
Round-Efficient Black-Box Construction of Composable

Multi-Party Computation

Susumu Kiyoshima

NTT Secure Platform Laboratories, Japan.
kiyoshima.susumu@lab.ntt.co.jp

Abstract

We present a round-efficient black-box construction of a general MPC protocol that
satisfies composability in the plain model. The security of our protocol is proven in angel-
based UC framework under the minimal assumption of the existence of semi-honest obliv-
ious transfer protocols. When the round complexity of the underlying oblivious transfer
protocol is rot(n), the round complexity of our protocol is max(Õ(log2 n), O(rot(n))).
Since constant-round semi-honest oblivious transfer protocols can be constructed un-
der standard assumptions (such as the existence of enhanced trapdoor permutations),

our result gives Õ(log2 n)-round protocol under these assumptions. Previously, only an
O(max(nε, rot(n)))-round protocol was shown, where ε > 0 is an arbitrary constant.

We obtain our MPC protocol by constructing a Õ(log2 n)-round CCA-secure com-
mitment scheme in a black-box way under the assumption of the existence of one-way
functions.

1 Introduction

Protocols for secure multi-party computation (MPC) enable mutually distrustful parties to
compute a functionality without compromising the correctness of the outputs and the privacy
of their inputs. In the seminal work of Goldreich et al. [GMW87], a general MPC protocol was
constructed in a model with malicious adversaries and a dishonest majority.1 (By “a general
MPC protocol,” we mean a protocol that can be used to securely compute any functionality.)

In this paper, we consider a black-box construction of a general MPC protocol that guar-
antees composable security. Before stating our result, we explain black-box constructions and
composable security.

Black-Box Constructions.

A construction of a protocol is black-box if it uses the underlying cryptographic primitives
only in a black-box way (that is, only through their input/output interfaces). In contrast, if
a construction uses the codes of the underlying primitives, it is non-black-box.

As argued in [IKLP06], constructing black-box constructions is important for both theo-
retical and practical reasons. Theoretically, it is important because understanding whether

This is the full version of a paper that appears in CRYPTO 2014 [Kiy14].
1In the following, we consider only such a model.

1

non-black-box use of cryptographic primitives is necessary for a cryptographic task is of great
interest. Practically, it is important because black-box constructions are typically more effi-
cient than non-black-box ones in terms of both communication complexity and computational
complexity. In fact, since known non-black-box constructions of general MPC protocols com-
pute general NP reductions to execute zero-knowledge proofs (this is where the codes of the
primitives are used), they are highly inefficient and hard to implement. Thus, construct-
ing black-box constructions of general MPC protocols is an important step toward practical
general MPC protocols.

Recently, a series of works studied black-box constructions of general MPC protocols.
Ishai et al. [IKLP06] showed the first construction of a general MPC protocol that uses the
underlying low-level primitives (such as enhanced trapdoor permutations and homomorphic
public-key encryption schemes) in a black-box way. Combined with the subsequent work of
Haitner [Hai08], which showed a black-box construction of a (malicious) oblivious transfer
protocol based on a semi-honest oblivious transfer protocol, their work gives a black-box
construction of a general MPC protocol based on a semi-honest oblivious transfer proto-
col [HIK+11]. Subsequently, Wee [Wee10] reduced the round complexity of [IKLP06] to
O(log∗ n), and Goyal [Goy11] further reduced the round complexity to O(1).

These black-box protocols are proven to be secure in the stand-alone setting. That is, the
protocols of [IKLP06, Wee10, Goy11] are secure in the setting where a single instance of the
protocol is executed at a time.

Composable Security.

Compared with the stand-alone setting, the concurrent setting is more general and realistic
security notion. In the concurrent setting, many instances of many different protocols are
concurrently executed in an arbitrary schedule. Thus, in the concurrent setting, adversaries
can perform a coordinated attack in which adversaries choose messages in each instance based
on the executions of the other instances.

As a strong and realistic security notion in the concurrent setting, Canetti [Can01] pro-
posed universally composable (UC) security. The main advantage of UC security is compos-
ability, which guarantees that when we compose many UC-secure protocols, we can prove
the security of the resultant protocol from the security of its components. Thus, UC security
enables us to construct secure protocols in a modular way. Composability also guarantees
that a protocol remains secure even when it is concurrently executed with any other protocols
in any schedule. Thus, UC-secure protocols are secure in the concurrent setting. Canetti et
al. [CLOS02] constructed a UC-secure general MPC protocol in the common reference string
(CRS) model (i.e., in a model in which all parties are given a common public string that is cho-
sen by a trusted third party). Black-box constructions of UC-secure general MPC protocols
were shown in the FOT-hybrid model [IPS08] and in the FCOM-hybrid model [CDSMW09]
(i.e., in a model with the ideal oblivious transfer functionality and in a model with the ideal
commitment functionality).

UC security, however, turned out to be too strong to achieve in the plain model. That
is, even with non-black-box use of cryptographic primitives, we cannot construct UC-secure
general MPC protocols in a model with no trusted setup [CF01, CKL03].

To achieve composable security in the plain model, Prabhakaran and Sahai [PS04] pro-
posed a variant of UC security called angel-based UC security. Roughly speaking, angel-
based UC security is the same as UC security except that the adversary and the sim-
ulator have access to an additional entity—the angel—that allows some judicious use of

2

super-polynomial-time resources. Although angel-based UC security is weaker than UC
security, angel-based UC security guarantees meaningful security in many cases. (For ex-
ample, angel-based UC security implies super-polynomial-time simulation (SPS) security
[Pas03, BS05, GGJS12, PLV12]. In SPS security, we allow the simulator to run in super-
polynomial time; thus SPS security guarantees that whatever an adversary can do in the
real world can also be done in the ideal world in super-polynomial time.) Furthermore, it
was proven that, like UC security, angel-based UC security guarantees composability. Prab-
hakaran and Sahai [PS04] presented a general MPC protocol that satisfies angel-based UC
security in the plain model based on new assumptions. Subsequently, Malkin et al. [MMY06]
constructed another general MPC protocol that satisfies angel-based UC security in the plain
model based on a new number-theoretic assumption.

Recently, several works constructed general MPC protocols with angel-based UC secu-
rity under standard assumptions. Canetti et al. [CLP10] constructed a polynomial-round
general MPC protocol in angel-based UC security assuming the existence of enhanced trap-
door permutations. Subsequently, Lin [Lin11] and Goyal et al. [GLP+12] reduced the round
complexity to Õ(log n) under the same assumption. They also showed that with enhanced
trapdoor permutations that are secure against quasi-polynomial-time adversaries, the round
complexity of their protocols can be reduced to O(1).

The construction of these MPC protocols are non-black-box. That is, in the protocols of
[CLP10, Lin11, GLP+12], the underlying primitives are used in a non-black-box way.

Black-Box Constructions of Composable Protocols.

Lin and Pass [LP12] showed the first black-box construction of a general MPC protocol that
guarantees composable security in the plain model. The security of their protocol is proven
under angel-based UC security and based on the minimal assumption of the existence of
semi-honest oblivious transfer (OT) protocols. The round complexity of their protocol is
O(max(nε, rot(n))), where ε > 0 is an arbitrary constant and rot(n) is the round complexity
of the underlying semi-honest OT protocols. Thus, with enhanced trapdoor permutations
(from which we can construct constant-round semi-honest OT protocols), their result gives an
O(nε)-round protocol. Subsequently, an O(1)-round protocol was constructed in [KMO14]
from O(1)-round semi-honest OT protocols that are secure against quasi-polynomial-time
adversaries and one-way functions that are secure against subexponential-time adversaries.

Summarizing the state-of-the-art, for composable protocols in the plain model, we have

• Õ(log n)-round non-black-box constructions under a standard polynomial-time hardness
assumption [Lin11, GLP+12],

• a O(nε)-round black-box construction under a standard polynomial-time hardness as-
sumption [LP12], and

• O(1)-round black-box or non-black-box constructions under standard super-polynomial-
time hardness assumptions [Lin11, GLP+12, KMO14].

Thus, for composable protocols based on standard polynomial-time hardness assumptions,
there exists a gap between the round complexity of the non-black-box protocols (Õ(log n)
rounds [Lin11, GLP+12]) and that of the black-box protocols (O(nε) rounds [LP12]). The
following is therefore an important open question.

3

Does there exist a round-efficient black-box construction of a general MPC
protocol that guarantees composability in the plain model under polynomial-time
hardness assumptions?

1.1 Our Result

In this paper, we narrow the gap between the round complexity of black-box composable
general MPC protocols and the round complexity of non-black-box ones.

Main Theorem (Informal). Assume the existence of rot(n)-round semi-honest oblivious
transfer protocols. Then, there exists a max(Õ(log2 n), O(rot(n)))-round black-box construc-
tion of a general MPC protocol satisfying angel-based UC security in the plain model.

Recall that, assuming the existence of enhanced trapdoor permutations, we have a constant-
round semi-honest OT protocol. Thus, under this assumption, our main theorem gives a
Õ(log2 n)-round protocol.

We prove our main theorem by constructing a Õ(log2 n)-round black-box construction of
a CCA-secure commitment scheme [CLP10, Lin11, LP12, GLP+12, KMO14] from one-way
functions.

Theorem (Informal). Assume the existence of one-way functions. Then, there exists a
Õ(log2 n)-round black-box construction of a CCA-secure commitment scheme.

Roughly speaking, a CCA-secure commitment scheme is a tag-based commitment scheme
(i.e., a commitment scheme that takes an n-bit string—a tag—as an additional input) such
that the hiding property holds even against adversaries that interact with the committed-value
oracle during the interaction with the challenger. The committed-value oracle interacts with
the adversary as an honest receiver in many concurrent sessions of the commit phase. At the
end of each session, if the commitment of this session is invalid or has multiple committed
values, the oracle returns ⊥ to the adversary. Otherwise, the oracle returns the unique
committed value to the adversary.

Lin and Pass [LP12] showed that in angel-based UC security, an O(max(rcca(n), rot(n)))-
round general MPC protocol can be obtained in a black-box way from a rcca(n)-round CCA-
secure commitment scheme and a rot(n)-round semi-honest OT protocol. Thus, we can prove
our main theorem by combining the above theorem with the result of [LP12].

1.2 Outline

In Section 2, we give an overview of our CCA secure commitment scheme. In Section 3,
we give definitions that are used throughout the paper. In Section 4, we show the building
blocks that are used in our CCA-secure commitment scheme. In Section 5, we show our
CCA-secure commitment scheme and prove its security. In Section 6, we show our main
theorem. In Appendix A, we explain a technical detail for the proof given in Section 5.1.1.
In Appendix B, we prove a lemma that is used in Section 4.2.

2 Overview of Our CCA-Secure Commitment Scheme

Key elements for obtaining CCA-secure commitment schemes are concurrent extractability
and non-malleability. With these elements, it can be shown that the committed-value oracle

4

is useless for breaking the hiding property. Non-malleability is used to show that the sessions
between the adversary and the oracle are independent of the session between the adversary
and the challenger. Concurrent extractability is used to show that the committed-value oracle
can be emulated in polynomial time by extracting the committed values from the adversary.

Before constructing our CCA-secure commitment scheme, we first construct two build-
ing blocks: (i) a commitment scheme CECom′ that is concurrently extractable without over-
extraction and (ii) a one-one CCA-secure commitment scheme CCACom1:1. The former guar-
antees concurrent extractability and the latter guarantees (slightly strong) non-malleability.

2.1 Building Block 1: Concurrently Extractable Commitment Scheme
without Over-Extraction

A commitment scheme is concurrently extractable if a rewinding extractor can extract the
committed values from any committer even in the concurrent setting, and a concurrently
extractable commitment scheme is concurrently extractable without over-extraction if the
extractor outputs ⊥ whenever the commitment is invalid.2 (Basic extractability, in contrast,
allows the extractor to output an arbitrary value when the commitment is invalid.) There
exists a commitment scheme CECom that is concurrently extractable with over-extraction
based on the existence of one-way functions [MOSV06].

To construct a commitment scheme that is concurrently extractable without over-extraction,
we start from the following scheme (in which the cut-and-choose technique is used in the same
way as in the previous works of black-box protocols [CDSMW08, CDSMW09, Wee10, LP12,
KMO14]).

1. Let v be the value to be committed. Then, the committer computes an (n + 1)-out-
of-10n Shamir’s secret sharing s = (s1, . . . , s10n) of value v and commits to each sj in
parallel by using CECom.

2. The receiver sends a random subset Γ ⊂ [10n] of size n.

3. The committer reveals sj for every j ∈ Γ and decommits the corresponding commit-
ments.

4. The receiver accepts the commitment if and only if the decommitments of CECom are
valid for every j ∈ Γ.

For j ∈ [10n], let the j-th column be the j-th CECom commitment. The use of the cut-
and-choose technique guarantees that when the receiver accepts a commitment, the CECom
commitments are valid in “most” columns. Then, since we can extract the committed value
of CECom whenever the CECom commitment is valid, we can extract sj in most columns on
an accepted commitment. We can therefore recover v from the extracted values of the CECom
commitments by using the error-correcting property of Shamir’s secret sharing scheme.3

Unfortunately, although the above scheme is concurrently extractable without over-extraction,
we cannot prove its hiding property. This is because the receiver requests the committer to
open adaptively-chosen CECom commitments (in other words, the receiver performs a selec-
tive opening attack).

2A commitment is valid if there exists a valid decommitment of this commitment; otherwise, it is invalid.
A commitment is accepted if the receiver does not abort in the commit phase; otherwise, it is rejected.

3Recall that Shamir’s secret sharing is also a codeword of Reed-Solomon code.

5

We therefore modify the scheme in the following way. At the beginning of the scheme, we
let the receiver commit to Γ by using a statistically binding commitment scheme Com. Now,
since the receiver no longer choose the subset adaptively, we can prove the hiding property
by a standard technique. Furthermore, at first sight, the hiding property of Com seems to
guarantee that the scheme remains to be concurrently extractable without over-extraction.

