual ciphertext blocks can be inverted when the key is exposed.

In Figure 4, we show the peak throughput achieved by the CTR encryption mode,

Bastion, Desai AONT/AON, and Rivest AONT/AON schemes. The peak throughput

achieved by Bastion reaches almost 72 MB/s and is only 1% lower than the one ex-

hibited by the CTR encryption mode. When compared with existing (n − 1)ke secure
schemes, such as Desai AON encryption and Rivest AON encryption, our results show

that the peak throughput of Bastion is almost twice as large as that of Desai AON

encryption, and more than three times larger than the peak throughput of Rivest AON

encryption.

We also evaluate the performance of Bastion, with respect to different block sizes

of the underlying block cipher. Our results show that—irrespective of the block size—

Bastion only incurs a negligible performance deterioration in peak throughput when

compared to the CTR encryption mode. Figures 5(a) and 5(b) show the latency (in

ms) incurred by the encryption/encoding routines for different file sizes. The latency

of Bastion is comparable to that of the CTR encryption mode—for both AES128 and

Rijandael256—and results in a considerable improvement over existing AON encryp-

tion schemes (more than 50% gain in latency).

6 Practical Insights

In this section, we discuss practical insights with respect to the integration of Bastion
within existing dispersed storage systems.

6.1 Bastion in Dispersed Storage Systems

Bastion is (n−2)ke secure according to Definition 3. However, in a multi-cloud storage

system, since each server stores at least two ciphertext blocks (i.e., 2l bits of data)13, a
(n − 2)ke secure scheme like Bastion clearly preserves data confidentiality unless all

servers are compromised.

In scenarios where servers can be faulty, Bastion can be combined with informa-

tion dispersal algorithms (e.g., [21]) to provide data confidentiality and fault tolerance.

13 For example, if a 10MB file is distributed across 10 servers, each server would store around 1

MB of data.
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Fig. 5. Performance evaluation of Bastion. Each data point in is averaged over 30 independent

runs. Unless otherwise specified, the underlying block cipher is AES-128. CTR(256) and Bas-

tion(256) denote the CTR encryption mode and Bastion encryption routine, respectively, instan-

tiated with Rijandael256.

Recall that information dispersal algorithms (IDA), parameterized with t1, t2 (where

t1 ≤ t2), encode data into t2 symbols such that the original data can be recovered from

any t1 encoded symbols.

In our multi-cloud storage system (cf. Section 3.1), a file f of size ml-bits results
in a ciphertext of n = m + 1 blocks (of l bits each) when encrypted using Bastion.14

The ciphertext is then fed to the IDA encoding routine with parameters t1 ≤
n
2 and

t2 = s > t1, where s is the number of available servers. By setting t1 ≤
n
2 , we

ensure that each symbol encodes at least two ciphertext blocks worth of data. Finally,

the encoded symbols are input to the write() routine that distributes symbols evenly

to each of the storage servers. Recovering f via the read() routine entails fetching at

least t1 distinct symbols from any subset of the servers and decoding them via the IDA

decoding routine. The resulting ciphertext can be decrypted using Bastion to recover

the original file f .
By doing so, data confidentiality is preserved in the new attacker model unless t1

servers are compromised (and their stored data is acquired). Furthermore, data avail-

ability is guaranteed in spite of s− t1 server failures.

6.2 Deployment within HYDRAstor

We now discuss the integration of a prototype implementation of Bastion within the

HYDRAstor grid storage system [11,20]. HYDRAstor is a commercial secondary stor-

age solution for enterprises, which consists of a back-end architectured as a grid of

storage nodes built around a distributed hash table. The front-end of HYDRAstor con-

sists of a layer of access nodes which are scaled for performance. HYDRAstor relies

on system-wide deduplication, and supports online extensions and upgrades. It also tol-

erates multiple disk, node and network failures, rebuilds the data automatically after

14 SinceBastion is (n−2)ke secure, an adversary equipped with the encryption key, must collect

at least n− 1 out of n ciphertext blocks to break data confidentiality.



failures, and informs users about recoverability of the deposited data. The reliability

and availability of the stored data can be dynamically adjusted by the clients with each

write operation, as the back-end supports multiple data resiliency classes [11].

