
Analysis of Boomerang Differential Trails via a
SAT-Based Constraint Solver URSA

Aleksandar Kircanski
1495E 28th St, 4B, Brooklyn, NY, 11229, US

Abstract

In order to obtain differential patterns over many rounds of a cryptographic primitive,
the cryptanalyst often needs to work on local differential trail analysis. Examples include
merging two differential trail parts into one or, in the case of boomerang and rectangle
attacks, connecting two short trails within the quartet boomerang setting. In the latter
case, as shown by Murphy in 2011, caution should be exercised as there is increased chance
of running into contradictions in the middle rounds of the primitive. In this paper, we
propose the use of a SAT-based constraint solver URSA as aid in analysis of differential
trails and find that previous rectangle/boomerang attacks on XTEA and SHACAL-1 block
ciphers and SM3 hash function are based on incompatible trails. Given the C specification
of the cryptographic primitive, verifying differential trail portions requires minimal work
on the side of the cryptanalyst.

1 Introduction

Differential cryptanalysis [6, 52] is a technique used to break cryptographic primitives such as
block ciphers or hash functions. It rests on the existence of high-probability differential trails. A
differential trail for an iterative cryptographic primitive can be seen as a sequence of constraints
modeling the relations between inner states of primitive executions [29, 25]. Differential trails
are built either manually [52, 51, 54], or, with the help of automated tools [9, 38, 30]. To
estimate the overall probability of a given differential trail, certain independence assumptions
between the constraints need to be introduced.

The validity of such independence assumptions may not always be justified as the constraints
may interact and such interactions may severely influence the overall probability calculation.
This is especially the case when differential analysis is used to model quartets of primitive
executions as opposed to pairs. For example, in the context of boomerang or rectangle attacks,
two short high-probability differential trails are connected in one differential pattern over many
rounds of the primitive [48, 4].

In 2011, Murphy provided examples of boomerang differential trails that impose dependent
constraints on the AES and DES S-boxes [42]. When the dependencies are taken into account,
the probability of the overall probabilistic pattern drops to 0. Subsequently, several previously
used boomerang trails for primitives based on the Addition, Rotation and Xor (ARX) [45]
operations were found to be incompatible, i.e., have the probability equal to 0. For example,
this was the case for boomerang differential attacks against BLAKE [8] and Skein [10], which
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invalidated the corresponding attacks [30]. The discussion related to Murphy’s initial doubts
[42] was continued by Kim et al. in [26]. It was argued that the only reliable way to estimate
the boomerang/rectangle attack probability is to attempt to perform the attack itself. Since
this is often impossible due to the high computational complexity requirements, estimating the
probabilities or their lower bounds via independence assumptions often remains the only way
to assess the attack success rate (see, e.g., [3]).

In general, the compatibility or incompatibility of a set of differential constraints can be
established as follows. Given a set of constraints, one can simply attempt to find particu-
lar inputs for the cryptographic primitive that will conform to such a constraint set in the
given round/step span, using techniques such as such as message modification [52]. The main
drawback of this approach is that it requires custom implementations and potentially tedious
work, e.g., when attempting to prove that some particular boomerang trails are incompati-
ble. Another way to establish (in)compatibility is to apply differential constraint reasoning,
where one abstracts away from particular inner state bit-values and deduces consequences from
the current differential knowledge base. In case of ARX primitives, one-bit and also multi-bit
constraints have been proposed for such reasoning [9, 36, 30]. In 2012, a tool for reasoning
on arbitrary ARX primitives using multi-bit constraints has been proposed by Leurent [30].
Although very powerful, ARXtools also has some limits when it comes constraint compatibil-
ity verification. Namely, the primitive specification may be somewhat cumbersome and also
analysis of primitives with non-ARX components is not possible.

There is a large body of previous work in the area of applying SAT solvers for the purpose
of cryptanalysis. This was done for a wide variety of cryptographic primitives, some of which
are DES, MD4/5, Trivium, AES and Keccak [35, 21, 13, 23, 40]. One of the tools used in this
area is CryptoMiniSat [47]. More powerful theories (than predicate logic) and solvers were also
used in cryptanalysis, including a constraint solver STP [14]. Examples include establishing
probability upper bounds for differential trails in the case of Salsa20 stream cipher and NORX
scheme for authenticated encryption scheme [22, 41]. Closely related to our work are [39, 44],
while [44] was developed parallel to our work.

In 2012, a SAT-based constraint solver URSA (Uniform Reduction to SAt) was proposed
[20]. It simplifies using SAT solvers in tasks such as cryptanalysis problems. Namely, instead
of encoding a problem directly in terms of propositional formulae, the user has to specify the
problem in a custom, C-like specification language. In many situations, this means that the C
implementation of cryptographic algorithms can be directly used by the URSA system.
Our contribution: We show that using the URSA system in conjunction with SAT solvers
represents an easy-to-use asset for the cryptanalyst working on local analysis of differential
trails. Using this approach, we analyze best previous rectangle attacks on the XTEA and
SHACAL-1 block ciphers and locate contradictions in these trails. In addition, we detect
contradictions in the trails used in the boomerang distinguisher reaching the highest number
of rounds of the SM3 hash function. This shows that the probability estimations for these
attacks are invalid and that it remains unknown whether the attacks will work or not. Next,
using the URSA system, we find examples of unaligned rectangle trails in the context of XTEA
block cipher (end of Section 3.1). The existence of such trails has been mentioned previously
in [4] and it is interesting to note actual example of such trails can be found by a SAT solver.
Finally, we point out a type of contradiction that occurs in primitives with linear key/message
expansions which was not discussed in previous literature and suggest that boomerang and
rectangle attacks should be verified against this type of contradiction (Section 3.2).
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Figure 1: The Rectangle Attack

This paper is organized as follows. In Section 2 we review the the rectangle attack, reasoning
on bit-constraints, the URSA system, and also present the notation used throughout the paper.
The incompatibilities found in the rectangle trails for XTEA and SHACAL-1 are discussed in
Sections 3.1 and 3.2. Finally, the analysis of boomerang trails used in the SM3 distinguisher is
given in Section 3.3. The conclusion is provided in Section 4.