In the modified scheme, however, we cannot prove that the scheme is concurrently ex-
tractable without over-extraction. This is because we can no longer show that most of the
CECom commitments are valid in an accepted commitment. Consider, for example, that there
exists a cheating committer C∗ such that receiving a Com commitment to Γ at the beginning,
C∗ somehow generates an invalid CECom commitment in the j-th column for every j 6∈ Γ
and commits to 0 in the j-th column for every j ∈ Γ. Then, although C∗ seems to break the
hiding property of Com, we do not know how to use C∗ to break the hiding property of Com.
To see this, observe the following. Recall that since CECom is an extractable commitment
scheme with over-extraction, the extractor of CECom may output an arbitrary value when the
CECom commitment is invalid. Thus, when we extract the committed values of CECom from
C∗, the extracted value may be 0 in every column. Hence, although C∗ behaves differently in
CECom based on the value of Γ, we cannot detect it.

To overcome this problem, we use the commitment scheme wExtCom that was introduced
by Goyal et al. [GLOV12]. The commit phase of wExtCom consists of three stages: commit,
challenge, and reply. In the commit stage, the committer commits to random a0, a1 ∈
{0, 1}n such that a0 ⊕ a1 = v; in the challenge stage, the receiver sends a random bit
ch ∈ {0, 1}; in the reply stage, the committer reveals ach and decommits the corresponding
commitment. We note that wExtCom is extractable only in a weak sense—extractions may
fail with probability at most 1/2—but wExtCom is extractable without over-extraction. That
is, the extractor may output ⊥ with probability at most 1/2, but when the extractor outputs
v 6= ⊥, the commitment is valid and its committed value is v. We also note that wExtCom
satisfies the following property: For a fixed transcript of the commit stage, if a cheating
committer returns a valid reply with probability 1/poly(n) for both ch = 0 and ch = 1, then
the committed value can be extracted with probability 1 in expected polynomial time.

With wExtCom, we modify our scheme as follows: After committing to s with CECom,
the committer commits to (sj , dj) for each j ∈ [10n] in parallel with wExtCom, where (sj , dj)
is a decommitment of the j-th CECom commitment. Then, we show that in most columns
on an accepted commitment, the wExtCom commitment is valid and its committed value is a
valid decommitment of the corresponding CECom commitment. Toward this end, we observe
the following.

• If a cheating committer generates an accepting commitment with non-negligible prob-
ability, then in wExtCom of more than 9n columns, the cheating committer returns a
valid reply with non-negligible probability for both ch = 0 and ch = 1. (If the cheating
committer returns a valid reply with non-negligible probability for both ch = 0 and
ch = 1 in wExtCom of at most 9n columns, then there are n columns in which the
wExtCom commitment is accepted with probability at most 1/2 + negl(n). Thus, the
probability that all wExtCom commitments are accepted is negligible, and therefore the
commitment is accepted with at most negligible probability.4)

• Thus, from the property of wExtCom, we can extract the committed values of wExtCom

4The formal proof is more complicated because the wExtCom commitments are executed in parallel and
thus the columns are not independent of each other.

6

without over-extraction in most columns.

• Then, from the property of the cut-and-choose technique, we can show that in most
columns of an accepted commitment, the wExtCom commitment is valid and its com-
mitted value is a valid decommitment of the corresponding CECom commitment. Note
that since the committed values of wExtCom commitments can be extracted without
over-extraction, we can show that the cheating committer cannot give invalid wExtCom
commitments in many columns.

Then, since this implies that most of the CECom commitments are valid whenever the commit-
ment is accepted, we can extract the committed value of the scheme without over-extraction
as before, i.e., by extracting the committed values of CECom commitments and using the
error-collecting property of Shamir’s secret sharing scheme.

2.2 Building Block 2: One-One CCA-Secure Commitment Scheme

A one-one CCA-secure commitment scheme, which is closely related to a non-malleable com-
mitment scheme, is one that is CCA secure w.r.t. a restricted class of adversaries that
execute only a single session with the committed-value oracle and immediately receive the
answer from the oracle at the end of the session.5

We construct a black-box O(log n)-round one-one CCA-secure commitment scheme by
simplifying the CCA-secure commitment scheme of [LP12] and using the DDN logn trick
[DDN00, LPV08], which transforms a concurrent non-malleable commitment scheme for tags
of length O(log n) to a non-malleable commitment scheme for tags of length O(n) without
increasing the round complexity. In the following, we assume the familiarity to the scheme of
[LP12]. Roughly speaking, the scheme of [LP12] consists of polynomially-many rows—each
row is a parallel execution of (a part of) the trapdoor commitment scheme of [PW09]—and
a cut-and-choose phase, which forces the committer to give valid and consistent trapdoor
commitments in every row. If we reduce the number of rows from poly(n) to `(n) in the
scheme of [LP12], where `(n) is the length of the tags, the resultant scheme is no longer CCA
secure. It is easy to verify, however, that the scheme is parallel CCA secure, i.e., it is CCA
secure w.r.t. a restricted class of adversaries that give a single parallel query to the oracle
and receive the answers immediately. (This is because when the adversaries give only a single
parallel query, the recursive rewinding does not occur in the extraction and thus we require
only a single rewinding opportunity.) Then, we set `(n) := O(log n) and apply the DDN
log n trick to the above parallel CCA-secure commitment scheme. It is not hard to see that
the resultant scheme is one-one CCA secure.

2.3 CCA-Secure Commitment Scheme from the Building Blocks

Given CECom′ and CCACom1:1, we construct a CCA-secure commitment scheme CCACom
roughly as follows, where the committer commits to a value v with tag tag.

1. The receiver commits to a random subset Γ ⊂ [10n] of size n by using CCACom1:1 with
tag tag.

5In contrast, a non-malleable commitment scheme is one that is CCA secure w.r.t. a restricted class of
adversaries that execute a single session with the oracle and receive the answer after completing the interactions
with the challenger and the oracle.

7

2. The committer computes an (n+1)-out-of-10n Shamir’s secret sharing s = (s1, . . . , s10n)
of value v and commits to each sj in parallel by using a statistically binding commitment
scheme Com.

3. For η(n) := rcec(n) + 1 times in sequence (where rcec(n) is the round complexity of
CECom′), the committer does the following: the committer commits to sj for every
j ∈ [10n] by using CECom′ in parallel. Each parallel commitment is called a row.

4. The receiver decommits the commitment of the first step and reveals Γ.

5. For every j ∈ Γ, the committer decommits all of the η(n) commitments whose commit-
ted values are sj .

Our scheme differs from the previous CCA-secure commitment schemes [CLP10, LP12,
Lin11, GLP+12] in that it uses a one-one CCA-secure commitment scheme instead of a
non-malleable commitment scheme; furthermore, our scheme uses a one-one CCA-secure
commitment scheme in the reverse order. That is, whereas the previous schemes (implicitly
or explicitly) use non-malleable commitment schemes from the committer to the receiver, our
scheme uses a one-one CCA secure commitment scheme from the receiver to the committer.
(Very recently, the same strategy is used in [KMO14].)

Using a one-one CCA-secure commitment scheme in the reverse order is crucial in showing
the simulation-soundness of the cut-and-choose phase. We say that the adversary (or the
challenger) cheats if in an accepted commitment there exists a row whose committed shares
disagree with s in more than n indexes. Using the one-one CCA security of CCACom1:1,
we can show that the adversary cannot cheat in every session of the right interaction (i.e.,
the interaction between the adversary and the oracle) even when the adversary receives
a commitment in which the challenger cheats in the left interaction (i.e., the interaction
between the adversary and the challenger). Roughly speaking, this is because the adversary
can emulate the cheating challenger in polynomial time by making a single query to the
committed-value oracle of CCACom1:1 and receiving Γ; therefore, from one-one CCA security
of CCACom1:1, the commitment that the adversary receives on the left is useless for breaking
the hiding property of CCACom1:1 on the right, and thus the adversary cannot cheat on
the right from the property of the cut-and-choose technique. Note that non-malleability
is insufficient for this argument since the hiding property of CCACom1:1 need to hold even
when the adversary receives the answer from the oracle immediately after completing the
query to the oracle. We also note that CECom′ must be concurrently extractable without
over-extraction since otherwise the adversary may give invalid commitments in more than n
indexes without being detected in the cut-and-choose phase. (As explained in Section 2.1, the
existence of such an adversary does not contradict the one-one CCA security of CCACom1:1

if over-extraction can occur.)
Given the simulation-soundness of the cut-and-choose phase, we can show the CCA

security of CCACom by, as in the analysis of previous CCA-secure commitment schemes
[CLP10, Lin11, LP12], rewinding the adversary and emulating the committed-value oracle in
polynomial time. Toward this end, we consider a series of hybrid experiments in which the
commitment that the adversary receives on the left is gradually changed as follows: In the
i-th hybrid experiment (i ∈ [η(n)]), we switch the committed value from sj to 0 for every
j 6∈ Γ in the i-th row, where Γ is extracted by brute force. Note that the (i − 1)-st hybrid
and the i-th hybrid differ only in the i-th row. The problem is that the adversary accesses

8

the committed-value oracle, which runs in super-polynomial time. Then, to show the indis-
tinguishability between the (i − 1)-st hybrid and the i-th hybrid, we observe the following.
Since there are rcec + 1 rows (in particular, the number of rows is bigger than the number
of rounds in CECom′), we can extract the committed shares in a row on every right session
without disturbing the hiding property of CECom′ in the i-th row on the left. (Here, we use
a technique used in [LP11]. Roughly speaking, we extract the committed shares from a row
that contains no message of the CECom′ commitment of the i-th row on the left.) Recall
that, since CECom′ is concurrently extractable without over-extraction, we can extract the
committed shares without over-extraction. Then, since the simulation-soundness guarantees
that these shares agree with s in at least 9n indexes, we can compute v from these shares by
using the error-correcting property of Shamir’s secret sharing. Therefore we can emulate the
oracle in polynomial time by rewinding the adversary (without disturbing the hiding prop-
erty of CECom′ in the i-th row) and computing v as above. Thus, the indistinguishability of
the (i− 1)-st hybrid and the i-th hybrid follows from the hiding property of CECom′. Then,
we consider another hybrid experiment: This experiment is the same as the η(n)-th hybrid
except that the committed value of the j-th Com commitment in Step 2 is switched from sj
to 0 for every j 6∈ Γ. From the same argument as above, this hybrid is indistinguishable from
the η(n)-th hybrid. Then, since in this hybrid the adversary does not receive any information
about v, the CCA security follows.

We note that the formal proof is more complicated. For example, we need to show the
simulation-soundness even for the adversary accessing the committed-value oracle. To solve
this problem, we increase the number of rows (i.e., η(n)) and emulate the oracle in polynomial
time without disturbing the one-one CCA security of CCACom1:1. To show that the oracle
can be emulated, we require the simulation soundness; thus, there seems to be a circular
argument, i.e., we require the simulation soundness to show the simulation soundness. In the
formal analysis, we show that this issue can be avoided.

Comparison with the CCA-secure commitment scheme of [KMO14]. The above
CCA-secure commitment scheme is based on the CCA-secure commitment scheme of [KMO14],
which is constructed from one-way functions that are secure against subexponential-time ad-
versaries. The scheme of [KMO14] is the same as the above scheme except for the following.

• There is only a single row, and CECom is used instead of CECom′ (i.e., a concurrently
extractable scheme with over-extraction is used).

• The underlying commitment schemes Com, CECom, and CCACom1:1 are secure against
subexponential-time adversaries. In particular, Com is hiding against T1-time adver-
saries but is completely broken in time o(T2), CECom is hiding against T2-time adver-
saries but is completely broken in time o(T3), and CCACom1:1 is one-one CCA secure
against T3-time adversaries, where (T1, T2, T3) is a hierarchy of running times such that
T3 � T2 � T1 � nω(1). This is where subexponentially hard one-way functions are
required.

The high-level strategy for proving CCA security is the same, i.e., showing the simulation
soundness from one-one CCA security of CCACom1:1 and then considering hybrid experiments
in which committed values of CECom and Com are gradually switched. The proof of [KMO14]
is, however, different from ours in the following.

• In the proof of the simulation soundness, the issue of over-extraction is solved by ex-
tracting the committed values of CECom by brute force. (Even when the committed

9

values of CECom are extracted by brute force, the one-one CCA security of CCACom1:1

still holds since the committed values of CECom are extractable in time o(T3) and
one-one CCA security of CCACom1:1 holds against T3-time adversaries.)

• When the committed values of CECom are switched, the indistinguishability follows
immediately from the fact that CECom is hiding against T2-time adversaries and the
running time of the committed-value oracle is o(T2). (The committed-value oracle
computes its output by extracting the committed values of Com by brute force. Thus,
its running-time is o(T2).)

Thus, the proof of [KMO14] heavily depends on the subexponentially hard security of the
underlying commitment schemes. Roughly speaking, we weaken the assumption of [KMO14]
by doing the following.

• To show the simulation soundness without subexponentially hard security, we replace
CECom with CECom′, which is concurrently extractable without over-extraction.

• To show the indistinguishability when we switch the committed values of CECom′, we
increase the number of rows so that the committed-value oracle can be emulated in
polynomial time by rewinding the adversary while preserving the hiding property of
CECom′.

Overall, despite of the similarity of the high-level structure between the scheme of [KMO14]
and ours, the details of the security proofs have a lot of difference.

3 Preliminaries

Throughout the paper, we use n to denote the security parameter. For any k ∈ N, let

[k]
def
= {1, 2, . . . , k}.

