
Security Analysis of Multilinear Maps
over the Integers?

Hyung Tae Lee1 and Jae Hong Seo2

1 Division of Mathematical Sciences,
School of Physical and Mathematical Sciences,
Nanyang Technological University, Singapore

hyungtaelee@ntu.edu.sg
2 Department of Mathematics, Myongji University, Korea

jaehongseo@mju.ac.kr

Abstract. At Crypto 2013, Coron, Lepoint, and Tibouchi (CLT) proposed a practical Graded Encod-
ing Scheme (GES) over the integers, which has very similar cryptographic features to ideal multilinear
maps. In fact, the scheme of Coron et al. is the second proposal of a secure GES, and has advantages
over the first scheme of Garg, Gentry, and Halevi (GGH). For example, unlike the GGH construction,
the subgroup decision assumption holds in the CLT construction. Immediately following the elegant in-
novations of the GES, numerous GES-based cryptographic applications were proposed. Although these
applications rely on the security of the underlying GES, the security of the GES has not been analyzed
in detail, aside from the original papers produced by Garg et al. and Coron et al.
We present an attack algorithm against the system parameters of the CLT GES. The proposed algo-
rithm’s complexity Õ(2ρ/2) is exponentially smaller than Õ(2ρ) of the previous best attack of Coron et
al., where ρ is a function of the security parameter. Furthermore, we identify a flaw in the generation of
the zero-testing parameter of the CLT GES, which drastically reduces the running time of the proposed
algorithm. The experimental results demonstrate the practicality of our attack.

1 Introduction

In 2003, Boneh and Silverberg [3] introduced the concept of cryptographic multilinear maps by gen-
eralizing cryptographic bilinear maps. They proposed interesting applications based on the concept,
such as the multipartite Diffie-Hellman key exchange and an efficient broadcast encryption. Until
recently, it was an important, yet hard-to-achieve open problem to construct multilinear maps sat-
isfying cryptographic requirements. At Eurocrypt 2013, Garg, Gentry, and Halevi [20] proposed the
first candidate multilinear maps, called Graded Encoding Scheme (GES), having very similar cryp-
tographic features to ideal multilinear maps. At Crypto 2013, Coron, Lepoint, and Tibouchi [12]
proposed the second GES over the integers. The CLT construction has an advantage over the GGH
construction; specifically, it allows one to use a desirable assumption such as the subgroup deci-
sion assumption, which does not hold with the GGH construction. Thus, the CLT construction
has broader applications. Very recently, Langlois, Stehlé, and Steinfeld [28] improved the GGH
construction in terms of the bit size of the public parameters. Immediately following the elegant
inventions of the GES, they received significant attention from the cryptography community, and
numerous cryptography applications based on the GES inventions were built; for example, pro-
grammable hash [19], full-domain hash [25], functional encryption [21, 22], witness encryption [23],
and indistinguishability obfuscation [6, 21, 7]. Although these applications rely on the security of
the underlying GES, the security of the GES itself has not been analyzed in detail, aside from the
original papers produced by Garg et al. and Coron et al.

? This is the full version of a paper [29] presented at the CRYPTO 2014 conference.



Table 1. Algorithms for n-MPACD

Algorithm Error Type Computation (Zx0 op.) Space

(Corrected) CLT [12] arbitrary errors† O(ρ22ρ) O(ρ22ρ)

This paper
arbitrary errors† O(

√
ρ log ρ · ρ22ρ/2) O(

√
ρ log ρ · ρ22ρ/2)

uniform errors O(
√

ρ log ρ
n
· ρ22ρ/2) O(

√
ρ log ρ
n
· ρ22ρ/2)

An instance of n-MPACD consists of x0 (product of n primes) and polynomially many

samples with errors chosen from (−2ρ, 2ρ).

†: Mild assumptions are necessary, which are specified in the paper.

1.1 Our Contributions

n-Masked Partial Approximate Common Divisors (n-MPACD). We begin by introduc-
ing a new number theoretic problem, called n-Masked Partial Approximate Common Divisors (n-
MPACD), which is a generalization of the system parameters (such as the zero-testing parame-
ter [12] and the re-randomization parameter [12, 9]) from integer-based schemes such as multilinear
maps [12] and Fully Homomorphic Encryptions (FHE) [9]. Roughly speaking, a problem instance
is a product of η-bit primes x0 =

∏
i pi and polynomially-many samples xj such that xj ≡ Q · rij

(mod pi) where Q
$← Zx0 , rij

$← (−2ρ, 2ρ) and ρ� η. Because of the unknown Q, it is unlikely to
directly apply the meet-in-the-middle attack of Chen and Nguyen [8]; therefore, it appears to be
harder than the Partial Approximate Common Divisors (PACD) problem [26]. In fact, the attack
algorithm of Coron, Lepoint, and Tibouchi (CLT) [12], which is the most efficient currently known
algorithm for n-MPACD, has Õ(2ρ) complexity, although it employs the technique used in the
Chen-Nguyen attack.

Exponentially Faster Attack for n-MPACD. We present an attack algorithm for n-MPACD,
which is exponentially faster than the CLT attack. The proposed algorithm follows the basic flow
of the strategy of the Chen-Nguyen attack [8]. However, several tricks are required to manage the
unknown Q and several moduli. Our attack is based on the following observation for subset-sums
of integers in the same interval (−2ρ, 2ρ): given 2m integers, there are 22m different subset-sums
(ignoring duplications), but such subset-sums range from (−2m2ρ, 2m2ρ). That is, the number of
subset-sums increases exponentially in m; however, those ranges increase only polynomially in m.
Therefore, by slightly increasing m, we can find a collision among subset-sums. This observation is
essential to our exponentially faster algorithm, as compared to the CLT attack. We summarize the
comparison in Table 1.

A Flaw in the Generation of the Zero-Testing Parameter. We apply the proposed attack
algorithm to the system parameters of multilinear maps over the integers; in particular, the zero-
testing parameter [12]. The complexity of both our attack algorithm and the CLT attack primarily
depend on ρ, the size of errors rij ; therefore, it is necessary to enlarge the size of errors. In the
generation of the zero-testing parameter, the matrix H = (hij) ∈ Zn×n plays the role of (rij)
in n-MPACD, indicating that the size of hij is very important for the security of the CLT GES.
For the functionality of the multilinear maps, the matrix H is defined to be unimodular, and to

satisfy two bounds ‖H>‖∞ ≤ 2β and ‖(H−1)
>‖∞ ≤ 2β. In [12], the authors provided a method for

generating H. However, we point out that the given method does not provide sufficient randomness
in H; that is, the average size of each entry hij in H is much less than expected. Eventually, this
will weaken the security of multilinear maps over the integers.
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Table 2. Fast polynomial algorithms using FFT

AlgFFTPoly AlgFFTMPE

Input x0 and {a0, . . . , a`−1} x0, f(X) of `-deg., and {pti}i∈[0,`−1]

Output f(X) =
∏`−1
i=0 (X − ai) (mod x0) f(pt0), . . . , f(pt`−1) (mod x0)

Comp. cost O(` log2 `) operations modulo x0 O(` log2 `) operations modulo x0
Space cost O(` log2 `) polynomially many bits O(` log2 `) polynomially many bits

Experimental Results. We provide several experimental results for our algorithm. In particular,
we apply our attack algorithm to the implementation parameters on Small size for 52-bit security
and Medium size for 62-bit security in [12] with a slight modification; the implementation in [12]
used only a single zero-testing integer. However, we assume that a zero-testing vector is given, as
in the original CLT GES. Our experimental results demonstrate that our algorithm requires less
than 234.84 and 237.23 clock cycles on average for Small size and Medium size, respectively.

1.2 Outline

In the following section, we provide some preliminary information that should be helpful for reading
this paper. In Section 3, we define our new problem, and investigate a relation between it and
the system parameters of multilinear maps. Section 4 provides our attack algorithm along with a
detailed analysis. We describe how to speed our basic algorithm up and provide implementation
results of our algorithm on the parameters of multilinear maps over the integers in Section 5. In
Section 6, we discuss additional issues related to multilinear maps and our attack algorithms.

2 Preliminaries

Notation. Throughout the paper, λ is the security parameter, and we consider only discrete values;
the interval notation [a, b] indicates all integers between a and b, containing a and b. Similarly,
(a, b) and (a, b] notations also indicate respective sets of all integers contained in the corresponding
continuous intervals. For integers a and p, the reduction of a modulo p is denoted by a (mod p) ∈
(−p/2, p/2]. Problem instances are defined by Chinese Remaindering with respect to n co-prime
integers p1, . . . , pn, making it convenient to use the notation CRTp1,...,pn(r1, . . . , rn) (abbreviated as
CRT(pi)(ri)) to denote the unique integer x in (−1

2

∏
i∈[1,n] pi,

1
2

∏
i∈[1,n] pi] with x ≡ ri (mod pi)

for all i ∈ [1, n].

2.1 Fast Polynomial Algorithms

We consider polynomials with integer coefficients modulo x0. There are classic algorithms for fast
polynomial arithmetic, which use the Fast Fourier Transformation (FFT) [17, 4, 5] and have been
used in various areas of cryptography; e.g., for efficiency improvement in protocols [10, 35, 24, 2] and
in cryptanalysis [11, 8, 18]. In this paper, we use two fast polynomial arithmetic algorithms, each
denoted by AlgFFTPoly and AlgFFTMPE , as subroutines; the algorithm AlgFFTPoly takes ` points as inputs
and outputs a monic degree-` polynomial over Zx0 having ` input points as roots. The algorithm
AlgFFTMPE takes a degree-` polynomial f(x) over Zx0 and ` points as inputs, and then it evaluates
f(x) at ` input points and outputs the results. AlgFFTPoly (AlgFFTMPE , resp.) has quasi-linear complexity
in the number of the input points (the degree of the input polynomial, resp.). We summarize the
basic information regarding these fast polynomial algorithms in Table 2. We omit details of these
classical algorithms; instead, we refer to [36, 31].
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3 Masked Partial Approximate Common Divisors

Before providing our algorithm, we first generalize the problem instances for both the re-randomization
parameter and the zero-testing parameter in the CLT GES. We believe that the following gener-
alization will help readers to understand the security of the multilinear maps; specifically, both
the hardness and weakness of the problem. We introduce a new number theoretic problem, which
is a variant of (Partial) Approximate Common Divisors [26]. First, we describe the new hardness
problem, then discuss its relationship with the system parameters of CLT GES in the following
subsection.

