
Accumulating Automata and Cascaded Equations Automata⋆

for Communicationless Information Theoretically Secure Multi-Party Computation
(Preliminary Report)

Shlomi Dolev1 and Niv Gilboa2 and Ximing Li1

1 Department of Computer Science, Ben Gurion University of Negev
dolev@cs.bgu.ac.il, ximing@post.bgu.ac.il

2 Department of Communication Systems Engineering, Ben Gurion University of Negev
gilboan@cse.bgu.ac.il

Abstract. Information theoretically secure multi-party computation implies severe communication over-
head among the computing participants, as there is a need to reduce the polynomial degree after each multi-
plication. In particular, when the input is (practically) unbounded, the number of multiplications and there-
fore the communication bandwidth among the participants may be practically unbounded. In some scenarios
the communication among the participants should better be avoided altogether, avoiding linkage among the
secret share holders. For example, when processes in clouds operate over streaming secret shares without
communicating with each other, they can actually hide their linkage and activity in the crowd. An adversary
that is able to compromise processes in the cloud may need to capture and analyze a very large number of
possible shares.

Consider a dealer that wants to repeatedly compute functions on a long file with the assistance of m
servers. The dealer does not wish to leak either the input file or the result of the computation to any of the
servers. We investigate this setting given two constraints. The dealer is allowed to share each symbol of
the input file among the servers and is allowed to halt the computation at any point. However, the dealer is
otherwise stateless. Furthermore, each server is not allowed any communication beyond the shares of the
inputs that it receives and the information it provides to the dealer during reconstruction.

We present a protocol in this setting for generalized string matching, including wildcards. We also
present solutions for identifying other regular languages, as well as particular context free and context sen-
sitive languages. The results can be described by a newly defined accumulating automata and cascaded
equations automata which may be of an independent interest. As an application of accumulating automata
and cascaded equations automata, secure and private repeated computations on a secret shared file among
communicationless clouds are presented.

Keywords: Automata, Theoretically secure, Multi-Party Computation, Communicationless clouds

⋆ Partially supported by Deutsche Telekom, Rita Altura Trust Chair in Computer Sciences, Lynne and William Frankel
Center for Computer Sciences, Israel Science Foundation (grant number 428/11), Cabarnit Cyber Security MAGNET
Consortium, Grant from the Institute for Future Defense Technologies Research named for the Medvedi of the Technion,
and Israeli Internet Association.

1 Introduction

Secure multi-party computation (MPC) is a powerful concept in secure distributed computing. The
goal of secure MPC is to enable a set of m mutually distrusting parties to jointly and securely com-
pute a function f of their private inputs, even in the presence of a computationally unbounded active
adversary Adv. For example, two millionaires can compute which one is richer, without revealing
their actual worth. In secure MPC, two or more parties want to conduct a computation based on their
private inputs, but neither party is willing to disclose its own input to anybody else.

Secure multi-party computation participants can compute any function on any input, in a dis-
tributed network where each participant holds one of the inputs, ensuring independence of the inputs,
correctness of the computation, and that no information is revealed to a participant in the computation
beyond the information that can be inferred from that participants’ input and output [22, 14]. Like
other cryptographic protocols, the security of MPC protocol can rely on different assumptions:

– It can be computational, namely, based on the common belief on the complexity of mathematical
tasks such as factoring, or information theoretically secure which is unconditional secure, and
usually based on secret sharing schemes [28, 5].

– The settings in which the scheme is described may differ, possibly assuming that participants
use a synchronized network, that a secure and reliable broadcast channel exists, that a secure
communication channel exists between every pair of participants, such that an adversary cannot
tap-in, modify or generate messages in the channel, and alike.

Secure multi-party computation can be realized in various settings for computing general functions
[21]. However, the general scheme presented in [21] may be impractical due to efficiency reasons,
partly due to the communication required among the participants. In [2], Ben-Or et al demonstrated
that any n-party functionality can be computed with perfect security in the private channels model. For
the main result of [2], Gilad Asharov and Yehuda Lindell gave a full proof in [1] in 2011. Recently,
several fast MPC protocols [23, 29, 24] are proposed to meet a specified security level at a relative
low cost, while they all based the security of their protocols on computational unproven hardness
assumptions. According to the experiment in [29], they can finish computing the output of one logical
gate in about 4ms. Thus, simple searches will cost several minutes. Thereby, currently, it is impossible
to use this kind of computing protocol to design practical software.