3.1 Shamir’s Secret Sharing

We recall Shamir’s secret sharing scheme. To compute an (k + 1)-out-of-m secret sharing

s = (s1, . . . , sm) of a value v ∈ GF (2n), we choose random a1, . . . , ak ∈ GF (2n), let p(z)
def
=

v + a1z + · · · + akz
k, and set si := p(i) for each i ∈ [m]. For any positive real number

x ≤ 1 and any s = (s1, . . . , sm) and s′ = (s′1, . . . , s
′
m), we say that s and s′ are x-close if

| {i ∈ [m] | si = s′i} | ≥ x ·m. If s and s′ are not x-close, then we say that they are (1−x)-far.
We note that (k+1)-out-of-m Shamir’s secret sharing is a codeword of the Reed-Solomon code
with minimum relative distance (m− k)/m. Thus, for any s that is (1− (m− k)/2m)-close
to a valid codeword w, we can compute w from s.

3.2 Commitment Schemes

Recall that commitment schemes are two-party protocols between the committer C and the
receiver R. Without stated otherwise, all commitment schemes in this paper are statistically
binding and computationally hiding. A transcript of the commit phase is accepted if R does
not abort in the commit phase. A transcript of the commit phase is valid if there exists a
valid decommitment of this transcript. In this paper, we define the committed value of an
invalid commitment as ⊥.

10

There exist a 2-round statistically binding commitment scheme based on one-way func-
tions [Nao91], which uses the underlying one-way function in a black-box way.

Strong Computational Binding Property. We say that a commitment scheme 〈C,R〉
satisfies the strong computational binding property if any ppt committer C∗ can generate a
commitment that has more than one committed value with at most negligible probability in
the interaction with the honest receiver R.6

3.3 Extractable Commitment Schemes

We recall the definition of extractable commitment schemes from [PW09]. Roughly speak-
ing, a commitment scheme is extractable if there exists an expected polynomial-time oracle
machine (called an extractor) E such that for any committer C∗ that generates a commit-
ment, EC∗

extracts the committed value when the commitment is valid. We note that when
the commitment is invalid, E can output an arbitrary garbage value. (This is called over-
extraction.)

Formally, extractable commitment schemes are defined as follows. A commitment scheme
〈C,R〉 is extractable if there exists an expected polynomial-time probabilistic extractor E
such that for any ppt committer C∗, extractor EC∗

outputs a pair (τ, σ) such that

• τ is identically distributed with the view of C∗ interacting with honest receiver R in
the commit phase.

• If τ is accepted, then σ 6= ⊥ except with negligible probability.

• If σ 6= ⊥, then it is statistically impossible to decommit τ to any value other than σ.

There exists a 4-round extractable commitment ExtCom based on one-way functions
[PW09], which uses the underlying one-way function in a black-box way.

Weakly Extractable Commitment Schemes. A commitment scheme 〈C,R〉 is weakly
extractable if there exists an expected polynomial-time probabilistic extractor E such that
for any ppt committer C∗, extractor EC∗

outputs a pair (τ, σ) such that

• τ is identically distributed with the view of C∗ interacting with honest receiver R in
the commit phase.

• The probability that τ is accepted and σ = ⊥ is at most 1/2.

• If σ 6= ⊥, then it is statistically impossible to decommit τ to any value other than σ.

Goyal et al. [GLOV12] showed that the commitment scheme wExtCom in Figure 1 is weakly
extractable. We note that given two accepted transcripts of wExtCom such that commit stage
is identical but challenge stage is different, we can extract the committed value.

6The standard computational binding property guarantees only that for any ppt committer C∗, the com-
mitment that C∗ generates cannot be decommitted to more than one value in polynomial time. Thus, this
commitment may have more than one committed value.

11

Commit Phase

The committer C and the receiver R receive common inputs 1n. To commit to v ∈
{0, 1}n, the committer C does the following with the receiver R.

commit stage. C chooses a pair of random n-bit strings (a0, a1) such that a0 ⊕ a1 = v.
Then, C commits to a0 and a1 by using Com. For each b ∈ {0, 1}, let cb be the
commitment to ab.

challenge stage. The receiver R sends a random bit e ∈ {0, 1} to C.

reply stage. C decommits ce to ae.

Decommit Phase

To decommit, C sends v to R and decommits c0 and c1. Then, R checks whether
a0 ⊕ a1 = v.

Figure 1: Weakly extractable commitment scheme wExtCom [GLOV12].

3.4 Concurrently Extractable Commitment Schemes

Roughly speaking, a commitment scheme is concurrently extractable if in the concurrent
setting a rewinding extractor can simulate the view of any malicious committer and extract
the committed values in the view.

Micciancio et al. [MOSV06] showed a Õ(log n)-round concurrently extractable commit-
ment CECom, which is an abstraction of the preamble stage of the concurrent zero-knowledge
protocol of [PRS02]. In [MOSV06], the rewinding extractor uses the rewinding strategy of
[PRS02]. In this paper, we instead use the rewinding strategy of [PTV12]. This is because
the analysis of [PTV12] is more general than that of [PRS02], and therefore helpful when we
use CECom as a building block. (From the same reason, several works (e.g., [LPTV10, LP11])
use the rewinding strategy of [PTV12] instead of that of [PRS02].) In the following, we use
“PTV rewinding strategy” to denote the rewinding strategy of [PTV12]. In PTV rewinding
strategy (as well as the rewinding strategy of of [PRS02]), the extractor internally runs C∗

and the honest receivers, and computes a sequence of “threads of execution.” Each thread
consists of the views of all the parties, and satisfies the following properties.

• Each thread is a perfect simulation of a prefix of an actual execution.

• The last thread, called the main thread, is a perfect simulation of a complete execution.
Any other thread is called a look-ahead thread. The extractor outputs the view of C∗

in the main thread.

• Any two threads share a (possibly empty) prefix, but they are independently simulated
after the shared prefix.

Furthermore, the extractor runs in strict polynomial time, and except with negligible prob-
ability it extracts the committed value of any session on any thread immediately after the
session is completed.

12

3.5 Trapdoor Commitment Schemes

Roughly speaking, trapdoor commitment schemes [PW09] are commitment schemes such that
there exists a simulator that can generate a simulated commitment and can later decommit
it to any value. Pass and Wee [PW09] showed that the black-box scheme TrapCom in Figure
2 is a trapdoor bit commitment. TrapCom is not statistically binding, but it satisfies the
strong computational binding property. This follows from the fact that if C∗ generates a
commitment that can decommit to both 0 and 1, we can compute the committed value e of
Com. Pass and Wee also showed that by running TrapCom in parallel, we obtain a black-box
trapdoor commitment scheme PTrapCom for multiple bits. PTrapCom also satisfies the strong
computational binding property.

Commit Phase

To commit to σ ∈ {0, 1} on common input 1n, the committer C does the following with
the receiver R:

Step 1. R chooses a random n-bit string e = (e1, . . . , en) and commits to e by using
Com.

Step 2. For each i ∈ [n], the committer C chooses a random ηi ∈ {0, 1} and sets

vi :=

(
v00i v01i
v10i v11i

)
=

(
ηi ηi

σ ⊕ ηi σ ⊕ ηi

)
.

Then, for each i ∈ [n], α ∈ {0, 1}, and β ∈ {0, 1} in parallel, C commits to vαβi by

using ExtCom; let (vαβi , dαβi) be the corresponding decommitment.

Step 3. R decommits the Step 1 commitment to e.

Step 4. For each i ∈ [n], C sends (vei0i , dei0i) and (vei1i , dei1i) to R. Then, R checks
whether these are valid decommitments and whether vei0i = vei1i .

Decommit Phase

To decommit, C sends σ and random γ ∈ {0, 1} to R. In addition, for every i ∈ [n], C
sends (v0γi , d0γi) and (v1γi , d1γi) to R. Then, R checks whether (v0γi , d0γi) and (v1γi , d1γi)

are valid decommitments and whether v0γ0 ⊕ v1γ0 = · · · = v0γn ⊕ v1γn = σ.

Figure 2: Black-box trapdoor bit commitment Scheme TrapCom.

3.6 CCA-Secure Commitment Schemes

We recall the definition of CCA security and κ-robustness [CLP10, LP12].

CCA Security (w.r.t. the Committed-Value Oracle)

Roughly speaking, a tag-based commitment scheme 〈C,R〉 is CCA-secure if the hiding prop-
erty of 〈C,R〉 holds even against adversary A that interacts with the committed-value oracle

13

during the interaction with the committer. The committed-value oracle O interacts with
A as an honest receiver in many concurrent sessions of the commit phase of 〈C,R〉 using
tags chosen adaptively by A. At the end of each session, if the commitment of this session
is invalid or has multiple committed values, O returns ⊥ to A. Otherwise, O returns the
unique committed value to A.

More precisely, let us consider the following probabilistic experiment INDb(〈C,R〉,A, n, z)
for each b ∈ {0, 1}. On input 1n and auxiliary input z, adversary AO adaptively chooses a
pair of challenge values v0, v1 ∈ {0, 1}n and an n-bit tag tag ∈ {0, 1}n. Then, AO receives a
commitment to vb with tag tag from the challenger. Let y be the output of A. The output
of the experiment is ⊥ if during the experiment, A sends O any commitment using tag tag.
Otherwise, the output of the experiment is y. Let INDb(〈C,R〉,A, n, z) denote the output of
experiment INDb(〈C,R〉,A, n, z).

Definition 1. Let 〈C,R〉 be a tag-based commitment scheme and O be the committed-value
oracle of 〈C,R〉. Then, 〈C,R〉 is CCA-secure (w.r.t the committed-value oracle) if for any
ppt adversary A, the following are computationally indistinguishable:

• {IND0(〈C,R〉,A, n, z)}n∈N,z∈{0,1}∗

• {IND1(〈C,R〉,A, n, z)}n∈N,z∈{0,1}∗
The left session is the session of the commit phase between the challenger and A, and right
sessions are the sessions between A and O. ♦

We say a commitment scheme is one-one CCA-secure if it is CCA secure w.r.t. a restricted
class of adversaries that start only a single right session.

κ-Robustness (w.r.t. the Committed-Value Oracle)

Roughly speaking, a tag-based commitment scheme is κ-robust if for any adversary A and
any ITM B, the joint output of a κ-round interaction between AO and B can be simulated
without O by a ppt simulator. Thus, the κ-robustness guarantees that the committed-value
oracle is useless for attacking any κ-round protocol.

Definition 2. Let 〈C,R〉 be a tag-based commitment scheme and O be the committed-
value oracle of 〈C,R〉. For any constant κ ∈ N, we say that 〈C,R〉 is κ-robust (w.r.t. the
committed value oracle) if there exists a ppt oracle machine (called simulator) S such that
for any ppt adversary A and any κ-round ppt ITM B, the following are computationally
indistinguishable:

•
{
outB,AO [〈B(y),AO(z)〉(1n, x)]

}
n∈N,x,y,z∈{0,1}n

•
{
outB,SA [〈B(y),SA(z)〉(1n, x)]

}
n∈N,x,y,z∈{0,1}n

Here, for any ITM A and B, we use outA,B[〈A(y), B(z)〉(x)] to denote the joint output of
A and B in an interaction between them on inputs x, y to A and x, z to B respectively. If
〈C,R〉 is κ-robust for any constant κ, we say that 〈C,R〉 is robust. ♦

4 Building Blocks

In this section, we construct (i) a commitment scheme that is concurrently extractable without
over-extraction and (ii) a one-one CCA-secure commitment scheme. Both schemes are used
in our Õ(log2 n)-round CCA-secure commitment scheme in Section 5.

14

Commit Phase

To commit to σ ∈ {0, 1}n, the committer C does the following with the receiver R.

Step 1. R commits to a random sublet Γ ⊂ [40n] of size n by using Com.

Step 2. C computes an (n+ 1)-out-of-40n Shamir’s secret sharing s = (s1, . . . , s40n) of
value σ. Then, for each j ∈ [40n] in parallel, C commits to sj by using CECom.
Let (sj , dj) be the decommitment of the j-th commitment.

Step 3. For each j ∈ [40n] in parallel, C commits to (sj , dj) by using wExtCom.

Step 4. R decommits the Step 1 commitment to Γ.

Step 5. For each j ∈ Γ, C decommits the j-th Step 3 commitment to (sj , dj). Then,
for each j ∈ Γ, R checks whether the decommitment is valid and whether the
decommitted value (sj , dj) is a valid decommitment of the j-th Step 2 commitment.

Decommit Phase

C sends σ to R, and decommits all the Step 2 commitments. Then, R defines s =
(s1, . . . , s40n) as follows: If the j-th decommitment is invalid, sj := ⊥; otherwise, sj is
the j-th decommitted value. Then, R checks the following:

• s is 0.9-close to a valid codeword w = (w1, . . . , w40n).

• For each j ∈ Γ, wj equals the value revealed in Step 5.

If both of these hold and w is a codeword corresponding to σ, then R accepts the
decommitment. Otherwise, R rejects it.

Figure 3: A concurrently commitment scheme CECom′.

4.1 Concurrently Extractable Commitment Scheme without Over-Extraction

Using one-way functions in a black-box way, we construct a Õ(log n)-round commitment
scheme CECom′ that is concurrently extractable without over-extraction. Recall that a com-
mitment scheme is concurrently extractable without over-extraction if the rewinding extractor
outputs ⊥ except with negligible probability when the commitment is invalid.

Lemma 1. Assume the existence of one-way functions. Then, there exists a Õ(log n)-round
commitment scheme CECom′ that is concurrently extractable without over-extraction. Fur-
thermore, CECom′ uses the underlying one-way function only in a black-box way.

Proof. The commitment scheme CECom′ is shown in Figure 3.
First, we show that CECom′ is statistically binding and computationally hiding. The

binding property follows directly from that of CECom. To show the hiding property, for any
ppt receiver R∗ and any σ0, σ1 ∈ {0, 1}n we consider the following hybrid experiments for
b ∈ {0, 1}.