Definition 1 (n-Masked Partial Approximate Common Divisors) Given integers Q, q0, p1,
. . . , pn, we state that xj is sampled from the distribution DMρ (Q, q0, p1, . . . , pn) if

xj = Q · CRTq0,(pi)(qj , r1j , . . . , rnj)(mod q0

∏
i∈[1,n]

pi),

where qj ← [0, q0) and rij ← (−2ρ, 2ρ).
We define the (ρ, η, γ, n)-Masked Partial Approximate Common Divisors (abbreviated as n-

MPACD) problem as follows. Choose η-bit random primes pi for i ∈ [1, n] and let π be their product.
Set x0 := q0 ·π, where q0 is a randomly chosen 2λ

2
-rough integer from [0, 2γ/π). Choose Q← [0, x0).

Given x0 and polynomially many samples xj from DMρ (Q, q0, p1, . . . , pn), find a non-trivial factor
of (x0/q0).

Note that we do not restrict the distribution of rij ’s and Q in Definition 1 explicitly to cover various
variants; in addition, our attack algorithm provided in the following section succeeds regardless
of the distributions of Q and rij ’s. We require only mild restrictions satisfied by both the zero-
parameters and the re-randomization parameters of multilinear maps, which are the primary targets
of our algorithm.

Hardness of n-MPACD: This paper mainly proposes attack algorithms against n-MPACD;
however, it would be interesting to precisely understand the hardness of n-MPACD as well. To this
end, we prove that n-MPACD is hard if PACD [26, 15, 16, 8] is also hard. The reduction is provided
in Appendix B.

Asymptotic Parameters: When we consider algorithms for n-MPACD, we basically assume that
parameters are set to thwart various lattice-based attacks and factoring algorithms; that is, γ
(x0’s bit size) must be large enough to prevent lattice-based attacks, so that γ = ω(η2 log λ) [34,
15, 12] and η = ω(λ2), to prevent an efficient factorization algorithm such as ECM from having
sub-exponential complexity in the size of factors. In this paper, we focus on the size of errors
rij ∈ (−2ρ, 2ρ) and the complexities of all algorithms associated with ρ.

3.1 Parameters as an Instance of the MPACD Problem

We demonstrate that the system parameters in the CLT GES can be considered as instances of
n-MPACD.

Zero-testing Parameter: The zero-testing parameters (x0, (pzt)j for j ∈ [1, n]) are of form

(pzt)j =
∑n

i=1 hij · (zκ · g
−1
i mod pi) ·

∏
i′ 6=i pi′ (mod x0)

= Q · CRT(pi)(hij) (mod x0)
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where Q = CRT(pi)(z
κ · g−1

i ·
∏
i′ 6=i pi′). Here, hij is distributed in a small bounded set (−2β, 2β),

where 2β � pi. Therefore, we can regard the zero-testing parameters as an instance of n-MPACD.

Re-randomization Parameter: The re-randomization parameters are of form

Πj = CRT(pi)(
$ij ·gi
z ) ≡ Q · CRT(pi)($ij) mod x0,

where Q = CRT(pi)(
gi
z ). Note that the $ij ’s of the errors are not chosen from the same set, unlike

those in n-MPACD; non-diagonal entries are chosen from (−2ρ, 2ρ), while the diagonal entries are
chosen from (n2ρ, n2ρ + 2ρ). Although errors are chosen from two different sets, the sizes of both
sets are almost equal to 2ρ. This is sufficient for our attack algorithm provided in Section 4.

Remark 1. In fact, by excluding some parts that have entries chosen from (n2ρ, n2ρ + 2ρ), the
re-randomization parameters generated by n primes may be considered as an instance of (n − k)-
MPACD as well for k < n. That is, {Πj}j∈[1,k] for k ∈ [1, n] can be re-written by

Πj ≡ CRT(pi)(
gi
z

) · CRT(pi)($ij) ≡ CRTq0,(pi)i∈[k+1,n]
(q′,

$ij · gi
z

) mod x0,

where q0 =
∏k
i=1 pi and q′ = CRTp1,...,pk($1j , . . . , $kj). Subsequently, all errors $ij for i ∈ [k+1, n]

and j ∈ [1, k] are chosen from (−2ρ, 2ρ), so that (x0, {Πj}j∈[1,k]) is an instance of (n− k)-MPACD.

4 Our Algorithms for the n-MPACD Problem

We present an exponentially faster algorithm for solving n-MPACD problems; our (basic) algorithm
requires O((log ρ)0.5ρ2.52ρ/2) Zx0 operations. In [12], the attack algorithm for n-MPACD is roughly
sketched and details are omitted. We present the detailed description of the CLT attack based on
our speculation in Appendix C, which achieves the complexity Coron et al. claimed. Our analysis of
the CLT algorithm for n-MPACD requires two mild assumptions about the distribution of samples.
Similarly, the proposed algorithm also requires two mild assumptions about samples satisfied by
our main application, multilinear maps over the integers.

4.1 Overview

We provide an overview of our algorithm for solving n-MPACD problems. Our strategy follows the
basic flow of the Chen-Nguyen attack; however, we require several additional ideas to manage the
unknown masking Q and several moduli in the n-MPACD problem, in contrast to the Chen-Nguyen
attack for the PACD problem.

Consider an instance of an n-MPACD problem: x0 = q0
∏n
i=1 pi and xj ≡ rij mod pi for 1 ≤

j ≤ 2m where pi’s are η-bit primes, rij ∈ (−2ρ, 2ρ) for 1 ≤ j ≤ 2m, and 2ρ � pi. For randomly
chosen bits b′j ’s, if m is sufficiently large, then for each pi there is a high probability that

pi

∣∣∣ gcd
(
x0,

∏
(b1,...,b2m)∈{0,1}2m

(b1,...,b2m)6=(b′1,...,b
′
2m)

(
2m∑
j=1

bjxj −
2m∑
j=1

b′jxj) (mod x0)
)
. (1)

For each pi, there are 22m possible sums
∑2m

j=1 bjxj such that
∑2m

j=1 bjxj (mod pi) is contained in
the relatively small range (−2m2ρ, 2m2ρ), which is contained in (−pi/2, pi/2]. If the number of
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samples m satisfies an inequality 22m ≥ m2ρ+3 (e.g., 2m = ρ + log ρ + log log ρ for sufficiently
large ρ), then there are many collisions in the range. In fact, at least a half of all possible elements
have a collision in the range (−2m2ρ, 2m2ρ) according to the pigeonhole principle. Therefore, for
such an m, we have

∏
(b1,...,b2m)∈{0,1}2m

(b1,...,b2m)6=(b′1,...,b
′
2m)

(
∑2m

j=1 bjxj −
∑2m

j=1 b
′
jxj) ≡ 0 (mod pi) with at least 1/2

probability, depending on the choice of b′j ’s.
To solve an n-MPACD problem using the relation (1), two remaining issues must be considered,

in terms of efficiency and correctness. First, 22m > 2ρ modulus multiplications, which are quite
large, are required for naive computation of the above product. To reduce the complexity, we follow
the concept of the meet-in-the-middle approach, similar to the Chen-Nguyen attack. Second, it is
likely that the result of the gcd computation in (1) is not a non-trivial factor of x0, but just x0.
To overcome this obstacle, we additionally equip our algorithm with the concept of the divide-and-
conquer technique.

Let us address the efficiency issue first. We define the 2d-degree polynomial fd,(b′j)(X) over Zx0
as follows:

fd,(b′j)(X) =
∏

(b1,...,bd)∈{0,1}d
((X +

d∑
j=1

bjxj)−
2m∑
j=1

b′jxj) (mod x0) (2)

Using this new notation, we can rewrite (1) as3

pi

∣∣∣ gcd
(
x0,

∏
(bm+1,...,b2m)∈{0,1}m

fm,(b′j)(
2m∑

k=m+1

bkxk) (mod x0)
)
. (3)

We can compute the 2m-degree polynomial fm,(b′j)(X) via AlgFFTPoly and evaluate fm,(b′j)(X) at 2m

points {
∑2m

k=m+1 bkxk}(bm+1,...,b2m)∈{0,1}m via AlgFFTMPE so that we can solve the n-MPACD problem
withO(2mm2) complexity. If we set 2m = ρ+log ρ+log log ρ, then we determine that the complexity
is O((log ρ)0.5ρ2.52ρ/2).

For the second issue regarding the gcd computation result, we can apply the divide-and-conquer
method. It is clear that the result should be x0 or its divisor. If the output of the gcd computation
is x0, then we divide the product

∏
(bm+1,...,b2m)∈{0,1}m fm,(b′j)(

∑2m
k=m+1 bkxk) (mod x0) into four

factors and compute all factors. If there is a non-trivial factor among four factors, then the algorithm
succeeds. Otherwise, we select a factor that is a multiple of x0, and repeat the same process
until a non-trivial factor is found. We can demonstrate that this process will find a non-trivial
factor with overwhelming probability, and the recursive process’s asymptotic complexity is still
O((log ρ)0.5ρ2.52ρ/2). We provide a clear description and analysis of our algorithm in the following
subsections.

If the errors rij ’s are distributed (almost) uniformly, then we can reduce the complexity further
by scrunching the domain of the product up; if the domain size is decreasing, we cannot expect
that (

∑2m
j=1 b

′
jxj) will have a collision in each modulus pi with high probability; however, we can

3 Strictly speaking, (3) is not equal to (1) because(3) contains the case (b1, . . . , b2m) = (b′1, . . . , b
′
2m) therefore the

product is trivially 0. We can easily change (3) to not contain the case (b1, . . . , b2m) = (b′1, . . . , b
′
2m). Because such

a modification is technical, we omit it in this overview and relegate the details to the next subsection.
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expect that it will have a collision in at least one modulus pi, which is exactly what we want. In
fact, we can reduce the

√
n factor further from the complexity. In Section 5, we discuss the method

we used to increase the speed of our basic algorithm.

4.2 Basic Algorithm for n-MPACD

Given 2m samples xj ’s when 2m ≤ n and m2ρ+2 ≤ 22m, we require two mild assumptions regarding
samples.

