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Abstract

Fuller et al. (Asiacrypt 2013) studied on computational fuzzy extractors, and showed, as
a negative result, that the existence of a computational “secure sketch” implies the existence
of an information-theoretically secure sketch with slightly weaker parameters. In this work, we
show a similar negative result such that, under some computational assumption, the existence
of a computational fuzzy extractor also implies the existence of an information-theoretic fuzzy
extractor with slightly weaker parameters. The assumption is that the generation procedure
of the fuzzy extractor can be efficiently invertible. This result implies that to circumvent the
limitations of information-theoretic fuzzy extractors, we need to employ computational fuzzy
extractors in which the generation procedure cannot be efficiently invertible.

1 Introduction

Cryptographic primitives generally require uniformly random strings. A fuzzy extractor is a prim-
itive proposed in [3] that can reliably derive uniformly random keys from noisy sources, such as
biometric data (fingerprint, iris, facial image, etc.) and long pass-phrases.

Formally, Dodis et al. [3] defined fuzzy extractors to be a pair of procedures (Gen,Rep). The
key generation procedure Gen receives a sample w from a noisy source W with some entropy, and
outputs a uniformly random key r and a helper string p. After that, the reproduction procedure
Rep can be used to derive the same key r from the helper string p and a sample w′ that is close
to the original sample w. Notably, this framework does not need secret keys other than w. The
derived key r is close to uniform even if the helper string p was given. See [4, 1] for surveys of
results related to fuzzy extractors.

Dodis et al. [3] introduced the notion of secure sketch, which, on input w, produces an informa-
tion that enables the recovery of w from any close value w′ and does not reveal much information
about w. Then, they show that a combination of secure sketches and strong extractors gives fuzzy
extractors.

Fuzzy extractors are defined as information-theoretic primitives. Several limitations regarding
parameters in fuzzy extractors are also studied in [3]. The entropy loss is the difference between
the entropy of w and the length of the extracted key k. In the setting of information-theoretic
security, the entropy loss is known to be inevitable [6].
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Fuller et al. [5] consider the computational security of fuzzy extractors to circumvent the limita-
tions of information-theoretic fuzzy extractors. They gave both negative and positive results. On
one hand, they show that secure sketches with computational security need to be subject to lower
bounds from coding theory. In particular, they show that the existence of a computational secure
sketch implies the existence of an information-theoretic secure sketch with slightly weaker param-
eter. On the other hand, they present a direct construction of a computational fuzzy extractor
based on the hardness of learning with errors (LWE) problem.

In this work, we show that, assuming that the generation procedure Gen can be efficiently
invertible, computational fuzzy extractors also need to be subject to lower bounds from coding
theory. Specifically, we show that if w can be efficiently computable from the pair (r, p) that can be
generated by Gen(w), then the existence of a computational fuzzy extractor implies the existence
of an information-theoretic fuzzy extractor with slightly weaker parameters. This negative result
implies that in order to circumvent the limitation of the entropy loss of information-theoretic fuzzy
extractors, we need to employ computational fuzzy extractors in which the generation procedure
cannot be efficiently invertible. Indeed, there are extractors for structured sources that can be
efficiently invertible [2].

Comparison to the Results of Fuller et al. [5]

As noted in [5], when assuming that the generation procedure Gen can be efficiently invertible,
their negative results for computational secure sketches can also be applied to computational fuzzy
extractors. Here we describe this fact in more detail, and compare it with our result. Let (Gen,Rep)
be a computational fuzzy extractor. Assume that there is an efficient algorithm InvGen that, given
(r, p), output w, where (r, p) was generated by Gen(w). Then, one can construct a computational
secure sketch (SS,Rec) (see Definition 3 for the definition of secure sketches) by defining SS(w) =
{(r, p) ← Gen(w);Output p} and Rec(w′, SS(w)) = {r ← Rep(w′, p);w ← InvGen(r, p);Output w}.
Thus, by the negative results of [5], this implies the existence of secure sketch and fuzzy extrac-
tor with information-theoretic security. However, the above observation can be applied only if
InvGen(r, p) outputs the same w from which (r, p) was actually generated. In general, Gen is not
injective. Namely, there could exist different w1 and w2 such that the outputs of Gen(w1) and
Gen(w2) are the same. (In particular, this happens when r is relatively short.) In such a case, at
least one of w1 and w2 cannot be recovered by InvGen, and thus it seems difficult to use InvGen
for constructing secure sketches. In contrast, we give our negative result for computational fuzzy
extractors even when InvGen is not injective. In this sense, our result can be seen as a generalization
of the negative results of [5].