• In experiment Hb
0(n), R∗ receives a honest commitment to σb. The output of the

experiment is that of R∗.

15

• Experiment Hb
1(n) is the same as Hb

0 except that R∗ receives the following modified
commitment.

– In Step 1, the committed value Γ is extracted by brute force.

– In Step 2, the committed value is switched from sj to 0 for every j 6∈ Γ.

– In Step 3, the committed value is switched from (sj , dj) to (0, 0) for every j 6∈ Γ.

Note that, since the distribution of (sj)j∈Γ is independent of σb, the internal R
∗ receives

no information on σb. Thus, the output of H0
1 (n) and that of H1

1 (n) are identically
distributed.

Let Hb
i(n) be the output of the experiment Hb

i (n) for i ∈ {0, 1} and b ∈ {0, 1}. Then, to
show the hiding property, it suffices to show that Hb

0(n) and Hb
1(n) are indistinguishable for

every b ∈ {0, 1}. Assume for contradiction that there exists b ∈ {0, 1} such that Hb
0(n) and

Hb
1(n) are distinguishable with non-negligible probability. Then, from an average argument,

there exists a transcript ρ of Step 1 such that, under the condition that the transcript of
Step 1 is ρ, Hb

0(n) and Hb
1(n) are distinguishable with non-negligible probability. Let Γ be the

committed value of Com in ρ. Then, since Hb
1(n) runs in polynomial time after Step 1 and

since Hb
0(n) and Hb

1(n) differ only in the committed values of CECom and wExtCom, from
the assumption we can break the hiding property of either CECom or wExtCom by using ρ
and Γ as non-uniform advice. Thus, we reach a contradiction.

Next, we show that CECom′ is concurrently extractable without over-extraction. We
extract the committed values of CECom′ by extracting the committed values of CECom in Step
2. To avoid the over-extraction, we combine a technique used in [CDSMW08, CDSMW09,
Wee10] (which relies on the property of cut-and-choose technique and the error-correcting
property of Shamir’s secret sharing scheme) with a technique used in [GLOV12] (which
uses wExtCom). Formally, for any ppt concurrent committer C∗, we consider the following
extractor E.

• E internally runs C∗ and emulates a concurrent interaction between C∗ and honest
receivers, but in Step 2 of each session, the committed values ŝ = (ŝ1, . . . , ŝ40n) are
extracted by using the concurrent extractability of CECom (i.e., by rewinding C∗ in
PTV rewinding strategy). Recall that the concurrent extraction of CECom involves the
computation of the main thread and many look-ahead threads. Then, if the extrac-
tion of CECom fails in any accepted session on any thread, E outputs fail and halts.
Otherwise, at the end of every session on every thread, E checks the following:

– ŝ is 0.8-close to a valid codeword w = (w1, . . . , w40n).

– For every j ∈ Γ, wj equals the value revealed in Step 5.

If both of these hold, E sets the committed value σ of this session to be the value
decoded from w. Otherwise, E sets σ := ⊥.

• When the main thread completes, E outputs τ , where τ is the view of C∗ on the main
thread.

From the concurrent extractability of CECom, E outputs fail with negligible probability. If E
does not output fail, from the property of the rewinding strategy of [PTV12], τ is a perfect
simulation of the view of C∗. Thus, it remains to show that in every session on every thread,
σ is the committed value of the session except with negligible probability. First, we note that

16

in a real interaction between C∗ and honest receivers, we have the following facts in every
session except with negligible probability.

Fact 1. Each commitment in Step 2 has at most one committed value. That is, the com-
mitted values s = (s1, . . . , s40n) of the Step 2 commitments are uniquely determined.
(Recall that we define the committed value of an invalid commitment as ⊥.) This
follows from the statistical binding property of CECom.

Fact 2. The following probability is negligible: the probability that (i) every wExtCom com-
mitment is accepted, (ii) for any j ∈ Γ, the committed value of the j-th wExtCom
commitment is a valid decommitment of the corresponding CECom commitment, and
(iii) |{j ∈ [40n] | sj = ⊥}| ≥ 2n. That is, except with negligible probability, the session
is rejected or there are less than 2n invalid CECom commitments. We prove this fact
at the end of the proof.

Since in PTV rewinding strategy every thread is a perfect simulation of a real execution, Facts
1 and 2 also hold in every session on every thread in E except with negligible probability.
In what follows, we assume that both of the facts indeed hold. Fact 1 guarantees that the
committed value of CECom′ is uniquely determined in every session on every thread. Then,
for any accepted session on any thread, we consider the following two cases.

Case 1. First, we consider the case that s is 0.9-close to a valid codewordw = (w1, . . . , w40n).
(Recall that from Fact 1, s is uniquely determined.) In this case, the session is valid
if and only if wj equals the value revealed in Step 5 for every j ∈ Γ. Since we have
|{j ∈ [40n] | sj = ⊥}| < 2n in every accepted session and since the extractor of CECom ex-
tracts sj when sj 6= ⊥, the extracted values ŝ is 0.95-close to s; hence, ŝ is 0.85-close to w.
E therefore sets σ := ⊥ if and only if wj does not equal the value revealed in Step 5 for an
index j ∈ Γ, i.e., if and only if the session is invalid. In addition, if σ 6= ⊥, then σ is the
(unique) committed value.

Case 2. Next, we consider the case that s is 0.1-far from any valid codeword. In this case,
the session is invalid (i.e., the committed value is ⊥). Below, we show that the probability
that s is 0.1-far from any valid codeword but E sets σ 6= ⊥ is negligible. If the probability
that s is 0.1-far from any valid codeword is negligible, we are done. Thus, in the following,
we assume that this probability is non-negligible. Recall that E sets σ 6= ⊥ if and only if (i)
the extracted shares ŝ is 0.8-close to a valid codeword w and (ii) wj = sj for every j ∈ Γ.7

We show that the probability that (i) s is 0.1-far from any valid codeword, (ii) ŝ is
0.8-close to a valid codeword w, and (iii) wj = sj for every j ∈ Γ is negligible.

Assume for contradiction that with non-negligible probability, there exists a session on a
thread such that in the session (i) s is 0.1-far from any valid codeword, (ii) ŝ is 0.8-close to a
valid codeword w, and (iii) wj = sj for every j ∈ Γ. Since both the number of sessions and
the number of threads are at most poly(n), all of these holds with non-negligible probability
in a randomly chosen session on a randomly chosen thread. We note that, since Fact 2 and
the extractability of CECom guarantee that s and ŝ are 0.95-close, ŝ is 0.05-far from any valid
codeword when s is 0.1-far from any valid codeword. Thus, with non-negligible probability, in

7Note that since sj is the unique committed value of the j-th CECom commitment, sj equals the value
revealed in Stage 5 for any j ∈ Γ in an accepted session.

17

a randomly chosen session on a randomly chosen thread (i) ŝ is 0.05-far from any codeword,
(ii) ŝ is 0.8-close to a valid codeword w, and (iii) wj = sj for every j ∈ Γ.

Then, consider the following adversary A against the hiding property of Com. For random
subsets Γ0,Γ1 ⊂ [40n] of size n, A tries to distinguish a commitment to Γ0 from a commitment
to Γ1 as follows. A is the same as E except that in a randomly chosen session on a randomly
chosen thread, A does the following.

• In Step 1, A receives a Com commitment from the external committer (the committed
value is either Γ0 or Γ1) and forwards the commitment to the internal C∗ as the Step 1
commitment. We note that, sinceA rewinds C∗, the Com commitment may be rewound.
However, since Com is a 2-round commitment scheme, this causes no problem. (A
simply resends the same commitment, or receives a new commitment from the external
committer and forwards the commitment to C∗.)

• After extracting the committed values of CECom commitments, A terminates and out-
puts 1 if and only if (i) the extracted values ŝ = (ŝ1, . . . , ŝ40n) is 0.05-far from any valid
codeword, (ii) ŝ is 0.8-close to a valid codeword w = (w1, . . . , w40n), and (iii) wj = ŝj
for every j ∈ Γ1; otherwise, A outputs 0.

We show that A breaks the hiding property of Com. When A receives a commitment to
Γ0, the probability that A outputs 1 is exponentially small. (Since the internal C∗ receives
no information of Γ1, we have ŝj = wj for every j ∈ Γ1 with at most exponentially small
probability when ŝ and w are 0.05-far.) On the other hand, when A receives a commitment
to Γ1, from the assumption the probability that A outputs 1 is non-negligible. (Recall that,
from the assumption, with non-negligible probability (i) ŝ is 0.05-far from any codeword, (ii)
ŝ is 0.8-close to a valid codeword w, and (iii) wj = sj for every j ∈ Γ1. Then, since for every
j ∈ Γ1 it hold that sj = wj 6= ⊥, we have ŝj = sj . Thus, when this happens, for every j ∈ Γ1

we have wj = ŝj .)
Since this contradicts to the hiding property of Com, we conclude that the probability

that (i) s is 0.1-far from any valid codeword, (ii) ŝ is 0.8-close to a valid codeword w, and
(iii) wj = sj for every j ∈ Γ is negligible. Thus, the probability that s is 0.1-far from any
valid codeword but E sets σ 6= ⊥ is negligible.

From the analysis of these two cases, we conclude that in every session on every thread, σ
is the committed value except with negligible probability. From the union bound, we conclude
that except with negligible probability, σ is the committed value in every session on every
thread.

Finally, we prove Fact 2.

Proof of Fact 2. First, we give some definitions. In each session, for j ∈ [40n], the j-th column
is the pair of the j-th CECom commitment in Step 2 and the j-th wExtCom commitment in
Step 3. We say that a column is consistent if in the column the committed value of the
wExtCom commitment is a valid decommitment of the corresponding CECom commitment;
otherwise, the column is inconsistent. We say that C∗ cheats in a session if (i) every wExtCom
commitment is accepted, (ii) the j-th column is consistent for every j ∈ Γ, and (iii) there
exist at least 2n inconsistent columns.

To prove Fact 2, we show that in every session the probability that C∗ cheats is negligible.
From the definition, Fact 2 follows.

18

Assume for contradiction that for infinitely many n, there is a session in which C∗ cheats
with probability at least 1/poly(n). In the following, we fix any such n. Then, since the
number of sessions is at most poly(n), there is an i∗ ∈ [poly(n)] such that in the i∗-th session,
C∗ cheats with probability at least 1/nc for a constant c.

Then, let us consider an adversary B against the hiding property of Com. For random
subsets Γ0,Γ1 ⊂ [40n] of size n, B tries to distinguish a Com commitment to Γ0 from a Com
commitment to Γ1 as follows. B internally invokes C∗ and honestly emulates the interaction
between C∗ and honest receivers except that in the i∗-th session, B does the following.

• In Step 1, B receives a Com commitment from the external committer (the committed
value is either Γ0 or Γ1) and forwards the commitment to C∗ as the Step 1 commitment.

• When Step 3 is accepted (i.e., all the wExtCom commitments are accepted), B does the
following repeatedly: B rewinds C∗ to the point that the next-message is the challenge
bits of wExtCom in the i∗-th session; then B sends new random challenge bits and
honestly interacts with C∗ until the end of Step 3 (i.e., until receiving the replies in
wExtCom). After collecting other nc+3 accepted transcripts of Step 3, B outputs 1 if
the following hold:

(i) from these nc+3 + 1 accepted transcript (the first one and the subsequent nc+3

ones), B can extract the committed values of wExtCom in at least 39n columns,

(ii) in at least n columns of these columns, the extracted values are not valid decom-
mitments of the corresponding CECom commitments, and

(iii) for every j ∈ Γ1, either the extraction of the j-th column fails or the extracted
value of the j-th column is a valid decommitment of the corresponding CECom
commitment.

Otherwise, B outputs 0. In the following, the first transcript that B generates in Step 3
is called the main thread and other nc+3 accepted transcripts are called the look-ahead
threads.