Assumption 1. 2m2ρ+1 ≤ pi for each pi.

Assumption 2. The rank of the integer matrix (rij) i∈[1,n]
j∈[1,2m]

∈ Zn×2m is 2m, where xj ≡ rij (mod pi).

Note that both the zero-testing parameter and the re-randomization parameter of multilinear
maps over the integers satisfy both Assumption 1 & 2; Assumption 1 is trivial. In the zero-testing
parameter, the matrix (hij) is invertible, so it can satisfy Assumption 2. For the re-randomization
parameter, rij ’s are distributed uniformly and independently; thus, the rank(rij) will be equal to
2m with overwhelming probability because rij ’s are chosen from the exponentially large set in the
security parameter.

Our n-MPACD Algorithm: We present our basic algorithm for n-MPACD in Algorithm 1. Our
algorithm consists of two steps. First, the algorithm computes a product A that is a multiple of
some prime factor of x0. Second, if A is not a multiple of x0, then the algorithm stops and outputs
it. Otherwise, the algorithm runs the while loop to extract a non-trivial factor from the multiple of
x0; that is, we repeatedly split multiples of x0 into four factors, until a non-trivial factor is found.

Because A is a product, we can compute A’s four factors denoted by A00, A01, A10, and A11

via the same process used for computing A such that A = A00A01A10A11, and then check if there
is a non-trivial factor of x0 among them. If not, repeat the same process until a non-trivial factor
of x0 is found. To optimize efficiency, we divide A into four factors evenly, that is, each Ai is also
a product with the same size domain. Furthermore, we should set each domain of Ai to take full
advantage of AlgFFTPoly and AlgFFTMPE . To this end, we define A00, A01, A10, and A11 as follows: In the
while loop, A ∈ Zx0 is of the form

∏
∀(bi1 ,...,bm),∀(bi2 ,...,b2m)

(b1,...,b2m)6=(b′1,...,b
′
2m)

(
m∑
j=i1

bjxj +
2m∑
j=i2

bjxj + C) (mod x0),

where b1, . . . , bi1−1, bm+1, . . . , bi2−1 are fixed for some 1 ≤ i1 ≤ m,m + 1 ≤ i2 ≤ 2m, and so
C =

∑i1−1
j=1 bjxj +

∑i2−1
j=m+1 bjxj −

∑2m
j=1 b

′
jxj is a constant. Then,

A00 :=
∏

(
∑m

j=i1+1 bjxj +
∑2m

j=i2+1 bjxj + C) (mod x0),

A01 :=
∏

(
∑m

j=i1+1 bjxj +
∑2m

j=i2+1 bjxj + C + xi2) (mod x0),

A10 :=
∏

(
∑m

j=i1+1 bjxj +
∑2m

j=i2+1 bjxj + C + xi1) (mod x0),

A11 :=
∏

(
∑m

j=i1+1 bjxj +
∑2m

j=i2+1 bjxj + C + xi1 + xi2) (mod x0),

where C is defined as before and each product is defined over all bi1+1, . . . , bm, bi2+1, . . . , b2m ∈ {0, 1}
such that (b1, . . . , b2m) 6= (b′1, . . . , b

′
2m). It is clear that A = A00A01A10A11 and each Ai has the same

form as A with a different domain for the product.
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Algorithm 1 n-MPACD algorithm: arbitrary distribution

Input: (x0, x1, . . . , x2m)
Output: a non-trivial factor of x0 or ⊥
1: Choose b′j

$← {0, 1} for 1 ≤ j ≤ 2m.

2: Compute A =
∏

(b1,...,b2m)∈{0,1}2m
(b1,...,b2m)6=(b′1,...,b

′
2m)

(
∑2m

j=1 bjxj −
∑2m

j=1 b
′
jxj) (mod x0)

. by using Alg. 2
3: if A 6≡ 0 (mod x0) then return gcd(x0, A).
4: else Set k ← 1.
5: while k ≤ m do
6: Compute gcd(x0, Ai) for i ∈ {00, 01, 10, 11}.

. by using (a variant of) Alg. 2
7: if gcd(x0, Ai) ∈ (1, x0) for some i then return gcd(x0, Ai).
8: else Choose an Ai s.t. Ai ≡ 0 (mod x0) and set A← Ai, and k ← k + 1.
9: end if

10: end while return ⊥.
11: end if

Subroutine for Computing A and Its Factors: We describe how to compute

A =
∏

(b1,...,b2m)∈{0,1}2m
(b1,...,b2m)6=(b′1,...,b

′
2m)

(

2m∑
j=1

bjxj −
2m∑
j=1

b′jxj) (mod x0).

Using the notation in (2), A can be rewritten as

∏
(bm+1,...,b2m)

∈{0,1}m,
(bm+1,...,b2m)

6=(b′m+1,...,b
′
2m)

fm,(b′j)(
2m∑

k=m+1

bkxk) ·
∏

(b1,...,bm)
∈{0,1}m,
(b1,...,bm)

6=(b′1,...,b
′
m)

(
m∑
j=1

(bj − b′j)xj) (4)

The left term is for the case (bm+1, . . . , b2m) 6= (b′m+1, . . . , b
′
2m) and the right term is for the

case (bm+1, . . . , b2m) = (b′m+1, . . . , b
′
2m) with (b1, . . . , bm) 6= (b′1, . . . , b

′
m). Therefore, (4) covers all

(b1, . . . , b2m)’s except (b′1, . . . , b
′
2m), so that it is equal to A. We describe an algorithm for (4) in

Algorithm 2. Factors A00, A01, A10 and A11 of A have approximately the same form as A, and hence
we can compute it similarly to Algorithm 2.

4.3 Analysis

Success Probability: We demonstrate that Algorithm 1 correctly finds a non-trivial factor of x0

with at least 1/2 probability, where the probability goes over only the algorithm’s random tape.4

Algorithm 1 begins by selecting b′j ∈ {0, 1} for 1 ≤ j ≤ 2m. Given an n-MPACD instance x0

and xj ’s, we state that (b′1, . . . , b
′
2m) ∈ {0, 1}2m is ‘good for pi’ if there exists (b1, . . . , b2m) ∈ {0, 1}2m

4 Because the success probability of our algorithm is constant, we can make that the probability of success is
overwhelming by running the algorithm linear in the security parameter, with a fresh random tape.

8



Algorithm 2 Subroutine for solving n-MPACD

Input: (x0, x1, . . . , x2m) and (b′1, . . . , b
′
2m).

Output: A =
∏

(b1,...,b2m)∈{0,1}2m
(b1,...,b2m)6=(b′1,...,b

′
2m)

(
∑2m

j=1 bjxj −
∑2m

j=1 b
′
jxj) (mod x0)

1: Compute a polynomial fm,(b′j)(X) over Zx0 as follows.∏
(b1,...,bm)∈{0,1}m((X +

∑m
j=1 bjxj)−

∑2m
j=1 b

′
jxj) (mod x0).

. by AlgFFTPoly with x0 and {(
∑2m

j=1 b
′
jxj −

∑m
j=1 bjxj)}(b1,...,bm)∈{0,1}m as inputs.

2: Perform multi-points evaluation of fm,(b′j)(X) at {
∑2m

k=m+1 bkxk}∀bk∈{0,1} . by AlgFFTMPE .
3: return ∏

(bm+1,...,b2m)

∈{0,1}m,
(bm+1,...,b2m)

6=(b′m+1,...,b
′
2m)

fm,(b′j)(

2m∑
k=m+1

bkxk) ·
∏

(b1,...,bm)
∈{0,1}m,
(b1,...,bm)

6=(b′1,...,b
′
m)

(

m∑
j=1

(bj − b′j)xj) (mod x0)

such that (b1, . . . , b2m) 6= (b′1, . . . , b
′
2m) and

∑2m
j=1 bjxj =

∑2m
j=1 b

′
jxj (mod pi). We can prove that if

we select b′j ’s uniformly and independently, then with high probability (b′1, . . . , b
′
2m) is ‘good for pi’

for each pi. See Lemma 1 for details.

Lemma 1 Given an n-MPACD instance x0 and xj’s, we have that for each i ∈ [1, n],

Pr
b′j

$←{0,1}
[(b′1, . . . , b

′
2m) is good for pi] > 1/2 under Assumption 1.

We provide the proof of Lemma 1 in Appendix D.
Once the algorithm has a good (b′1, . . . , b

′
2m) for p1, then we can demonstrate that the algorithm

eventually outputs a non-trivial factor of x0. If the while loop arrives at the end before finding a
non-trivial factor of x0 (that is, it is repeated m times), then ultimately we should have an integer∑2m

j=1 bjxj−
∑2m

j=1 b
′
jxj ≡ 0 (mod x0) for some (b1, . . . , b2m) 6= (b′1, . . . , b

′
2m); that is, we are not able

to divide A any further. Therefore, it is sufficient to demonstrate that such a tuple (b1, . . . , b2m)
cannot exist, and Lemma 2 guarantees it.

Lemma 2 Under Assumption 1 and 2, if (b1, . . . , b2m) 6= (b′1, . . . , b
′
2m), then there is an index

i′ ∈ [1, n] such that

2m∑
j=1

bjxj 6=
2m∑
j=1

b′jxj (mod pi′)

so that
∑2m

j=1 bjxj 6=
∑2m

j=1 b
′
jxj (mod x0).

We provide the proof of Lemma 2 in Appendix D.
Algorithm 1 uses the randomness only in the 1st and 8th steps. Because any Ai with correct

conditions will suffice in the 8th step, it does not affect the success probability of the algorithm. Only
a selection of (b′1, . . . , b

′
2m) will determine the success of the algorithm, and we have a probability

of greater than 1/2 for a good (b′1, . . . , b
′
2m) for p1. Therefore, the proposed algorithm has at least

a 1/2 probability for success.
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Complexity: The complexity of Algorithm 1 is dominated by computing A and its factors. The
complexity of Algorithm 2 mainly depends on the domain size in the product; we require O(m22m)
operations modulo x0 (from AlgFFTPoly and AlgFFTMPE ’s complexity). Similarly, for each of A’s four
factors, we must perform O((m− 1)22m−1) operations modulo x0 because each factor of A uses a
half-size degree polynomial and number of points in Algorithm 2 in comparison with A. Similarly,
we require O((m− 2)22m−2) operations modulo x0 for each of Ai’s four factors, and so on. Overall,
the computational complexity for A and all its factors is bounded byO(m22m)+4O((m−1)22m−1)+
· · ·+ 4Õ(21) = O(5m22m) = O(m22m) operations modulo x0. Therefore, the overall computational
cost is O(m22m) + O(m2m) = O(m22m) Zx0 operations. Similarly, we can demonstrate that the
space complexity is bounded by O(m22m) polynomially many bits from the storage complexity of
AlgFFTMPE and AlgFFTPoly .

