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Abstract. In cryptography, forward secrecy is a well-known property for
key agreement protocols. It ensures that a session key will remain private
even if one of the long-term secret keys is compromised in the future. In
this paper, we investigate some forward security properties for Public-key
Encryption with Keyword Search (PEKS) schemes, which allow a client
to store encrypted data and delegate search operations to a server. The
proposed properties guarantee that the client’s privacy is protected to the
maximum extent even if his private key is compromised in the future.
Motivated by the generic transformation from anonymous Identity-Based
Encryption (IBE) to PEKS, we correspondingly propose some forward se-
curity properties for IBE, in which case we assume the attacker learns the
master secret key. We then study several existing PEKS and IBE schemes,
including a PEKS scheme by Nishioka, an IBE scheme by Boneh, Raghu-
nathan and Segev, and an IBE scheme by Arriaga, Tang and Ryan. Our
analysis indicates that the proposed forward security properties can be
achieved by some of these schemes if the attacker is RO-non-adaptive
(the attacker does not define its distributions based on the random ora-
cle). Finally, we propose the concept of correlated-input indistinguishable
hash function and show how to extend the Boyen-Waters anonymous
IBE scheme to achieve the forward security properties against adaptive
attackers.

1 Introduction

In the seminal work [8], Boneh et al. proposed the concept of Public-key En-
cryption with Keyword Search (PEKS) and formulated it as a cryptographic
primitive with four algorithms (KeyGen, Encrypt, TrapGen, Test). PEKS is a
two-party (i.e. client-server) primitive aiming at protecting a client’s, say Al-
ice’s, privacy in the following encrypted email routing scenario.

1. Alice runs the KeyGen algorithm to generate a key pair (PK,SK) and pub-
lishes PK.

2. When any user, say Bob, sends an email to Alice, he can generate a tag
Encrypt(x,PK) for a keyword x and attach it to the email (the email should
be encrypted independently and the detail is omitted here). In the view of the
email server, it has a list of emails indexed by Encrypt(x1,PK), Encrypt(x2,PK),
· · · respectively.



3. If Alice wants to retrieve those emails indexed with a keyword y, she sends
a trapdoor TrapGen(y,SK) to the email server, which can then run an algo-
rithm Test on the input
(TrapGen(y,SK),Encrypt(xi,PK)) for every i ≥ 1 to figure out whether y = xi.

1.1 Problem Statement

With a PEKS scheme implemented, the server receives a list of tags from message
senders and a list of trapdoors from the client. As a result of the desired search
functionality, the server can try to match any tag with any trapdoor. Therefore,
the server can categorize the possessed tags and trapdoors into three scenarios.

– Scenario 1: the tags, which do not match any trapdoor. The seminal work [8]
and all follow-ups have considered the privacy of keywords in this scenario.
It is worth noting that most of these papers only consider this property.

– Scenario 2: the tags and trapdoors, which match at least one trapdoor or
tag. In [9] and its full version [10], Boneh, Raghunathan and Segev defined
(enhanced) function privacy properties for the keywords in this scenario 1.

– Scenario 3: the trapdoors, which do not match any tag. In [4], Arriaga,
Tang, and Ryan defined search pattern privacy properties which captures
the privacy of keywords in this scenario.

It is clear that the above scenarios are mutually independent and their se-
curity properties will not be comparable (as already indicated in [4]). As such, a
PEKS scheme should provide maximal protection for the keywords in all three scenarios.
Unfortunately, the security properties defined in [4, 9] are rather weak and do
not capture realistic threats.

– In the enhanced function privacy definition from [9], there is a min-entropy
restriction on the distribution of keywords. It basically requires that if the
keyword in a trapdoor TrapGen(yi,SK) is different from those in TrapGen(y1,SK),
· · · , TrapGen(yi−1,SK), then it should be infeasible to guess yi given y1, · · · , yi−1.
This restriction seems artificial and unrealistic. Taking the encrypted email
routing scenario as an example, at a certain time period, the client may
submit queries about a certain topic (e.g. work, family, or friends) and the
keywords in the trapdoors might be highly correlated. This implies that,
if some keywords are disclosed, it might be easy for the attacker to infer
others.

– In the search pattern privacy property definition from [4], the distribution
of keywords in the trapdoors is assumed to be uniform. This restriction
is clearly unrealistic. Taking the encrypted email routing scenario as an
example, it reasonable to expect the client to submit more queries with

1 It is worth noting that the property for PEKS is not explicitly defined in [9, 10], but it
is implied by their discussions (in fact, they use it to motivate the property definitions
for IBE).
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high-priority keywords such as ”urgent” than low-priority ones such as
”ordinary”, which implies that the keywords are not uniformly distributed.

Furthermore, it is possible that the client’s private key may get compromised at
some point. If this happens, the client may still want the privacy of keywords
in the tags and trapdoors to be preserved. This is similar to the forward secrecy
requirement in key agreement protocols [19, 22]. However, no literature work
has touched upon this property for PEKS.

1.2 Our Contribution

In this paper, we first introduce two new forward security properties for PEKS.
One is forward-secure function privacy, which aims at protecting the privacy
of keywords in Scenario 2. The other is forward-secure trapdoor unlinkability,
which aims at protecting the privacy of keywords in Scenario 3. These two
properties are much stronger than those from [9] and [4], in the sense that we
not only allow the attacker to compromise the long-term secret key but also
give it more flexibility to define the keyword distribution in the attack games.
We analyse a PEKS scheme by Nishioka [28] and show that it only achieves
our properties against RO-non-adaptive attackers (which can not choose the
keyword distributions based on the random oracle).

We then introduce two new forward security properties for IBE, namely msk-
forward-secure function privacy and msk-forward-secure key unlinkability, and
they are augmented variants of those from [9] and [4] respectively. Naturally, the
new properties directly lead to those forward security properties for PEKS as a
result of the generic transformation proposed in [1]. We analyse the IBEDLIN2
scheme by Boneh et al. [10], and show that it does not achieve the msk-forward-
secure function privacy property. We also analyse an IBE scheme by Arriaga
et al. [4], and show that it achieves our properties against RO-non-adaptive
attackers.

Finally, we introduce the concept of correlated-input indistinguishable hash
function, which can be regarded as an enhanced variant of the correlated-
input secure hash functions proposed by Goyal, O’Neil, and Rao [21]. By pre-
processing the identities with such a hash function, an IBE scheme automatically
achieves the msk-forward-secure function privacy property against adaptive at-
tackers. In contrast to the “extract-augment-combine” approach from [9], there
is no need to tweak the encryption and decryption algorithms of the under-
lying IBE scheme. We then take Boyen-Waters anonymous IBE scheme [13] as
an example, and extend it with composite order bilinear groups to achieve
msk-forward-secure key unlinkability.

1.3 Organization

The rest of this paper is organized as follows. In Section 2, we present pre-
liminaries on notation and hardness assumptions. In Section 3, we present an
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enhanced security model for PEKS with a focus on the forward security proper-
ties, and analyse the Nishioka scheme. In Section 4, we propose some forward
security properties for IBE. In Section 5, we analyse an IBE scheme by Boneh et
al. and an IBE scheme by Arriaga et al.. In Section 6, we introduce the concept of
correlated-input indistinguishable hash function and extend the Boyen-Waters
scheme. In Section 7, we review some related work. In Section 8, we conclude
the paper.

2 Preliminary

2.1 Notation

– x||y means the concatenation of x and y, P.P.T. stands for probabilistic poly-
nomial time.

– x $←AO1,O2,···(m1,m2, · · · ) means that x is the output of the algorithmAwhich
runs with the input m1,m2, · · · and has access to oracles O1,O2, · · · .

– When X is a set, x $← X means that x is chosen from X uniformly at random,

and |X| means the size of X. When D is a distribution on the set X, x D← X
means that x is a value sampled from X according toD.