2 Background and Notation

In this section, a brief description of the rectangle attacks on block ciphers and boomerang
distinguishers on hash functions is provided, followed by an introduction to 1-bit conditions
and reasoning about differential trails. Finally, an overview of the URSA system is provided
along with the notation used throughout the paper.

2.1 The Rectangle Attack

In 1999, Wagner introduced a chosen-ciphertext cryptanalytic technique against block ciphers
and named it the boomerang attack [48]. The technique exploits non-random behavior of
carefully crafted encryption quartets. It works well against ciphers for which there exist short
differentials with very high probability. The amplified boomerang attack [24], also known as
the rectangle attack [4], is a chosen-plaintext variant of the boomerang attack.

Below, a rectangle attack against a cryptographic function such as a block cipher is sum-
marized. Denote the generic permutation in question by E and it’s input by x. The quartet
structure that the adversary is interested in is shown in Fig. 1. The function is decomposed

as E = E1 ◦ E0 and two differential trails are assumed to exist: δ
E0−→ ∆ and γ

E1−→ Γ with
probabilities p and q, respectively. Here, δ and γ are the input differences for E0 and E1,
respectively and ∆ and Γ are the output differences. If the differentials propagate as specified
in Fig. 1, the quartet is called a right quartet.

The main idea in the rectangle attack is to compute pairs of the form (E(xA), E(xA ⊕
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δ)) for many randomly chosen xA inputs and to count how many pairs of such of pairs will
constitute right quartets. The probabilistic analysis of such an event is as follows. Out of

N encrypted pairs with input difference δ, about p · N will conform to the δ
E0−→ ∆ trail.

Now, out of p · N such pairs, one can have about (p·N)2

2
candidate quartets. The probability

that E0(xA)⊕ E0(xC) = γ within a randomly chosen candidate quartet is 2−n, where n is the
E0 output bit-length. This event actually always coincides with E0(xB) ⊕ E0(xD) = γ since
E0(xB)⊕E0(xD) = E0(xA)⊕ δ ⊕E0(xC)⊕ δ = δ ⊕ δ ⊕ γ = γ and thus the probability of both
E0(xA) ⊕ E0(xC) = E0(xB) ⊕ E0(xD) = γ is in fact 2−n. As a result, the expect number of

quartets satisfying E(xA)⊕E(xC) = E(xA)⊕E(xC) = Γ is (p·N)2

2
· 2−n · q2 = N2 · 2−n−1 · p2 · q2.

The expected number of right quartets is augmented further by allowing the two differential

trails to vary, i.e., by considering δ
E0−→ ∆′ and γ′

E1−→ Γ for all possible valid pair choices for
(∆′, γ′), that is

N2 · 2−n−1 ·
∑

(∆′,γ′)

p2
δ→∆′ · q2

γ′→Γ (1)

On the other hand, for a random permutation, the expected number of right quartets is N2

2
·

2−2n = N2 · 2−2n−1. Comparing this estimate to (1) yields that if
∑

(∆′,γ′) p
2
δ→∆′ · q2

γ′→Γ >> 2−n,
E can be distinguished from a random permutation.

In the literature [4, 32, 33, 34], the estimate (1) is further simplified as

N2 · 2−n−1 ·
∑
∆′

p2
δ→∆′ ·

∑
γ′

q2
γ′→Γ

which is a sound estimate if one assumes the pairwise independence of all E0 and E1 trails.
As for the boomerang distinguisher for hash functions, the goal is to is to find a quartet

(x0, x1, x2, x3) for function f such that

x0 ⊕ x1 ⊕ x2 ⊕ x3 = 0

f(x0)⊕ f(x1)⊕ f(x2)⊕ f(x3) = 0
(2)

which is called a zero-sum or equivalently, a second-order collision. This is done by a tech-
nique similar to the above described distinguisher, taking into account the message freedom
that is available in the context of compression functions. For a more detailed introduction to
boomerang distinguishers on hash functions, the reader is referred to [7].

2.2 Reasoning on 1-bit constraints

Searching for differential trails is facilitated by a constraints language introduced in [9]. Instead
of working with bit-values, reasoning is performed on bit-constraints. The symbols used for
expressing bit-constraints are provided in Table 1. For example, when we write -x-u, we mean
a set of 4-bit pairs

-x-u = {T, T ′ ∈ F 4
2 |T3 = T ′3, T2 6= T ′2, T1 = T ′1, T0 = 0, T ′0 = 1}

where Ti denotes i-th bit in word T .
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δ(x, x′) meaning (0,0) (0,1) (1,0) (1,1)

? anything
√ √ √ √

- x = x′
√

- -
√

x x 6= x′ -
√ √

-
0 x = x′ = 0

√
- - -

u (x, x′) = (0, 1) -
√

- -
n (x, x′) = (1, 0) - -

√
-

1 x = x′ = 1 - - -
√

# - - - -

δ(x, x′) meaning (0,0) (0,1) (1,0) (1,1)

3 x = 0
√ √

- -
5 x′ = 0

√
-

√
-

7
√ √ √

-
A x′ = 1 -

√
-

√

B
√ √

-
√

C x = 1 - -
√ √

D
√

-
√ √

E -
√ √ √

Table 1: Symbols used to express 1-bit conditions [9]

Next, small examples of (a) a differential trail (b) a boomerang trail and (c) a boomerang
trail incompatibility are provided. As for the differential trail, consider the following constraint
specification over one 4-bit modular addition

---- + ---x = ---x (3)

The trail models a pair of additions xA +yA = zA and xB +yB = zB and specifies that xA = xB
and also that yA and yB, as well as zA and zB are different only on the least significant bit. It
can be observed that is the necessary condition for the trail to realize is lsb(xA) = lsb(xB) = 0.