If we set m = ρ+log ρ+log log ρ
2 , then it asymptotically satisfies the requirement 2m ≤ n and

2m2ρ+1 < 22m, where ρ ≥ 4. Therefore, for m = ρ+log ρ+log log ρ
2 , the computational cost is

O((ρ+log ρ+log log ρ
2 )2 2

ρ+log ρ+log log ρ
2 ) = O((log ρ)0.5ρ2.52ρ/2) Zx0 operations and the space complexity

is O((log ρ)0.5ρ2.52ρ/2) polynomially many bits.

5 Attack on System Parameters of Multilinear Maps over the Integers

5.1 Speed Increase for Multilinear Maps Parameters

We introduce several techniques to increase the speed of Algorithm 1, where all of our techniques
are applicable to the parameters of multilinear maps. If rij ’s are uniformly distributed, we can
increase the speed of the attack algorithm. For example, $ij ’s in the re-randomization parameter
are uniformly distributed in the corresponding domains. Furthermore, we know the distribution of
hij ’s in the zero-testing parameter. Although it is not a uniform distribution, we can consider it as
a quasi-uniform distribution in an appropriate bound.

Using Shorter m: To guarantee exponentially many good (b′1, . . . , b
′
2m) for each pi, we select m

with 2m2ρ+1 ≤ 22m. The sum of uniform variables follows the bell-shaped distribution, so that∑2m
j=1 bjxj has a shorter image size than its range. Furthermore, the bell-shaped distribution has

more collisions around a center than uniform distributions. This fact allows us to select a shorter
m, and our experimental results provided in Table 3 support our expectation.

Table 3. Shorter domains (Experimental results on average of 100 instances)

ρ 14 16 18 20

m 8 9 10 11

|domain|/|range| 0.25 0.22 0.20 0.18

|domain|/|image| 1.49 1.51 1.48 1.44

Shorter Domain in Products: Basically, Algorithm 1 becomes a brute-force attack once we
select a good (b′1, . . . , b

′
2m) for some pi at the beginning. It is likely that (b′1, . . . , b

′
2m) is good for

several moduli pi’s. (That is the exact reason why we must have the while loop in Algorithm 1.)
However, our goal is to select a vector (b′1, . . . , b

′
2m) that is good for only one (or a few) pi and

is not good for any others. We compute a product A′ that is roughly 1/n of a random portion
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Algorithm 3 n-MPACD algorithm: speedup for the uniform distribution

Input: (x0, x1, . . . , x2m), d = 2δ for δ ≥ 1
Output: a non-trivial factor of x0 or ⊥
1: Choose (b′1, . . . , b

′
2m)

$← {0, 1}2m.

2: Choose b1, . . . , bδ, bm+1, . . . , bm+δ
$← {0, 1}.

3: Compute A =
∏

(bδ+1,...,bm)∈Zm−δx0

(bm+δ+1,b2m)∈Zm−δx0
(b1,...,b2m)6=(b′1,...,b

′
2m)

(
∑2m

j=1 bjxj −
∑2m

j=1 b
′
jxj) (modx0)

. by using Alg. 2
4: The remaining process is the same as Step 3− 11 of Algorithm 1.

of the product A in Algorithm 1. Then, we can expect the probability, Pri, that pi divides A′ is
roughly equal to 1/2n. Furthermore, rij ’s are independent, and thus we can also expect that the
probabilities Pri’s are nearly independent. Therefore, the probability that A′ is a multiple of at
least one of pi is significant, from the birthday paradox; e.g., 1−1/

√
e. Applying this technique, we

present an improved attack in Algorithm 3. The analysis above is heuristic, and thus to support
our expectations and the heuristic analysis, we provide experimental results in Table 4.

Table 4. Speedup with shorter interval (Experimental results on average of 100 instances)

Instantiation λ n η ρ m d (Average) trials

Micro ≥ 34 64 1528 22 12 8 1.81 times

Parameters are set the average ratio between the domain and the image (mod-
ulus pi) of

∑
1≤j≤2m bjxj for 100 problem instances to be 1.44 for each pi.

Insufficient Entropy in Zero-testing Parameters: The matrix H = (hij) ∈ Zn×n in the zero-

testing parameters is selected to satisfy ‖H>‖∞ ≤ 2β and ‖(H−1)
>‖∞ ≤ 2β where || · ||∞ is the

operator norm of n×n matrices with respect to the `∞ norm on Rn. In [12], Coron et al. proposed
an algorithm to generate such a matrix H, with sufficient entropy. However, their approach does not
rapidly increase the entropy of H, though it satisfies the above two bounds. We will demonstrate
this by providing some experimental results in this section.

Table 55 lists the average bit size of entries in H generated by the algorithm of Coron et al. on
various parameters β and n. From the last three columns of Table 5, one can observe that average
bit sizes are approximately 10 when β = 80 as in the implementation parameters in [12]; moreover,
the maximum bit sizes are lower than 30, and they are much smaller than the best β− log n, which
is obtained from the bound ‖H>‖∞ ≤ 2β.

In [12, Section 3.1], the authors stated that “One can take β = λ”; however, our analysis and
experimental results indicate that β should be much larger than λ. In Table 5, when β ≤ 3λ, the
expected average bit-size of |hij | is still smaller than ρ, and for Small security, when β ≈ 4λ, the
expectation of the average bit-size of |hij | is equal to ρ; thus, β ≥ 4λ would be safe for the security
of the multilinear maps. We investigate the reason why the H-generation in [12] could not increase
enough entropy in Section 6.

5 Note that experimental results about bit sizes on Table 5 in [29] were entered 1 smaller by the authors’ mistake.
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Table 5. Bit-size of entries of a matrix H (Experimental results on average of 100 matrices for Toy and Small and
10 matrices for Medium)

λ n ρ β Average Bit Size Maximum Bit Size β − logn

Toy 42 136 26

26 2.33 9 18.91
42(= λ) 5.66 17 34.91

80 12.80 26 72.91
84(= 2λ) 14.99 30 76.91
126(= 3λ) 24.73 42 118.91
168(= 4λ) 33.67 52 160.91

Small 52 540 41

41 3.84 15 31.92
52(= λ) 5.14 18 42.92

80 10.70 30 70.92
104(= 2λ) 17.17 35 94.92
156(= 3λ) 30.07 48 146.92
208(= 4λ) 42.69 67 198.92

Medium 62 2085 56
56 6.59 18 44.97

62(= λ) 6.63 18 50.97
80 12.73 28 68.97

5.2 Implementation

We have implemented Algorithm 3 with various parameters in C++, using the Gnu MP library [1]
and NTL library [33], on an Intel(R) Core(TM) i7-2600 CPU at 3.4 GHz with 16 GB RAM.

Attack on Zero-testing Parameter: We have implemented Algorithm 3 to attack on the zero-
testing parameters; we set n, η, and ρ as in the implementation parameters for Small (52-bit) and
Medium (62-bit) security [12, Section 6.4] and generated the zero-testing parameter normally by
using the method described in [13, Appendix F]. We summarize the result in Table 6, and it displays
that Algorithm 3 finds a non-trivial factor very quickly on the parameters for Small and Medium
security levels.

Table 6. Attack on zero-testing parameter

Inst. λ n η β Exp(|hij |) m d Time? Security against Alg. 3

Small 52 540 1838 80 10.70 8 16 8.42 sec ≤ 234.84 clock cycles

Medium 62 2085 2043 80 12.73 9 32 47.28 sec ≤ 237.23 clock cycles
? The average running time for solving 50 problem instances

Attack on Re-randomization Parameter: We first define Toy parameters for 42-bit security.
To this end, we benchmark the parameter of FHEs in [14], which is conservatively determined
according to the complexity of the Chen-Nguyen attack [8]. In Table 7, we provide the average
running time to solve 50 problems for Toy parameters, and the experimental result demonstrates
that the expected security level is tight.

In fact, the complexity difference between Algorithm 3 and the Chen-Nguyen attack isO(
√

ρ log ρ
n )

and
√

ρ log ρ
n ≈ 1 for 42-bit security. For Large and Extra security level parameters,

√
ρ log ρ
n is less

than 1; therefore, Algorithm 3 will be slightly faster than the Chen-Nguyen attack algorithm. We
extrapolate Algorithm 3 to be at least 21.38 (22.12, resp.) times faster than the Chen-Nguyen attack

12



Table 7. Attack on re-randomization parameter

Inst. λ n η ρ m d (Average) trials Running time Sec. ag. Alg 3†

Toy 42 136 1628 26 14 16 3.7 times 1979.55 sec 242.72

† This counts the number of clock cycles.

for Large security (Extra security, resp.), with a similar storage advantage. Therefore, when one
selects secure ρ size for large security level integer-based multilinear maps, we suggest that the
performance of Algorithm 3 should be considered.

6 Discussions

Generating The Matrix H: First, we look at the method of generating a matrix H in the zero-
testing parameters, which satisfies the bound ‖H>‖∞ ≤ 2β and ‖(H−1)>‖∞ ≤ 2β, proposed by
Coron et al. [13].

For any matrix A ∈Matbn/2c×dn/2e({−1, 0, 1}), define HA ∈ Zn×n as

HA =

(
Ibn/2c A

0 Idn/2e

)
.