– We use bold letter, such as X, to denote a vector or matrix. Given a vector
X, we use X(i) to denote the i-th element in the vector. When g is a group
element, we use gX to denote a new vector or matrix, whose elements are
exponentiations of the corresponding elements in X. For two vectors (or
matrices) Y and Z whose elements are from a group, we use Y ⊗Z to denote
the new vector (or matrix) after pairwise group operations.

– A function P(λ) : Z → R is said to be negligible with respect to λ if, for
every polynomial f (λ), there exists an integer N f such that P(λ) < 1

f (λ) for
all λ ≥ N f . When P(λ) is negligible, then we say 1 − P(λ) is overwhelming.

– A random variable V has min-entropyλ, denoted as H∞(V) = λ, if maxv Pr[V =
v] = 2−λ, or equivalently λ = − log maxv Pr[V = v]. If V has min-entropy at
least λ, then V is a λ source. Given two random variables V and W, the con-
ditional min-entropy of V with respect to W is defined to be minw H∞(V|W =
w), or equivalently − log maxv,w Pr[V = v|W = w].

2.2 Pairing over Composite-order Groups

A composite-order bilinear group generator is an algorithm GC(pq) that takes as
input a security parameter λ and outputs a description Γ = (p, q,G,GT, ê, gp, gq)
where:

– G and GT are groups of order n = pq, where p and q are primes, with
efficiently computable group laws.

– gp is a randomly-chosen generator of the subgroup Gp of order p, and gq is
a randomly-chosen generator of the subgroup Gq of order q.
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– ê is an efficiently-computable bilinear pairing ê : G × G → GT, i.e., a map
satisfying the following properties for g , 1 ∈ G:
• Bilinearity: ê(ga, gb) = ê(g, g)ab for all a, b ∈ Zpq;
• Non-degeneracy: ê(g, g) , 1.

Instead of setting the order of G to be the product of two primes (i.e. pq), we
can set the order to be the product of multiple primes, e.g. [25, 26, 28]. In [28]
and recapped in Section 3.2, the generator GC(pqw) generates Gwith the order of
three primes (i.e. pqw).

LetΓ = (p, q,G,GT, ê, gp, gq) be the output byGC(pq)(λ), andΓ∗ = (pq,G,GT, ê, gp, gq).
We say the Composite-DDH assumption [4] holds if, for every P.P.T. attackerA,

its advantage |Pr[b′ = b] − 1
2 | is negligible in the game, defined in Fig. 1.

1. Γ = (p, q,G,GT, ê, gp, gq) $←
GC(pq)(λ)

2. a1, a2, b1, b2, b3, r
$← Zpq

3. Γ∗ = (pq,G,GT, ê, gp, gq)
4. X0 = (Γ∗, ga1

p · gb1
q , g

a2
p · gb2

q , g
a1a2
p · gb3

q )
X1 = (Γ∗, ga1

p · gb1
q , g

a2
p · gb2

q , gr
p · gb3

q )

5. b $← {0, 1}
6. b′ $←A(Xb)

Fig. 1. Composite-DDH assumption

1. Γ = (p, q,G,GT, ê, gp, gq) $← GC(pq)(λ)

2. a1, a2, a3, b1, b2, b3, b4, r
$← Zpq

3. Γ∗ = (pq,G,GT, ê, gp, gq)
4. X0 = (Γ∗, ga1

p ·gb1
q , g

a2
p ·gb2

q , g
a1a3
p ·gb3

q , g
a2a3
p ·gb4

q )
X1 = (Γ∗, ga1

p · gb1
q , g

a2
p · gb2

q , g
a1a3
p · gb3

q , gr
p · gb4

q )

5. b $← {0, 1}
6. b′ $←A(Xb)

Fig. 2. Weak Composite-DDH assumption

We say the Weak Composite-DDH assumption holds if, for every P.P.T. attacker

A, its advantage |Pr[b′ = b] − 1
2 | is negligible in the game, defined in Fig. 2.

Both assumptions are strictly weaker than the C3DH assumption by Boneh and
Waters [12] because the attacker is given strictly more information in the C3DH
attack game.

2.3 New Assumptions

In [15], Canetti proposed the DDH-II assumption which differs from the stan-
dard DDH assumption in that one exponent is chosen from a wide spread dis-
tribution instead of a uniform one. Damgård, Hazay and, Zottarel [18] showed
that this assumption holds in the generic group model, and stated that it is a
useful tool in leakage resilient cryptography.

Next, we introduce a new assumption for bilinear groups. The philosophy
is similar to the case of Composite-DDH: although it is trivial to solve DDH-
II problem in bilinear groups, adding an additional layer of randomization
makes it difficult even with the help of the bilinear map. Formally, we say the
Composite-DDH-II assumption holds if, for every P.P.T. attacker A, its advan-

tage |Pr[b′ = b] − 1
2 | is negligible in the game, defined in Fig. 3. In the game, the

distributionD from the attacker should guarantee that a1 has min-entropy not
smaller than λ, i.e. a1 is wide spread according to Canetti [15].5



1. Γ = (p, q,G,GT, ê, g, gp, gq) $←
GC(pq)(λ)

2. Γ∗ = (pq,G,GT, ê, g, gp, gq)

3. D $←A(Γ∗)
4. a1

D← Zp

5. b1, s1, s2, s3, r
$← Zpq

6. X0 = (Γ∗, ga1
p ·gs1

q , g
b1
p ·gs2

q , g
a1b1
p ·gs3

q )
X1 = (Γ∗, ga1

p · gs1
q , g

b1
p · gs2

q , gr
p · gs3

q )

7. b $← {0, 1}
8. b′ $←A(Xb,D)

Fig. 3. Composite-DDH-II assump-
tion

1. Γ = (p, q,G,GT, ê, g, gp, gq) $← GC(pq)(λ)
2. Γ∗ = (pq,G,GT, ê, g, gp, gq)

3. D $←A(Γ∗)
4. (a1, · · · , aL) D← ZL

p

5. b1, · · · bL, r1, · · · , rL, s1, · · · , sL, t1, · · · , tL
$←

Zpq

6. X0 = (Γ∗, gb1
p · gs1

q , g
a1b1
p · gt1

q , · · · , gbL
p · gsL

q , g
aLbL
p ·

gtL
q )

X1 = (Γ∗, gb1
p · gs1

q , g
r1
p · gt1

q , · · · , gbL
p · gtL

q , g
rL
p · gtL

q )

7. b $← {0, 1}
8. b′ $←A(Xb,D)

Fig. 4. Correlated Composite-DDH-II assump-
tion

Further, we say the Correlated Composite-DDH-II assumption holds if, for

every P.P.T. attacker A, its advantage |Pr[b′ = b] − 1
2 | is negligible in the game,

defined in Fig. 4. In the game, the distribution D from the attacker should
guarantee that ai for any 1 ≤ i ≤ L has min-entropy not smaller thanλ. Compared
to the Composite-DDH-II assumption, on one hand the values ga1

p , · · · , gaL
p are

not given to the attacker (not even in the randomized form), but on the other
hand the attacker is given multiple incomplete DH pairs. As to the two new
assumptions, it is not clear how to reduce one to the other. Nevertheless, we
have the following lemma with its proof in Appendix I.

Lemma 1. Suppose any P.P.T. attacker has at most the advantage ϵ in the Composite-
DDH-II assumption. Then, any P.P.T. attacker has at most the advantage L · ϵ in the
Correlated Composite-DDH-II assumption in the following two scenarios.

1. a1, a2, · · · , aL are independent according toD.
2. a1 = a2 = · · · = aL according toD.

It is unclear how to reduce these two assumptions to existing standard
assumptions. Nevertheless, we can prove their security in the generic group
model, as what have been done for the DDH-II assumption in [18]. The proof
will appear in the full paper.

3 Forward Security Properties for PEKS

A PEKS scheme involves a client, a server, and senders which can be any entity.
Let λ be the security parameter, a PEKS scheme has the following algorithms.