As for the boomerang trail, in that context, one works with quartets instead of pairs.
Consider a quartet of modular additions xω + yω = zω, for ω ∈ {A,B,C,D}. To specify a
boomerang trail, two differential trails are required, labeled as the top trail and the bottom
trail. This terminology comes from the fact that the two trails are specified on the bottom and
the top round portions of the cryptographic primitive, respectively. For the purpose of this
example, let (3) be the bottom trail and let the top trail be specified by

---- + ---x = --xx (4)

The bottom trail is imposed on xω + yω = zω for ω ∈ {A,B} and ω ∈ {C,D}, whereas
the bottom trail for ω ∈ {A,C} and ω ∈ {B,D}. As shown below, taking the four sets of
constraints on xω + yω = zω for ω ∈ {A,B,C,D} yields a contradiction, i.e., the boomerang
trail incompatibility. The incompatibility of (3) and (4) follows from the fact the the necessary
condition to have (4) is that the rightmost bit of x needs to equal to 1, i.e., that lsb(xA) =
lsb(xC) = 1 (and also lsb(xB) = lsb(xD) = 1). However, as shown above, the necessary
condition for (3) is that lsb(xA) = lsb(xB) = 0 and thus no quartet of additions satisfy both
trails in the described sense.

2.3 The URSA System

The system was proposed in 2012 [20] and represents a high-level front-end to efficient SAT
solves. It translates constraints sets specified in C-like language into SAT formulas, after which
a SAT solver of user’s preference is run on the derived equations. There are two variable types
in the URSA language: (unsigned) numerical with names of variables starting with ’n’ and
boolean with variable names starting with ’b’. All arithmetic operations over numeric variables
are performed modulo n, where n is user-specified parameter. In URSA, there are control flow
structures (such as for and if) as well as procedures and C-like arrays.
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The URSA approach can be illustrated by the following example taken from [20]. Consider
the problem of finding x0 given x100 for the recurrence relation specified by xn+1 = (1664525xn+
1013904223) mod 232. The URSA code that corresponds to this problem is

nx=nseed;

for (ni=1; ni<=100; ni++)

nx = nx*1664525+1013904223;

bc = (nx == 3998113695);

assert(bc);

The code above is processed by running cat rec.ursa | ursa -l32, where the variable bit-
length n = 32 is specified in the command line. The system will solve for the independent
variable nseed and return it’s value.

Another example of the URSA constraint specification is given in the Appendix. The
provided example corresponds to the (incompatible) boomerang trails example discussed in
Section 2.2. For more details about the URSA system, see [20].

2.4 Notation

The following notation is used throughout the paper:
xb: The bth bit of a word x. For example x0 is the least significant bit of x.
A,B,C,D: four branches of primitive executions, following Fig. 1.
∆rij[A,B]: bit-constraint (a symbol from Table 1) at bit-position i in word rj constraining
branches A and B.
⊕, +: bit-wise XOR and addition mod 232, respectively
<<, >>: left and right shift, defined on 32-bit values.
<<<, >>>: left and right rotation, defined on 32-bit values.

3 Detecting Rectangle/Boomerang Trail Contradictions

In this section, we detect contradictions in the trails used in attacks on XTEA [31], SHACAL-1
[49, 12] block ciphers and the SM3 [3] hash function. The first two attacks are rectangle related-
key key recovery attacks and the latter attack is a distinguishing attack against a reduced-round
SM3 compression function.

The general approach is to represent the primitive and the corresponding step constraints
in the URSA language, run a SAT solver over the sequence of steps where a contradiction is
suspected, i.e., typically around the middle steps where the rectangle trail switch [48, 24, 4]
occurs. If the SAT solver reports no solutions, the next step is to locate where the contradiction
is located, i.e., to find the minimal or close to minimal constraint set that yields a contradiction.
This was done using a manual trial-and-error approach, i.e., by removing constraints as long as
the system does not have solutions. Finally, the proof for the contradiction is built based on
the reduced constraint set.

3.1 On the incompatibility of XTEA trails [31]

The key-recovery attack on 36-reduced-round XTEA [31] is a related-key attack since it requires
differences in the key bits (as well as in plaintexts). It works with quartets of encryptions and
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Figure 2: Two equivalent representations of the XTEA round function

falls into the category of rectangle attacks. Below, a brief specification of the cipher is provided.
For a more detailed description, the reader is referred to [53, 31].

XTEA takes as input a 64-bit plaintext and a 128-bit key. The encryption and decryption
functions consist of 64 Feistel-network rounds. Two equivalent representations of one encryption
round are schematically presented in Fig. 2, where on the right-hand side a shift-register based
representation is provided. Feistel networks have been first studied in the form of shift registers
in the context of the DES block cipher [15], where the cipher was presented as a Non-Linear
Feedback Shift Register with input. We use the shift-register based representations since such
representations provide are elegant when it comes to working with differential paths [9, 38].

