
On the Limitations of Computational Fuzzy Extractors

Kenji Yasunaga∗ Kosuke Yuzawa†

March 15, 2018

Abstract

We present a negative result of fuzzy extractors with computational security. Specifically,
we show that, under a certain computational condition, the existence of a computational fuzzy
extractor implies the existence of an information-theoretic fuzzy extractor with slightly weaker
parameters. The condition is that the generation procedure of the fuzzy extractor is efficiently
invertible by an injective function. Our result implies that to circumvent the limitations of
information-theoretic fuzzy extractors, we need to employ computational fuzzy extractors that
are not invertible by injective functions.

Keywords: Fuzzy extractor; error-correcting code; computational security.

1 Introduction

Cryptographic primitives generally require uniformly random strings. A fuzzy extractor is a primi-
tive proposed by Dodis et al. [4] that can reliably derive uniformly random keys from noisy sources,
such as biometric data (fingerprint, iris, facial image, etc.) and long pass-phrases. More formally, a
fuzzy extractor is defined to be a pair of procedures (Gen,Rep). The key generation procedure Gen
receives a sample w from a noisy source W with some entropy, and outputs a uniformly random
key r and a helper string p. After that, the reproduction procedure Rep can be used to derive the
same key r from the helper string p and a sample w′ that is close to the original sample w. Notably,
this framework does not need secret keys other than w. The derived key r is close to uniform even
if the helper string p was given. See [5, 2] for surveys of results related to fuzzy extractors.

To construct fuzzy extractors, Dodis et al. [4] introduced a primitive, called secure sketch. On
input w, a secure sketch produces a recovery information. It enables the recovery of w from any
close value w′, but does not reveal much information about w. They show that a combination of a
secure sketch and a strong extractor gives a fuzzy extractor.

Fuzzy extractors were defined as information-theoretic primitives, and several limitations re-
garding parameters in fuzzy extractors are also studied in [4]. The entropy loss is the difference
between the entropy of w and the length of the extracted key r. In the setting of information-
theoretic security, the entropy loss is known to be inevitable [8]. This limitation is a major problem
for applications using low entropy sources such as biometric data.

Fuller et al. [6] considered the computational security of fuzzy extractors to construct lossless
fuzzy extractors, which circumvent the entropy loss of information-theoretic fuzzy extractors. They

∗Institute of Science and Engineering, Kanazawa University. yasunaga@se.kanazawa-u.ac.jp
†Graduate School of Natural Science and Technology, Kanazawa University.

1

gave both negative and positive results. On one hand, they show that the existence of a compu-
tational secure sketch implies the existence of an information-theoretic secure sketch with slightly
weaker parameters. This result means that lossless fuzzy extractors cannot be constructed by com-
bining a computational secure sketch and a strong extractor. On the other hand, they present
a direct construction of a lossless fuzzy extractor based on the hardness of learning with errors
(LWE) problem. The computational security of fuzzy extractors has been studied in subsequent
work [3, 1, 7, 9].

In this work, we further study the limitations of computational fuzzy extractors. The negative
result of [6] implies that we need to avoid using computational secure sketches to construct lossless
fuzzy extractors. However, it remains unclear what properties are necessary for fuzzy extractors to
be lossless.

First, we observe that the result of [6] can be applied to computational fuzzy extractors under
some condition. The condition is that for the generation procedure Gen, there is an efficient inverter
that, on input (r, p), recovers the same w that was actually used to generate (r, p) by Gen. It is
unclear if the result holds for an inverter without this property. We will discuss this observation in
more detail in Section 1.1.

We provide a similar negative result of computational fuzzy extractors under another condition.
Specifically, we show that if Gen has an efficient inverter that is almost injective, then the existence of
a computational fuzzy extractor implies the existence of an information-theoretic fuzzy extractor.
This result indicates that a lossless fuzzy extractor must have a property that the generation
procedure is not efficiently invertible by injective functions. In the process of proving the result,
we fix a flaw in the proof of the result of [6], and obtain a similar lemma with a slightly weaker
parameter.

1.1 On the Negative Results of [6]

Fuller et al. noted in [6, footnote 3] that, if the generation procedure Gen is efficiently invertible,
their negative results for computational secure sketches can also be applied to computational fuzzy
extractors. We observe that this is true if the inverter of Gen satisfies some condition, but it is
unclear without it. We describe the observation below in more detail.