Let β′ =
⌊

β
dlog(1+dn/2e)e

⌋
and randomly choose Ai

$←Matbn/2c×dn/2e({−1, 0, 1}). Pick Hi randomly

as either HAi or its transpose for each i ∈ [1, β′], and compute H as
∏β′

i=1 Hi.
We can easily prove that the above resulting matrix H satisfies the bounds ‖H>‖∞ ≤ 2β and

‖(H−1)>‖∞ ≤ 2β; for each i ∈ [1, β′], ‖Hi‖∞ ≤ 1 + dn/2e and ‖H>i ‖∞ ≤ 1 + dn/2e and hence

‖H>‖∞ ≤
∏

i∈[1,β′]

‖H>i ‖∞ ≤ (1 + dn/2e)β′ ≤ 2β,

and similarly (H−1)> satisfies the same bound because H−1
A = H(−A).

Although the above approach enables the resulting matrix H to satisfy the upper bound of the
operator norms, and the set of resulting matrices generated in this manner could be exponentially
large, this approach does not guarantee the average and expectation of the operation norms of
resulting matrices sufficiently large. We briefly explain the reason why this approach slowly increases
the expected bit size of the absolute value of hij ’s, in comparison with its upper bound β − log n.
For brevity, we assume that n is even number, that is, n = 2t. The maximum operator norm of
H can be achieved when the operator norm of each matrix Hi has the maximum value and H’s
operator norm is the product of HAi ’s operator norms. H is a product of HAi ’s and H>Ai ’s, there

would be many continuous product of HAi and HAj , or H>Ai and H>Aj in computing H. (We state

that HAi and HAj are the same type, and H>Ai and H>Ai are also the same type.) Considering a
product of HAi and HAj ,

HAiHAj =

(
It Ai
0 It

)(
It Aj
0 It

)
=

(
It Ai +Aj
0 It

)
.

Thus, ‖HAiHAj‖∞ ≤ 1 + n. Although the multiplicative bound (≤ (1 + dn/2e)2) is utilized to
calculate the operator norm of two matrices in [12], the additive bound is enough. Furthermore,
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we can generalize for products of many continuous matrices of the same type. In this case, each
entry of a sum of Ai’s is a sum of random elements in {−1, 0, 1}, and hence its distribution will be
bell-shaped and it has a value nearby zero with a high probability. Therefore, the expected operator
norm of the product matrix of the same types will be much smaller than even the additive bound.

From the above, we know H is of the form HB1H
>
B2

HB3H
>
B4
· · · or its transpose, where Bi’s

are sums of Aj ’s. Considering HB1H
>
B2

,

HB1H
>
B2

=

(
It B1

0 It

)(
It 0
B2 It

)
=

(
It +B1B2 B1

B2 It

)
,

and ‖HB1H
>
B2
‖∞ is significantly effected by ‖B1B2‖∞. Each entry of Bi is distributed in [−`, `],

where Bi is a sum of ` matrices. Thus, the distribution of each entry of B1B2 will be bell-shaped
and each entry has a value nearby zero with a high probability. Thus, we expect that ‖HB1H

>
B2
‖∞’s

expectation is much smaller than its upper bound, and so ‖H‖∞’s expectation is much smaller than
2β. Therefore, we expect the expected bit size of hij is much smaller than its possible upper bound
(β − log n).

Next, we present a candidate for H generation, which is expected to become immune to our
attack rather than the original one, by slightly modifying Coron et al.’s suggestion.6 According to
the above analysis on the original H generation, the most problematic situation making low entropy
is continuous product of HAi and HAj , or H>Ai and H>Aj . In our modification, we multiply HAi

when i is odd and H>Ai when i is even, instead of randomly choosing between HAi and H>Ai . Then,
we always multiply different types, so that the norm of H and bit sizes of entries of H are increased
relatively quickly. Table 8 shows that the modified H generation quickly increases bit-size of entries
of H in comparison with the original one (Table 5). However, it seems necessary to increase β to
be larger than λ, in contrast to the original suggestion in [12]. For Toy parameter (with β = 80),
our implementation shows that the actual security is less than or equal to 42.59 against our attack
algorithm, which is almost the same as the expected security level λ = 42.

Although we suggest a candidate for H generation, it is still unclear how large β should be.
According to our experimental result, it would be safe to set β to be larger than 3λ for practical
parameters. However, it is open to find asymptotic bound of β for secure H generation, or to show
asymptotic weakness of our modification.

Encoding-validity Test: Zero-testing Vector vs. Zero-testing Integer: In [12], Coron et al.
implemented a one-round N -way Diffie-Hellman key exchange protocol [3], based on their multi-
linear maps. They used heuristic optimizations for implementation, in particular the zero-testing
integer, instead of the zero-testing vector as in the original construction. Note that both the CLT
attack algorithm and our attack algorithm for n-MPACD require more than one sample; therefore,
both are inapplicable to their optimized version of multilinear maps over the integers.

Garg et al. [20] pointed out a plausible threat when using a single zero-testing element. In
applications that require resilience of the zero test, including against invalid encodings, several
zero-testing elements can be utilized to prevent the use of invalid encodings. In cryptographic
applications such as the Diffie-Hellman key exchange, it is important to test whether a given
encoding is a group element. Because GES is a substitute for ideal multilinear groups, it is also
important to test whether a given encoding is valid, and has an appropriate level. In Appendix E,

6 In fact, this is proposed by one of the anonymous reviewers of CRYPTO 2014. We give the credit for this modifi-
cation to him/her.
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Table 8. Bit-size of entries of H generated by our suggestion (Experimental results on average of 100 matrices for
Toy and Small and 10 matrices for Medium)

λ n ρ β Average Bit Size Maximum Bit Size β − logn

Toy 42 136 26

26 4.28 9 18.91
42(= λ) 12.51 17 34.91

80 26.28 32 72.91
84(= 2λ) 29.01 34 76.91
126(= 3λ) 45.48 51 118.91
168(= 4λ) 61.96 68 160.91

Small 52 540 41

41 9.82 15 31.92
52(= λ) 13.57 19 42.92

80 24.80 30 70.92
104(= 2λ) 36.04 41 94.92

130(= 2.5λ) 47.27 53 120.92
156(= 3λ) 58.51 64 146.92
208(= 4λ) 80.97 86 198.92

Medium 62 2085 56

62(= λ) 17.36 22 50.97
80 26.81 32 68.97

124(= 2λ) 45.69 51 112.97
160 59.85 65 148.97

186(= 3λ) 69.29 75 174.97

Table 9. Attack on zero-testing parameters generated by our suggestion

Inst. λ n η β Exp(|hij |) m d Time? Security against Alg. 3

Toy 42 136 1628 80 26.28 14 16 1816.45 sec 242.59 clock cycles
? The average running time for solving 25 problem instances

we present a (polynomial-time) key recovery attack on the multipartite Diffie-Hellman key exchange
protocol, based on the CLT GES with a single integer zero-testing parameter. The basic idea of the
attack is analogous to the Lim-Lee [30] key recovery attack of using invalid encodings on two-party
Diffie-Hellman key exchange based on group structures.

Applications Beyond Multilinear Maps: We note that Algorithm 3 is applicable to the public
parameters of a FHE scheme in [9].

In [9] two batch FHE schemes are proposed. Attacking the first scheme, called KLYC-FHE [27],
Algorithm 3 with d = d

√
ne is asymptotically faster than the previous best Chen-Nguyen attack

on the error size [8]. The public parameter in the KLYC-FHE contains

x0 = q0
∏
i∈[1,n] pi, {xj = CRTq0,p1,...,pn(e0j , e1jQ1, . . . , enjQn)}τj=1,

where eij
$← (−2ρ, 2ρ) for i ∈ [1, n]. xj can be considered as Q ·CRTq0,p1,...,pn(ej0, ej1, . . . , ejn), where

Q = CRTq0,p1,...,pn(1, Q1, . . . , Qn) is unknown. Therefore, we can consider these parameters as an
instance of n-MPACD. In this case, the parameter τ is very large; therefore, we have a sufficiently
large number of samples for applying Algorithm 3. As mentioned previously, Algorithm 3 is faster

than the Chen-Nguyen attack, with the difference of O(
√

ρ log ρ
n ). In fact, the parameter n in the

KLYC-FHE could be from O(1) to O(λ3) and ρ = O(λ); thus, for n = ω̃(λ), that is, a case with a
large message space, Algorithm 3 is faster than the Chen-Nguyen attack.
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7 Conclusion

We introduce a new hard problem, called n-MPACD, by generalizing system parameters of integer-
based schemes. Furthermore, we present an attack algorithm for n-MPACD with speeding up
techniques and implement our attack algorithm for particular system parameters of multilinear
maps over integers [12]. We also point out a flaw, which makes the cost of our attack algorithm
for the zero-testing parameters drastically reduce, in the generation of the zero-testing parameter
in [12]. Although we present a simple modification of the original method for generating zero-testing
parameter and it seems to mitigate the flaw for practical parameters, we do not have complete
figures about theoretical and asymptotic analysis. We leave it as an interesting open problem.

Acknowledgement This work was supported by IT R&D program of MSIP/KEIT [No. 10047212].
Hyung Tae Lee was also supported in part by the Singapore Ministry of Education under Research
Grant MOE2013-T2-1-041. Part of work was done while Hyung Tae Lee was with Seoul National
University, Korea. Jae Hong Seo is the corresponding author for this paper. The authors also would
like to thank Jung Hee Cheon and the anonymous reviewers of CRYPTO 2014 for their helpful
comments. Part of this paper was made public through [32].

References

1. GMP: The GNU multiple precision arithmetic library ver. 5.1.3. http://gmplib.org, 2013.
2. S. Bayer and J. Groth. Efficient zero-knowledge argument for correctness of a shuffle. In EUROCRYPT 2012,

volume 7237 of LNCS, pages 263–280. Springer, 2012.
3. D. Boneh and A. Silverberg. Applications of multilinear forms to cryptography. Contemporary Mathematics,

324(1):71–90, 2003.
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A Coron et al.’s Multilinear Maps Construction

Here, we recall the description of the CLT GES construction only. For parameter selections and
the design rationale, we refer to the original paper [12].