The 128-bit key is represented by four 32-bit words as K = (K0, K1, K2, K3) and then, for
i = 1, . . . 64 expanded to 64 32-bit words, as specified by

Wi =

{
b i

2
c × δ +K(b i

2
c×δ)&3 if i is odd

b i
2
c × δ +K(b i

2
c×δ>>11)&3 if i is even

(5)

Here, δ = b(
√

5−1)×231)c = 0x9e3779b9. The subscripts to K in the expression above simply
define an expansion of K0, . . . K3 words over the XTEA rounds. The expression b i

2
c×δ specifies

round constants.
The round function is specified next in terms of Fig. 2 (b). Denote the 64-bit plaintext in

the form of two 32-bit words (A0, A1). Then, the encryption is done by calculating

ri+1 = ri−1 + (L(ri) + ri)⊕Wi (6)

for i = 1, . . . 64, where L(x) = (x << 4)⊕ (x >> 5). The ciphertext is taken to be (r63, r64).
In [31], a related-key rectangle attack aiming to break 36 rounds of XTEA (rounds 16-51)

and not requiring any weak-key assumptions is provided. The starting point for each rectangle
attack is a family of top and bottom differential trails [4]. In [31], a family of trails is provided
for E0 (rounds 16-37) and one constant trail with probability 1 is provided for the bottom
family (rounds 37-45). Then, each of the E0 trails are connected to the fixed E1 trail.

We used the URSA system to verify that the bottom trail cannot be connected to any of the
trails in the top trail family. A particular high-probability representative pair of top-bottom
trails (Table 3 in [31]) is shown in Table 2. The step numbers are given in the first and the
last column, along with the active message words. Only the steps around the middle of the
primitive are shown. Steps 35-37, where the contradiction can be localized, are marked in gray.
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step ∆[A,B] = ∆[C,D] ∆[A,C] = ∆[B,D] step
...

...
30 -------------------------------- ???????????????????????????????? 30
31 -------------------------------- ???????????????????????????????? 31
32 x------------------------------- ???????????????????????????????? 32
33 -----x-------------------------- ???????????????????????????????? 33

34 xx---x----x--------------------- ???????????????????????????????? 34
35 -----x---------x---------------- ???????????????????????????????? 35
36 -----------x---x----x----------- x------------------------------- 36

37 -----x-x-----------------x------ -------------------------------- 37
38 ???????????????????????????????? -------------------------------- 38
39 ???????????????????????????????? -------------------------------- 39

...
...

Table 2: One of the XTEA rectangle trails [31]

The bit-constraints provided by the top and the bottom trail in Table 2 are not fully
propagated. Based only on the constraints given in the bottom trail in steps 36 and 37 and
(6) for i = 36, one can conclude that ∆ri35[A,C] = ∆ri35[B,D] = ’-’ for i = 0, . . . , 25 and
∆r26

35[A,C] = ∆r26
35[B,D] = ’x’. Taking into account these propagations, a detailed view of the

relevant trail portion [31] is provided in Table 3.
In the proof below, let Ci

ω denote a carry bit at position 0 ≤ i ≤ 31 on branch ω ∈
{A,B,C,D} in r35 +(r36 +L(r36))⊕W36. We recall that in a 32-bit modular addition z = x+y,
for 0 ≤ i ≤ 30

zi+1 = xi+1 ⊕ yi+1 ⊕ ci, where ci = maj(xi, yi, ci−1) (7)

while c−1 = 0.

step ∆[A,B] = ∆[C,D] ∆[A,C] = ∆[B,D]
∆r35 -----x---------x---------------- ?????x--------------------------
∆r36 -----------x---x----x----------- x-------------------------------

∆L(r36) -------x---x--------x----x------ -----x--------------------------
∆s(r36) = ∆(r36 + L(r36))⊕W36) ?????????????????????????x------ ?????x--------------------------

∆r37 = ∆(r35 + s(r36)) -----x-x-----------------x------ --------------------------------

Table 3: A detailed view of (contradictory) steps 35-37

Observation 1 Constraints specified in Table 3 are contradictory.

Proof: The argument about the contradiction is split in two cases:

(i) Let the bit s26(r36) for both ∆[A,B] and ∆[C,D] be inactive. In Table 3, this bit con-
straint is shown in light gray and the assumption of this part of the proof replaces the ’?’
at this position by a ’-’. As a consequence, ∆s27(r36) =’-’ in the ∆[A,B] = ∆[C,D]
column of Table 3, since r36, L(r36) and W36 are inactive past bit-position 26.

It can be observed that C25
A = C25

B = C25
C = C25

D and this carry value will be denoted
by C. Namely, C25

A = C25
C and C25

B = C25
D since ∆si(r36) = ∆ri35 =’-’ for 0 ≤ i ≤ 25

in the ∆[A,C] = ∆[B,D] column. Furthermore, in the ∆[A,B] = ∆[C,D] column,
∆s26(r36) =’-’ due to the assumption and ∆r26

35 = ∆r26
37 =’x’. Thus, there is no carry

disturbance from bit-position i ≤ 25 and C25
A = C25

B .
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We show that both in the case C = 0 and the case C = 1, a contradiction is reached.
According to the assumption of this part of the proof, the bit-value s26(r36) is equal to
some fixed b ∈ {0, 1} in both A and B branches. If C = 0, then b = 0 is a necessary
condition, since if b = 1, the ∆r27

37 constraint would be ’x’ and this is not the case.
However, since the ∆s26(r36) is specified as ’x’ for ∆[A,C] and ∆[B,D], the necessary
condition b = 0 cannot be fulfilled in ∆[C,D] and therefore this path cannot behave
according to the ∆[A,B] = ∆[C,D] column of Table 3. In the case C = 1, a necessary
condition b = 1 is derived and the contradiction argument proceeds analogously.