Let (Gen,Rep) be a computational fuzzy extractor. Assume that there is an efficient algo-
rithm InvGen that, given (r, p), outputs w, where (r, p) was generated by Gen(w). One can
construct a computational secure sketch (SS,Rec) (see Definition 3 for the definition of secure
sketches) by defining SS(w) = {(r, p)← Gen(w);Output p} and Rec(w′, p) = {r ← Rep(w′, p);w ←
InvGen(r, p);Output w}. Thus, by the negative results of [6], this implies the existence of an
information-theoretic fuzzy extractor. However, the above observation can be applied only if
InvGen(r, p) outputs the same w from which (r, p) was actually generated. In general, there could
exist different w1 and w2 such that the outputs of Gen(w1) and Gen(w2) are the same. In such a
case, one of w1 and w2 may not be recovered by InvGen, and thus it may be difficult to use InvGen
for constructing secure sketches.

If Gen is injective, then there are no different w1 and w2 satisfying Gen(w1) = Gen(w2), and thus
the negative results of [6] can be applied to such computational fuzzy extractors. However, this
assumption seems too restrictive. As far as we known, there is no construction of injective fuzzy
extractors. Also, there is an intuitive reason for this fact. For a fuzzy extractor (Gen,Rep), consider
two input w1 and w2 that are close to each other. If Gen(w1) outputs (r, p), then it must be that

2

Rep(w1, p) = r and Rep(w2, p) = r. Then, it seems natural that the output range of Gen(w2) also
contains (r, p). If so, the extractor is not injective.

2 Preliminaries

Let X and Y be random variables over some alphabet Z. The min-entropy of X is
H∞(X) = − log(maxx Pr[X = x]). The average min-entropy of X given Y is H̃∞(X|Y) =
− log(Ey∈Z maxx∈Z Pr[X = x|Y = y]). The statistical distance between X and Y is ∆(X,Y) =
1
2

∑
z∈Z |Pr[X = z] − Pr[Y = z]|. If ∆(X,Y) ≤ ϵ, we say X and Y are ϵ-close. The support

of X is Supp(X) = {x ∈ Z : Pr[X = x] > 0}. We denote by Uℓ the uniformly distributed
random variable on {0, 1}ℓ. For a finite set S, we denote by t ← S the event that t is cho-
sen uniformly at random from S. For s ∈ N, the computational distance between X and Y is
∆s(X,Y) = maxD∈Cs |E[D(X)]−E[D(Y)]|, where Cs is the set of randomized circuits of size at most
s that output 0 or 1. A metric space is a setM with a distance function dis :M×M→ R+ = [0,∞).
We always consider finite metric spaces and distance functions with finite images. For the Hamming
metric over Zn, dis(x, y) is the number of positions in which x and y differ. For a probabilistic
experiment E and a predicate P , we denote by Pr[E : P] the probability that the predicate P is
true after the event E occurred. For a probabilistic algorithm A, we denote by A(x; r) the output
of A, given x as input and r as random coins.

We give definitions of fuzzy extractor, computational fuzzy extractor, secure sketch, and strong
extractor.

Definition 1 (Fuzzy Extractor). An (M,m, ℓ, t, ϵ)-fuzzy extractor with error δ is a pair of ran-
domized procedures (Gen,Rep) with the following properties:

• The generation procedure Gen on input w ∈ M outputs an extracted string r ∈ {0, 1}ℓ and a
helper string p ∈ {0, 1}∗.

• The reproduction procedure Rep takes w′ ∈ M and p ∈ {0, 1}∗ as inputs. The correctness
property guarantees that for any w,w′ ∈ M with dis(w,w′) ≤ t, if (r, p) ← Gen(w), then
Rep(w′, p) = r with probability at least 1− δ, where the probability is taken over the coins of
Gen and Rep. If dis(w,w′) > t, no guarantee is provided about the output of Rep.

• The security property guarantees that for any distribution W on M of min-entropy m, if
(R,P)← Gen(W), then ∆((R,P), (Uℓ, P)) ≤ ϵ.