If B rewinds C∗ more than n3c+4 times, B terminates and outputs fail.
First, we show that an expected polynomial-time adversary B′ successfully distinguishes

Com commitments, where B′ is the same as B except that B′ does not terminate after B′

rewinds C∗ more than n3c+4 times. When B′ receives a commitment to Γ0, since the internal
C∗ receives no information of Γ1, the probability that B′ outputs 1 is exponentially small.
(This is because when Condition (i) and Condition (ii) hold, the probability that Condition
(iii) holds is exponentially small.) Thus, it remains to show that when B′ receives a commit-
ment to Γ1, the probability that B′ outputs 1 is at least 1/poly(n). Let extract be the event
that B′ extracts the committed values of wExtCom commitments from at least 39n columns,
and let cheat be the event that C∗ cheats in the i∗-th session on the main thread. Then, to
show that B′ outputs 1 with probability at least 1/poly(n), it suffices to show that

Pr [cheat ∧ extract] ≥ 1

poly(n)
. (1)

(Recall the we can extract the committed values of wExtCom without over-extraction.) Let ρ
be a prefix of a transcript between C∗ and honest receivers such that after ρ, a honest receiver
sends challenge bits of wExtCom in the i∗-th session. Let prefixρ be the event that a prefix

19

of the main thread is ρ. Then, since the probability that C∗ cheats in the i∗-th session is at
least 1/nc, from an average argument, we have Pr

[
cheat | prefixρ

]
≥ 1/2nc with probability at

least 1/2nc over the choice of ρ (i.e., when we obtain ρ by emulating the interaction between
C∗ and honest receivers). Let ∆ be the set of prefixes such that Pr

[
cheat | prefixρ

]
≥ 1/2nc

holds. Then, since we have
∑

ρ∈∆ Pr
[
prefixρ

]
≥ 1/2nc, we have

Pr [cheat ∧ extract] ≥
∑
ρ∈∆

Pr
[
cheat ∧ extract | prefixρ

]
· Pr

[
prefixρ

]
≥ min

ρ∈∆

(
Pr

[
cheat ∧ extract | prefixρ

])
·
∑
ρ∈∆

Pr
[
prefixρ

]
≥ 1

2nc
min
ρ∈∆

(
Pr

[
cheat ∧ extract | prefixρ

])
. (2)

Thus, to show Equation (1), it suffices to show that for any ρ ∈ ∆, we have

Pr
[
cheat ∧ extract | prefixρ

]
≥ 1

poly(n)
. (3)

In the following, we fix any ρ∗ ∈ ∆. Then, we have

Pr
[
cheat | prefixρ∗

]
≥ 1

2nc
. (4)

Thus, from Equation (4), we have

Pr
[
cheat ∧ extract | prefixρ∗

]
= Pr

[
cheat | prefixρ∗

]
· Pr

[
extract | prefixρ∗ ∧ cheat

]
≥ 1

2nc
Pr

[
extract | prefixρ∗ ∧ cheat

]
(5)

Thus, to show Equation (3), it suffices to show that

Pr
[
extract | prefixρ∗ ∧ cheat

]
≥ 1

poly(n)
. (6)

Recall that when cheat occurs, Step 3 of the i∗-th session is accepted on the main thread.
Thus, for any j ∈ [40n], when cheat occurs and the challenge bit of wExtCom in the j-th
column is b ∈ {0, 1} on the main thread, we can extract the committed value of the the j-th
column if in the nc+3 look-ahead threads there is an accepted transcript of wExtCom such
that the challenge bit of the j-th column is 1− b. Then, to show Equation (6), we show that
when Step 3 of the i∗-th session is accepted on the main thread with prefix ρ∗, the probability
that the challenge bit of wExtCom is b is “high” for any b ∈ {0, 1} in “most” columns. Let
chj be a random variable for the challenge bit of wExtCom in the j-th column of the i∗-th
session on the main thread, and let accept be the event that every wExtCom commitment is
accepted in the i∗-th session on the main thread. (We have Pr [accept] ≥ Pr [cheat] from the
definitions.) Then, for any j ∈ [40n] and b ∈ {0, 1},

Pr
[
chj = b | accept ∧ prefixρ∗

]
=

Pr
[
chj = b ∧ accept ∧ prefixρ∗

]
Pr

[
accept ∧ prefixρ∗

]
≥

Pr
[
chj = b ∧ cheat ∧ prefixρ∗

]
Pr

[
prefixρ∗

]
=

Pr
[
cheat

∣∣ chj = b ∧ prefixρ∗
]
Pr

[
chj = b ∧ prefixρ∗

]
Pr

[
prefixρ∗

]
= Pr

[
cheat

∣∣ chj = b ∧ prefixρ∗
]
Pr [chj = b] . (7)

20

(Here, we use Pr
[
chj = b ∧ prefixρ∗

]
= Pr [chj = b] ·Pr

[
prefixρ∗

]
.) Below, we show that in at

least 39n columns of the i∗-th session, for any b ∈ {0, 1} we have

Pr
[
cheat

∣∣ chj = b ∧ prefixρ∗
]
≥ 1

160nc+1
. (8)

Let

A :=

{
j ∈ [40n]

∣∣∣ ∃bj ∈ {0, 1} s.t. Pr
[
cheat | chj = bj ∧ prefixρ∗

]
<

1

160nc+1

}
.

Then we have

Pr
[
cheat

∣∣∣ prefixρ∗] ≤ Pr

∧
j∈A

chj = 1− bj

+ Pr

cheat∧
∨

j∈A
chj = bj

 ∣∣∣∣∣ prefixρ∗


≤ 2−|A| +
∑
j∈A

Pr
[
cheat ∧ chj = bj | prefixρ∗

]
= 2−|A| +

∑
j∈A

Pr
[
cheat | chj = bj ∧ prefixρ∗

]
Pr [chj = bj]

≤ 2−|A| +
∑
j∈A

Pr
[
cheat | chj = bj ∧ prefixρ∗

]
< 2−|A| + 40n · 1

160nc+1

≤ 2−|A| +
1

4nc
. (9)

Then, from Equations (4) and (9), we have |A| = O(log n) and therefore |A| ≤ n. Thus, in at
least 39n columns, for any b ∈ {0, 1} we have Equation (8). Then, from Equations (7) and
(8) and from Pr [chj = b] = 1/2, for any j ∈ [40n] \A and any b ∈ {0, 1}, we have

Pr
[
chj = b | accept ∧ prefixρ∗

]
≥ 1

320nc+1
.

Then, since the distributions of the look-ahead threads are the same as that of the main
thread, we have that under the condition that prefixρ∗ and cheat occur, for any j ∈ [40n] \A,
the adversary B′ requires another 320nc+1 accepted transcripts on average to extract the
committed value of wExtCom in the j-th columns. Since B′ collects nc+3 accepted transcripts,
for any j ∈ [40n] \ A the adversary B′ extracts the committed value of wExtCom in the j-th
column except with probability 320nc+1/nc+3 = 320/n2 under the condition that prefixρ∗ and
cheat occur. (Here, we use Markov’s inequality.) Then, from the union bound, except with
probability 39n · 320/n2 = 12480/n, for every j ∈ [40n] \ A the adversary B′ extracts the
committed value of wExtCom in the j-th column. Thus, we have

Pr
[
extract | prefixρ∗ ∧ cheat

]
≥ 1− 12480

n
. (10)

Then, from Equations (5) and (10), we have

Pr
[
cheat ∧ extract | prefixρ∗

]
≥ 1

2nc
·
(
1− 12480

n

)
≥ 1

4nc
. (11)

21

Then, since ρ∗ is any prefix in ∆, from Equations (2) and (11) we have

Pr [cheat ∧ extract] ≥ 1

2nc
· 1

4nc
=

1

8n2c
.

Thus, we have Equation (1). We therefore conclude that B′ outputs 1 with probability at
least 1/8n2c when B′ receives a commitment to Γ1. Thus, B′ successfully distinguishes a
commitment to Γ1 from a commitment to Γ0.

Now, we are ready to show that B breaks the hiding property of Com. Clearly, the running
time of B is at most poly(n). Note that, to show that B can distinguish Com commitments, it
suffices to show that the output of B is the same as that of B′ except with probability 1/n2c+1.
(This is because B′ outputs 1 with negligible probability when B′ receives a commitment to
Γ0 whereas B′ outputs 1 with with probability 1/8n2c when B′ receives a commitment to Γ1.)
Recall that the output of B differs from that of B′ if and only if B′ rewinds C∗ more than
n3c+4 times. Let ρ be any prefix of a transcript between C∗ and honest receivers such that
after ρ, the next message is the challenge bits of wExtCom in the i∗-th session. Let T (n) be
a random variable for the number of rewinding in B′. Then, we have

E
[
T (n) | prefixρ

]
≤ Pr

[
accept | prefixρ

]
· nc+3

Pr
[
accept | prefixρ

] = nc+3 .

Thus, we have

E [T (n)] =
∑
ρ

Pr
[
prefixρ

]
E
[
T (n) | prefixρ

]
≤ nc+3

∑
ρ

Pr
[
prefixρ

]
≤ nc+3 .

Then, from Markov’s inequality, B′ rewinds C∗ more than n3c+4 times with probability at
most nc+3/n3c+4 = 1/n2c+1. Thus, the output of B is the same as that of B′ except with
probability 1/n2c+1, and therefore B distinguishes a commitment to Γ1 from a commitment
to Γ0.

This complete the proof of Lemma 1.

Remark 1. Note that since the extractor E of CECom′ essentially uses only the extractor of
CECom, E rewinds C∗ in PTV rewinding strategy. Thus, when E extracts the committed
values, E runs in strict polynomial-time and all the properties stated in Section 3.4 hold. We
use these properties in Section 5.

4.2 One-One CCA-Secure Commitment Scheme

Using one-way functions in a black-box way, we construct a one-one CCA-secure commitment
scheme CCACom1:1. Recall that a commitment scheme is one-one CCA secure if it is CCA
secure w.r.t. a restricted class of adversaries that start only a single right session. Our
scheme does not satisfy the statistically binding property, but satisfy the strong computational
binding property.

Lemma 2. Assume the existence of one-way functions. Then, there exists a O(log n)-round
one-one CCA-secure commitment scheme CCACom1:1, which satisfies the strong computa-
tional binding property and the computational hiding property. Furthermore, CCACom1:1

uses the underlying one-way function only in a black-box way.

22

Proof. We construct CCACom1:1 by slightly modifying the black-boxO(nε)-round CCA-secure
commitment scheme of [LP12] and using the DDN log n trick [DDN00, LPV08], which trans-
forms concurrent non-malleable commitment schemes for tags of length O(log n) to a non-
malleable commitment schemes for tags of length O(n) with no increase on round complexity.

First, we recall the CCA-secure commitment scheme of [LP12] (see Figure 4). Roughly
speaking, the commitment scheme of [LP12] consists of 4`(n)η(n) rows—each row is a parallel
execution of a part of the trapdoor commitment scheme of [PW09]—followed by a cut-and-
choose phase, where `(n) is the length of the tag and η(n) = nε for ε > 0. In the analysis
of [LP12], which is based on that of [CLP10], it is shown that in any transcript of one left
session and many right sessions of the scheme, each right session has Ω(η(n)) safe-points, from
which we can rewind the right session and extract the committed value of this session without
breaking the hiding property of the left session. Then, since each right session has Ω(η(n))
safe-points, we can extract the committed value of each right session even in the concurrent
setting by using the rewinding strategy of [RK99] to deal with the issue of recursive rewinding.
Thus, by extracting the committed-value of a row in each right session, we can emulate the
committed-value oracle in polynomial time without breaking the hiding property of the left
session. Thus, the CCA security follows from the hiding property of the left session.

Commit Phase

Let `, η be two polynomials such that `(n) = nν and η(n) = nε for ν, ε > 0, and L be a
polynomial such that L(n) = 4`(n)η(n). To commit to a value v, the committer C and

the receiver R, on common input 1n and tag ∈ {0, 1}`(n), do the following.

Stage 1: R sends the Step 1 message of a commitment of PTrapCom. That is, a com-
mitment of Com to a randomly chosen string challenge e = (e1, . . . , en).

Stage 2: C computes an (n+1)-out-of-10n Shamir’s secret sharing s = (s1, . . . , s10n) of
value v, and commits to these shares using Step 2 of PTrapCom in parallel, for L(n)
times; we call the i-th parallel commitment the i-th row, and all the commitments
to sj the j-th column. Messages in the 4`(n)η(n) rows are scheduled based on tag
and relies on scheduling pairs of rows according to schedules design0 and design1
depicted in Figure 5. More precisely, Stage 2 consist of `(n) phases. In phase
i, C provides η(n) sequential designtagi pairs of rows, followed by η(n) sequential
design1−tagi

pairs of rows.

Stage 3: R decommits the Stage 1 commitment to e. C completes the 10nL(n) execu-
tions of PTrapCom w.r.t. challenge e in parallel.

Stage 4: R sends a randomly chosen subset Γ ⊂ [10n] of size n. For every j ∈ Γ, C
decommits all the commitments in the j-th column of Stage 3. R checks that all
the decommitments are valid, and reveal the same committed values sj .

Figure 4: Black-box CCA-secure commitment scheme of [LP12]

Then, we observe that by setting η(n) := 1 in the scheme of [LP12], we obtain a black-
box O(`(n))-round parallel CCA-secure commitment scheme for tags of length `(n), where
a commitment scheme is parallel CCA secure if it is CCA secure w.r.t. a restricted class of
adversaries that start only a single parallel right session. This is because, when an adversary

23

Figure 5: Description of the schedules used in Stage 2 of the protocol of [LP12]. (α1, β1, γ1)
and (α2, β2, γ2) are respectively the transcripts of a pair of rows in Stage 2.

starts only a single parallel right session, we do not need to worry about recursive rewinding
and therefore each right session need to have only a single safe-point as in the concurrent non-
malleable commitment scheme of [LPV08] (on which the CCA-secure commitment schemes of
[CLP10, LP12] are based). Therefore, by setting η(n) := 1 and `(n) := O(log n), we obtain a
black-box O(log n)-round commitment scheme that is parallel CCA secure for tags of length
O(log n).

Next, we observe that the DDN log n trick [DDN00, LPV08] transforms any black-box
parallel CCA-secure commitment scheme for tags of length O(log n) to a black-box one-one
CCA-secure commitment scheme for tags of length O(n). This can be proven in essentially
the same way as the proof of the fact that the DDN log n trick transforms a concurrent non-
malleable commitment scheme for tags of length O(log n) to a non-malleable commitment
scheme for tags of length O(n). For details, see Appendix B.

Combining above, we obtain a black-boxO(log n)-round one-one CCA-secure commitment
scheme CCACom1:1. CCACom1:1 satisfies the strong computational binding property and
the computational hiding property because the CCA-secure commitment scheme of [LP12]
satisfies both properties and the DDN log n trick preserves both properties. (The strong
computational binding property of [LP12] follows from that of the trapdoor commitment
scheme of [PW09].)

5 CCA-Secure Commitment Scheme

Using one-way functions in a black-box way, we construct a Õ(log2 n)-round robust CCA-
secure commitment scheme.

Theorem 1. Assume the existence of one-way functions. Then, there exists a Õ(log2 n)-
round robust CCA-secure commitment scheme CCACom. Furthermore, CCACom uses the
underlying one-way function only in a black-box way.

Proof. Figure 6 shows CCACom, which uses CECom′ shown in Lemma 1 and CCACom1:1 shown
in Lemma 2. For simplicity, we use a non-interactive perfectly binding commitment scheme
Com, which is based on one-way permutations. Using a standard technique, we can replace
Com with 2-round statistically binding commitment scheme based on one-way functions.8

First, we note that the statistical binding property of CCACom follows directly from that
of Com.