HYDRAstor distributes written data to multiple disks using the distributed resilient

data technology (DRD); the combination of Bastion with DRD ensures that an ad-

versary which has the encryption key and compromises a subset of the disks (i.e., de-

termined by the reconstruction threshold), cannot acquire any meaningful information

about the data stored on the disk (cf. Section 6.1).

In order to better assess the performance impact of Bastion in HYDRAstor, we

evaluated the performance of Bastion in the newest generation HYDRAstor HS8-4000

series system, which uses CPUs with accelerated AES encryption (i.e., the AESNI in-

struction set). In our experiments, all written data was unique (non-duplicate) to remove

the effect of data deduplication. Our results show that the write bandwidth was not af-

fected by the integration of Bastion. On the other hand, the read bandwidth decreased

only by 3%. In both read and write operations, the CPU utilization in the system only

increased marginally.

These experiments clearly suggest that Bastion can be integrated in existing com-

mercial storage systems in order to strengthen the security of these systems in the new

attacker model, without affecting performance.

7 Related Work

To the best of our knowledge, this is the first work that addresses the problem of se-

curing data stored in multi-cloud storage systems when the cryptographic material

is exposed. In the following, we survey relevant related work in the areas of deni-

able encryption, all-or-nothing transformations, secret-sharing techniques, and leakage-

resilient cryptography.

Deniable Encryption: Our work shares similarities with the notion of “deniable en-

cryption” [6,12,16]. An encryption scheme is “deniable” if—when coerced to reveal the

encryption key—the legitimate owner can make the ciphertext “look like” the encryp-

tion of a plaintext different from the original one, thus keeping the original plaintext

private. Deniable encryption is typically achieved by constructing a ciphertext which

can be decrypted into a number of plausible plaintexts, under different keying material.

Deniable encryption therefore aims to deceive an adversary which does not know all the

keying material but, e.g., can acquire a subset of the keys. Unlike deniable encryption,

Bastion is secure against an adversary which knows all the necessary keying material.

All or Nothing Transformations: All-or-nothing transformations (AONTs) were first

introduced in [23] and later studied in [5, 9]. The majority of AONTs leverage a secret

key that is embedded in the output blocks. Once all output blocks are available, the key

can be recovered and single blocks can be inverted. AONT, therefore, is not an encryp-

tion scheme and does not require the decryptor to have any key material. To construct an

encryption scheme which is secure in the new attacker model, one alternative is to pre-

process a message with an AONT and encrypt its output with a CPA-secure encryption

mode. This paradigm is referred to in the literature as AON encryption [5,9,23]. Exist-

ing AON encryption schemes require at least two rounds of encryption, while Bastion



achieves a comparable level of security with considerably better performance (by more

than 50%). Resch et al. [22] combine AONT and information dispersal to provide both

fault-tolerance and data secrecy, in the context of distributed storage systems. In [22],

however, an adversary which knows the encryption key can decrypt data stored on sin-

gle servers.

Secret Sharing: Secret sharing schemes [3] allow a dealer to distribute a secret among

a number of shareholders, such that only authorized subsets of shareholders can re-

construct the secret. In threshold secret sharing schemes [8, 24], the dealer defines a

threshold t and each set of shareholders of cardinality equal to or greater than t is

authorized to reconstruct the secret. Secret sharing guarantees security against a non-

authorized subset of shareholders; however, they incur a high computation/storage cost,

which makes them impractical for sharing large files.

Rabin [21] proposed an information dispersal algorithm with smaller overhead than

the one of [24], however, this proposal does not provide any security guarantees when a

small number of shares (less than the reconstruction threshold) are available. Krawczyk

[17] proposed to combine both Shamir’s [24] and Rabin’s [21] approaches; in [17] a

file is first encrypted using AES and then dispersed using the scheme in [21], while the

encryption key is shared using the scheme in [24]. In Krawczyk’s scheme, individual

ciphertext blocks encrypted with AES can be decrypted once the key is exposed.