Definition 2 (Computational Fuzzy Extractor). An (M,m, ℓ, t, s, ϵ)-computational fuzzy extrac-
tor with error δ is a pair of randomized procedures (Gen,Rep) that is an (M,m, ℓ, t, ϵ)-fuzzy extractor
with error δ in which the security property is replaced by the following one:

• For any distribution W on M of min-entropy m, if (R,P) ← Gen(W), then
∆s((R,P), (Uℓ, P)) ≤ ϵ.

Definition 3 (Secure Sketch). An (M,m, m̃, t)-secure sketch with error δ is a pair of randomized
procedures (SS,Rec) with the following properties:

• The sketching procedure SS on input w ∈M outputs a string s ∈ {0, 1}∗.

3

• The recovery procedure Rec takes w′ ∈M and s ∈ {0, 1}∗ as inputs. The correctness property
guarantees that for any w,w′ ∈ M with dis(w,w′) ≤ t, Pr[Rec(w′, SS(w)) = w] ≥ 1 − δ
where the probability is taken over the coins of SS and Rec. If dis(w,w′) > t, no guarantee is
provided about the output of Rec.

• The security property guarantees that for any distribution W on M of min-entropy m,
H̃∞(W |SS(W)) ≥ m̃.

Definition 4. We say that Ext : {0, 1}n → {0, 1}ℓ is an (n,m, ℓ, ϵ)-strong extractor if for any W
on {0, 1}n of min-entropy m, ∆((Ext(W ;X), X), (Uℓ, X)) ≤ ϵ, where X is the uniform distribution
on {0, 1}r.

3 Limitations of Computational Fuzzy Extractors

In this section, we show that the existence of a computational fuzzy extractor satisfying some
computational condition implies the existence of an information-theoretic fuzzy extractor with
slightly weaker parameters. The condition is that the generation procedure of a fuzzy extractor is
efficiently invertible by an almost-injective function.

We follow a similar approach to Fuller et al. [6], who showed that a computational secure sketch
implies an information-theoretic secure sketch. They proved that the existence of a computational
secure sketch implies the existence of a code correcting random errors. The result follows by
observing that such a code is sufficient to construct an information-theoretic secure sketch [4].

We start from the existence of a computational fuzzy extractor (Gen,Rep). To show the existence
of an error-correcting code, we assume that the generation procedure Gen of the fuzzy extractor
is efficiently invertible. The idea for constructing a code is that the inverter of Gen can work as a
generator of a codeword from a message. Here, a sample w and an extracted string r from w are
considered a codeword and a message, respectively. By fixing the helper string p, we can see that the
inverter of Gen is an encoder and the reproduction procedure Rep is a decoder of an error-correcting
code. The injectiveness of the inverter of Gen is used to guarantee a high information-rate of the
resulting code. The structure used in our approach is different from that in [6]. For a secure sketch
(SS,Rec), they used the fact that by fixing the sketch ss = SS(W), the procedure of sampling W
conditioned on ss is a random sampling of codewords and the recovery procedure Rec can work as
a decoder that outputs a corrected codeword, not message.

We give a formal definition of invertibility of the generation procedure.

Definition 5. Let (Gen,Rep) be a fuzzy extractor for a metric space M. We say Gen is (s, η)-
invertible if there exists a deterministic circuit InvGen of size at most s such that

Pr

[
W ′ ← InvGen(R′, p) :

∃ rG ∈ {0, 1}∗ s.t.
Gen(W ′; rG) = (R′, p)

]
≥ 1− η

for any p that can be generated as (r, p)← Gen(w) for w ∈ M, where R′ = Uℓ. In addition, if the
inverter InvGen has the property such that |{w′ : w′ ← InvGen(Uℓ, p)}| ≥ (1 − ξ)2ℓ for any p that
can be generated as (r, p)← Gen(w), we say Gen is (s, η, ξ)-almost-injectively-invertible.

In the definition, we consider that InvGen succeeds in inverting Gen if it outputs w′ from which
the input (r′, p) can be generated by Gen, and thus w′ is not necessarily the same as w from which
p was actually generated.