– KeyGen(λ): Run by the client, this probabilistic algorithm outputs a pub-
lic/private key pair (PK,SK), where PK should define a message spaceW.
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– Encrypt(x,PK): Run by a sender, this probabilistic algorithm outputs a ci-
phertext (or, tag) Cx for a message (or, keyword) x ∈ W.

– TrapGen(y,SK): Run by the client, this probabilistic algorithm generates a
trapdoor Ty for the message y ∈ W.

– Test(Cx,Ty,PK): Run by the server, this deterministic algorithm returns 1 if
x = y and 0 otherwise.

Boneh et al. [8] defined ciphertext privacy property for PEKS, and Abdala
et al. [1] defined computational consistency property. Next, we present the new
forward security properties.

3.1 Forward Security Properties for PEKS

The forward-secure trapdoor unlinkability says that any P.P.T. attacker cannot
determine the links among trapdoors as long as the underlying keywords are
sampled according to distributions with min-entropy not smaller than λ. This
property is an augmented variant of the strong search pattern privacy property
from [4] in two aspects.

– The attacker is given SK in the attack game, and this brings in the forward
security flavor.

– The attacker can adaptively specify the keyword distributions based on the
public parameters, while the challenger samples the keywords uniformly
from the keyword space in [4] (i.e. the attacker has no control on the keyword
distributions).

Definition 1. A PEKS scheme achieves forward-secure trapdoor unlinkability if any
P.P.T. attackerA’s advantage |Pr[b′ = b]− 1

2 | is negligible in the game shown in Fig. 5.
In the game, D0 is the joint distribution of L (dependent) λ-source random variables,
while D1 defines L independent random variables with uniform distribution. Chosen
by the attacker, the integer L is a polynomial in λ.

1. (PK, SK) $← KeyGen(λ)
2. (D0,D1, L, state) $←ATrapGen(PK)

3. b $← {0, 1}, xb
Db← WL, Tb =

TrapGen(xb, SK)
4. b′ $←A( SK , state,Tb)

Fig. 5. Forward-Secure Trapdoor Unlink-
ability

1. (PK, SK) $← KeyGen(λ)
2. (D0,D1, L, state) $←ATrapGen(PK)

3. b $← {0, 1}, xb
Db← WL, Tb =

TrapGen(xb,SK), Cb = Encrypt(xb,PK)
4. b′ $←ATrapGen,Encrypt( SK , state,Tb,Cb)

Fig. 6. Forward-Secure Function Privacy

For simplicity, we use TrapGen(xb,SK) to denote (TrapGen(x(1)
b ,SK), · · · ,TrapGen(x(L)

b , SK))
in Fig. 5. Such notation is also used in Fig. 6 and property definitions for IBE in
Section 4.1.
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The forward-secure function privacy property says that any P.P.T. attacker
cannot determine the links among (tag, trapdoor) pairs, as long as the under-
lying keywords are sampled according to distributions with min-entropy not
smaller than λ. This property is an augmented variant of the enhanced function
privacy property from [9] in two aspects.

– The attacker is given SK in the attack game, and this brings in the forward
security flavor.

– We get rid of the restriction in the enhanced function privacy property defini-
tion from [9], namely the conditional min-entropy of x(i)

0 given x(1)
0 , · · · , x

(i−1)
0

is required to be at least λ, for all 2 ≤ i ≤ L.

Definition 2. A PEKS scheme achieves forward-secure function privacy if any P.P.T.
attackerA’s advantage |Pr[b′ = b]− 1

2 | is negligible in the game shown in Fig. 6. In the
game,D0 andD1 are defined in the same way as in Definition 1, but with the following

restriction: for x0 = (x(1)
0 , x

(2)
0 , · · · , x

(L)
0 )

D0←WL and any 1 ≤ i , j ≤ L, the probability
Pr[x(i)

0 = x( j)
0 ] is negligible.

In practice, the client may submit search queries for the same keyword
multiple times and the pattern will be something as follows:

keyword1, keyword2, keyword3, keyword1, keyword4, keyword5, keyword1, ...

However, the ”Real-or-Random” definition approach does not allow us to
straightforwardly capture this given that the attacker gets access to (tag, trap-
door) pairs. If we allow the sampled keywords to be equal according to D0,
then an attacker can win the game trivially (by cross testing the trapdoors and
the ciphertexts) because D1 samples the keywords uniformly at random. To
bridge the gap, we give the attacker access to TrapGen and Encrypt oracles in
Step 4 of the above game, to capture the fact that the attacker can access multi-
ple trapdoors and tags for the same keywords. In a TrapGen oracle query, the
attacker has an index 1 ≤ i ≤ L as input and receives TrapGen(x(i)

b ,SK). In an
Encrypt oracle query, the attacker has an index 1 ≤ j ≤ L as input and receives
Encrypt(x( j)

b ,PK).
Similar to the argument in [4], the forward-secure trapdoor unlinkability

property and the forward-secure function privacy property do not imply each
other. In comparison, the forward-secure trapdoor unlinkability property is
stronger in the sense that D0 can allow identical random variables, while the
forward-secure function privacy property is stronger in the sense that the at-
tacker gets not only the trapdoors but also corresponding ciphertexts. We skip
the details here.

3.2 Analysis of Nishioka Scheme

In [28], Nishioka modeled trapdoor unlinkability for a very restricted setting:
the attacker is non-adaptive, the unlinkability is only for two trapdoors, and

8



the model seems to be selective since the challenge keywords are chosen before
the generation of other parameters (in the SPP experiment). We found a minor
inconsistency in the original Nishioka scheme (referred to as Instance 3 in [28]),
namely r1 is defined to be r1

$← Zp for the TrapGen algorithm but p is not
included in the SK. There are two ways to get rid of this inconsistency.

– One is to include p in SK. This will make the scheme fail to achieve the
forward-secure trapdoor unlinkability property even against RO-non-adaptive
attackers.

– The other is to set r1
$← Zpqw, and the scheme works in the same way as in

the case of r1
$← Zp. This leads to the description in Fig. 7.

KeyGen(λ) TrapGen(y, SK)

(p, q,w,G,GT, ê, gp, gq, gw) $← GC(pqw)(λ) r1
$← Zpqw

g†q
$← Gq, g = gp · g†q g′w, g′′w

$← Gw

W = {0, 1}∗, H : {0, 1}∗ → Gp T1 = gr1
p · g′w

PK = (pqw,G,GT, ê, gq, gw, g,W,H) T2 = H(y)r1 · g′′w
SK = (PK, gp) Ty = (T1,T2)

Encrypt(x,PK) Test(Cx,Ty,PK)

r2
$← Zpqw, g′q, g′′q

$← Gq if ê(T1,C2) = ê(T2,C1), output 1
C1 = gr2 · g′q,C2 = H(x)r2 · g′′q otherwise, output 0
Cx = (C1,C2)

Fig. 7. Nishioka Scheme (with modification)

In Definition 1 and 2, we assume the attacker to be fully adaptive in the
sense that it can choose the distributionD0 based on everything. An immediate
relaxation on these definitions is to make the attacker RO-non-adaptive, which
means that the attacker can choose the distribution D0 based on everything
except for the random oracle (i.e. the hash function). In practice, the keywords
in search queries might be related to the system parameters in some manner,
but it is hard to imagine a scenario where the keywords would depend on the
behavior of a random function. We argue that the relaxation is minimal and
reasonable.

Following Theorem 6.1 from [10], based on the fact that the keywords
are hashed in both the TrapGen and Encrypt algorithms, the scheme trivially
achieves the forward-secure function privacy property in the random oracle
model against RO-non-adaptive atatckers. However, it is not trivial for the
forward-secure trapdoor unlinkability property, due to the fact that the attacker
can letD0 output identical keywords and exploit this in the attack. We have the
following theorem with its proof in Appendix II.