Leakage-resilient Cryptography: Leakage-resilient cryptography aims at designing

cryptographic primitives that can stand against adversary which learns partial informa-

tion about the secret state of a system, e.g., through side-channels [19]. Different mod-

els allow to reason about the “leaks” of real implementations of cryptographic primi-

tives [1, 10, 19]. All of these models, however, limit in some way the knowledge of the

secret state of a system by the adversary. In contrast, the adversary is given all the secret

material in our model.

8 Conclusion

In this paper, we addressed the problem of securing data outsourced to the cloud in

the new attacker model, in which the adversary can acquire the encryption keys (e.g.,

using bribe, coercion). For this purpose, we introduced a novel security definition that

captures data confidentiality against the new adversary. We then proposed Bastion, a
primitive which ensures the confidentiality of encrypted data even when the adversary

has the encryption key, and all but two ciphertext blocks.

Bastion is most suitable for settings where the ciphertext blocks are stored in multi-

cloud storage systems. In these settings, the adversary would need to acquire the en-

cryption key, and to compromise all servers, in order to recover any single block of

plaintext.

We analyzed the security of Bastion and evaluated its performance in realistic set-

tings. Bastion considerably improves (by more than 50%) the performance of existing

primitives which offer comparable security in the new attacker model, and only incurs

a negligible overhead (less than 5%) when compared to existing semantically secure

encryption modes (e.g., the CTR encryption mode). Finally, we showed how Bastion
can be practically integrated within commercial dispersed storage systems.
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A Proof of Lemma 3

Given an adversary A such that Adv
(n−2)ke
Bastion (A) > ǫ, we show, in what follows, how to

construct an adversary B which has non-negligible advantage in distinguishing between

a true random permutation and a pseudo-random permutation.

Adversary B has access to oracle O and uses it to answer the encryption and de-

cryption queries issued by A. In particular, A’s queries are answered as follows:

– Decryption query for y[1] . . . y[n]
1. Compute t = y[1]⊕ . . .⊕ y[n]
2. Compute y′[i] = y[i]⊕ t, for 1 ≤ i ≤ n
3. Compute x[i] = y′[i]⊕O(y′[n], i), for 1 ≤ i ≤ n− 1
4. Return x[1] . . . x[n− 1]

– Encryption query for x[1] . . . x[n− 1]
1. Pick random y′[n] ∈ {0, 1}l

2. Compute y′[i] = x[i]⊕O(y′[n], i), for 1 ≤ i ≤ n− 1
3. Compute t = y′[1]⊕ . . .⊕ y′[n]
4. Compute y[i] = y′[i]⊕ t, for 1 ≤ i ≤ n
5. Return y[1] . . . y[n]

When A outputs two messages x1[1] . . . x1[n− 1] and x2[1] . . . x2[n− 1], B picks

b ∈ {0, 1} at random and does the following:

1. Pick random y′b[n] ∈ {0, 1}
l

2. Compute y′b[i] = xb[i]⊕O(y′b[n], i), for 1 ≤ i ≤ n− 1
3. Compute t = y′b[1]⊕ . . .⊕ y′b[n]
4. Compute yb[i] = y′b[i]⊕ t, for 1 ≤ i ≤ n

At this point,A selects (n−2) indexes i1, . . . in−2 and B returns the corresponding

yb[i1], . . . , yb[in−2]. Encryption/decryption queries are answered as above. When A
outputs its answer b′, B outputs 1 if b = b′, and 0 otherwise. It is straightforward to see
that if A has advantage larger than negligible to guess b, then B has advantage larger



than negligible to distinguish a true random permutation from a pseudorandom one.

Furthermore, the number of queries issued by B to its oracle amounts to the number

of encryption and decryption queries issued by A. Note that by Lemma 2, during the

guess stage, A cannot issue a decryption query on the challenge ciphertext since with

only (n− 2) blocks, finding the remaining blocks is infeasible.