Multilinear Maps over the Integers. The GES consists of six algorithms InstGen, samp, enc, reRand,
isZero and ext, except for adding and multilinear maps. The InstGen takes the security parameter
λ and the required mulitilinearity level κ as inputs and outputs a zero testing parameter pzt and
other system parameters params. The samp algorithm takes as an input the system parameter
params and then outputs a level-zero encoding of a random message. The enc algorithm is used to
encode at higher levels; that is, it takes params and a level-0 encoding as inputs, and then it outputs
a level-1 encoding of the same message. The reRand algorithm is for re-randomization of level-1
encodings. The isZero algorithm takes params,pzt, uκ as inputs, and then it determines whether uκ
is an encoding of zero or not. Lastly, the ext algorithm with params,pzt, uκ as inputs extracts a
nearly uniform bit-string deterministically.
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Instance Generation: InstGen(1λ, 1κ)→ (params,pzt). For i ∈ [1, n], choose pi
$← {η-bit primes}

and gi
$← {α-bit primes}. For i ∈ [1, n] and j ∈ [1, `], select aij

$← [0, gi). Set x0 =
∏n
i=1 pi and

pick z
$← [0, x0) with gcd(z, x0) = 1. Then, define parameters y, {xj}τj=1, {x′j}`j=1, {Πj}nj=1 and

zero-testing parameters {(pzt)j}nj=1 as follows:

y = CRT(pi)(
ri·gi+1

z ), where ri
$← (−2ρ, 2ρ).

For 1 ≤ j ≤ `, x′j = CRT(pi)(r
′
ij · gi + aij), where r′ij

$← (−2ρ, 2ρ).

For 1 ≤ j ≤ n, Πj = CRT(pi)(
$ij ·gi
z ), where Π = ($ij) ∈ Zn×n is defined below.

For 1 ≤ j ≤ τ, xj = CRT(pi)(
rij ·gi
z ), where rij ’s are defined below.

For j ∈ [1, n], (pzt)j =
∑n

i=1 hij · (zκ · g
−1
i mod pi) ·

∏
i′ 6=i pi′ (mod x0),

where z, gi, and hij are secret information and κ is the maximum allowed level. In particular,
H = (hij) ∈ Zn×n is invertible in Z and both ‖H>‖∞ ≤ 2β and ‖(H−1)>‖∞ ≤ 2β. Π’s non
diagonal entries are randomly and independently chosen from (−2ρ, 2ρ), while the diagonal entries
are randomly chosen from (n2ρ, n2ρ + 2ρ). The column vector of the matrix (rij) ∈ Zn×τ are
randomly and independently chosen from the half-open parallelepiped spanned by the columns
of Π.

Finally, the InstGen algorithm chooses a seed s for a strong randomness extractor, and then
outputs the zero-testing vector pzt ∈ Zn and the other system parameters

params = (n, η, α, ρ, β, τ, `, y, {xj}τj=1, {x′j}`j=1, {Πj}nj=1, s).

Sampling Level-zero Encodings: samp(params)→ c. This algorithm chooses a random binary
vector b = (bj) ∈ {0, 1}` and outputs the level-0 encoding

c =
∑̀
j=1

bj · x′j mod x0.

Encoding at Higher Levels7: enc(params,c) → ck. Given a level-0 encoding c, this algorithm
outputs a level-1 encoding of the same message by just computing the product c · y mod x0.

Re-randomization8: reRand(params,c)→ c′. Given as an input a level-1 encoding c1, the algorithm
randomizes c1 as follows:

c′1 = c1 +
τ∑
j=1

bj · xj +
n∑
j=1

b′j ·Πj mod x0,

where bj
$← {0, 1} and b′j

$← [0, 2µ).

Adding and Multilinear Map: We can add encoded messages by adding encodings modulus x0.
For multilinear maps, given level-1 encodings uj for j ∈ [1, κ], we can simply compute

u =

κ∏
j=1

uj mod x0.

7 In [12], this algorithm takes one more value k as an input, but in the algorithm description of [12] k is not used,
and hence we omit it here.

8 We omit an input variable i that is in [12] because it is not used in the algorithm description in [12].
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Zero Testing:

isZero(params,pzt, uκ) =

{
1 if ‖uκ · pzt mod x0‖∞ < x0 · 2−ν
0 otherwise

.

Given uκ as an input, this algorithm determines whether uκ is a level-κ encoding of 0 or not by
computing ‖uκ · pzt mod x0‖∞ with the zero-testing parameter pzt.

Extraction: ext(params,pzt, uκ) = Extracts(msbsν(uκ · pzt mod x0)), where msbsν extracts the ν
most significant bits of the result and Extracts is a strong randomness extractor with the seed s
from the system parameter params.

B Approximate Common Divisors and Variants

We first give the definitions of the approximate common divisors (ACD) problem and its weaker
version, partial ACD, which were originally presented by Howgrave-Graham [26].

Definition 2 (Approximate Common Divisors) We first define the following distribution over
γ-bit integers for an integer p:

Dγ,ρ(p) = {Choose q $← [0, 2γ/p), r
$← (−2ρ, 2ρ) : Output x = pq + r}.

The (ρ, η, γ)-Approximate Common Divisors (abbreviated as ACD) problem is defined as follows.
Given polynomially many samples from Dγ,ρ(p) for a randomly chosen η-bit odd integer p, find p.

Definition 3 (Partial Approximate Common Divisors) We use the following distribution over
γ-bit integers for an integer p:

Dγ,ρ(p) = {Choose q $← [0, 2γ/p), r
$← (−2ρ, 2ρ) : Output x = pq + r}.

The (ρ, η, γ)-Partial Approximate Common Divisors (abbreviated as PACD) problem is defined as
follows. Pick a random η-bit prime p and a random 2λ

2
-rough integer q0 from [0, 2γ/p).9 Given

x0 = pq0 and polynomially many samples xj from Dγ,ρ(p), find p.

Coron et al. introduced a variant of ACD, which was utilized to argue the security of their FHE
scheme [14]. Here, we give its definition because it will be used as an intermediate problem to show
relations between PACD and new variants.

Definition 4 (n-decisional Partial Approximate Common Divisors) We first define the fol-
lowing oracle Oq0,(pi), given integers q0, p1, . . . , pn. Oq0,(pi) takes as inputs a vector (v1, . . . , vn) ∈ Zn
and outputs x with

x = CRTq0,(pi)(q, v1 + 2r1, . . . , vn + 2rn)

where q
$← [0, q0) and ri

$← (−2ρ, 2ρ).

9 We state that an integer is a-rough when it does not contain prime factors smaller than a. There are literatures
defining the PACD problem by choosing q0 uniformly without any requirement about the size of factors like ours.
However, one can find small factors by using integer factorization algorithms such as ECM, whose computational
complexity is sub-exponential in the size of factors. Hence such the general PACD problem can be reduced to our
definition.

19



Fig. 1. Relations among ACD variants

The (ρ, η, γ, n)-decisional Partial Approximate Common Divisors (abbreviated as n-dPACD)
problem is as follows. Pick random η-bit primes pi for i ∈ [1, n] and let π be the their product. Set
x0 := q0 ·π, where q0 is a randomly chosen 2λ

2
-rough integer from [0, 2γ/π), and let w0 = (0, . . . , 0)

and choose w1
$← {0, 1}n. Given x0, z = Oq0,(pi)(wb) and oracle access to Oqo,(pi) for a random bit

b, guess b.

To link the n-MPACD with other well-known problems, we introduce another number-theoretic
problem, n-Partial Approximate Common Divisors.

Definition 5 (n-Partial Approximate Common Divisors) Given integers q0, p1, . . . , pn, we
state that xj is sampled from the distribution Dρ(q0, p1, . . . , pn) if xj = CRTq0,(pi)(qj , r1j , . . . , rnj)

where qj
$← [0, q0) and rij

$← (−2ρ, 2ρ) for all i ∈ [1, n].

We define (ρ, η, γ, n)-Partial Approximate Common Divisors (abbreviated as n-PACD) problem
as follows. Pick η-bit random primes pi for i ∈ [1, n] and let π be the their product. Set x0 := q0 ·π,
where q0 is a randomly chosen 2λ

2
-rough integer from [0, 2γ/π). Given x0 and polynomially many

samples xj from Dρ(q0, p1, . . . , pn), find a prime factor of (x0/q0).

Let us clarify differences between n-PACD and n-MPACD; in the distribution DMρ , we generalize by
allowing non-uniform rij in contrast to Dρ. Furthermore, (more importantly) the unknown masking
Q is multiplied in DMρ in contrast to Dρ. We do not restrict Q to be chosen uniformly, but it is
required to have enough entropy so that it is hard to guess Q. It looks like that these two differences
make n-MPACD much harder than n-PACD.

B.1 Relations

In this subsection, we demonstrate that relations among ACD variants, in particular, a relation
between PACD and new variants. We prove, in particular, that both n-PACD and n-MPACD are
hard if PACD, which has already been utilized in several literatures [15, 16, 8], is hard. Relations we
have are summarized in Figure 1. In the figure, a relation between problems A and B is indicated
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by a line or a dotted line; A→ B means that A is a hard problem if B so. If the other side relation
is unknown yet, we use A L99 B.

By definition, it is straightforward that PACD is easier than or equal to ACD. Moreover,
there exists a specialized algorithm for PACD [8] that has asymptotically lower cost than that
of the known best algorithms for ACD [8, 16]. We can also easily check that n-MPACD is harder
than or equal to n-PACD from their definitions, as we briefly discussed in the previous section.10

Furthermore, one side relations between PACD and 1-dPACD and between 1-dPACD and n-dPACD
are proven by Coron et al. [14]. We recall their results;

Theorem 1 [14, Lemma 11] The n-dPACD problem is hard if the 1-dPACD problem is hard.

Theorem 2 [14, Lemma 12] The 1-dPACD problem is hard if the PACD problem is hard.

Now we address the remaining relations between n-PACD and n-dPACD and between PACD and
1-dPACD (the other direction of Theorem 2).

Theorem 3 The n-PACD problem is hard if the n-dPACD problem is hard.

Proof. We consider all parameters n, ρ, and m (the number of samples) used for generating prob-
lem instances as being polynomially bounded in the security parameter. Suppose that there is an
algorithm A for solving the n-PACD problem whose errors are chosen from (−2ρ+1, 2ρ+1). By using
A, we construct an algorithm B for the n-dPACD problem whose errors are distributed in (−2ρ, 2ρ).
Subsequently, we show that if A outputs a prime factor with a non-negligible probability, then B’s
advantage for distinguishing the n-dPACD instance is also non-negligible.