2 Preliminaries

Let X and Y be random variables over some alphabet Z. The min-entropy of X is
H∞(X) = − log(maxx Pr[X = x]). The average min-entropy of X given Y is H̃∞(X|Y ) =
− log(Ey∈Z maxx∈Z Pr[X = x|Y = y]). The statistical distance between X and Y is ∆(X,Y ) =
1
2

∑
z∈Z |Pr[X = z] − Pr[Y = z]|. If ∆(X,Y ) ≤ ϵ, we say X and Y are ϵ-close. We denote by

Uℓ the uniformly distributed random variable on {0, 1}ℓ. For s ∈ N, the computational distance
between X and Y is ∆s(X,Y ) = maxD∈Cs |E[D(X)]−E[D(Y )]|, where Cs is the set of randomized
circuits of size at most s that output 0 or 1. A metric space is a set M with a distance function
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dis :M×M→ R+ = [0,∞). For the Hamming metric over Zn, dis(x, y) is the number of positions
in which x and y differ. For a probabilistic experiment E and a predicate P , we denote by Pr[E : P ]
the probability that the predicate P is true after the event E occurred.

We give definitions of fuzzy extractor, computational fuzzy extractor, secure sketch, and strong
extractor.

Definition 1 (Fuzzy Extractor). An (M,m, ℓ, t, ϵ)-fuzzy extractor with error δ is a pair of ran-
domized procedures (Gen,Rep) with the following properties:

• The generation procedure Gen on input w ∈ M outputs an extracted string r ∈ {0, 1}ℓ and a
helper string p ∈ {0, 1}∗.

• The reproduction procedure Rep takes w′ ∈ M and p ∈ {0, 1}∗ as inputs. The correctness
property guarantees that for any w,w′ ∈ M with dis(w,w′) ≤ t, if (R,P ) ← Gen(w), then
Rep(w′, P ) = R with probability at least 1− δ, where the probability is taken over the coins of
Gen and Rep. If dis(w,w′) > t, no guarantee is provided about the output of Rep.

• The security property guarantees that for any distribution W on M of min-entropy m, if
(R,P )← Gen(W ), then ∆((R,P ), (Uℓ, P )) ≤ ϵ.

Definition 2 (Computational Fuzzy Extractor). An (M,m, ℓ, t, s, ϵ)-computational fuzzy extractor
with error δ is a pair of randomized procedures (Gen,Rep) that is an (M,m, ℓ, t, ϵ)-fuzzy extractor
with error δ in which the security property is replaced by the following one:

• For any distribution W on M of min-entropy m, if (R,P ) ← Gen(W ), then
∆s((R,P ), (Uℓ, P )) ≤ ϵ.

Definition 3 (Secure Sketch). An (M,m, m̃, t)-secure sketch with error δ is a pair of randomized
procedures (SS,Rec) with the following properties:

• The sketching procedure SS on input w ∈M outputs a string s ∈ {0, 1}∗.

• The recovery procedure Rec takes w′ ∈M and s ∈ {0, 1}∗ as inputs. The correctness property
guarantees that for any w,w′ ∈ M with dis(w,w′) ≤ t, Pr[Rec(w′, SS(s)) = w] ≥ 1− δ where
the probability is taken over the coins of SS and Rec. If dis(w,w′) > t, no guarantee is provided
about the output of Rec.