(ii) Let the negation of the assumption used in (i) hold. In other words, let s26(r36) be active
in ∆[A,B] or, let the same bit be active in ∆[C,D]. This disjunction implies that both
bits are active simultaneously, since s26(r36) is active in both ∆[A,C] and ∆[B,D]. Next,
we have that s25(r36) is active in both ∆[A,B] and ∆[C,D], since otherwise there would
not be a carry difference coming from bit position 25 and causing the two active bits to
sum to an active bit in r26

37. Finally, it follows that bits r27
37 in ∆[A,B] and ∆[C,D] are also

active. This is true since C26
A 6= C26

B and C26
C 6= C26

D . The first of the two equalities is true
since both input bits and the output bit at position 26 are active when r37 is calculated.
Independently, the second inequality is valid for the same reason on ∆[C,D].

The ’x’ constraints on bit positions 25 and 26 in ∆s(r36) have the same sign (both ’u’ or
both ’n’), since they are caused by the carry propagation from bit position i ≤ 24 in the
r36 and L(r36) summation. This is true both in ∆[A,B] and ∆[C,D]. On the other hand,
this cannot hold, since the constraint at bit position 26 in ∆s(r36) at [A,C] corrupts this
sign and thus we have a contradiction. �

As already mentioned, we verified that the other top-bottom trail variants [31] are incompatible.
It should be noted that all of the trails are induced by a difference at the most significant bit
(MSB) positions in the key words. Previously, it was speculated [46] that if the top and the
bottom trails start from the same bit position, contradictions are more likely to occur as the
trails are likely to involve the same bit-positions. Our analysis confirms this intuition.

In this regard, one can also ask whether there exist any pair of compatible trails such that
both top and the bottom trail are due to MSB disturbances in the round span discussed in
[31] (31-37). Using URSA, this question can be answered by simply removing all of the trail
constraints from the constraint representation and leave only those that enforce the top and
the bottom trail expanded key disturbances. It should be noted that the task given to the SAT
solver in this case is more difficult, since the solver has to effectively search for valid compatible
differential trails. Increasing the number of rounds in the middle may result in impractical SAT
solver execution times.

The following discussion is relevant at this point. To provide a lower bound for the proba-
bility of the distinguishing property used in the attack, most of the trails used in the previous
literature on rectangle or boomerang attacks are aligned in the sense that the trails enforced on
the opposite faces of the quartet structure the share the same active bit positions. This allows
having only two trails to model all four faces in the quartet of primitive execution. However,
previously, unaligned trails have also been attributed to add to the overall attack probability
[4]. In such a case, the primitive follows four different trails and results in the desired output
difference.

We verified whether there exist both aligned and unaligned solutions to the round span
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discussed in [31]. The SAT solving phase for an aligned solution above took less than 30
minutes running as one process on 8-core 2.67 Ghz Intel i7 CPU before returning a negative
answer. In other words, there exists no trails starting from the MSB positions in the 31-
37 round span. However, interestingly enough, if the alignment constraints are removed, the
solution does exist. The solution returned by the SAT solver follows four different (unaligned)
trails and, as such, is different from the trails studied in the majority of previous literature (for
rectangle attacks on block ciphers, see, e.g., [11, 32, 49] and as for boomerang distinguishers on
hash functions see, e.g., [7, 8]). As we are not aware of previous examples of unaligned trails
in the literature, the extracted trails are presented in Fig. 7 in the Appendix, along with the
corresponding plaintext and key values in Fig. 8.

The analysis above shows that contradictions that occur because both top and bottom trails
start from the most significant bit may be resolved if one allows unaligned trails. This is relevant
in the context of building compression function distinguishers, since having boomerang trails
induced by MSB disturbances reduces the complexity of the final phase of the second order
collision search [7, 46].

3.2 On the incompatibility of SHACAL-1 trails [49, 12]

In 2001, Handschuh and Naccache [16, 17] proposed the SHACAL-1 block cipher and submitted
it to the NESSIE (New European Schemes for Signatures, Integrity and Encryption) project [1].
SHACAL-1 is in fact the internal block cipher used within the SHA-1 hash function [43]. When
applied in the Davies-Meyer mode, SHACAL-1 represents the SHA-1 compression function.
Reduced-step SHACAL-1 was scrutinized both in the single-key and the related-key cryptana-
lytic models [5, 18, 27, 33]. As for the full-round SHACAL-1, it was shown to be susceptible to
a rectangle related-key attack with complexity better than exhaustive search in [12] in 2006.

However, Wang et al. [49] found multiple problems in previous attacks on SHACAL-1. In
particular, it was observed that the previous attacks [5, 18, 27, 33] do not work due to flaws
in the provided differential trails. The trails turn out to be contradictory when regarded as
single trails, i.e., independently of the quartet/rectangle context. Problems in these attacks are
mostly related to the sign of active bits. In case only XOR differences are considered, these
types of problems remain unnoticed [49].

Apart from finding flaws in previous attacks, [49] finds that the related-key rectangle attack
[12] remains valid although it works against only a subset of the key space (2496 out of 2512

keys). In addition, [49] proposed a new related-key rectangle attack that works for 2504 out of
2512 keys. To the best of our knowledge, these are the best attacks against SHACAL-1.

In this section, we show that the two attacks above are in fact also flawed. Although the
trails are non-contradictory when regarded independently, once connected as specified by the
rectangle setting, incompatible constraints are placed on the inner state bits. Moreover, below,
we point out a particular type of contradiction that is likely to occur in rectangle attacks on
ciphers with linear key schedule with good diffusion such as SHACAL-1. To the best of our
knowledge, this type of rectangle/boomerang attack contradiction has not been discussed in
the previous literature.