4

Note that, since the inverter InvGen is confined to being deterministic, InvGen has the property
of output uniqueness. That is, for any r and p, InvGen(r, p) does not output two different values
w1, w2 ∈M such that (r, p) = Gen(w1; r1) = Gen(w2; r2) for some r1, r2 ∈ {0, 1}∗.

We will prove that the existence of a computational fuzzy extractor implies the existence of an
error-correcting code. We provide some notions regarding coding theory.

Definition 6. We say a metric space (M, dis) is (s, t)-bounded-error samplable if there exists a
randomized circuit ErrSmp of size s such that for all 0 ≤ t′ ≤ t and w ∈ M, ErrSmp(w, t′) outputs
a random point w′ ∈M satisfying dis(w,w′) = t′.

Definition 7. Let C be a set over a metric spaceM. We say C is a (t, ϵ)-maximal-error Shannon
code if there exists an efficient recover procedure Rec such that for all 0 ≤ t′ ≤ t and c ∈ C,
Pr[Rec(ErrSmp(c, t′)) ̸= c] ≤ ϵ.

Definition 8. Let (M, dis) be a metric space that is (s, t)-bounded-error samplable by a cir-
cuit ErrSmp. For a distribution C over M, we say C is a (t, ϵ)-average-random-error Shan-
non code if there exists an efficient recover procedure Rec such that Pr[c ← C, t′ ← {0, . . . , t} :
Rec(ErrSmp(c, t′)) ̸= c] ≤ ϵ.

The following fact can be obtained by Markov’s inequality.1

Lemma 1. Let C be a (t, ϵ)-average-random-error Shannon code with recovery procedure Rec such
that H∞(C) ≥ k. Then, there exists a set C ′ with |C ′| ≥ 2k−1 that is (t, 2ϵ(t + 1))-maximal-error
Shannon code with recovery procedure Rec.

Proof. Since C is a (t, ϵ)-average-random-error Shannon code, we have that∑
c∈Supp(C)

Pr[c← C] Pr
t′←{0,...,t}

[Rec(ErrSmp(c, t′)) ̸= c] ≤ ϵ.

For c ∈ Supp(C), let ϵc = Prt′←{0,...,t}[Rec(ErrSmp(c, t′)) ̸= c]. By Markov’s inequality, it holds that

Pr
c←C

[ϵc ≤ 2ϵ] = Pr
c←C

[ϵc ≤ 2Ec′←C [ϵc′]] ≥
1

2
.

Since H∞(C) ≥ k, there are at least 2k−1 codewords c ∈ Supp(C) satisfying ϵc ≤ 2ϵ. Let C ′ be the
set of such codewords. For every c ∈ C ′, we have that∑

t′∈{0,...,t}

Pr[t′ ← {0, . . . , t}] Pr[Rec(ErrSmp(c, t′)) ̸= c] ≤ 2ϵ, (1)

which implies that Pr[Rec(ErrSmp(c, t′)) ̸= c] ≤ 2ϵ(t+ 1) for every t′ ∈ {0, . . . , t}. Otherwise, there
exists t′ ∈ {0, . . . , t} such that Pr[t′ ← {0, . . . , t}] Pr[Rec(ErrSmp(c, t′)) ̸= c] > 1

t+12ϵ(t + 1) = 2ϵ,
which contradicts (1). Therefore, C ′ is a (t, 2ϵ(t+ 1))-maximal-error Shannon code.

1A similar lemma was given in [6], but the proof has a flaw, which was pointed out by an anonymous reviewer. In
their proof, a code was chosen by a probabilistic argument for every t′ ∈ {0, . . . , t}, but it was not guaranteed that
the code is the same for every t′. Instead, we consider a code that corrects random errors for “random” t′, which is
guaranteed to correct random errors for every t′ with a worse decoding error probability.

5

We prove that if the generation procedure is injectively-invertible, then the existence of a
computational fuzzy extractor implies the existence of a maximal-error Shannon code.

Lemma 2. Let (M, dis) be a metric space that is (ssmp, t)-bounded-error samplable. Let (Gen,Rep)
be an (M,m, ℓ, t, ssec, ϵ)-computational fuzzy extractor with error 0. Let srep denote the size of
the circuit that computes Rep. If Gen is (sinv, η, ξ)-almost-injectively-invertible, and it holds that
ssec ≥ sinv + ssmp + srep, then there exists a value p and a set C with |C| ≥ (1 − ξ)2ℓ−1 that is a
(t, 2(ϵ+ η)(t+ 1))-maximal-error Shannon code with recovery procedure InvGen(Rep(·, p), p).