Theorem 1. The scheme in Fig. 7 achieves the forward-secure trapdoor unlinkabil-
ity property against RO-non-adaptive attackers based on the Weak Composite-DDH
assumption in the random oracle model.
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Note that the Weak Composite-DDH assumption defined in Fig. 2 is for
bilinear composite-order group of the order pq, in the above theorem we assume
this assumption holds for any composite-order subgroup (i.e. Gpq, Gpwand Gqw)
of the bilinear group G with the order pqw.

4 IBE and its Security Properties

An IBE scheme is specified by four algorithms (Setup,Extract,Enc,Dec), de-
fined in Fig. 8. Let the message space be M and the identity space be I. The
generic transformation from IBE to PEKS, proposed in [1], works as in Fig. 9.
Note that the message spaceW of the resulted PEKS scheme is the public-key
space I of the IBE scheme.

1. (Msk, params) =
Setup(λ)

2. skid = Extract(Msk, id)

3. C = Enc(m, id)

4. Dec(C, skid) = m or ⊥

Fig. 8. IBE

1. KeyGen(λ) = Setup(λ)

2. Encrypt(x,PK) = (m, Enc(m, x)), where m $←M

3. TrapGen(y, SK) = Extract(Msk, y)

4. Test(Cx,Ty,PK) = 1 iffm = Dec(Enc(m, x),Ty)

Fig. 9. Resulted PEKS

The standard IND-CPA and anonymity properties for IBE can be found in
[1], and we define two new forward security properties for IBE in the next
subsection. Under our definitions, the generic transformation leads to the the
following property mapping.

PEKS Properties IBE Properties
computational consistency IND-CPA
ciphertext privacy anonymity
forward-secure trapdoor unlinkability msk-forward-secure key unlinkability
forward-secure function privacy msk-forward-secure function privacy

4.1 Forward Security Properties of IBE

The following msk-forward-secure key unlinkability property says that any
P.P.T. attacker cannot determine the links among private keys if the underlying
identities are sampled according to distributions with min-entropy not smaller
than λ, even with the knowledge of the master secret key. This property is an
augmented variant of the strong key unlinkability property from [4], where the
augmentation lies in two aspects.

– The attacker is given Msk in the attack game, and this gives the forward
security flavor.
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– The attacker is allowed to adaptively choose the identity distribution D0
based on the public parameters, while the challenger samples the identities
uniformly at random (according to certain patterns defined by the attacker)
from the identity space in [4].

Definition 3. An IBE scheme achieves msk-forward-secure key unlinkability if any

P.P.T. attacker A’s advantage |Pr[b′ = b] − 1
2 | is negligible in the game shown in Fig.

10. In the game,D0 is the joint distribution of L (dependent) λ-source random variables,
while D1 defines L independent random variables with uniform distribution. Chosen
by the attacker, the integer L is a polynomial in λ.

1. (Msk, params) $← Setup(λ)
2. (D0,D1, L, state) $←AExtract(params)

3. b $← {0, 1}, idb
Db← IL, skb =

Extract(Msk, idb)
4. b′ $←A( Msk , state, skb)

Fig. 10. msk-Forward-Secure Key Un-
linkability

1. (PK, SK) $← Setup(λ)
2. (D0,D1, L, state) $←AExtract(params)

3. b $← {0, 1}, idb
Db← IL, skb =

Extract(Msk, idb),
mb

$←ML, Cb = Enc(mb, idb)
4. b′ $←AExtract,Enc( Msk , state, skb,Cb)

Fig. 11. msk-Forward-Secure Function Pri-
vacy

The following msk-forward-secure function privacy property says that any
P.P.T. attacker cannot determine the links among (private key, ciphertext) pairs
if the underlying identities are sampled according to distributions with min-
entropy not smaller than λ, even with the knowledge of the master secret key.
This property is an augmented variant of the enhanced function privacy prop-
erty from [9], where the augmentation lies in two aspects.

– The attacker is given Msk in the attack game, and this gives the forward
security flavor.

– We get rid of this restriction in the enhanced function privacy property defi-
nition from [9], namely the conditional min-entropy of id(i)

0 given id(1)
0 , · · · , id

(i−1)
0

is required to be at least λ, for all 2 ≤ i ≤ L.

Definition 4. An IBE scheme achieves msk-forward-secure function privacy if any
P.P.T. attacker A’s advantage |Pr[b′ = b] − 1

2 | is negligible in the game shown in Fig.
11. In the game, D0 and D1 are defined in the same way as in Definition 3, but with

the following restriction: for id0 = (id(1)
0 , id

(2)
0 , · · · , id

(L)
0 )

D0← IL and any 1 ≤ i , j ≤ L,
the probability Pr[id(i)

0 = id( j)
0 ] is negligible.

In Step 3 of the attack game, we use Enc(mb, idb) to denote (Enc(m(1)
b , id

(1)
b ), · · · ,Enc(m(L)

b , idb)(L))
for the simplicity of notation. For the same reason as that in the definition of
forward-secure function privacy for PEKS (i.e. Definition 2), the attacker is
given access to the Extract and Enc oracles in Step 4 of the above game. In an
Extract oracle query, the attacker has an index 1 ≤ i ≤ L as input and receives
Extract(Msk, id(i)

b ). In an Enc oracle the attacker has an index 1 ≤ j ≤ L as input

and receives Enc(m, id( j)
b ).
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5 Analysis of Two Existing IBE Schemes

In this section, we analyse an IBE scheme by Boneh et al. [10] and an IBE scheme
by Arriaga et al. [4] in our security model.

5.1 Boneh-Raghunathan-Segev IBEDLIN2 Scheme

Setup(λ) Extract(Msk, id)

Γ = (G,GT, ê, g, p) = GP(λ) id = (id1, id2, · · · , idn) ∈ {0, 1}n
A0,B,A1, · · · ,An

$← Z2×m
p S $← Zm×2

p

u $← Z2
p,M = GT, I = {0, 1}n Fid,S = [A0|BS + (

∑
1≤ j≤n

id jA j)S]

Msk = (A0,B,A1, · · · ,An,u) v $← {x | Fid,S · x = u (mod p)}
params = (Γ, gA0 ,B, gA1 , · · · , gAn , gu,M,I) z = gv ∈ Gm+2, skid = (S, z)

Enc(m, id) Dec(C, skid)

id = (id1, id2, · · · , idn) ∈ {0, 1}n, m ∈ GT dT = [c0
T |(c1

T)S] = grTFid,S

D(id) =
∑

1≤ j≤n

id jAj, r $← Z2
p ê(d, z) = ê(g, g)rT (Fid,S ·v) = ê(g, g)rT u

c0
T = grTA0 , c1

T = grT [B+D(id)], c2 = m · ê(g, g)rTu m = c2 · ê(d, z)−1

C = (c0, c1, c2)

Fig. 12. Boneh-Raghunathan-Segev IBEDLIN2 Scheme

According to their definitions, theIBEDLIN2 scheme achieves enhanced function
privacy based on the DLIN assumption in the standard model. Next, we show
that this scheme does not achieve msk-forward-secure function privacy, namely
an attacker wins the attack game in Fig. 11 with overwhelming probability.
Note that this does not conflict with the claims from [10] because our security
model is stronger. The following attack makes use of the fact that, with Msk, the
attacker can transform a ciphertext under an identity id into a ciphertext under
another identity id′, for some carefully chosen id and id′. To mount an attack, in
step 2 and 4 of the game, the attacker performs as follows.