• The security property guarantees that for any distribution W on M of min-entropy m,
H̃∞(W |SS(W )) ≥ m̃.

Definition 4. We say that Ext : {0, 1}n → {0, 1}ℓ is an (n,m, ℓ, ϵ)-strong extractor if for any W
on {0, 1}n of min-entropy m, ∆((Ext(W ;X), X), (Uℓ, X)) ≤ ϵ, where X is the uniform distribution
on {0, 1}r.

3 Main Results

In this section, we show that the existence of a computational fuzzy extractor implies the existence
of an information-theoretic fuzzy extractor with slightly weaker parameters. For this result, we need
a computational assumption that the generation procedure of a fuzzy extractor can be efficiently
invertible.

We give a formal definition of invertibility of the generation procedure.
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Definition 5. Let (Gen,Rep) be a fuzzy extractor for a metric space M. We say Gen is (s, η)-
invertible if there exists a deterministic circuit InvGen of size at most s such that

Pr
[
w′ ← InvGen(R′, p) : ∃ rG ∈ {0, 1}∗ s.t. Gen(w′; rG) = (R′, p)

]
≥ 1− η

for any p that can be generated as (r, p) ← Gen(w) for w ∈ M, where R′ = Uℓ. We say Gen is
errorless-invertible if InvGen(r, p) outputs either ⊥ (failure symbol) or w ∈M for which there exists
rG such that (r, p) = Gen(w; rG).

In the definition, we consider that InvGen succeeds in inverting Gen if it outputs w′ from which
the input (r′, p) can be generated by Gen, and thus w′ is not necessarily the same as w from which
p was actually generated.

Note that defining InvGen to be deterministic circuits does not lose the generality. If there
exists a randomized circuit InvGen that inverts Gen with some probability, then by fixing the coins
of InvGen for which the average performance can be achieved, we can say that there exists a
deterministic circuit that inverts Gen with the same probability.

We show that if a fuzzy extractor has the perfect correctness, we can obtain the errorless
invertibility for Gen.

Lemma 1. Let (Gen,Rep) be a fuzzy extractor with error 0. If Gen is (s, η)-invertible, then Gen is
(s+ srep, η)-errorless-invertible, where srep is the size of circuit Rep.

Proof. Let InvGen be the inverter of (s, η)-invertibility of Gen. Then, we construct an inverter
InvGen′ such that on input (r, p), (1) run w ← InvGen(r, p), (2) output w if Rep(w, p) = r, and
output ⊥ otherwise. The correctness property of (Gen,Rep) guarantees that the output of InvGen′

is a valid inverse of (r, p).

Since we prove our negative result for computational fuzzy extractors with errorless invertibility,
Lemma 1 implies that our negative result can also be applied to computational fuzzy extractors
with perfect correctness.

We will prove that the existence of a computational fuzzy extractor implies the existence of an
error-correcting code. We provide some notions regarding coding theory.

Definition 6. We say a metric space (M, dis) is (s, t)-bounded-error samplable if there exists a
randomized circuit ErrSmp of size s such that for all 0 ≤ t′ ≤ t and w ∈ M, ErrSmp(w, t′) outputs
a random point w′ ∈M satisfying dis(w,w′) = t′.

Definition 7. Let C be a set over a metric space M. We say C is a (t, ϵ)-maximal-error Shan-
non code if there exists an efficient recover procedure Rec such that for all t′ ≤ t and c ∈ C,
Pr[Rec(ErrSmp(c, t′)) ̸= c] ≤ ϵ.

Definition 8. Let (M, dis) be a metric space that is (s, t)-bounded-error samplable by a circuit
ErrSmp. For a distribution C overM, we say C is a (t, ϵ)-average-error Shannon code if there exists
an efficient recover procedure Rec such that for all t′ ≤ t and c ∈ C, Prc∈C [Rec(ErrSmp(c, t′)) ̸=
c] ≤ ϵ.

The following fact can be obtained by Markov’s inequality. (See [5] for the proof.)