Proof. Let W be an arbitrary distribution on M of min-entropy m. By the security property of
the computational fuzzy extractor (Gen,Rep), we have that ∆ssec((R,P), (Uℓ, P)) ≤ ϵ for (R,P)←
Gen(W).

Define the following procedure D:

1. On input r ∈ {0, 1}ℓ, p ∈ {0, 1}∗, and t ∈ N, compute w ← InvGen(r, p).

2. t′ ← {0, . . . , t}.

3. w′ ← ErrSmp(w, t′).

4. If Rep(w′, p) ̸= r, output 0. Otherwise, output 1.

The procedure D “efficiently” checks whether Rep can correctly output the string r from the
corresponding p and w with random t-bounded errors. We need the efficiency of D since otherwise
the “error-correcting” property of Rep may not be taken over from the computational security of
(Gen,Rep). The procedure D can be implemented by a circuit of size sinv + ssmp + srep.

By the invertibility of Gen and the correctness property of (Gen,Rep), we have that
Pr[D(R,P, t) = 1] ≥ 1 − η, where (R,P) ← Gen(W). Since ∆ssec((R,P), (Uℓ, P)) ≤ ϵ, if
ssec ≥ sinv + ssmp + srep, it holds that

Pr[D(Uℓ, P, t) = 1] ≥ 1− (ϵ+ η).

By the averaging argument, there exists a value p such that Pr[D(Uℓ, p, t) = 1] ≥ 1 − (ϵ + η).
This implies that

Pr

w ← InvGen(R, p),

t′ ← {0, . . . , t},
w′ ← ErrSmp(w, t′)

: Rep(w′, p) = R

 ≥ 1− (ϵ+ η), (2)

where R = Uℓ. Thus, the distribution InvGen(Uℓ, p) is a (t, ϵ + η)-average-random-error Shannon
code with recovery procedure InvGen(Rep(·, p), p). By applying Lemma 1, we can show that there
is a set C with |C| ≥ 2k−1 that is a (t, 2(ϵ + η)(t + 1))-maximal-error Shannon code for k ≥
H∞(InvGen(Uℓ, p)).

It follows from the almost-injective invertibility of Gen that |{w′ : w′ ← InvGen(Uℓ, p)| ≥
(1− ξ)2ℓ. Thus, H∞(InvGen(Uℓ, p)) ≥ ℓ− log(1/(1− ξ)). Therefore, the statement follows.

It is known that a secure sketch can be constructed from a Shannon code, which is explicitly
presented in [6], and implicitly stated in [4, Section 8.2].

6

Lemma 3 ([4, 6]). For an alphabet Z, let C be a (t, δ)-maximal-error Shannon code over Zn.
Then, there exists a (Zn,m,m− (n log |Z| − log |C|), t) secure sketch with error δ for the Hamming
metric over Zn.

An information-theoretic fuzzy extractor can be constructed from a secure sketch and a strong
extractor [4]. In particular, if we use universal hashing as strong extractor, we obtain the following
result.

Lemma 4 ([4]). Let (SS,Rec) be an (M,m, m̃, t)-secure sketch with error δ, and Ext an (n, m̃, ℓ, ϵ)-
strong extractor given by universal hashing (any ℓ ≤ m̃− 2 log(1ϵ) + 2 can be achieved). Then, the
following (Gen,Rep) is an (M,m, ℓ, t, ϵ)-fuzzy extractor with error δ:

• Gen(w; r, x) : set P = (SS(w; r), x), R = Ext(w;x), and output (R,P).

• Rep(w′, (s, x)) : recover w = Rec(w′, s) and output R = Ext(w;x).

By combining Lemmas 2, 3, and 4, we obtain the following theorem.

