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Abstract

In this paper a new public key system based on polynomials over fields GF (2) is developed.
The security of the system is based on the difficulty of finding discrete logarithms over GF (2k)
with sufficiently large k. The presented system has all features of ordinary public key schemes
such as public key encryption and digital signatures. The security and implementation aspects
of the presented system are also introduced along with comparison with other well known public
key systems.
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1 Introduction

Public-key cryptography started in 1976 with publication of pioneering work of Diffie and Hell-
man [1] called DH key exchange and in 1978 with another fundamental work by Rivest, Shamir
and Adleman [2], called RSA cryptosystem. DH key exchange is based on the discrete logarithm
problem (DLP) and RSA is based on integer factorization problem. RSA provides all features
of public key cryptography including public-key encryption and digital signatures. There are
public-key encryption and digital signature systems based on the DLP problem such as Digital
Signature Standart (DSS) [3] and EIGamal public-key encryption [4]. In this paper we will rep-
resent a public key system the security of which is based on DLP but is implemented differently
by using relationship between roots of polynomials. We will represent public key encryption as
well as digital signature generation and verification operations. The main feature of the new
cryptosystem, whose security also is based on DLP, is that its public key encryption is com-
putationally equivalent to EIGamal public-key encryption, public-key decryption and signature
generation is computationally equivalent to analogous operations for RSA and EIGamal en-
cryption or DSS, but signature verification is significantly faster than other analogous systems,
including even RSA which is considered fastest among existing public key systems.

2 New public key system

In this system binary messages will be regarded as polynomials of degree n over GF (2). A
primitive polynomial g(x) of degree n will be considered as the base polynomial of the system
and we will denote by α a root of g(x). Let i be any random number less then 2n − 1 where
(i, 2n − 1) = 1 and let gi(x) be a primitive polynomial with the root αi. Let i be the secret
parameter of the system and polynomials g(x) and gi(x) be public polynomials of the system.

a) Public key encryption:
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For a given polynomial gi(x) its root as a polynomial f(α) can be found using an algorithm
presented in [5, chapter 4]. The complexity of that algorithm is not more than O(k3). However
for a given f(α) to find i where αi = f(α) is a DLP. Note that everybody who knows public
polynomials g(x) and gi(x) will be able to calculate for any given polynomial f(x) the values

f(xi) modulo g(x) or modulo gi(x) and also f(xi
−1

) modulo gi(x) without the knowledge of i
or i−1. The latter value can be calculated simply by solving a linear system of equations based
on the equality f(xi)(mod gi(x)) = F (x) = f(xi

−1

). We have two options to encrypt a given
message M and we will call these two options to be “Off-line” and “On-line”.

a1) “Off-line” encryption: This kind of encryption can be made in the style similar to [4].
For a randomly generated N with n bits we have

xN = C(x) mod g(x)

and
xN = Ci(x) mod gi(x)

.
This operation can be made “Off-line” beforehand as in the case with [4].
It is easy to show that

Ci(x) = (C(xi
−1

))
i
mod gi(x) (2.1 a)

or

C(x) = (Ci(x
i))

i−1

mod g(x) (2.1 b)

Where i−1 · i = 1 mod (2n− 1). Note that (Ci(x))
−1

or (C(x))
−1

can also be pre-computed.
Let the message M that needs to be encrypted be represented as a polynomial M(x) of

degree n over GF (2). The encryption operation is the following:

M · (C(x))
−1

, Ci(x
i) (2.2 a)

or
M · (Ci(x))

−1
, C(xi

−1

) (2.2 b)

and the encrypted message is a pair as represented in (2.2 a) or (2.2 b).
b1) Decryption: Decryption is based on the fact that only the “owner” of the system knows

i or i−1 and having Ci(x) or C(x) he/she can calculate either (Ci(x
i))

i−1

or (C(xi
−1

))
i

and can
get M by multiplying the respective results with the first part of the encrypted message.

a2) “On-line” encryption:
Let M be the message to be encrypted. Then the values

xM = C(x) mod g(x) and xM = Ci(x) mod gi(x) (2.3)

are calculated. The encrypted message will then be a pair:

(M ⊕ C(x)), Ci(x
i) (2.3 a)

or
(M ⊕ Ci(x)), C(xi

−1

) (2.3 b)

b2) Decryption: Decryption is based on the fact that only the “owner” of the system knows

i or i−1 and having Ci(x) or C(x) he/she can calculate either (Ci(x
i))

i−1

or (C(xi
−1

))
i

and can
get M by XOR-ing the respective results with the first part of the encrypted message.

c) Digital signature:
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Signature generation:
1) the signer computes the hash of the message M which is denoted by polynomial H(M) =

h(x).