– In step 2, the attacker sets L = 2, which means D0 and D1 are the joint
distribution of two identity variables. The attacker defines D0 as follows:
id(1)

0 = (id1, id2, · · · , idn) is defined as (id1, id2, · · · , idn−1) $← {0, 1}n−1 and idn =

0; id(2)
0 equals id(1)

0 except its idn = 1.
– In step 4, the attacker firstly obtains Msk = (A0,B,A1, · · · ,An,u). Then, the

attacker computes X ∈ Zm×m
p such that An = A0X. Recall that the challenge

is (skb,Cb). The first ciphertext in Cb, namely C(1)
b = (c0, c1, c2), is in the
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following form: c0
T = grTA0 , c1

T = grT[B+D(id(1)
b )], c2 = m · ê(g, g)rTu. The attacker

has a new ciphertext C′ = (c0, c′1, c2), where

c′
1

T = c1
T ⊗ (c0

T)X

= grT[B+D(id(1)
b )] ⊗ grTA0X

= grT[B+D(id(1)
b )] ⊗ grTAn

Let the secret keys in the challenge skb be denoted as (skid(1)
b
, skid(2)

b
). The at-

tacker outputs 0 if Dec(C′, skid(2)
b

) = Dec(C(1)
b , skid(1)

b
), and outputs 1 otherwise.

Recall that, ⊗ is an operator for pairwise group operations between two the new
vectors or matrices. It is clear that if b = 0 then we have c′

1
T = grT[B+D(id(2)

b )] and

the equality Dec(C(1)
b , skid(1)

b
) = Dec(C′, skid(2)

b
) holds. But, this equality holds with

a negligible probability if b = 1. As a result, our attack works.

5.2 Arriaga-Tang-Ryan IBE Scheme

The following scheme was proposed by Arriaga et al. [4], based on an anony-
mous IBE scheme by Boyen and Waters [13]. This scheme has been proven secure
with respect to the strong key unlinkability property (under the definition in
[4]) in the random oracle model. Compared with our msk-forward-secure key
unlinkability property, their definition is weaker in three aspects: (1) the attacker
is not allowed to adaptively choose the identity distributionD0 and it can only
specify the identity patterns (i.e. which identities are equal); (2) according to the
patterns, the challenger samples the identities uniformly at random from the
identity space; (3) there is no forward security.

Setup(λ) Extract(Msk, id)

Γ = (p, q,G,GT, ê, g, gp, gq) = GC(λ) r $← Zn

Γ∗ = (n = pq,G,GT, ê, g, gp, gq) x0, x1, x2
$← Gq

x, t1, t2
$← Zn d0 = x0 · grt1t2

p

Ω = ê(gp, gp)xt1t2 , v1 = gt1
p , v2 = gt2

p d1 = x1 · g−xt2
p · H(id)−rt2

M = GT, I = {0, 1}∗, H : {0, 1}∗ → Gp d2 = x2 · g−xt1
p · H(id)−rt1

Msk = (x, t1, t2), params = (Γ∗,Ω, v1, v2,M,I,H) skid = (d0, d1, d2)
Enc(m, id) Dec(C, skid)

s, s1
$← Zn e0 = ê(c0, d0), e1 = ê(c1, d1)

ĉ = Ωsm, c0 = H(id)s, c1 = vs−s1
1 , and c2 = vs1

2 e2 = ê(c2, d2),
C = (ĉ, c0, c1, c2) m = ĉ · e0 · e1 · e2

Fig. 13. Arriaga-Tang-Ryan IBE Scheme

Similar to the discussions in Section 3.2, an immediate relaxation on Defi-
nition 3 and 4 is to make the attacker RO-non-adaptive, which means that the
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attacker can choose the distributionD0 based on everything except for the ran-
dom oracle (i.e. the hash function). Following Theorem 6.1 from [10], it is trivial
to show that the scheme achieves msk-forward-secure function privacy prop-
erty in the random oracle model. However, it is non-trivial for the msk-forward-
secure key unlinkability property. We have the following theorem with its proof
in Appendix III. It is worth noting that this result is stronger than Lemma 3
from [4] while it relies on a weaker assumption (i.e. Weak Composite-DDH
assumption instead of Composite-DDH assumption).

Theorem 2. The scheme achieves the msk-forward-secure key unlinkability property
against RO-non-adaptive attackers based on the Weak Composite-DDH assumption in
the random oracle model.

6 msk-Forward-Secure IBE Construction

The “extract-combine-augment” concept from [9] is an elegant idea, but it has
two drawbacks. One is that it introduces the unrealistic conditional min-entropy
restriction on identity distribution when defining enhanced function privacy.
The other is that it requires specific modifications to both encryption and de-
cryption algorithms of the underlying IBE scheme. Such modifications may not
be an easy task. Moreover, it may introduce good algebraic structures into the
ciphertexts. This partially makes it possible for us to show that the IBEDLIN2
scheme does not achieve msk-forward-secure function privacy in Section 5.1.

In the following, we first introduce the concept of correlated-input indis-
tinguishable hash function, which serves as a building block to pre-process
identities for any IBE scheme. Similar to the “extract” step in the “extract-
combine-augment” approach, such a hash function aims at eliminating the cor-
relations among different inputs so that msk-forward-secure function privacy
can be straightforwardly achieved. The advantage is that there is no need to
modify the underlying IBE algorithms. We then take the Boyen-Waters scheme
[13] as an example to show how to make it msk-forward-secure.

6.1 Correlated-Input Indistinguishable Hash Function

Goyal et al. [21] introduced the concept of correlated-input secure hash func-
tions and gave a few security definitions and instantiations. Unfortunately, their
security property definitions are selective and assume certain specific correla-
tions among the inputs (i.e. the inputs are related by polynomials over the input
space). Such restrictions conflict with our needs, because we want the inputs to
be arbitrarily correlated and full security. Moreover, we want a property which
is subtly different from correlated-input pseudorandomness. Very informally,
the pseudorandomness property guarantees that the outputs of a hash function
look random with respect to correlated inputs, while our desired property is
supposed to guarantee that the outputs of a hash function look the same with
respect to correlated inputs and random inputs. Formally, we define the new
property as follows.
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Definition 5. A hash function H : X → Y is correlated-input indistinguishable if the
attacker’s advantage |Pr[b′ = b]− 1

2 | is negligible in the attack game, shown in Fig. 14.
In the game, D0 is the joint distributions of L (dependent) λ-source random variables
over X, while D1 defines L independent random variables with uniform distribution

over X. It is required that, for (x(1)
0 , x

(2)
0 , · · · , x

(L)
0 )

D0← XL and any 1 ≤ i , j ≤ L,
the probability Pr[x(i)

0 = x( j)
0 ] is negligible. Chosen by the attacker, the integer L is a

polynomial of the security parameter.

1. (D0,D1, L, state) $←A(H)

2. b $← {0, 1}, xb
Db← XL, yb =

(H(x(1)
b ), · · · ,H(x(L)

b ))

3. b′ $←A(state, yb)

Fig. 14. Correlated-Input Indistinguishability

Due to the different security objectives, it is easy to verify that the con-
struction from [21] is not correlated-input indistinguishable. Bellare, Hoang,
and Keelveedhi [6] introduced the concept of Universal Computational Extrac-
tors(UCEs) and showed how to use this concept to construct selective correlated-
input secure hash functions according to the definitions from [21]. However,
they noted that UCEs do not guarantee adaptive/full security. It seems difficult
to construct correlated-input indistinguishable hash functions based on UCEs.
Unseeded deterministic extractors also seem to be a related primitive, but the
existing security models do not take into account correlated inputs.

On the positive side, we can instantiate correlated-input indistinguishable
hash function based on deterministic encryption (DE) schemes, a primitive pro-
posed in [5]. More specifically, the instantiation should be based on adaptively
secure DE schemes, e.g. that from [29]. In a nutshell, an adaptively secure DE
scheme guarantees that an attacker cannot distinguish the ciphertexts of arbi-
trarily correlated plaintexts and random plaintexts. The instantiation has two
steps: (1) given an input from domainX, encrypt it with the DE scheme to obtain
a ciphertext; (2) hash the ciphertext with a collision-resistant hash function to
get an output for the domainY.