Theorem 1. Let Z be an alphabet. Let (Gen,Rep) be a (Zn,m, ℓ, t, ssec, ϵ)-computational fuzzy
extractor with error 0. Let srep denote the size of the circuit that computes Rep. If Gen is (sinv, η, ξ)-
almost-injectively-invertible, and it holds that ssec ≥ sinv + n log |Z| + srep, then there exists a
(Zn,m, ℓ′, t, ϵ′) (information-theoretic) fuzzy extractor with error 2(ϵ + η)(t + 1) for any ℓ′ ≤ m +
ℓ− n log |Z| − log(1

1−ξ)− 2 log(1
ϵ′) + 1.

In particular, in the above theorem, if we choose m = n log |Z|, then a (Zn, n log |Z|, ℓ, t, ssec, ϵ)-
computational fuzzy extractor implies a

(
Zn, n log |Z|, ℓ− log

(
1

1−ξ
)
− 2 log

(
1
ϵ′

)
+ 1, t, ϵ′

)
-fuzzy ex-

tractor with error 2(ϵ+ η)(t+ 1).
As in the negative result of [6], we do not claim about the efficiency of the resulting fuzzy

extractor. In our case, the non-explicit parts are (1) fixing the value p in Lemma 2, and (2)
constructing a maximal-error Shannon code from an average-random-error one in Lemma 1.

Acknowledgment

The authors are grateful to Masahiro Mambo for his helpful comments.
This work was supported in part by JSPS/MEXT Grant-in-Aid for Scientific Research Numbers

23500010, 23700010, 24240001, 25106509, 15H00851, 16H01705, and 17H01695.

References

[1] D. Apon, C. Cho, K. Eldefrawy, and J. Katz. Efficient, reusable fuzzy extractors from LWE.
In S. Dolev and S. Lodha, editors, Cyber Security Cryptography and Machine Learning - First
International Conference, CSCML 2017, Beer-Sheva, Israel, June 29-30, 2017, Proceedings,
volume 10332 of Lecture Notes in Computer Science, pages 1–18. Springer, 2017.

[2] X. Boyen. Robust and reusable fuzzy extractor. In P. Tuyls, B. Skoric, and T. Kevenaar,
editors, Security with Noisy Data, pages 101–112. Springer, 2007.

7

[3] R. Canetti, B. Fuller, O. Paneth, L. Reyzin, and A. D. Smith. Reusable fuzzy extractors
for low-entropy distributions. In M. Fischlin and J. Coron, editors, Advances in Cryptology -
EUROCRYPT 2016 - 35th Annual International Conference on the Theory and Applications of
Cryptographic Techniques, Vienna, Austria, May 8-12, 2016, Proceedings, Part I, volume 9665
of Lecture Notes in Computer Science, pages 117–146. Springer, 2016.

[4] Y. Dodis, R. Ostrovsky, L. Reyzin, and A. Smith. Fuzzy extractors: How to generate strong
keys from biometrics and other noisy data. SIAM J. Comput., 38(1):97–139, 2008.

[5] Y. Dodis, L. Reyzin, and A. Smith. Fuzzy extractors. In P. Tuyls, B. Skoric, and T. Kevenaar,
editors, Security with Noisy Data, pages 79–99. Springer, 2007. An updated version is available
at http://www.cs.bu.edu/∼reyzin/fuzzysurvey.html.

[6] B. Fuller, X. Meng, and L. Reyzin. Computational fuzzy extractors. In ASIACRYPT (1), pages
174–193, 2013.

[7] C. Herder, L. Ren, M. van Dijk, M. M. Yu, and S. Devadas. Trapdoor computational fuzzy
extractors and stateless cryptographically-secure physical unclonable functions. IEEE Trans.
Dependable Sec. Comput., 14(1):65–82, 2017.

[8] J. Radhakrishnan and A. Ta-Shma. Bounds for dispersers, extractors, and depth-two supercon-
centrators. SIAM J. Discrete Math., 13(1):2–24, 2000.

[9] Y. Wen, S. Liu, and S. Han. Reusable fuzzy extractor from the decisional Diffie-Hellman
assumption. Des. Codes Cryptography, 2018. https://doi.org/10.1007/s10623-018-0459-4.

8

http://www.cs.bu.edu/~reyzin/fuzzysurvey.html

	1 Introduction
	1.1 On the Negative Results of FMR13

	2 Preliminaries
	3 Limitations of Computational Fuzzy Extractors