8By sending the first-round message at the beginning of the protocol, we can use a 2-round commitment
scheme as a non-interactive commitment scheme.

24

Commit Phase

The committer C and the receiver R receive common inputs 1n and tag ∈ {0, 1}n. To
commit to v ∈ {0, 1}n, the committer C does the following with the receiver R.

Stage 1. R commits to a random subset Γ ⊂ [10n] of size n by using CCACom1:1 with
tag tag.

Stage 2. C computes an (n + 1)-out-of-10n Shamir’s secret sharing s = (s1, . . . , s10n)

of value v. Next, for each j ∈ [10n], C chooses random dj ∈ {0, 1}poly(n) and
computes cj := Com(sj ; dj) (i.e., commits to sj with randomness dj). Then, C
sends (c1, . . . , c10n) to R.

Stage 3. Let rcca := rcca(n) be the number of rounds in CCACom1:1, and rcec :=
rcec(n) be the number of rounds in CECom′. Let η := 2rcca + rcec + 1. Then, for
each i ∈ [η] in sequence, C does the following.

• For each j ∈ [10n] in parallel, C commits to (sj , dj) by using CECom′.

We call the i-th parallel commitments the i-th row, and call all the commitments
to (sj , dj) the j-th column.

Stage 4. R decommits the Stage 1 commitment to Γ.

Stage 5. For each j ∈ Γ, C decommits all the commitments in the j-th column to
(sj , dj). R checks whether cj = Com(sj ; dj) for every j ∈ Γ.

Decommit Phase

C sends v and decommits all the Stage 2 commitments. Then, R defines s =
(s1, . . . , s10n) as follows: If the j-th decommitment is invalid, sj := ⊥; otherwise, sj
is the j-th decommitted value. R accepts the decommitments if and only if V (s) = v,
where for any t = (t1, . . . , t10n), V (t) is defined as follows: If t is 0.9-close to a valid
codeword w = (w1, . . . , w10n) and for each j ∈ Γ, wj equals the value revealed in Stage
5, then V (t) is the value decoded from w; otherwise, V (t) = ⊥.

Figure 6: CCA commitment scheme CCACom.

It remains to show that CCACom is robust CCA secure. (The hiding property of CCACom
follows from CCA security.) Formally, we consider the following lemmas.

Lemma 3. CCACom is CCA secure.

Lemma 4. For any constant κ, CCACom is κ-robust.

The theorem follows from these lemmas.

5.1 Proof of CCA Security

Proof of Lemma 3. First, we note that at the end of each right session, O computes the
committed value by extracting the committed values s = (s1, . . . , s10n) of the Stage 2 com-

25

mitments in super-polynomial time and computing V (s). Then, for any ppt adversary A,
we consider the following hybrid experiments for each b ∈ {0, 1}.

Hybrid Hb
0(n, z): Hybrid Hb

0(n, z) is the same as INDb(CCACom,A, n, z).

Hybrid Hb
1(n, z) to Hybrid Hb

η(n, z): For k ∈ [η], hybrid Hb
k(n, z) is the same as Hb

0(n, z)
except for the following.

• In Stage 1 on the left, the committed value Γ is extracted by brute force. If the
commitment is invalid, Γ is set to be a random subset. If the commitment has
more than one committed value, Hb

k(n, z) outputs fail and terminates.

• In Stage 3 on the left, the left committer commits to (0,0) instead of (sj , dj) for
every i ∈ [k] and j 6∈ Γ.

Hybrid Hb
η+1(n, z): Hybrid Hb

η+1(n, z) is the same as Hb
η(n, z) except that in Stage 2 on the

left, the left committer commits to 0 instead of sj for every j 6∈ Γ.

Let Hb
k(n, z) be a random variable for the output of Hb

k(n, z). Below, we prove the following
claims.

Claim 1. For every b ∈ {0, 1} and k ∈ [η],
{
Hb
k−1(n, z)

}
n∈N,z∈{0,1}∗ and

{
Hb
k(n, z)

}
n∈N,z∈{0,1}∗

are computationally indistinguishable.

Claim 2. For every b ∈ {0, 1},
{
Hb
η(n, z)

}
n∈N,z∈{0,1}∗ and

{
Hb
η+1(n, z)

}
n∈N,z∈{0,1}∗ are com-

putationally indistinguishable.

Since A receives no information about b in Hb
η+1(n, z), distribution

{
H0
η+1(n, z)

}
n∈N,z∈{0,1}∗

and
{
H1
η+1(n, z)

}
n∈N,z∈{0,1}∗ are identically distributed. Thus, Lemma 3 follows from these

claims.

5.1.1 Proof of Claim 1

Proof of Claim 1. In this proof, we use the following claim.

Claim 3. For every b ∈ {0, 1}, k ∈ [η+1] and z ∈ {0, 1}∗, Hb
k(n, z) outputs fail with at most

negligible probability.

The proof of Claim 3 is given in Section 5.1.3.
Below, we show the indistinguishability of this claim under the condition that Hb

k−1(n, z)

and Hb
k(n, z) do not output fail. From Claim 3, this suffices to prove the claim.

Since Hb
k−1(n, z) and Hb

k(n, z) differ only in the commitments in the k-th row on the
left, we prove the indistinguishability by using the hiding property of CECom′. The problem
is that in Hb

k−1(n, z) and Hb
k(n, z), A makes queries to O, which runs in super-polynomial

time. Thus, we cannot directly use the computational hiding property of CECom′ to prove
the indistinguishability.

To use the computational hiding property of CECom′, we consider experiments H̃b
k−1(n, z)

and H̃b
k(n, z), in which O is emulated in polynomial time by rewinding A. Formally, for every

h ∈ {k − 1, k}, H̃b
h(n, z) is the same as Hb

h(n, z) except for the following.

• In Stage 3 of each right session, let us consider the following condition.

26

Condition 1. A row satisfies Condition 1 if and only if the row contains no message
of Stage 1 on the left and the k-th row on the left (i.e., after the row starts, A sends
no such message until the row ends).

Note that, since every session has 2rcca + rcec + 1 rows, at least rcca + 1 rows satisfy
Condition 1 in every right session. Then, the committed values of every row satisfying
Condition 1 are extracted by using the concurrent extractability of CECom′ and the
technique of [LP11] (see Appendix A). We note that neither Stage 1 on the left nor the
k-th row on the left is rewound in the extraction. (Later, we use this fact when we use
the hiding property of the k-th row commitment and the one-one CCA security of the
Stage 1 commitment.) If the extraction fails, H̃b

h(n, z) outputs failext and halts. (From
the concurrent extractability of CECom′, this happens with negligible probability.)

• For any t = (t1, . . . , t10n), we define V
′(t) as follows: If t is 0.8-close to a valid codeword

w = (w1, . . . , w10n) and for every j ∈ Γ, wj equals the value revealed in Stage 5, then
V ′(t) is the value decoded from w; otherwise, V ′(t) = ⊥. Then, at the end of each
right session, O returns V ′(s′) to A instead of V (s), where s′ = (s′1, . . . , s

′
10n) is the

extracted values of the first row satisfying Condition 1 in this session. We note that O
does not break the hiding property of the Stage 2 commitments, and therefore O runs
in polynomial time.

Then, we consider the following claim.

Claim 4. For every h ∈ {k − 1, k},
{
Hb
h(n, z)

}
n∈N,z∈{0,1}∗ and

{
H̃b
h(n, z)

}
n∈N,z∈{0,1}∗

are

statistically indistinguishable.

Before proving Claim 4, we finish the proof of Claim 1 by using Claim 4. Given Claim 4,

we can prove Claim 1 by showing that
{
H̃b
k−1(n, z)

}
n∈N,z∈{0,1}∗

and
{
H̃b
k(n, z)

}
n∈N,z∈{0,1}∗

are computationally indistinguishable. H̃b
k−1(n, z) and H̃b

k(n, z) differ only in the committed

values of the k-th row on the left. In addition, both in H̃b
k−1(n, z) and in H̃b

k(n, z), oracle O
is emulated in polynomial time and the k-th row on the left is not rewound. Thus, we can
directly use the hiding property of CECom′ to show the indistinguishability. Formally, assume
for contradiction that for infinitely many n, there exists z ∈ {0, 1}∗ such that H̃b

k−1(n, z)

and H̃b
k(n, z) can be distinguished with probability 1/poly(n). Then, since H̃b

k−1(n, z) and

H̃b
k(n, z) proceed identically until the k-th row starts on the left, there exists a prefix ρ of

H̃b
k−1(n, z) such that (i) immediately after ρ, the k-th row starts on the left and (ii) under

the condition that a prefix is ρ, H̃b
k−1(n, z) and H̃b

k(n, z) can be distinguished with probability
1/poly(n). Since ρ contains the entire transcript of Stage 1 on the left, ρ uniquely determines
the committed value Γ of the Stage 1 commitment on the left. Then, we consider the following
ppt adversary B against the hiding property of CECom′.

• Receiving ρ and Γ as auxiliary inputs, B internally invokes A and honestly emulates
H̃b

k−1(n, z) after ρ except that in the k-th row on the left, B receives either commitments
to (sj , dj)j 6∈Γ or commitments to (0, . . . , 0) from the external committer and forwards
them to A. Then, B outputs whatever A outputs.

Since B perfectly emulates either H̃b
k−1(n, z) or H̃

b
k(n, z), our assumption implies that B dis-

tinguishes the commitments to (sj , dj)j 6∈Γ and the commitments to (0, . . . , 0) with probability
1/poly(n). Thus, we reach a contradiction.

27

Next, we prove Claim 4. Let us say that A cheats in a right session if (i) the session
is accepted and (ii) there exists a row that satisfies Condition 1 in the session and whose
committed values (s′1, d

′
1), . . . , (s

′
10n, d

′
10n) satisfy V ′(s′) 6= V (s), where s is the committed

values of the Stage 2 commitment and s′ = (s′1, . . . , s
′
10n). Then, to prove Claim 4, we show

that in Hb
h(n, z), A does not cheat in any right session. Recall that V (s) is the answer that

O returns to A in Hb
h(n, z). Hence, if A does not cheat in a right session, the answer of O

in the session can be computed by extracting the committed values from any row satisfying
Condition 1. (Recall that we can extract the committed values of CECom′ without over-
extraction.)

Claim 5. In any right session in Hb
h(n, z), A cheats with at most negligible probability.

The proof of Claim 5 is given after the proof of Claim 4.

Proof of Claim 4. To show the indistinguishability between the output of Hb
h(n, z) and that

of H̃b
h(n, z), we consider an intermediate experiment Ĥb

h(n, z), which is the same as H̃b
h(n, z)

except that at the end of each right session on each thread, O returns V (s) to A as in
Hb

h(n, z) instead of V ′(s′). From the concurrent extractability of CECom′, Ĥb
h(n, z) outputs

failext with negligible probability.9 Then, since the property of PTV rewinding strategy
guarantees that the main thread of Ĥb

h(n, z) is identically distributed with the execution

of Hb
h(n, z), the output of Hb

h(n, z) and that of Ĥb
h(n, z) are statistically indistinguishable.

In addition, since each thread in Ĥb
h(n, z) is identically distributed with the execution of

Hb
h(n, z), Claim 5 guarantees that in every session on every thread in Ĥb

h(n, z), A cheats

with at most negligible probability. Since Ĥb
h(n, z) and H̃b

h(n, z) differ only in the answers

of O, from the definition of cheating, we conclude that the output of Ĥb
h(n, z) and that of

H̃b
h(n, z) are statistically indistinguishable. (Recall that we can extract the committed value

of CECom′ without over-extraction.) Thus, we conclude that the output of Hb
h(n, z) and that

of H̃b
h(n, z) are statistically indistinguishable.

Now, we prove Claim 5. First, we introduce notations. For any q ∈ N, we say that a right
session has the end-index q if this session is the q-th right session that A completes. Similarly,
we say that a right session has the start-index q if this session is the q-th right session that A
starts. Note that the end-index of a session is undefined until the session completes, whereas
the start-index is defined when the session starts. Jumping ahead, in the proof, we assume
for contradiction that there exists an end-index q1 such that A cheats in the session having
the end-index q1. Then, since we do not know which session has the end-index q1 until the
session completes, we guess a start-index q2 such that the session having the start-index q2
has the end-index q1.

Proof of Claim 5. Intuitively, A cannot cheat in any right session because of the hiding prop-
erty of CCACom1:1 in Stage 1. That is, the hiding property of CCACom1:1 and the cut-and-
choose technique guarantees that whenever A tries to cheat in a right session, the session is
rejected. However, there exist two problems.

9Actually, this is not trivial, since Ĥb
h(n, z) involves the computation of V (s), which requires super-

polynomial time. Nevertheless, we can show this since (i) the extraction of CECom′ fails if and only if
the extraction of CECom fail, and (ii) the extraction of CECom fails with negligible probability even when the
cheating committer runs in super-polynomial time, as long as the cheating committer starts only polynomially-
many sessions.

28

• Since A accesses super-polynomial-time oracle O, we cannot directly use the compu-
tational hiding property of CCACom1:1. We overcome this problem by emulating O in
polynomial time.

• A may cheat in a right session by using the messages received in the left session, in
which the left committer “cheat.” We overcome this problem by using the one-one
CCA-security of CCACom1:1 instead of the hiding property of CCACom1:1. (Note that,
given the committed value Γ of the Stage 1 commitment on the left, we can emulate
the left session in polynomial time.)

To simulate O in polynomial time, we rewind A. Since we want to use the one-one CCA
security of CCACom1:1, we make sure that we do not rewind the CCACom1:1 commitment in
the left session and the CCACom1:1 commitment in a right session.

Formally, assume for contradiction that there exists a right session in which A cheats with
non-negligible probability. Then, there exists an end-index q1 such that (i) A cheats with at
most negligible probability in any right session having the end-index less than q1, but (ii) A
cheats with non-negligible probability in the session having the end-index q1.