B starts with receiving an instance of the n-dPACD problem (x0, z) along with oracle access

to Oq0,(pi). B chooses and queries polynomially many vi
$← {0, 1}n to the oracle, and then receives

Oq0,(pi)(vi)’s. B sends Oq0,(pi)(vi)’s along with x0 to A. Then, A outputs p. B checks whether p is
a prime factor of x0/q0 or not; it can be done by computing gcd(p, x0) ∈ (1, x0) and by checking if
the size of p is the same with the predetermined size. If yes, B outputs 1 if and only if (z mod p) is
odd. Otherwise, B outputs a random bit.

Let us first consider the distribution of Oq0,(pi)(vi);

Oq0,(pi)(vi) = CRTq0,(pi)(q, v1 + 2r1, . . . , vn + 2rn),

where vi = (v1, . . . , vn) and r1, . . . , rn
$← (−2ρ, 2ρ). Because vi is uniformly chosen from {0, 1} and

ri is uniformly chosen from (−2ρ, 2ρ), vi + 2ri is uniformly distributed in (−2ρ+1 + 1, 2ρ+1) for each
i ∈ [1, n]. Then, the statistical distance between the simulated distribution of {Oq0,(pi)(vi)}i∈[1,m]

and the real distribution of the instance of n-PACD is at most nm
2ρ+1 , which is negligible in the

security parameter under our selection of polynomial n, m, and ρ.

Finally, we analyze the advantage of B for distinguishing b. Let E be the event that A outputs a

prime factor of x0/q0. Recall z = Oq0,(pi)(wb), where b
$← {0, 1}, w0 = (0, . . . , 0) and w1

$← {0, 1}n.
Note that b is completely hidden in A’s view because z is not given to A. The advantage of B is as

10 For n-PACD, we are required to output a prime factor in contrast to n-MPACD. We note that there is a trivial
reduction from finding a non-trivial factor to finding a prime factor (by repeating finding algorithm).
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follows:

Pr[B outputs 0|b = 0]− Pr[B outputs 0|b = 1]
= Pr[B outputs 0 ∧ E|b = 0] + Pr[B outputs 0 ∧ ¬E|b = 0]

−
(

Pr[B outputs 0 ∧ E|b = 1] + Pr[B outputs 0 ∧ ¬E|b = 1]
)

= Pr[B outputs 0|E ∧ (b = 0)] · Pr[E|b = 0] + Pr[B outputs 0|¬E ∧ (b = 0)] · Pr[¬E|b = 0]

−
(

Pr[B outputs 0|E ∧ (b = 1)] · Pr[E|b = 1] + Pr[B outputs 0|¬E ∧ (b = 1)] · Pr[¬E|b = 1]
)

= Pr[B outputs 0|E ∧ (b = 0)] · Pr[E] + Pr[B outputs 0|¬E ∧ (b = 0)] · Pr[¬E]

−
(

Pr[B outputs 0|E ∧ (b = 1)] · Pr[E] + Pr[B outputs 0|¬E ∧ (b = 1)] · Pr[¬E]
)

≥ Pr[B outputs 0|E ∧ (b = 0)] · (ε− nm
2ρ+1 ) + Pr[B outputs 0|¬E ∧ (b = 0)] · (1− ε− nm

2ρ+1 )

−
(

Pr[B outputs 0|E ∧ (b = 1)] · (ε+ nm
2ρ+1 ) + Pr[B outputs 0|¬E ∧ (b = 1)] · (1− ε+ nm

2ρ+1 )
)

= 1 · (ε− nm
2ρ+1 ) + 1

2 · (1− ε−
nm

2ρ+1 ) −
(

1
2 · (ε+ nm

2ρ+1 ) + 1
2 · (1− ε+ nm

2ρ+1 )
)

= ε
2 −

5
2 ·

nm
2ρ+1 ,

where ε is A’s success probability. Without loss of generality, we assume that A outputs a prime
factor p1. The third equality holds since b is completely hidden in the view of A. When b = 1, w1

could be 0 with 1/2 probability, where w1 is the first component of w1, and hence Pr[B outputs 0|E∧
(b = 1)] = 1/2 in the fifth equation. Therefore, B’s advantage is non-negligible if A’s success
probability is non-negligible and n, m, ρ are polynomial in the security parameter. ut

Because the 1-PACD problem is the exactly same with the PACD problem, Theorem 3 implies the
following corollary.

Corollary 1 The PACD problem is hard if the 1-dPACD problem is hard.

From the above results, we can conclude both n-PACD and n-MPACD are hard problems if
PACD is hard.

C (Corrected) Coron-Lepoint-Tibouchi Algorithm for n-MPACD

The CLT attack for n-MPACD takes x0 and two samples x1 and x2 as inputs and computes
u = x1/x2 (mod x0). Then, it computes gcd(i2u − i1, x0) for all possible i1, i2 ∈ (−2ρ, 2ρ). While
the naive gcd computation for all i1 and i2 costs O(22ρ) operations, their algorithm reduces the
attack complexity to O(ρ22ρ) using the meet-in-the-middle attack like the Chen-Nguyen’s attack [8]
with the fast polynomial algorithm provided in Table 2. More precisely, the CLT algorithm takes
x0, x1 and x2 and then computes

gcd
(
x0,

∏
i1,i2∈(−2ρ,2ρ)

(i2u− i1) (mod x0)
)

by using the fast polynomial algorithms.
However, this approach is insufficient to find a non-trivial factor of x0. The approach of comput-

ing common divisors between x0 and a product of all candidates of multiples of a prime factor was
successful to attack PACD. But, if we naively apply the same approach to n-MPACD, there is an
issue we have to carefully address; because the product

∏
i1,i2∈(−2ρ,2ρ)(i2u− i1) (mod x0) consists

of (i2u − i1)’s for all possible i1 and i2, it is equal to zero modulus pi for all i ∈ [1, n]. Hence, the
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result gcd
(
x0,
∏
i1,i2∈(−2ρ,2ρ)(i2u− i1) (mod x0)

)
will be a zero, not a non-trivial factor of x0. To

overcome this obstacle, we apply the divide-and-conquer approach used in our attack algorithms
under the following assumption.

Assumption 3. 22ρ+1 ≤ pi; that is, the rij’s are sufficiently smaller than pi for all i ∈ [1, n].
Assumption 4. The integer matrix (rij) i∈[1,n]

j∈[1,2]
∈ Zn×2’s rank is 2.

Note that the matrix (hij) i∈[1,n]
j∈[1,2]

in the zero-testing parameter satisfies Assumption 4. We provide

the full description of the (corrected) CLT algorithm for n-MPACD in Algorithm 4. The following
lemma shows that each integer in the product cannot be zero modulus x0, so that we conclude our
procedure should find a non-trivial factor before arriving at the final step.

Lemma 3 For all i1, i2 ∈ (−2ρ, 2ρ) \ {0}, i2u− i1 6≡ 0 mod x0 under Assumption 3 and 4.

We provide the proof of Lemma 3 in Appendix D.

Complexity: The complexity of computing A mainly depends on the interval size used in the
product; that is, we require O((ρ + 1)22ρ+1) operations modulo x0 from AlgFFTPoly and AlgFFTMPE ’s
complexity. Similarly, for each of A’s four factors, we must perform O(ρ22ρ) operations modulo x0

because each A’s factor uses a half size interval of I. Similarly again, we require O((ρ − 1)22ρ−1)
operations modulo x0 for each of Ai’s four factors, and so on. Overall, the computational complexity
for A and all its factors is bounded by

O((ρ+ 1)22ρ+1) + 4O(ρ22ρ) + · · ·+ 4Õ(21) = O(5(ρ+ 1)22ρ+1) = O(ρ22ρ) operations modulo x0.

We can also demonstrate that the space complexity is bounded by O(ρ22ρ) polynomially many bits
from the storage complexity of AlgFFTMPE and AlgFFTPoly .

Algorithm 4 (Corrected) CLT algorithm

Input: (x0, x1, x2)
Output: a non-trivial factor of x0 or ⊥
1: Compute A :=

∏
i1,i2∈I(i2u− i1) mod x0, where I = (−2ρ, 2ρ);

First, compute a polynomial f(X) =
∏
i1∈I(Xu− i1) mod x0 by using AlgFFTPoly .

Second, evaluate on multipoints {f(i2) mod x0}i2∈I by using AlgFFTMPE .
Finally, compute a product

∏
i2∈I f(i2) mod x0, which is equal to

∏
i1,i2∈I(i2u− i1) mod x0.

2: Set k ← 1.
3: while k ≤ ρ+ 1 do
4: Compute Ai for i ∈ {00, 01, 10, 11}. . Similarly to Step 1, where Ai is defined in this paper.
5: Compute gcd(x0, Ai) for i ∈ {00, 01, 10, 11}.
6: if gcd(x0, Ai) ∈ (1, x0) for some i then
7: return gcd(x0, Ai).
8: else
9: Choose an Ai such that gcd(x0, Ai) = x0, and then set A← Ai and k ← k + 1.

10: end if
11: end while
12: return ⊥.
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D Proof of Lemmas

Lemma 1 Given an n-MPACD instance x0 and xj’s, we have that for each i ∈ [1, n],

Pr
b′j

$←{0,1}
[(b′1, . . . , b

′
2m) is good for pi] > 1/2

under Assumption 1.

Proof. For each pi,
2m∑
j=1

bjxj =

2m∑
j=1

bjrij (mod pi)

and the right-hand side is equal to
∑2m

j=1 bjrij as an integer because it is a sum of at most

2m samples and 2m2ρ+1 ≤ pi by Assumption 1. Therefore,
∑2m

j=1 bjxj (mod pi) is contained in
(−2m2ρ, 2m2ρ). In addition, we demonstrate that the range size is less than 2m2ρ; for the set
{rij}j∈[1,2m], we set {posj}j∈[1,∆] to be the set of non-negative integers and {−negj}j∈[∆+1,2m] to

be the set of negative integers, that is {rij}j = {posj}j ∪ {−negj}j . Then,
∑2m

j=1 bjxj belongs
to [−

∑
j∈[∆+1,2m] negj ,

∑
j∈[1,∆] posj ], hence the range size is

∑
j∈[∆+1,2m] negj +

∑
j∈[1,∆] posj <

2m2ρ. Therefore, the domain size 22m is larger than twice of the range size modulus pi. By the pi-
geonhole principle, at least half of elements in the domain have a collision; that is, for each i ∈ [1, n],
there are at least 22m−1 + 1 tuples (b′1, . . . , b

′
2m) ∈ {0, 1}2m such that there exists (b1, . . . , b2m) sat-

isfying (b′1, . . . , b
′
2m) 6= (b1, . . . , b2m) and

∑2m
j=1 bjxj =

∑2m
j=1 b

′
jxj mod pi, hence the probability in

the lemma is larger than 1/2. ut

Lemma 2 Under Assumption 1 and 2, if (b1, . . . , b2m) 6= (b′1, . . . , b
′
2m), then there is an index

i′ ∈ [1, n] such that
2m∑
j=1

bjxj 6=
2m∑
j=1

b′jxj (mod pi′)

so that
∑2m

j=1 bjxj 6=
∑2m

j=1 b
′
jxj (mod x0).