Below, a specification of the SHACAL-1 encryption function based on recurrence relations is
provided. To encrypt, the 160-bit plaintext and the 512-bit key are copied to (r0, r−1, r−2, r−3, r−4)
and (W0,W1, . . .W15), respectively. The block cipher key is expanded according to the SHA-1
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Figure 3: Two equivalent representations of the SHA-1 state update step

message expansion

Wi = (Wi−3 ⊕Wi−8 ⊕Wi−14 ⊕Wi−16) <<< 1

for i = 16, . . . 79. Next, 80 iterations of the function schematically represented in Fig. 3 are
applied. Explicitly, for i = 0, . . . 79, we have

ri+1 = ri−4 <<< ρi30 +Ki + fi(ri−1, ri−2 <<< ρi30, ri−3 <<< ρi30) +Wi + ri <<< ρi5

where Ki are the round constants, ρi30 = 30 and ρi5 = 5 for 4 ≤ i ≤ 79 and for 0 ≤ i ≤ 3, the
rotational constants are properly adjusted. The bit-wise logical functions are defined as:

f(x, y, z) =


IF (x, y, z) = (x ∧ y) ∨ (¬x ∧ z) 0 ≤ i ≤ 19
XOR(x, y, z) = x⊕ y ⊕ z 20 ≤ i ≤ 39 or 60 ≤ i ≤ 79
MAJ(x, y, z) = (x ∧ y) ∨ (x ∧ z) ∨ (y ∧ z) 40 ≤ i ≤ 59

The SHACAL-1 ciphertext is defined to be (r80, r79, r78, r77, r76).
In Table 4, contradictory portions of the SHACAL-1 trails are given (extracted from Tables

7 and 8 in [49]).

step ∆[A,B] = ∆[C,D] ∆W [A,B] = ∆W [C,D] ∆[A,C] = ∆[B,D] ∆W [A,C] = ∆W [B,D]
29 -------------------------------- -------------------------------- ------------------------------x- xx-----------------------x----xx

30 -------------------------------- -------------------------------x ------------------------------xx -x-----------------------xx---x-

31 -------------------------------x -------------------------------- -------------------------------- x------------------------------x

32 --------------------------x----- -------------------------------- ------------------------------x- -x-----------------------x----x-

33 ---------------------x---------x ------------------------------x- ------------------------------x- -x-----------------------x----x-

34 ???????????????????????????????? -------------------------------- -------------------------------- -x----------------------------x-

Table 4: Incompatible SHACAL-1 trails [49]

Observation 2 Constraints specified in Table 4 are contradictory.

Proof: As shown by gray bits in the third column of Table 4, only one input bit to f33 for
[A,C] is active. Since f33 is in fact the XOR function, the output f33 bit at this position is
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active as well. The ∆W 1
33[A,C] = ’x’ constraint cancels out this active bit since no bits are

active in ∆r34[A,C]. This is possible only if the corresponding f33 output bit and ∆W 1
33[A,C]

have opposite signs. The same should hold for [B,D] and this yields a contradiction since
∆W 1

33[A,B] = ∆W 1
33[C,D] = ’x’. �

As for the rectangle trails used in [12], we analyze the constraints in steps 57-63 in detail
and show that these steps contain a contradiction. It should be noted that the top trail and
the bottom trail for this attack cover steps 0-34 and 34-69, respectively. The contradictions
are likely to occur in the region where both top and the bottom trails are specified, i.e., where
the bottom and the top trails meet [42, 30, 46]. However, in this case, due to the message
expansion linearity, the contradiction occurs in the late steps of the bottom trail as well.

In Table 5, trails for steps 57-63 are presented (Tables 2 and 3 in [12]). As can be observed,
the ∆[A,B] = ∆[C,D] column contains only ’?’ constraints since the top trail in late steps
57-63 is unspecified, as expected in the rectangle attack setting. However, since the message
expansion in SHACAL-1 is linear, the ∆W [A,B] = ∆W [C,D] is fully specified by the mes-
sage expansion. The observation below shows that the linearly expanded constraints in the
∆W [A,B] = ∆W [C,D] column do not allow the ∆[A,C] = ∆[B,D] column to be satisfied.

step ∆[A,B] = ∆[C,D] ∆W [A,B] = ∆W [C,D] ∆[A,C] = ∆[B,D] ∆W [A,C] = ∆W [B,D]
57 ???????????????????????????????? --------------x------x--xxx--x-- -------------------------------- --------------------------------

58 ???????????????????????????????? -----------------x-xxx----xx-x-- -------------------------------- --------------------------------

59 ???????????????????????????????? ---------------x-xx-x----x--xx-- -------------------------------- --------------------------------

60 ???????????????????????????????? -------------x------xx--xxxx---- -------------------------------- --------------------------------

61 ???????????????????????????????? -----------------xx--xx-x-xxxx-- -------------------------------- -----------------------------x--

62 ???????????????????????????????? -----------------x-xxxx---xx-x-- -----------------------------x-- ------------------------x-------

63 ???????????????????????????????? ------------x----x--xxx-x-xxxx-- -------------------------------- -----------------------------x--

Table 5: Incompatible SHACAL-1 trails [12]

Observation 3 Constraints specified in Table 5 are contradictory.

Proof: According to Table 5, ∆W 2
61[A,C] = ’x’. The sign of this constraint is equal to that of

∆r2
62[A,C] = ’x’, since all other input bits in the step 62 modular addition are inactive. The

sign of ∆r2
62 [A,C] = ’x’ is opposite to the sign of ∆W 7

62[A,C] since these two constraints cancel
out in step 63. Therefore, the sign of ∆W 7

62[A,C] is opposite to the sign of ∆W 2
61[A,C]. The

same holds for the [B,D] face of the quartet. This yields a contradiction since ∆W 2
61[A,B] =

W 2
61[C,D] = ’x’ and ∆W 7

62[A,B] = W 7
62[C,D] = ’-’. �

It follows that constraints in steps even outside the switch region should be carefully verified
for primitives with linear message expansions, such as SHA-1, SHACAL-1 and SM3.