Lemma 2 ([5]). Let C be a (t, ϵ)-average-error Shannon code with recovery procedure Rec such that
H∞(C) ≥ k. Then, there exists a set C ′ with |C ′| ≥ 2k−1 that is (t, 2ϵ)-maximal-error Shannon
code with recovery procedure Rec.
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We prove that if the generation procedure is errorless-invertible, then the existence of a com-
putational fuzzy extractor implies the existence of a maximal-error Shannon code.

Theorem 1. Let (M, dis) be a metric space that is (ssmp, t)-bounded-error samplable. Let
(Gen,Rep) be an (M,m, ℓ, t, ssec, ϵ)-computational fuzzy extractor with error δ. Let srep denote
the size of the circuit that computes Rep. If Gen is (sinv, η)-errorless-invertible, and it holds that

ssec ≥ sinv + tssmp+(t+1)srep, then there exists a value p and a set C with |C| ≥ 2
− log(2−ℓ+ ρ

|M| )−1

that is a (t, 2ρ)-maximal-error Shannon code with recovery procedure InvGen(Rep(·, p), p), where
ρ = ϵ+ η + (t+ 1)δ.

Proof. Let W be an arbitrary distribution on M of min-entropy m. By the security property of
the computational fuzzy extractor (Gen,Rep), we have that ∆ssec((R,P ), (Uℓ, P )) ≤ ϵ for (R,P )←
Gen(W ).

Let InvGen be an inverter of the (s, 1−η)-errorless-invertibility of Gen. We consider the modified
inverter InvGen′:

1. On input r ∈ {0, 1}ℓ and p ∈ {0, 1}∗, compute w ← InvGen(r, p).

2. If w ̸= ⊥ and Rep(w, p) = r, output w. Otherwise, output a random element inM.

The procedure InvGen′ can be implemented by a circuit of size sinv + srep. Define the event Esuc

such that
Esuc = {w ̸= ⊥ ∧ Rep(w,P ) = R},

where (R,P ) ← Gen(W ), w ← InvGen(R,P ). By the correctness property of (Gen,Rep) and the
failure probability of InvGen, we have that Pr[Esuc] ≥ 1− (η + δ).

Define the following procedure D:

1. On input r ∈ {0, 1}ℓ, p ∈ {0, 1}∗, and t ∈ N, compute w ← InvGen′(r, p).

2. For all 1 ≤ t′ ≤ t, do the following:

(a) w′ ← ErrSmp(w, t′).

(b) If Rep(w′, p) ̸= r, output 0. Otherwise, do nothing.

3. Output 1.

The procedure D “efficiently” checks whether Rep can correctly output the string r from the
corresponding p and w with random t-bounded errors. We need the efficiency of D since otherwise
the “error-correcting” property of Rep may not be taken over from the computational security of
(Gen,Rep).

The procedureD can be implemented by a circuit of size sinv+tssmp+(t+1)srep. Note that in the
procedure D, we can easily check whether the event Esuc occurs or not (by checking that a random
element is produced in InvGen′). Thus, by the invertibility of Gen and the correctness property of
(Gen,Rep), we have that Pr[D(R,P, t) = 1 ∧ Esuc] ≥ 1−(η+(t+1)δ). Since ∆ssec((R,P ), (Uℓ, P )) ≤
ϵ, if ssec ≥ sinv + tssmp + (t+ 1)srep, it holds that

Pr[D(Uℓ, P, t) = 1 ∧ Esuc] ≥ 1− (ϵ+ η + (t+ 1)δ)

= 1− ρ.
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By the averaging argument, there exists a value p such that Pr[D(Uℓ, p, t) = 1 ∧ Esuc] ≥ 1− ρ.
This implies that, for all 1 ≤ t′ ≤ t,

Pr

[
w ← InvGen′(R, p),

w′ ← ErrSmp(w, t′)
: Rep(w′, p) = R ∧ Esuc

]
≥ 1− ρ, (1)

where R = Uℓ. Since the event Esuc implies that InvGen(R, p) = w, we have that, for all 1 ≤ t′ ≤ t,

Pr

[
w ← InvGen′(Uℓ, p),

w′ ← ErrSmp(w, t′)
: InvGen(Rep(w′, p), p) = w

]
≥ 1− ρ.