6.2 Example msk-Forward-Secure IBE Construction

With a correlated-input indistinguishable hash function H, we describe an ex-
tended variant for the Boyen-Waters scheme [13] in Fig. 15. The extension is from
two aspects: (1) pre-processing identities with H; (2) employ composite-order
bilinear groups.
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Setup(λ) Extract(Msk, id)

Γ = (p, q,G,GT, ê, gp, gq) = GC(λ) r1, r2
$← Zn,

Γ∗ = (n = pq,G,GT, ê, gp, gq) x0, x1, x2, x3, x4
$← Gq

x, t1, t2, t3, t4
$← Zn d0 = x0 · gr1t1t2+r2t3t4

p

Ω = ê(gp, gp)xt1t2 , g0, g1
$← Gp d1 = x1 · g−xt2

p · (g0 gH(id)
1 )−r1t2

v1 = gt1
p , v2 = gt2

p , v3 = gt3
p , v4 = gt4

p d2 = x2 · g−xt1
p · (g0 gH(id)

1 )−r1t1

M = GT, I = Zn, H : I → I d3 = x3 · (g0 gH(id)
1 )−r2t4

Msk = (x, t1, t2, t3, t4) d4 = x4 · (g0 gH(id)
1 )−r2t3

params = (Γ∗, g0, g1,Ω, v1, v2, v3, v4,M,I,H) skid = (d0, d1, d2, d3, d4)
Enc(m, id) Dec(C, skid)

s, s1, s2
$← Zn e0 = ê(c0, d0), e1 = ê(c1, d1)

ĉ = Ωsm, c0 = (g0 gH(id)
1 )s, c1 = vs−s1

1 e2 = ê(c2, d2),e3 = ê(c3, d3)
c2 = vs1

2 , c3 = vs−s2
3 , c4 = vs2

4 e4 = ê(c4, d4)
C = (ĉ, c0, c1, c2, c3, c4) m = ĉ · e0 · e1 · e2 · e3 · e4

Fig. 15. Extended Boyen-Waters Scheme

If H is correlated-input indistinguishable and collision-resistant, it is straight-
forward to verify that the extended scheme is IND-CPA, anonymous, and
achieves msk-forward-secure function privacy. Next, we prove the scheme also
achieves msk-forward-secure key unlinkability. The proof appears in Appendix
IV.

Theorem 3. The extended Boyen-Waters scheme achieves msk-forward-secure key
unlinkability based on the correlated Composite-DDH-II assumption, given that H is
correlated-input indistinguishable and collision-resistant.

Our extension is similar to the Arriaga-Tang-Ryan IBE Scheme recapped in
Section 5.2, but it does not simplify the original scheme so that it is possible to
have provable security in the standard model (depending on H).

7 Related Work

In the seminal definition [8], PEKS only supports equality testing of keywords.
To support more types of search queries, a number of extensions have been
proposed. Among them, [12, 23, 24] support search queries with conjunctive
keywords, [12, 31] support subset and range queries, and [25] supports disjunc-
tions, polynomial equations, and inner products. In contrast to the large number
of follow-up works to extend the PEKS functionality, very little has been done
to investigate its full security capabilities and the only few we know are [4, 9,
10, 28, 30], where [30] only aims at a very restricted setting (i.e. with designated
tester).

7.1 Concerning the Entropy of Keywords

With respect to PEKS and its extensions, there is a concern about the low entropy
nature of keywords. For example, in the aforementioned email routing example,
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the entropy of keywords may not be very high. In [14], Byun et al. described
offline keyword guessing attacks. This makes people wonder the practicality
of privacy properties for PKES, particularly the function privacy property [10]
and the search pattern privacy property [4]. Nevertheless, we would like to
argue that it still makes sense to investigate the maximal level of security guar-
antees by PEKS. Theoretically, it is always interesting to study the strongest
security properties for a cryptographic primitive. This has been done for many
other primitives, such as encryption and signature schemes. Practically, it is
not true that the keywords always have low entropy. When a PEKS scheme is
deployed, the underlying application can enrich the keyword set with some
context information. For instance, instead of using the keyword “confidential”,
the application can use “confidential:project-peks”. A more effective way to
augment the entropy is using pre-shared passwords between message senders
and the client. An extra advantage of this approach is that there is no need to
store passwords given they are memorable. It is worth noting that augmenting
the entropy of keywords may cause some efficiency issues (e.g. there may be
several augmented keywords for the same keyword “confidential”, so that the
client needs to generate several trapdoors to search for all confidential emails).
This can be regarded as a natural tradeoff between security and efficiency.

7.2 Related Forward Security and Key Escrow Notions

Forward secrecy is a well-known property for key agreement protocols [19, 22],
and it ensures that a session key will remain secure even if one of the long-term
secret keys is compromised in the future. This concept has also been applied
to other primitives, such as signature schemes [3, 7] and hierarchical identity
based encryption (HIBE) schemes [16, 27, 32]. It is worth noting that the adapted
forward secrecy notions in [3, 7, 16, 27, 32] focus on the key evolution problem:
the life cycle of the secret key is divided into n time slots (e.g. t0, t1, · · · , tn) and ski
will evolve to ski+1 = f(ski) based on a function f from time ti to ti+1; the forward
secrecy properties guarantee that if ski+1 is compromised then the operations done with
sk0, · · · , ski remain secure. In the case of HIBE schemes [16, 27, 32], the focus is on
the secret keys for certain identities instead of the master secret key. The forward
security properties, introduced in Section 4, stem from [19, 22], and differs from
that [16, 27, 32] in two aspects: the attacker has access to the master secret key
and no key evolution is considered.

For identity-based cryptography, how to avoid the key escrow problem has
been an interesting question, see e.g. [2, 20]. Among all, a particularly interesting
security notion is the anonymous ciphertext indistinguishability (ACI) property
from [17]. The ACI property guarantees that an attacker cannot determine the
public key (or, identity) behind a ciphertext even with the knowledge of the
master secret key. It is related to the enhanced function privacy property from
[9], but they are not comparable: the ACI property is stronger in the sense that
the attacker knows the master secret key, but it is weaker in the sense that it
only considers a single uniformly chosen identity while the enhanced function
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privacy property considers a sequence of non-uniformly chosen and correlated
identities.

8 Concluding Remarks

In this paper, we have defined some forward security properties for PEKS
and IBE respectively. We have also analyzed several existing PEKS and IBE
schemes, and extended the Boyen-Waters anonymous IBE scheme by using
a new building block (i.e. correlated-input indistinguishable hash function).
Our analysis shows that it is relatively easy to achieve our properties against
RO-non-adaptive attackers while it is quite hard to construct secure schemes
against adaptive attackers (in particular in the standard model). Our work has
motivated many interesting future directions. As to the concept of correlated-
input indistinguishable hash function, we only know one method to instantiate
it. It is a very interesting task to construct correlated-input indistinguishable
hash functions in other ways. As to the “extract-combine-augment” approach
from [9], it is very elegant albeit it does not guarantee any msk-forward security
properties. It is an interesting task to augment the concept and the schemes
(e.g. the IBEDLIN2 scheme) to achieve our msk-forward security properties.
Both PEKS and IBE are special types of functional encryption [11]. Hence, the
concept of forward security is also valuable for other functional encryption
schemes, including other PEKS variants and searchable encryption schemes in
the symmetric-key setting. This is a widely open research area for the future.
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Appendix I:

Proof of Lemma 1. Let Y0,Y1 be defined as follows.

Y0 = (Γ∗, gb1
p · gs2

q , ga1b1
p · gs3

q ), Y1 = (Γ∗, gb1
p · gs2

q , gr
p · gs3

q )

It is clear that, given Yb, the attacker’s advantage in telling b is not larger than ϵ.
Based on the standard hybrid argument, it is clear the lemma holds for the first
scenario.

For the second scenario, we carry out the proof by an induction on L. Refer-
ring to the X0,X1 in Fig. 3, let α0 = Pr[A(Γ∗,X0) = 1] and α1 = Pr[A(Γ∗,X1) = 1].
It is clear that |α0 − α1| = 2ϵ. First, we consider the case when L = 2.