To reach a contradiction, we first consider the following hybrid experiments Gb
h(n, z) and

Ĝb
h(n, z).

• Experiment Gb
h(n, z) is the same as Hb

h(n, z) except that Gb
h(n, z) halts immediately

afterA completes the session having the end-index q1 (i.e., immediately beforeO returns
the answer of this session to A). Note that in Gb

h(n, z), O returns answers to A only
in the right sessions having the end-index less than q1.

• Experiment Ĝb
h(n, z) is the same as Gb

h(n, z) except that a start-index q2 is chosen at
random, and in Stage 3 of each right session, the committed values are extracted from
all the row satisfying the following Condition 2.

Condition 2. A row satisfies Condition 2 if and only if the row contains no message of
Stage 1 on the left, the k-th row of Stage 3 on the left, and Stage 1 of the right session
having the start-index q2.

As in H̃b
h(n, z), this extraction is done by using the technique of [LP11]. Thus, none

of Stage 1 on the left, the k-th row on the left, and Stage 1 of the right session having
the start-index q2 is rewound. (Later, we use this fact to use the one-one CCA security
of CCACom1:1.) If the extraction fails, Ĝb

h(n, z) outputs failext and halts. (From the
concurrent extractability of CECom′, this happens with negligible probability.) Note
that, since every session has 2rcca + rcec + 1 rows, at least one row satisfies Condition
2 in every session. We also note that in the session having start-index q2, Condition
2 is equivalent to Condition 1, since every row in the session having the start-index q2
does not contain the messages of Stage 1 of the right session having the start-index q2.

As in Hb
h(n, z), on every thread in Ĝb

h(n, z) A cheats with at most negligible probability in
any session having the end-index less than q1 and A cheats with non-negligible probability in
the session having the end-index q1. This is because in PTV rewinding strategy, the transcript
of every thread in Ĝb

h(n, z) is identically distributed with the transcript of Gb
h(n, z), which is

identically distributed with a prefix of the transcript of Hb
h(n, z).

Then, we observe that except with negligible probability, on every thread of Ĝb
h(n, z)

we have V (s) = V ′(s′) in every session having the end-index less than q1, where s′ =

29

(s′1, . . . , s
′
10n) is the committed values of the first row satisfying Condition 2 in the session.

This is because (i) if a row satisfies Condition 2, it also satisfies Condition 1 and (ii) in any
session with the end-index less than q1, A cheats with at most negligible probability, and
therefore we have V (s) = V ′(s′′), where s′′ is the committed values of any row satisfying
Condition 1.

Motivated by this observation, we define another experiment G̃b
h(n, z) as follows.

• G̃b
h(n, z) is the same as Ĝb

h(n, z) except that at the end of each right session on each
thread, O returns V ′(s′) to A instead of V (s), where s′ = (s′1, . . . , s

′
10n) is the extracted

values of the first row satisfying Condition 2 in the session.

As in Ĝb
h(n, z), on every thread of G̃b

h(n, z), A cheats with non-negligible probability in

the session having the end-index q1, since the transcript of every thread in Ĝb
h(n, z) and

that of G̃b
h(n, z) are identically distributed except with negligible probability. (Recall that in

Ĝb
h(n, z), oracle O returns the answer to A only at the end of the sessions having the end-

indexes less than q1, and we can extract the committed values s′ = (s′1, . . . , s
′
10n) without

over-extraction.)
Since the number of right sessions is at most polynomial, on any thread in G̃b

h(n, z), A
cheats with non-negligible probability in the session having the start-index q2.

Then, we will reach a contradiction by showing that in the session having the start-index
q2 on the main thread in G̃b

h(n, z), A cheats with at most negligible probability. Toward this
end, we first show the following subclaim, which says that if the session having the start-index
q2 is accepted, then for every row satisfying Condition 1 in the session, the committed values
of more than 9.5n columns of this row are the valid decommitments of the corresponding
Stage 2 commitments.

Subclaim 1. On the main thread in G̃b
h(n, z), except with negligible probability, if the session

having the start-index q2 is accepted, then for every row satisfying Condition 1 in the session,

the committed values ((s′1, d
′
1), . . . , (s

′
10n, d

′
10n)) of this row satisfy

∣∣∣{j ∈ [10n] | cj = Com(s′j ; d
′
j)
}∣∣∣ ≥

9.5n.

Proof of Subclaim 1. Assume for contradiction that with non-negligible probability, the ses-
sion with the start-index q2 is accepted but there exists a row that satisfies Condition 1 and

whose committed values (s′1, d
′
1), . . . , (s

′
10n, d

′
10n) satisfy

∣∣∣{j ∈ [10n] | cj = Com(s′j ; d
′
j)
}∣∣∣ <

9.5n. Then, we consider the following ppt adversary M against the one-one CCA security
of CCACom1:1.

• M internally invokesA and emulates G̃b
h(n, z) as follows. In the left session, M forwards

the Stage 1 commitment from A to the committed-value oracle O, and receives Γ from
O. Then, M honestly emulates the left session by using Γ. In right sessions, M honestly
emulates every session except that in the session having the start-index q2 M receives
either a commitment to Γ0 or a commitment to Γ1 from the external committer (where
Γ0,Γ1 ⊂ [10n] are random subsets of size n) and forwards this commitment to A as the
Stage 1 commitment. (Note that the commitments that M externally forwards are not
rewound in G̃b

h(n, z).) M continues the emulation until G̃b
h(n, z) ends or Stage 3 of the

right session having the start-index q2 ends. M outputs 1 if in the right session having
the start-index q2, there exists a row that satisfies Condition 1 and whose extracted
values (s′′1, d

′′
1), . . . , (s

′′
10n, d

′′
10n) satisfies that (i) for every j ∈ Γ1, cj = Com(s′′j ; d

′′
j) and

(ii)
∣∣∣{j ∈ [10n] | cj = Com(s′′j ; d

′′
j)
}∣∣∣ < 9.5n. Otherwise, M outputs 0.

30

When M receives a commitment to Γ0, M outputs 1 with at most exponentially small

probability. That is, when
∣∣∣{j ∈ [10n] | cj = Com(s′j ; d

′
j)
}∣∣∣ < 9.5n, since the internal A

receives no information about Γ1 and since CECom′ is extractable without over-extraction,
there exists an index j ∈ Γ1 such that cj 6= Com(s′j ; d

′
j) except with exponentially small

probability. On the other hand, when M receives a commitment to Γ1, our assumption
guarantees that M outputs 1 with non-negligible probability. Thus, we reach a contradiction.

We go back to the proof of Claim 5. As noted above, we reach a contradiction by showing
that on the main thread in G̃b

h(n, z), A cheats with at most negligible probability in the right
session having the start-index q2. That is, we show that when the right session having the
start-index q2 is accepted, we have V (s) = V ′(s′) except with negligible probability, where
s′ = (s′1, . . . , s

′
10n) is the committed values of any row satisfying Condition 1 in the session.

From the binding property of Com, the transcript of the main thread in G̃b
h(n, z) uniquely

determines the committed values s = (s1, . . . , s10n) of the Stage 2 commitments in the right
session having the start-index q2. Then, for any row satisfying Condition 1 in the session, we
consider the following two cases.

• First, we consider the case that s is 0.9-close to a valid codeword w = (w1, . . . , w10n).
In this case, since Subclaim 1 guarantees that the committed shares s′ = (s′1, . . . , s

′
10n)

of the row is 0.95-close to s except with negligible probability, s′′ is 0.85-close to w
except with negligible probability. Thus, from the definitions of V (·) and V ′(·), we have
V (s) = V ′(s′) except with negligible probability.

• Next, we consider the case that s is 0.1-far from any valid codeword. In this case,
we have V (s) = ⊥. If s′ is 0.2-far from any valid codeword, we have V ′(s′) = ⊥
as well. Thus, it suffices to consider the case that s′ is 0.8-close to a valid codeword
w = (w1, . . . , w10n). Then, since s and w are 0.1-far and s and s′ are 0.95-close, s′ and
w is 0.05-far. Thus, if we have s′j = wj for every j ∈ Γ with non-negligible probability,

we can break the one-one CCA security of CCACom1:1 in the same way as in the proof
of Subclaim 1. (Note that we can efficiently compute w from s′.) Thus, there exists an
index j ∈ Γ such that s′j 6= wj except with negligible probability. Then, since for every
j ∈ Γ, s′j equals the values revealed in Stage 5 whenever the session is accepted, from
the definition of V ′(·), we have V ′(s′) = ⊥ except with negligible probability.

We therefore conclude that A cheats in the session having start-index q2 with at most negli-
gible probability. Thus we reach a contradiction.

5.1.2 Proof of Claim 2

Claim 2 can be proven in essentially the same way as Claim 1. In particular, Hb
η(n, z)

and Hb
η+1(n, z) differ only in the committed values of the Stage 2 commitments, whereas

Hb
k−1(n, z) and Hb

k(n, z) differ only in the committed values of the k-th row commitments.
We can therefore prove Claim 2 by modifying the proof of Claim 1 accordingly. We omit the
formal proof.

5.1.3 Proof of Claim 3

Proof of Claim 3. Since Hb
k(n, z) outputs fail only if the Stage 1 commitment has more than

one committed value in the left session, we prove this claim by using the binding property

31

of CCACom1:1. The problem is that since A accesses the committed-value oracle O, which
runs in super-polynomial time, we cannot directly use the strong computational binding
property of CCACom1:1. We overcome this problem, again, by rewinding A and emulating O
in polynomial time. The proof is similar to the proof of Claim 1.

Formally, assume for contradiction that Hb
k outputs fail with non-negligible probability.

Then, with non-negligible probability, the Stage 1 commitment on the left has more than one
committed value.

First, we consider hybrid experiment H̃ ′b
k(n, z), which is the same as Hb

k(n, z) except for
the following.

• In Stage 3 of each right session, let us consider the following condition.

Condition 1′. A row satisfies Condition 1′ if and only if the row contains no message
of Stage 1 on the left.

Then, the committed values of every row satisfying Condition 1′ are extracted by using
the concurrent extractability of CECom′ without rewinding Stage 1 on the left.

• For any t = (t1, . . . , t10n), we define V
′(t) in the same way as in H̃b

h(n, z) in the proof of
Claim 1. Then, at the end of each right session, O returns V ′(s′) to A instead of V (s),
where s′ = (s′1, . . . , s

′
10n) is the extracted values of the first row satisfying Condition 1′

in this session.

• Hb
k(n, z) terminates immediately after Stage 1 ends in the left session.

From essentially the same proof as that of Claim 4, we have the following claim.

Claim 6.
{
Hb
k(n, z)

}
n∈N,z∈{0,1}∗ and

{
H̃′b

k(n, z)
}
n∈N,z∈{0,1}∗

are statistically indistinguish-

able.

From Claim 6 and our assumption, the Stage 1 commitment has more than one commit-

ted value in the left session in H̃ ′b
k(n, z) with non-negligible probability. Since the Stage 1

commitment on the left is not rewound and since H̃ ′b
k(n, z) can be executed in polynomial

time, this contradicts to the strong computational binding property of CCACom1:1.

5.2 Proof of Robustness

Like the robustness of previous CCA-secure commitments [CLP10, LP12], the robustness of
CCACom can be shown by using the techniques in the proof of its CCA security.

Proof of Lemma 4. We show that there exists a ppt simulator S such that for any ppt ad-
versary A and any κ-round ppt ITM B, the following are computationally indistinguishable.

•
{
outB,AO [〈B(y),AO(z)〉(1n, x)]

}
n∈N,x,y,z∈{0,1}n

•
{
outB,SA [〈B(y),SA(z)〉(1n, x)]

}
n∈N,x,y,z∈{0,1}n

Given oracle access to A, simulator S simulates the interaction between B and AO as
follows. On the left, S forwards messages from B to A and forwards those from A to B. On
the right, S honestly simulates each session between A and O except for the following.

32

• In Stage 3, S extracts ŝ = (ŝ1, . . . , ŝ10n) from every row containing no message of
the left session by using the technique of [LP11]. There must exist such rows, since
CCACom has Õ(log n) rows in Stage 3. Note that in the extraction, the left session is
not rewound.

• At the end of the session, S returns V ′(s′) to A, where s′ is the extracted values of the
first row containing no message of the left session.

We show that S correctly simulates the interaction between B and AO. First, as in the
proof of Claim 5, we can show that when AO interacts with B, in any right session between A
and O, we have V (s) 6= V ′(s′) with at most negligible probability, where s′ is the committed
values of any row containing no message of the left session. (we use the hiding property of
CCACom1:1 instead of one-one CCA security). Then, as in the proof of Claim 4, we can show
that the view of the internal A (in S) is statistically close to the view of AO that interacts
with B.

6 Black-Box Composable MPC Protocol

In this section, we show our black-box construction of a general MPC protocol. Our protocol
is secure in angel-based UC framework. Roughly speaking, this framework (called H-EUC
framework) is the same as the UC framework except that both the adversary and the envi-
ronment in the real and ideal worlds have access to a super-polynomial-time functionality H
called a angel (or a helper). For details, see [PS04, CLP10].

We use the results of [CLP10] and [LP12]. Let 〈C,R〉 be any rcca(n)-round robust
CCA-secure commitment scheme, 〈S,R〉 be any rot(n)-round semi-honest oblivious transfer
protocol, and H be a helper that breaks 〈C,R〉 in essentially the same way as the committed-
value oracle of 〈C,R〉 does. Then, Lin and Pass [LP12] showed that there exists a black-
box O(max(rot(n), rcca(n)))-round protocol that securely realizes the ideal oblivious transfer
functionality FOT in the H-EUC framework.