3.3 On the incompatibility of SM3 trails [2, 3]

The SM3 hash function [19] is a cryptographic hashing standard in China adopted for use
within the Trusted Computing framework in 2007 by the Chinese National Cryptographic
Administration Bureau. It was designed by Xiaoyun Wang et al. and its design resembles the
design of SHA-2 but includes additional fortifying features such as feeding two message-derived
words into each step, as opposed to only one in the case of SHA-2.

SM3 is a Merkle-Damg̊ard construction that processes 512-bit input message blocks and
returns a 256-bit hash value. Since the attacks that we analyze below are attacks on the
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compression function, the specification of compression function is provided below. For more
details, the reader is referred to [19].

Let the P0 and P1 functions, both operating on 32-bit words, be defined by:

P0(X) = X ⊕ (X <<< 9)⊕ (X <<< 17)

P1(X) = X ⊕ (X <<< 15)⊕ (X <<< 23).

The message block to be hashed is first represented as 16 32-bit words M0, . . . ,M15. Then, it
is expanded to 68 32-bit words by letting Wi = Mi for 0 ≤ i < 16 and

Wi = P1(Wj−16 ⊕Wj−9 ⊕ (Wj−3 <<< 15))⊕ (Wj−13 <<< 7)⊕Wj−6 (8)

for 16 ≤ i < 68. We provide the specification of the step function using recurrence relations, sim-
ilarly to the one used in [37]. The pre-fixed IV [19] is copied to (l0, l−1, l−2, l−3, r0, r−1, r−2, r−3)
and the chaining values are computed over 64 steps as follows:

li+1 = FFi(li, li−1, lt−2 <<< ρ9) + li−3 <<< ρ9 +Wi ⊕Wi+4 + SS1i ⊕ (li <<< 12)

ri+1 = P0(GGi(ri, ri−1, ri−2 <<< ρ19) + ri−3 <<< ρ19 +Wi + SS1i)

where SS1i = (li <<< 12 + ri + Ti) <<< 7. The functions FFi and GGi are defined by

FFi(X, Y, Z) =

{
X ⊕ Y ⊕ Z, 0 ≤ i ≤ 15
(X ∧ Y ) ∨ (Y ∧ Z) ∨ (X ∧ Z) 16 ≤ i < 64

GGi(X, Y, Z) =

{
X ⊕ Y ⊕ Z, 0 ≤ i ≤ 15
(X ∧ Y ) ∨ (¬X ∧ Z) 16 ≤ i < 64

The round constants are Ti = 0x79cc4519 <<< i for i ∈ {0, . . . , 15} and Ti = 0x7a879d8a <<< i,
for i ∈ {16, . . . , 63}. As for the rotation constants, ρi9 = 9 and ρi19 = 19 for 2 ≤ i ≤ 63 and for
0 ≤ i < 2, the rotational constants are properly adjusted.

Previous analysis of the reduced-step SM3 hash function includes preimage attacks [55, 50],
collision attacks [37] and boomerang distinguishing attacks [28, 2, 3]. To the best of our
knowledge, the highest number of steps is reached in [2], where an example of a boomerang
quartet is provided for the 35-step reduced SM3 and attacks against 36, 37 and 38 step-reduced
SM3 with complexities 273.4, 294 and 2192 are provided.
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step ∆W ′[A,B] = ∆W ′[C,D] ∆W [A,B] = ∆W [C,D] ∆W ′[A,C] = ∆W ′[B,D] ∆W [A,C] = ∆W [B,D]
15 x--------x-------x-------------- -------------------------------- -------------------------------- --------------------------------

16 -------------------------------- -------------------------------- -x-xx---x-x-x-----xxx-------x--- --------x-----------------------

17 -------------------------------- -------------------------------- ------------x-------------x-x--- ------------x-------------x-x---

18 ---x-------------x-x------------ -------------------------------- -------------------------------- --------------------------------

19 x--------x-------x-------------- x--------x-------x-------------- --------x----------------------- --------------------------------

∆l[A,B] = ∆l[C,D] ∆r[A,B] = ∆r[C,D] ∆l[A,C] = ∆l[B,D] ∆r[A,C] = ∆r[B,D]
15 -------------------------------- -------------------------------- -------------------------------- --------------------------------
16 x--------x-------x-------------- -------------------------------- ------------------xx------x----- ---x-x-----xx-x----x-------xx---

17 -----x-------x------x-x------xx- ----xx-------x-------xx-----x-x- ------xx---xx-x----x-x-----xx--- ------x--------x-x--x--x-----x-x
18 ---x--x-x--x--xx-----x-x-xx----- -xxx-xx---xxx--xxx--xx-xxxx--xx- -------------------------------- --------------------------------
19 ???????????????????????????????? ???????????????????????????????? -------------------------------- --------------------------------

Table 6: Incompatible SM3 boomerang trails [3]

Below, we show that the 37 and 38-step distinguishers [3] are based on incompatible differ-
entials. In Table 6, the incompatible portion of the trails is presented (based on Tables 6 and 7
in [3]). The fact that the message expansion in SM3 is linear allows extracting all the message
bit-constraints. In the top part of the table, the message constraints both for W ′

i = Wi ⊕Wi+4

and Wi for i = 15, . . . 19 are provided and in the bottom part the chaining values constraints
are given. The bits relevant for the analysis are shaded in gray.

Observation 4 Constraints specified in Table 6 are contradictory.