α(2)
1 = Pr[A(Γ∗, gb1

p · gs1
q , ga1b1

p · gt1
q , gb2

p · gs2
q , g

a1b2
p · gt2

q ) = 1]

α(2)
2 = Pr[A(Γ∗, gb1

p · gs1
q , gr1

p · gt1
q , g

b2
p · gs2

q , gr2
p · gt2

q ) = 1]
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Let β(2) be defined as follows.

β(2) = Pr[A(Γ∗, gb1
p · gs1

q , ga1b1
p · gt1

q , gb2
p · gs2

q , gr
p · gt2

q ) = 1]

It is straightforward to verify that |α(2)
1 − β(2)| ≤ 2ϵ and |α(2)

2 − β(2)| ≤ 2ϵ based on
the Composite-DDH-II assumption. Therefore, we have |α(2)

1 − α
(2)
2 | ≤ 4 · ϵ.

Suppose that |α(n)
1 − α

(n)
2 | ≤ 2n · ϵ, we prove that |α(n+1)

1 − α(n+1)
2 | ≤ 2(n + 1) · ϵ.

α(n+1)
1 = Pr[A(Γ∗, gb1

p ·gs1
q , g

a1b1
p ·gt1

q , · · · , gbn
p ·gsn

q , g
a1bn
p ·gtn

q , g
bn+1
p ·gsn+1

q , g
a1bn+1
p ·gtn+1

q ) = 1]

α(n+1)
2 = Pr[A(Γ∗, gb1

p · gs1
q , g

r1
p · gt1

q , · · · , gbn
p · gsn

q , g
rn
p · gtn

q , g
bn+1
p · gsn+1

q , g
rn+1
p · gtn+1

q ) = 1]

Let β(n+1) be defined as follows.

β(n+1) = Pr[A(Γ∗, gb1
p · gs1

q , g
r1
p · gt1

q , · · · , gbn
p · gsn

q , g
rn
p · gtn

q , g
bn·r
p · gsn+1

q , g
rn·r
p · gtn+1

q ) = 1]

It is straightforward to verify that |α(n+1)
2 − β(n+1)| ≤ 2ϵ based on the Composite-

DDH-II assumption. With respect to α(n+1)
1 and β(n+1), we observe that the last

the last two terms (gbn+1
p · gsn+1

q , g
a1bn+1
p · gtn+1

q ) and (gbn·r
p · gsn+1

q , g
rn·r
p · gtn+1

q ) can be
unanimously generated by their previous terms. Therefore, we have |α(n+1)

1 −
β(n+1)| = |α(n)

1 − α
(n)
2 | based on the fact that α(n)

2 is identical to β(n+1) without
(gbn·r

p · gsn+1
q , g

rn·r
p · gtn+1

q ). Now, we have |α(n+1)
1 −α(n+1)

2 | ≤ 2ϵ+ |α(n)
1 −α

(n)
2 | ≤ 2(n+1) ·ϵ.

To sum up, we have |α(L)
1 − α

(L)
2 | ≤ 2L · ϵ, so that |Pr[b′ = b] − 1

2 | ≤ L · ϵ in the
attack game defined in Fig. 4. The lemma now follows. ⊓⊔

Appendix II:

Proof of Theorem 1. Referring to the attack game for forward-secure trap-
door unlinkability, as shown in Fig. 5, the attacker is given the trapdoor vector
Tb to guess b. The TrapGen oracle is not helpful to the attacker, since it is trivial
to rerandomize any give trapdoor to obtain a new trapdoor for the same key-
word. The received challenges by the attacker are in the following form. Let

x0 = (x(1)
0 , x

(2)
0 , · · · , x

(L)
0 )

D0←WL and x1 = (x(1)
1 , x

(2)
1 , · · · , x

(L)
1 )

D1←WL.

b=0 : ((g
r(1)

1
p · g′(1)

w ,H(x(1)
0 )r(1)

1 · g′′(1)
w ), · · · , (g

r(L)
1

p · g′(L)
w ,H(x(L)

0 )r(L)
1 · g′′(L)

w ))

b=1 : ((g
r(1)

1
p · g′(1)

w ,H(x(1)
1 )r(1)

1 · g′′(1)
w ), · · · , (g

r(L)
1

p · g′(L)
w ,H(x(L)

1 )r(L)
1 · g′′(L)

w ))

The rest of the proof is identical to the proof of Theorem 2, where we show
that |Pr[b′ = b]− 1

2 | is negligible based on the Weak Composite-DDH assumption
in the random oracle model. The theorem follows. ⊓⊔

Appendix III:
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Proof of Theorem 2. Recall that in the attack game, shown in Fig. 10, the
attacker is given Msk in Step 4. In our proof, we simply give Msk to the attacker
in Step 2, so that there is no need for the attacker to submit any oracle queries
(except for the random oracle H) to the challenger anymore. Moreover, for any
secret key skid as described in Fig.18, if we give something like (x · gr

p, y · H(id)r)

for x, y $← Gq and r $← Zn directly to the attacker then the latter can extend it
to the full form. After the simplification, the received challenges by the attacker
are in the following form.

b=0 : ((x1 · gr1
p , y1 · H(id(1)

0 )r1 ), · · · , (xL · grL
p , yL · H(id(L)

0 )rL ))

b=1 : ((x1 · gr1
p , y1 · H(id(1)

1 )r1 ), · · · , (xL · grL
p , yL · H(id(L)

1 )rL ))

Next, we carry out the proof by an induction on L.
Case L = 1. In the faithful game, the challenge is skidb = skid(1)

b
, where

id0 = id(1)
0

D0←− I, skid(1)
0
= (x1 · gr1

p , y1 · H(id(1)
0 )r1 )

id1 = id(1)
1

D1←− I, skid(1)
1
= (x1 · gr1

p , y1 · H(id(1)
1 )r1 )

Let the attacker’s advantage be ϵ1. Consider a new game, where the challenge
skidb is generated as follows.

α
$← Gp, skid(1)

0
= (x1 · gr1

p , y1 · αr1 )

α
$← Gp, skid(1)

1
= (x1 · gr1

p , y1 · αr1 )

Suppose the attacker issues h queries to the random oracle H in the game. The
new game is identical to the original one with the probability 1 − h

2λ , where h
2λ

is the probability that the attacker has queried one of the identities in id0 and
id1 to the random oracle. It is clear that the attacker’s advantage is 0 when the
games are identical. As a result, ϵ1 ≤ h

2λ .
Case L = 2. In the faithful game, the challenge is skidb = (skid(1)

b
, skid(2)

b
), where

id0 = (id(1)
0 , id

(2)
0 )

D0←− (I,I), skid(1)
0
= (x1·gr1

p , y1·H(id(1)
0 )r1 ), skid(2)

0
= (x2·gr2

p , y2·H(id(2)
0 )r2 )

id1 = (id(1)
1 , id

(2)
1 )

D1←− (I,I), skid(1)
1
= (x1·gr1

p , y1·H(id(1)
1 )r1 ), skid(2)

1
= (x2·gr2

p , y2·H(id(2)
1 )r2 )

Let the attacker’s advantage be ϵ2. Consider a new game, which is faithful except
for the challenge generation.

– If id(1)
0 , id(2)

0 , the challenge skid0 is generated as follows.

α, β
$← Gp, skid(1)

0
= (x1 · gr1

p , y1 · αr1 ), skid(2)
0
= (x2 · gr2

p , y2 · βr2 )

Otherwise, the challenge skid0 is generated as follows.

α
$← Gp, skid(1)

0
= (x1 · gr1

p , y1 · αr1 ), skid(2)
0
= (x2 · gr2

p , y2 · αr2 )
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– The challenge skid1 is always generated as follows.

α, β
$← Gp, skid(1)

1
= (x1 · gr1

p , y1 · αr1 ), skid(2)
1
= (x2 · gr2

p , y2 · βr2 )

Suppose the attacker issues h queries to the random oracle H in the game. The
new game is identical to the original one with the probability 1 − 2h

2λ , where 2h
2λ

is the probability that the attacker has queried one of the identities in id0 and
id1 to the random oracle. When the games are identical, we can compute the
attacker’s advantage by considering two cases.