Theorem 2 ([LP12]). Assume the existence of an rcca(n)-round robust CCA-secure com-
mitment scheme 〈C,R〉 and the existence of an rot(n)-round semi-honest oblivious transfer
protocol 〈S,R〉. Then, there exists an O(max(rcca(n), rot(n)))-round protocol that H-EUC-
realizes FOT . Furthermore, this protocol uses 〈C,R〉 and 〈S,R〉 only in a black-box way.

In [CLP10], Canetti et al. showed the following.

Theorem 3 ([CLP10]). For every well-formed functionality F , there exists a constant-round
FOT -hybrid protocol that H-EUC-realizes F .

Then, we obtain the following theorem by combining Theorems 1, 2, and 3.

Theorem 4. Assume the existence of rot-round semi-honest oblivious transfer protocols.
Then, there exists a super-polynomial-time helper H such that for every well-formed func-
tionality F , there exists a max(Õ(log2 n), O(rot(n))))-round protocol that H-EUC-realizes F .
Furthermore, this protocol uses the underlying oblivious transfer protocol only in a black-box
way.

33

References

[BS05] Boaz Barak and Amit Sahai. How to play almost any mental game over the
net - concurrent composition via super-polynomial simulation. In FOCS, pages
543–552, 2005.

[Can01] Ran Canetti. Universally composable security: A new paradigm for crypto-
graphic protocols. In FOCS, pages 136–145, 2001.

[CDSMW08] Seung Geol Choi, Dana Dachman-Soled, Tal Malkin, and Hoeteck Wee. Black-
box construction of a non-malleable encryption scheme from any semantically
secure one. In TCC, pages 427–444, 2008.

[CDSMW09] Seung Geol Choi, Dana Dachman-Soled, Tal Malkin, and Hoeteck Wee. Simple,
black-box constructions of adaptively secure protocols. In TCC, pages 387–402,
2009.

[CF01] Ran Canetti and Marc Fischlin. Universally composable commitments. In
CRYPTO, pages 19–40, 2001.

[CKL03] Ran Canetti, Eyal Kushilevitz, and Yehuda Lindell. On the limitations of
universally composable two-party computation without set-up assumptions. In
EUROCRYPT, pages 68–86, 2003.

[CLOS02] Ran Canetti, Yehuda Lindell, Rafail Ostrovsky, and Amit Sahai. Universally
composable two-party and multi-party secure computation. In STOC, pages
494–503, 2002.

[CLP10] Ran Canetti, Huijia Lin, and Rafael Pass. Adaptive hardness and composable
security in the plain model from standard assumptions. In FOCS, pages 541–
550, 2010.

[DDN00] Danny Dolev, Cynthia Dwork, and Moni Naor. Nonmalleable cryptography.
SIAM J. Comput., 30(2):391–437, 2000.

[GGJS12] Sanjam Garg, Vipul Goyal, Abhishek Jain, and Amit Sahai. Concurrently
secure computation in constant rounds. In EUROCRYPT, pages 99–116, 2012.

[GLOV12] Vipul Goyal, Chen-Kuei Lee, Rafail Ostrovsky, and Ivan Visconti. Constructing
non-malleable commitments: A black-box approach. In FOCS, pages 51–60,
2012.

[GLP+12] Vipul Goyal, Huijia Lin, Omkant Pandey, Rafael Pass, and Amit Sahai. Round-
efficient concurrently composable secure computation via a robust extraction
lemma. Cryptology ePrint Archive, Report 2012/652, 2012. http://eprint.

iacr.org/.

[GMW87] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental
game or a completeness theorem for protocols with honest majority. In STOC,
pages 218–229, 1987.

[Goy11] Vipul Goyal. Constant round non-malleable protocols using one way functions.
In STOC, pages 695–704, 2011.

34

[Hai08] Iftach Haitner. Semi-honest to malicious oblivious transfer - the black-box way.
In TCC, pages 412–426, 2008.

[HIK+11] Iftach Haitner, Yuval Ishai, Eyal Kushilevitz, Yehuda Lindell, and Erez Pe-
trank. Black-box constructions of protocols for secure computation. SIAM J.
Comput., 40(2):225–266, 2011.

[IKLP06] Yuval Ishai, Eyal Kushilevitz, Yehuda Lindell, and Erez Petrank. Black-box
constructions for secure computation. In STOC, pages 99–108, 2006.

[IPS08] Yuval Ishai, Manoj Prabhakaran, and Amit Sahai. Founding cryptography on
oblivious transfer - efficiently. In CRYPTO, pages 572–591, 2008.

[Kiy14] Susumu Kiyoshima. Round-efficient black-box construction of composable
multi-party computation. In CRYPTO, 2014. To appear.

[KMO14] Susumu Kiyoshima, Yoshifumi Manabe, and Tatsuaki Okamoto. Constant-
round black-box construction of composable multi-party computation protocol.
In TCC, pages 343–367, 2014.

[Lin11] Huijia Lin. Concurrent Security. PhD thesis, Cornell University, 2011.

[LP11] Huijia Lin and Rafael Pass. Concurrent non-malleable zero knowledge with
adaptive inputs. In TCC, pages 274–292, 2011.

[LP12] Huijia Lin and Rafael Pass. Black-box constructions of composable protocols
without set-up. In CRYPTO, pages 461–478, 2012.

[LPTV10] Huijia Lin, Rafael Pass, Wei-Lung Dustin Tseng, and Muthuramakrishnan
Venkitasubramaniam. Concurrent non-malleable zero knowledge proofs. In
CRYPTO, pages 429–446, 2010.

[LPV08] Huijia Lin, Rafael Pass, and Muthuramakrishnan Venkitasubramaniam. Con-
current non-malleable commitments from any one-way function. In TCC, pages
571–588, 2008.

[MMY06] Tal Malkin, Ryan Moriarty, and Nikolai Yakovenko. Generalized environmental
security from number theoretic assumptions. In TCC, pages 343–359, 2006.

[MOSV06] Daniele Micciancio, Shien Jin Ong, Amit Sahai, and Salil P. Vadhan. Con-
current zero knowledge without complexity assumptions. In TCC, pages 1–20,
2006.

[Nao91] Moni Naor. Bit commitment using pseudorandomness. J. Cryptology, 4(2):151–
158, 1991.

[Pas03] Rafael Pass. Simulation in quasi-polynomial time, and its application to pro-
tocol composition. In EUROCRYPT, pages 160–176, 2003.

[PLV12] Rafael Pass, Huijia Lin, and Muthuramakrishnan Venkitasubramaniam. A
unified framework for UC from only OT. In ASIACRYPT, pages 699–717,
2012.

35

[PRS02] Manoj Prabhakaran, Alon Rosen, and Amit Sahai. Concurrent zero knowledge
with logarithmic round-complexity. In FOCS, pages 366–375, 2002.

[PS04] Manoj Prabhakaran and Amit Sahai. New notions of security: achieving uni-
versal composability without trusted setup. In STOC, pages 242–251, 2004.

[PTV12] Rafael Pass, Wei-Lung Dustin Tseng, and Muthuramakrishnan Venkitasubra-
maniam. Concurrent zero knowledge, revisited. J. Cryptology, pages 1–22,
2012.

[PW09] Rafael Pass and Hoeteck Wee. Black-box constructions of two-party protocols
from one-way functions. In TCC, pages 403–418, 2009.

[RK99] Ransom Richardson and Joe Kilian. On the concurrent composition of zero-
knowledge proofs. In EUROCRYPT, pages 415–431, 1999.

[Wee10] Hoeteck Wee. Black-box, round-efficient secure computation via non-
malleability amplification. In FOCS, pages 531–540, 2010.

A Technical Detail for the Proof of Claim 1.

Let (m1, . . . ,mrcca+rcec) be the messages that A sends in Stage 1 on the left and the k-th row
on the left, and let ai be the reply to mi from the left committer. Then, the execution of A
is equivalent to the sequential execution of the following adversaries A1, . . . ,Arcca+rcec+1.

• On input ai−1 and a partial view Vi−1 of A up until A sends mi−1 (a0 = ε and V0 = ⊥),
Ai emulates the execution of A from Vi−1 by feeding Vi−1 and ai−1 to A and forwarding
every message from A externally. When A halts or outputs mi, Ai outputs the current
view Vi of A and halts.

Then, we extract the committed values of every row satisfying Condition 1 by sequentially
executing A1, . . . ,Arcca+rcec+1 and extracting the committed values from every row that is
entirely contained in the execution of each Ai. Clearly, neither Stage 1 on the left nor the
k-th row on the left is rewound.

B One-One CCA Commitment for Long Tags from Parallel
CCA Commitment for Short Tags

Lemma 5. Let r(·) and t(·) be arbitrary functions such that t(n) = O(log n), and let CCACom
be an r(n)-round commitment scheme that satisfies strong computational binding property and
parallel CCA security for tags of length t(n). Then, there exists an r(n)-round commitment
scheme CCACom1:1 that satisfies strong computational binding property and one-one CCA
security for tags of length 2t(n)−1. Furthermore, if CCACom uses the underlying one-way
function only in a black-box way, then CCACom1:1 uses the underlying one-way function only
in a black-box way.

Proof. CCACom1:1 is shown in Figure 7. The strong computational binding property follows
from that of CCACom. Thus, it remains to show that CCACom1:1 is one-one CCA secure.

We show that for any ppt adversary A that interacts with O only in a single session, the
following are computationally indistinguishable:

36

Commit Phase

The committer C and the receiver R receive common inputs 1n and tag ∈ {0, 1}2
t(n)−1

.
To commit to v ∈ {0, 1}n, the committer C chooses random v1, . . . , v2t(n)−1 ∈ {0, 1}n
such that v =

⊕
j vj , and for each j ∈ [2t(n)−1] in parallel, C commits to vj by using

CCACom with tag (j, tagj), where tagj is the j-th bit of tag.

Decommit Phase

To decommit, C sends v to R and decommits all the CCACom commitments.

Figure 7: One-one CCA-secure commitment scheme CCACom1:1.

•
{
IND0(CCACom

1:1,A, n, z)
}
n∈N,z∈{0,1}∗

•
{
IND1(CCACom

1:1,A, n, z)
}
n∈N,z∈{0,1}∗

Without loss of generality, we assume that the tag that A chooses in the right session is
always different from the tag that A chooses in the left session.

Assume for contradiction that there exist a ppt distinguisher D and a polynomial p(·) such
that for infinitely many n, there exists z ∈ {0, 1}∗ such thatD distinguishes IND1(CCACom

1:1,A, n, z)
from IND0(CCACom

1:1,A, n, z) with probability at least 1/p(n). In the following, we fix any
such n and z.

Let us consider the following ppt adversary B against CCA security of CCACom. B
internally invokes A and simulates IND0(CCACom

1:1,A, n, z) for A as follows. First, B
chooses random j∗ ∈ [2t(n)−1], and for each j ∈ [2t(n)−1] \ {j∗}, B chooses random vj ∈
{0, 1}n. Then, in the left session, when A outputs challenge values m0,m1 ∈ {0, 1}n and

tag tag = (tag1, . . . , tag2t(n)−1), B sets v
(b)
j∗ := mb ⊕

⊕
j 6=j∗ vj for each b ∈ {0, 1} and sends

challenge v
(0)
j∗ , v

(1)
j∗ and tag (j∗, tagj∗) ∈ {0, 1}t(n) to the external left committer. When

B receives a CCACom commitment from the left committer (the committed value is either

v
(0)
j∗ or v

(1)
j∗), B forwards it to A. At the same time, B generates CCACom commitments to

(vj)j 6=j∗ and sends them to A. In the right session, when A outputs tag t̃ag, B terminates
and outputs fail if tagj∗ = t̃agj∗ . Otherwise, B forwards a CCACom1:1 commitment from A to

O as 2t(n)−1 parallel commitments of CCACom with tags
{
(j, t̃agj)

}2t(n)−1

j=1
. Then, B receives

(v1, . . . , v2t(n)−1) from O, and if vj 6= ⊥ for all j ∈ [2t(n)−1], B returns v :=
⊕

j vj to A. If
vj = ⊥ for some j, B returns ⊥ to A. Finally, B outputs D(y), where y is the output of the
simulated IND0(CCACom

1:1,A, n, z).
We reach a contradiction by showing that B breaks the CCA security of CCACom with

probability 1/p(n)poly(n). For b ∈ {0, 1}, let abortb be the event that B outputs fail in
INDb(CCACom,B, n, z). Then, from the hiding property of CCACom, we have

|Pr [abort0]− Pr [abort1]| ≤ negl(n) .

In addition, since we always have tag 6= t̃ag, for each b ∈ {0, 1} we have

Pr [¬abortb] ≥
1

2t(n)−1
≥ 1

poly(n)
.

37

If B does not output fail, B perfectly simulates IND0(CCACom
1:1,A, n, z) or IND1(CCACom

1:1,
A, n, z). In addition, if B does not output fail, for each j ∈ [2t(n)−1] the tag (j, t̃agj), which
was used on the right, is different from the tag (j∗, tagj∗), which was used on the left. Thus,
we have ∣∣∣∣ Pr [IND0(CCACom,B, n, z) = 1]

−Pr [IND1(CCACom,B, n, z) = 1]

∣∣∣∣
=

∣∣∣∣ Pr [IND0(CCACom,B, n, z) = 1
∧

¬abort0]
−Pr [IND1(CCACom,B, n, z) = 1

∧
¬abort1]

∣∣∣∣
≥

∣∣∣∣ Pr [IND0(CCACom,B, n, z) = 1 | ¬abort0]
−Pr [IND1(CCACom,B, n, z) = 1 | ¬abort1]

∣∣∣∣× 1

poly(n)

=

∣∣∣∣ Pr
[
D(IND0(CCACom

1:1,A, n, z)) = 1
]

−Pr
[
D(IND1(CCACom

1:1,A, n, z)) = 1
]∣∣∣∣× 1

poly(n)

≥ 1

p(n)poly(n)
.

38