2) the signer computes hi(x) = (h(xi
−1

))
i
mod gi(x) (2.4)

and hi(x) is the signature of the message.
d) Signature verification:
The signature verification is to show that

XS = h(x) mod g(x) (2.5)

XS = hi(x) mod gi(x) (2.6)

i.e. h(x) and hi(x) both have the same index S modulo g(x) and gi(x) respectively.
By multiplying both sides of the equations (2.5) and (2.6) respectively by g(x) and gi(x)

respectively and adding them together we note that

XS = (h(x) • gi(x) + hi(x) • g(x))/(g(x) + gi(x)) = r mod (g(x) • gi(x))

Furthermore by multiplying equations (2.5) and (2.6) together we note that

(XS − h(x)) • (XS − hi(x)) = 0 mod (g(x) • gi(x))

which is equivalent to

r2 + r(h(x) + hi(x)) + h(x) • hi(x) = 0 mod (g(x) • gi(x)) (2.7)

The signature of the message hi(x) is verified if the equality (2.7) is satisfied.

3 Security of the system, choice of parameters and their
generation

The security of the presented system is based on the discrete logarithm problem (DLP) over
field GF (2k). Assuming that α is the root of the base primitive polynomial g(x) the root of the
given public primitive polynomial gi(x) is αi. It is well known that for a given αi it is quite
easy to construct its minimal polynomial gi(x) [4]. For given polynomial gi(x) its root as a
polynomial f(α) can be found using the algorithm presented in [6, chapter4]. The complexity
of that algorithm is not more than O(k3). However for a given f(α) to find αi = f(α) is a DLP.
Equivalently to find C(x) or Ci(x) from (2.2a) or (2.2b) - the complexity for decryption for an
unauthorized user or to calculate hi(x) from h(x) in (2.4) which is the complexity for signing a
document by unauthorized user, both are DLP. DLP in this case is a very well studied problem
and a good survey of this topic can be found in [6-7]. Recent developments in DLP for the fields
of small characteristics [8] shows, that according to the current state of the art for DLP it would
be prudent to consider the size of the field with prime extension to be equal at least to 2048 for
example the field GF (22053).

4 Implementation aspects of the system

Now let us discuss implementation aspects of the system: An encryption operation for “off-
line” mode according to the formulae (2.2a) or (2.2b) is just one multiplication. An encryption
operation for “on-line” mode is more complicated. For calculation of C(x) and Ci(x) according
to formula (2.3) we will need on average 2048 multiplication and 2× 2048 squaring operations.
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However all squaring operations can be in this case pre-computed, namely meaning that the
values α2r {r = 1, 2, · · · 2048} and αi·2r {r = 1, 2, · · · 2048} can be pre-computed which will
require 0,6 mbyte of storage. As such the complexity of “on-line” encryption will be equivalent
to the one regular exponentiation for the length 2048.

Decryption operation for both “off-line” and “on-line” encryption will require one regular
exponentiation as in the case with “on-line” encryption and one multiplication or one XOR
operation. Signature generation will basically require, except for calculation of the hash of the
message, one regular exponentiation for the length 2048.

This brief analysis shows that encryption operation for both modes for this system has the
same complexity as for the EIGamal type encryption. RSA encryption operation in “on-line”
mode is faster, but for “off-line” mode the presented system is much faster, provided that for
RSA encryption “off-line” mode does not exit. When comparing decryption operations we can
conclude that the system presented here has about the same complexity compared with both
RSA or EIGamal type decryption since it basically requires one regular exponentiation. The
signature generation of this system is equivalent to RSA since both require one exponentiation.
The comparison with DSS signature generation is a more subtle matter. DSS requires two
exponentiations, one of which can be made “off-line” and it also requires one inverse operation.
However DSS exponentiation is made over about six times shorter exponents and thus would
be faster.

Finally the signature verification according to formula (2.7) is extremely fast - it will be
even much faster than the corresponding RSA signature verification. It should be mentioned
that the most costly operation in this case, which is the computation of (g(x) + gi(x))

−1
can be

pre-computed. As such the signature verification will require according to formula (2.7) just 4
multiplications and one squaring.

5 Conclusion

In this paper a new public-key system which is based on DLP is developed. It is shown,
that all public key operations of the presented system can be implemented virtually with the
same complexity compared with existing systems, except signature verification which can be
implemented significantly faster, even compared with RSA.
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