This implies that a distribution InvGen′(Uℓ, p) is a (t, ρ)-average-error Shannon code with recovery
procedure InvGen(Rep(·, p), p). By applying Lemma 2, we can show that there is a set C with
|C| ≥ 2k−1 that is a (t, 2ρ)-maximal-error Shannon code for k ≤ H∞(InvGen′(Uℓ, p)).

Finally, we prove that H∞(InvGen′(Uℓ, p)) ≥ − log(2−ℓ + ρ
|M|). Define

Rgood =

{
r ∈ {0, 1}ℓ :

w ← InvGen(r, p),

w ̸= ⊥ ∧ Rep(w, p) = r

}
.

By equation (1), it holds that |Rgood| ≥ (1− ρ)2ℓ. Let Wgood = {InvGen(r, p) : r ∈ Rgood}. By the
definition of InvGen′, we have that

Pr[InvGen′(Uℓ, p) = w] =

{
2−ℓ + ρ

|M| w ∈M∩Wgood

ρ
|M| w ∈M \Wgood.

Therefore, the min-entropy of InvGen′(Uℓ, p) is − log(2−ℓ + ρ
|M|).

It is known that a secure sketch can be constructed from a Shannon code, which is explicitly
presented in [5], and implicitly stated in [3, Section 8.2].

Lemma 3 ([3, 5]). For an alphabet Z, let C be a (t, δ)-maximal-error Shannon code over Zn.
Then, there exists a (Zn,m,m− (n log |Z| − log |C|), t) secure sketch with error δ for the Hamming
metric over Zn.

An information-theoretic fuzzy extractor can be constructed from a secure sketch and a strong
extractor [3]. In particular, if we use universal hashing as strong extractor, we obtain the following
result.

Lemma 4 ([3]). Let (SS,Rec) be an (M,m, m̃, t)-secure sketch with error δ, and Ext an (n, m̃, ℓ, ϵ)-
strong extractor given by universal hashing (any ℓ ≤ m̃− 2 log(1ϵ ) + 2 can be achieved). Then, the
following (Gen,Rep) is an (M,m, ℓ, t, ϵ)-fuzzy extractor:

• Gen(w; r, x) : set P = (SS(w; r), x), R = Ext(w;x), and output (R,P ).

• Rep(w′, (s, x)) : recover w = Rec(w′, s) and output R = Ext(w;x).

By combining Theorem 1 and Lemmas 3 and 4, we obtain the following corollary.
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Corollary 1. Let Z be an alphabet. Let (Gen,Rep) be a (Zn,m, ℓ, t, ssec, ϵ)-computational fuzzy
extractor with error δ. Let srep denote the size of the circuit that computes Rep. If Gen is (sinv, η)-
errorless-invertible, and it holds that ssec ≥ sinv + tn log |Z| + (t + 1)srep, then there exists a
(Zn,m, ℓ, t, ϵ′) (information-theoretic) fuzzy extractor with error 2ρ for any ℓ ≤ m − n log |Z| −
log(2−ℓ + ρ

|Z|n )− 2 log( 1
ϵ′ ) + 1, where ρ = ϵ+ η + (t+ 1)δ.

In particular, in the above corollary, if we choose m = n log |Z| and ρ
|Z|n ≤ 2−ℓ, then a

(Zn, n log |Z|, ℓ, t, ssec, ϵ)-computational fuzzy extractor implies a (Zn, n log |Z|, ℓ − 2 log( 1
ϵ′ ), t, ϵ

′)-
fuzzy extractor with error 2ρ.

As in the negative result of [5], we do not claim about the efficiency of the resulting fuzzy
extractor. In our case, the non-explicit parts are (1) fixing the value p, and (2) constructing a
maximal-error Shannon code from an average-error one (Lemma 2) in Theorem 1.
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