Proof: Recall that

l19 = FF18(l18, l17, l16 <<< 9) + l15 <<< 9 +W ′
18 + SS118 ⊕ (l18 <<< 12) (9)

where SS118 = (l18 <<< 12 + r18 + T18) <<< 7. Since according to Table 6, ∆W ′
18[A,C],

∆l18[A,C], ∆r18[A,C] and ∆l15[A,C] contain no active bits and the same is true for ∆l19[A,C],
we have that ∆FF18(l18, l17, l16 <<< 9)[A,C] cannot have any active bits either. The same
statement holds for ∆FF18(l18, l17, l16 <<< 9)[B,D].

Consider the FF18 input bits for bit-position 10 in the modular addition (9). The FF18

input bit-constraints participating at this position are shaded in gray in Table 6. As can be
observed, one of the input bits is active and, as established above, the function output bit is
inactive. Since FF18 is the majority logical function MAJ, it follows that l10

18 = l116 in both
branches A and C. Again, the same statement holds for branches B and D. However, this is
impossible since ∆l10

18[A,B] = l10
18[C,D] = ’x’ and this is the only active input bit to FF18 at

branches [A,B] and [C,D]. This shows that the constraints are incompatible. �
It is interesting to note that adding more freedom to the constraint set by removing the

∆l15[A,C] and ∆l15[B,D] constraints does not remove the contradiction.

4 Conclusion

The analysis provided in this paper shows that constructing rectangle or boomerang attacks
should always be accompanied by formal verification of trails, since otherwise, there is little
assurance that the trails are in fact compatible. Formal verification of trails should be performed
whenever it is not possible to execute the attack in practice. An easy to use verification approach
based on the URSA system was proposed.

Based on our analysis, the previous rectangle and boomerang attacks reaching the highest
number of rounds against XTEA, SHACAL-1 and SM3 are shown to be based on incompatible
differential trails. In addition, we pointed out a type of contradiction that is likely to occur in
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primitives with fast-diffusion linear message expansions such as SHA/SHACAL-1. This type of
contradictions have not been emphasized in previous literature. Finally, in the context of the
XTEA block cipher, we provided examples of unaligned boomerang trails that contribute to the
overall rectangle attack probability and are relevant in the area of boomerang distinguishers on
hash functions.
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The URSA file corresponding to the incompatible boomerang trail example in Section 2.2:

nzA = nxA + nyA;

nzB = nxB + nyB;

nzC = nxC + nyC;

nzD = nxD + nyD;

bxAB = (nxA == nxB); /* trail (1) (’----’) */

bxCD = (nxC == nxD); /* trail (1) (’----’) */

bxAC = (nxA == nxC); /* trail (2) (’----’) */

bxBD = (nxB == nxD); /* trail (2) (’----’) */

byAB = ( (nyA ^ nyB) == 1 ); /* trail (1) (’---x’) */

byCD = ( (nyC ^ nyD) == 1 ); /* trail (1) (’---x’) */

byAC = ( (nyA ^ nyC) == 1 ); /* trail (2) (’---x’) */

byBD = ( (nyB ^ nyD) == 1 ); /* trail (2) (’---x’) */

bzAB = ( (nzA ^ nzB) == 1); /* trail (1) (’---x’) */

bzCD = ( (nzC ^ nzD) == 1); /* trail (1) (’---x’) */

bzAC = ( (nzA ^ nzC) == 3); /* trail (2) (’--xx’) */

bzBD = ( (nzB ^ nzD) == 3); /* trail (2) (’--xx’) */

assert( bxAB && bxCD && bxAC && bxBD && byAB && byCD && byAC && byBD

&& bzAB && bzCD && bzAC && bzBD );

step ∆[A,B] ∆[C,D] ∆[A,C] ∆W [B,D]
30 -------------------------------- -------------------------------- nnun--u-----u-----nn-un---nun-n- nnun--u-----u-----nn-un---nun-n-

31 -------------------------------- -------------------------------- -----nu--u-uu---nn---nunuu------ -----nu--u-uu---nn---nunuu------

32 u------------------------------- u------------------------------- -n-n-n----nnnnu--nnuu----------- -n-n-n----nnnnu--nnuu-----------

33 -----n-------------------------- -----n-------------------------- n-u-u-u-nuu-u--n---------------- n-u-u-u-nuu-u--n----------------

34 -uu--uunnuu--------------------- un-unn----n--------------------- nuu-uu-nnuu--------------------- -n-u-nn---n---------------------

35 -nu-nn--u-uu-nnn---------------- u---nu--u-uu-nnn---------------- -n-u-n-------------------------- u-nu-u--------------------------

36 u--un---u---nu-nnnu-n----------- n--un---u---nu-nnnu-n----------- u------------------------------- n-------------------------------

37 --nnu------uun-nun-----unu------ --nnu------uun-nun-----unu------ -------------------------------- --------------------------------

38 -n-n----u-uun-u--u---unuu-nnu-n- -n-n----u-uun-u--u---unuu-nnu-n- -------------------------------- --------------------------------

Table 7: XTEA boomerang trails with unaligned constraints (marked in gray)

Key quartet
KA 0x4c266470 0x616feff 0x98254f67 0x6a6714

KB 0x4c266470 0x616feff 0x98254f67 0x806a6714

KC 0x4c266470 0x616feff 0x18254f67 0x6a6714

KD 0x4c266470 0x616feff 0x18254f67 0x806a6714

Plaintext quartet
PA 0x259f4198 0xfb5ae217

PB 0x27ed0f0c 0xe49bdb36

PC 0xe8422de 0xfc22d87a

PD 0x7fa55484 0x8b285daf

Table 8: XTEA unaligned quartet example
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