Proof. Suppose that (b1, . . . , b2m) 6= (b′1, . . . , b
′
2m). Consider

2m∑
j=1

bjxj −
2m∑
j=1

b′jxj (mod pi) for i ∈ [1, n].

Then, we have the following equalities:

2m∑
j=1

bjxj −
2m∑
j=1

b′jxj (mod pi) =
2m∑
j=1

(bj − b′j)xj (mod pi) =
2m∑
j=1

(bj − b′j)rij (mod pi) =
2m∑
j=1

(bj − b′j)rij

Let aj = bj − b′j for all j. Because we assume that (b1, . . . , b2m) 6= (b′1, . . . , b
′
2m), (a1, . . . , a2m) is a

non-zero vector. The last equality holds “as integers” because 2m2ρ+1 < pi by Assumption 1. The
above equalities hold for all i ∈ [1, n] and the same vector (a1, . . . , a2m); thus, we can consider the
product between the n×2m matrix R = (rij) and the vector (a1, . . . , a2m). Because rank(rij) = 2m
by Assumption 2 and (a1, . . . , a2m) is a non-zero vector, R · (a1, . . . , a2m)> is also a non-zero vector.
Therefore, there is i′ ∈ [1, n] such that (ri′1, . . . , ri′2m) · (a1, . . . , a2m)> 6= 0, hence for such i′,∑2m

j=1 bjxj 6=
∑2m

j=1 b
′
jxj (mod pi′). ut
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Lemma 3 For all i1, i2 ∈ (−2ρ, 2ρ) \ {0}, i2u− i1 6≡ 0 mod x0 under Assumption 3 and 4.

Proof. Suppose that i2u− i1 ≡ 0 mod x0 for some i1 and i2 ∈ (−2ρ, 2ρ). Then, we obtain that

i2r11 ≡ i1r12 mod p1 and i2r21 ≡ i1r22 mod p2.

In fact, the above equalities hold as integers by Assumption 3; hence these can be re-written by(
r11 r12

r21 r22

)(
i2
−i1

)
=

(
0
0

)
,

but this contradicts Assumption 4. Therefore, we conclude i2u 6≡ i1 mod x0 for all non-zero i1, i2.
ut

E Key Recovery Attack on the Multipartite Diffie-Hellman Protocol using
GES

We recall the one-round N -party Diffie-Hellman key exchange protocol using the GES construction,
which is secure in the common reference model under the GDDH assumption with N = κ+ 1 [20,
12]; here, N parties want to share a secret key sk using a one-round protocol.

Setup(1λ, 1N ). Run InstGen(1λ, 1κ)→ (params,pzt) with κ = N − 1.

Publish(params, i). Each party i runs samp(params)→ ci, keeps the level-0 encoding ci as his secret
key, and publishes the corresponding level-1 encoding reRand(params, enc(params,ci))→ c′i.

KeyGen(params,pzt, i, ci, {c′j}j 6=i). Each party i computes c̃i = ci ·
∏
j 6=i c

′
j and extracts the shared

secret key by ext(params, pzt, c̃i)→ sk.

E.1 A Key Recovery Attack on a Single Zero-testing Parameter

In key recovery attacks, we assume that N − 1 parties collude to recover the secret key of one
remaining party; that is, without loss of generality, we assume that the adversary controls parties
P2, . . . ,PN to recover P1’s secret key in the N -party Diffie-Hellman key exchange protocol using
GES with a single integer zero-testing parameter pzt. Furthermore, we assume that the adversary
can participate the key exchange protocol several times (polynomially many times) with the honest
user P1 using a fixed secret key.

The adversary begins by generating public keys c′i of Pi for i = 2, . . . , N − 1 honestly. For the
public key of PN , the adversary first executes Publish normally by running samp(params) → cN
and reRand(params, enc(params,cN )) → c′N . Then, the adversary generates an invalid encoding
c′′N = c′N +2kX mod x0 and publishes c′′N as his public key, where k is a small integer less than ν and
X is a level-1 encoding of zero.11 After publishing public keys, P1 computes c̃1 = c1 · c′′N ·

∏
j 6=1,N c

′
j

and extracts a shared secret key by ext(params, pzt, c̃1) → sk. When P1 sends a message m to
other parties using the shared secret key sk, the adversary obtains CT = Encryptionsk(m), where
Encryption is an encryption scheme predetermined by all parties.

11 A level-1 encoding of zero can be obtained from the system parameters provided in reRand because the re-
randomization process is just generating and adding level-1 encodings of zeros.
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Then, the adversary can extract the ν+k most significant bits of c1X(
∏
j 6=1,N c

′
j)pzt mod x0 by

the exhaustive search; first of all, we observe the following equalities:

sk = Extract(msbsν(c̃1 · pzt mod x0))

= Extract(msbsν(c1 · c′′N ·
∏
j 6=1,N

c′j · pzt mod x0))

= Extract(msbsν(c1 · c′N ·
∏
j 6=1,N

c′j · pzt + c1 · 2kX ·
∏
j 6=1,N

c′j · pzt mod x0)).

In the last expression, msbsν(c1 ·c′N ·
∏
j 6=1,N c

′
j ·pzt mod x0) = msbsν(c′1 ·cN ·

∏
j 6=1,N c

′
j ·pzt mod x0),

so that this value can be computed by the adversary. For the other part, we know that msbsν(c1X ·
(
∏
j 6=1,N c

′
j) · pzt mod x0) = 0 because c1X · (

∏
j 6=1,N c

′
j) mod x0 is a valid encoding of zero. Hence,

c1 · 2kX ·
∏
j 6=1,N c

′
j · pzt mod x0 is a k-left shift so that its ν most significant bits has at most 2k

different values. Note that a product of a zero-encoding and pzt has zeros in the ν most significant
bits. Therefore, with 2k+1 trials (containing carry-guessing), the adversary can choose a candidate
sk′ of the shared secret and check whether Decryptionsk′(CT ) is a meaningful message or not.
When the adversary gets a meaningful message, he can see the ν + k most significant bits of
c1X(

∏
j 6=1,N c

′
j)pzt mod x0, where the ν most significant bits are zeros.

Next, the adversary can update PN ’s public key with another invalid encoding c′N+22kX mod x0

and, with 2k+1 trials, he can extract the next k bits of c1X(
∏
j 6=1,N c

′
j)pzt mod x0 similarly. The

adversary can repeat the same procedure so that he can extract at most the ν + ν most significant
bits of c1X(

∏
j 6=1,N c

′
j)pzt mod x0, where the maximum is achieved when ν is a multiple of k. This

is because the ν most significant bits of c1X(
∏
j 6=1,N c

′
j)pzt mod x0 are zeros.

To obtain the remaining bits of c1X(
∏
j 6=1,N c

′
j)pzt mod x0 (that is, from the (2ν + 1)-th most

significant bit to the last significant bit of c1X(
∏
j 6=1,N c

′
j)pzt mod x0), the adversary does somewhat

differently; we assume that the adversary knows the 2ν most significant bits of c1X(
∏
j 6=1,N c

′
j)pzt

mod x0. To extract from the (2ν+1)-th to the (2ν+k)-th most significant bits of c1X(
∏
j 6=1,N c

′
j)pzt

mod x0, the adversary updates PN ’s public key with c′N + 2ν+kX mod x0 so that the shared secret
key is

sk = Extract(msbsν(c1 · c′N ·
∏
j 6=1,N

c′j · pzt + c1 · 2ν+kX ·
∏
j 6=1,N

c′j · pzt mod x0)).

We can easily check the following:

2ν+kc1X ·
∏
j 6=1,N

c′j · pzt ≡ (2νc1X ·
∏
j 6=1,N

c′j · pzt mod x0) · 2k = S · 2|x0| + T

for some k-bit integer S and some |x0|-bit integer T , where ‘≡’ means the congruence modulus x0

and ‘ =’ means the equality as integers. With this notation, we know that from the (2ν + 1)-th
to the (2ν + k)-th most significant bits of c1X(

∏
j 6=1,N c

′
j)pzt mod x0 are exactly the same as from

the (ν − k + 1)-th to the ν-th most significant bits of T . Because we assume that the adversary
knows the 2ν most significant bits of c1X(

∏
j 6=1,N c

′
j)pzt mod x0, he knows S and the (ν − k) most

significant bits of T . Therefore, the adversary guesses from the (ν − k + 1)-th to the ν-th most
significant bits of T , and hence with considering carries, the adversary has 2k+2 candidates for
msbsν(c′1cN (

∏
j 6=1,N c

′
j)pzt + S2|x0| + T mod x0), which is equal to

msbsν(c1c
′
N (

∏
j 6=1,N

c′j)pzt + c12ν+kX(
∏
j 6=1,N

c′j)pzt mod x0).
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Then, the adversary can verify his guess from an encryption under sk, similarly to before.
Overall, the adversary can obtain the whole bits of c1X(

∏
j 6=1,N c

′
j)pzt mod x0 with O(|x0|)

public key updates, O(|x0|) Zx0 operations and additional encryptions and decryptions, which are
polynomial in the security parameter.

Finally, the adversary can compute c1, which is a secret key of P1, by multiplying (X(
∏
j 6=1,N c

′
j)pzt)

−1

mod x0 to the result.12

12 x0 is hard to factor and so we can compute the inverse of X(
∏
j 6=1,N c

′
j)pzt mod x0. Otherwise, we can factor x0.
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