– One case is id(1)
0 , id(2)

0 . Let p1 = Pr[id(1)
0 , id(2)

0 ] according toD0. In this case,
the attacker’s advantage is 0.

– The other case is id(1)
0 = id(2)

0 . Let p2 = Pr[id(1)
0 = id(2)

0 ] according to D0. In
this case, the attacker’s advantage is exactly Advwcddh, which is the attacker’s
advantage in the Weak Composite-DDH assumption.

Combining the two cases, the attacker’s overall advantage is p2 ·Advwcddh when
the new game is identical to the original one. As a result, ϵ2 ≤ 2h

2λ + Advwcddh.
Case L = 3. In the faithful game, the challenge is skidb = (skid(1)

b
, skid(2)

b
, skid(3)

b
),

where

id0 = (id(1)
0 , id

(2)
0 , id

(3)
0 )

D0←− (I,I,I), skid(1)
0
= (x1 · gr1

p , y1 · H(id(1)
0 )r1 )

skid(2)
0
= (x2 · gr2

p , y2 · H(id(2)
0 )r2 ), skid(3)

0
= (x3 · gr3

p , y3 · H(id(3)
0 )r3 )

id1 = (id(1)
1 , id

(2)
1 , id

(3)
1 )

D1←− (I,I,I), skid(1)
1
= (x1 · gr1

p , y1 · H(id(1)
1 )r1 )

skid(2)
1
= (x2 · gr2

p , y2 · H(id(2)
1 )r2 ), skid(3)

1
= (x3 · gr3

p , y3 · H(id(3)
1 )r3 )

Let the attacker’s advantage be ϵ3. Consider a new game, which is faithful except
for the challenge generation.

– For skid0 , sample α1
$← Gp. If id(1)

0 = id(2)
0 , set α2 = α1, otherwise sample

α2
$← Gp. If id(3)

0 = id(i)
0 for some i ∈ {1, 2}, set α3 = αi, otherwise sample

α3
$← Gp. skid0 is computed as follows.

skid(1)
1
= (x1 · gr1

p , y1 · αr1
1 ), skid(2)

1
= (x2 · gr2

p , y2 · αr2
2 ), skid(3)

1
= (x3 · gr3

p , y3 · αr3
3 )(1)

– The challenge skid1 is generated as follows.

α, β, γ
$← Gp,

skid(1)
1
= (x1 · gr1

p , y1 · αr1 ), skid(2)
1
= (x2 · gr2

p , y2 · βr2 ), skid(3)
1
= (x3 · gr3

p , y3 · γr3 ) (2)
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Suppose the attacker issues h queries to the random oracle H in the game. It is
clear that this new game is identical to the original one with the probability 1− 3h

2λ ,
where 3h

2λ is the probability that the attacker has queried one of the identities in
id0 and id1 to the random oracle. When the games are identical, we can compute
the attacker’s advantage by considering two cases.

– One case is id(1)
0 , id(2)

0 , id(3)
0 . Let p1 be the probability of this case according

toD0. In this case, the attacker’s advantage is 0.
– The other case is id(i)

0 = id( j)
0 for some 1 ≤ i , j ≤ 3. Let p2 be the probability

of this case according to D0. Let skid(z)
0

be the left element in skid0 . Next, we
need to compute the probability q1, which is the probability that the attacker
outputs 0 given {skid(i)

0
, skid( j)

0
, skid(z)

0
} in the form of Equation (1).

• Let q2 be the probability that the attacker outputs 0 given {sk∗
id(i)

0

, skid( j)
0
, skid(z)

0
},

where sk∗
id(i)

0

generated by by replacing the αi with β $← Gp in the gen-

eration of skid(i)
0

. we have | q1+1−q2

2 − 1
2 | ≤ Advwcddh for two reasons: (1)

| q1+1−q2

2 − 1
2 | is the attacker’s advantage in distinguishing these two key

vectors; (2) Given either {skid(i)
0
, skid( j)

0
} or {sk∗

id(i)
0

, skid( j)
0
} the attacker can

simulate skid(z)
0

. This means the attacker’s advantage is Advwcddh.
• Let q3 be the probability that the attacker outputs 0 given skid1 in the

form of Equation (2). We have | q2+1−q3

2 − 1
2 | ≤ |ϵ2 − 2h

2λ | ≤ Advwcddh.

In summary, the attacker’s advantage in this case is | q1+1−q3

2 − 1
2 | ≤ 2Advwcddh.

Combining both cases, the attacker’s advantage is 2Advwcddh when the new
game is identical to the original one. As a result, the attacker’s advantage in the
original game is

ϵ3 ≤
3h
2λ
+ 2Advwcddh. (3)

Reduction from L = n to L = n + 1. Suppose when L = n, the attacker has the
advantage ϵn. Next, we compute the attacker’s advantage ϵn+1 when L = n + 1.
Based on the faithful game, consider a new game, where the hash values of
identities in the challenge are replaced with randomly chosen elements from G
in the same manner as in the case of L = 3 (basically, if two identities for id0 are
the same then they use the same random value). This will make the new game
be identical with the original one with the probability 1 − (n+1)·h

2λ , where (n+1)·h
2λ

is the probability that the attacker has queried one of the identities in id0 and
id1 to the random oracle. Next, we can compute the attacker’s advantage by
considering two cases.

– One case is id(1)
0 , id(2)

0 , · · · , id(n+1)
0 . Let p1 be the probability of this case

according toD0. In this case, the attacker’s advantage is 0.
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– The other case is id(i)
0 = id( j)

0 for some 1 ≤ i , j ≤ n + 1. Let p2 be the
probability of this case according toD0. In this case, the attacker’s advantage
is |ϵn − nh

2λ | + Advwcddh for the same reason as in computing q1 in the case of
L = 3.

Combining both cases, the attacker’s advantage is p2(|ϵn − nh
2λ | + Advwcddh) ≤

|ϵn − nh
2λ | + Advwcddh when the new game is identical to the original one. As a

result, the attacker’s advantage in the original game is

ϵn+1 ≤ |ϵn −
nh
2λ
| + Advwcddh +

(n + 1) · h
2λ

. (4)

Conclusion. Based on the inequalities (3) and (4), we have ϵL ≤ +(L − 1) ·
Advwcddh +

L·h
2λ . The theorem is proven. ⊓⊔

Appendix IV:

Proof of Theorem 3. For simplicity, suppose Msk is public. Moreover, for any
secret key skid as described in Fig.20, if we give something like (x·gr

p, y·(g0gH(id)
1 )r)

for x, y $← Gq and r $← Zn directly to the attacker then the latter can extend it
to the full form. With this simplification, referring to the attack game in Fig.
10, the challenge is in the following form, where x1, · · · , xL, y1, · · · , yL

$← Gq and
s1, · · · , sL, r1, · · · , rL

$← Zn.

b=0 : (x1 · gr1
p , y1 · (g0g

H(id(1)
0 )

1 )r1 ; · · · ; xL · grL
p , yL · (g0g

H(id(L)
0 )

1 )rL )

b=1 : (x1 · gr1
p , y1 · (g0g

H(id(1)
1 )

1 )r1 ; · · · ; xL · grL
p , yL · (g0g

H(id(L)
1 )

1 )rL )

Since H is collision-resistant so that it does not change the min-entropy of the

input identities. As a result, we can conclude that g0gH(id(i)
0 )

1 for every 1 ≤ i ≤ L

has min-entropy λ. On the other hand, g0g
H(id(i)

1 )
1 for every 1 ≤ i ≤ L is uniformly

distributed. Based on these facts, |Pr[b′ = b] − 1
2 | is negligible if the correlated

Composite-DDH-II assumption holds. The theorem follows. ⊓⊔
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