In this paper, we are concerned with communicationless information theoretically secure multi-
party computation over long input streams. A dealer D may secretly share an initial value among the
m servers (participants). Subsequently, the dealer is responsible for handling the input stream stream
(or an input file) and distributing appropriate shares to the participants. We assume a stateless dealer,
allowing the dealer to temporarily store the current input to the system, process the input and send
(not necessarily simultaneously) secret shares of the inputs to the participants. Note, that one of the
participants may act as the dealer, or the participants may alternate among themselves in serving as
the dealer. In such a case one participant communicates with the rest to convey the input (shares), still
the inherent quadratic complexity needed to reduce the polynomial degree in the classical information
theoretically secure multi-party computation is avoided in our schemes. Moreover, in case the input
symbols have been shared and assigned to the participants in the initialization phase, every participant
can independently (and asynchronously) process the shares of the input, and sends the result when
the global output has to be determined. For example assigning shares of a file up-front to participants
to allow repeated search of patterns, without revealing neither the file nor the search result to the
participants. No participant returns any information back during the execution of the algorithm. At

1

any point in the execution the dealer may ask some participants to send their results back, then the
dealer can reconstruct the actual result of the algorithm.
Related work We firstly describe the related results concerning multi-party computation. Then, we
turn to works that suggest outsourcing finite automata, perennial distributed computation on common
inputs and secure computation on stream of data. At last we address and compare our results with
fully homomorphic encryption schemes.
Multi-party computation Josh Cohen Benaloh describes the homomorphism property of Shamir’s lin-
ear secret sharing scheme [3], with the help of communication to decrease the polynomial degree.
Ronald Cramer et al. presented a method [7] for converting shares of a secret into shares of the same
secret in a different secret-sharing scheme using only local computation and no communication be-
tween players. They showed how this can be combined with any pseudorandom function to create,
from initially distributed randomness, any number of Shamir’s secret-shares of (pseudo)random val-
ues without communication. Damgard et al. showed how to effectively convert a secret-shared bit
over a prime field to another field [8]. By using a pseudorandom function, they showed how to convert
arbitrary many bit values from one initial random replicated share.
Outsourcing finite automata In [31], Brent Waters provides a functional encryption system that sup-
ports functionality for regular languages. In this system a secret key is associated with a deterministic
finite automaton (DFA) M . A ciphertext, ct, encrypts a message msg associated with an arbitrary
length string w. A user is able to decrypt the ciphertext ct if and only if the automaton M associated
with his private key accepts the string w. Motivated by the need to outsource file storage to untrusted
clouds while still permitting limited usage of that data by third parties, the work in [25] presented
practical protocols by which a client (the third-party) can evaluate a DFA on an encrypted file stored
at a server (the cloud), once authorized to do so by the file owner. All the above schemes are based
on unproven, commonly believed to be hard mathematical tasks and are not information theoretically
secure.
Perennial distributed computation on common inputs In 2007, Dolev et al. [12, 13] presented the set-
tings for infinite private computation and presented few functions that can operate under a global input.
Then in 2009, Dolev et al. [9] presented schemes that support infinite private computation among par-
ticipants, implementing an oblivious universal Turing machine. At each single input of the machine,
participants need to broadcast information in order to reduce the degree of the polynomial used to
share secrets. Based on combination of secret-sharing techniques and the Krohn-Rhodes decomposi-
tion of finite state automata, Dolev et al. [10] proposed the first communicationless scheme for private
and perennial distributed computation on common inputs in a privacy preserving manner, assuming
that even if the entire memory contents of a subset of the participants are exposed, no information
about the state of the computation is revealed. The scheme in [10] does not assume a priori bound on
the number of inputs. However, the scheme assumes a global input which reveals information on the
computation and the computational complexity of the algorithm of each participant is exponential in
the automata number of states. Relying on the existence of one-way functions or common long one
time pads, Dolev et al. [11] showed how to process a priori unbounded number of inputs for inputs
over a finite state automaton (FSA) at a cost that is linear in the number of FSA states. Although the
authors can hide the current state of the FSA, the dealer must supply the input symbols in plain text to
each participant.
Secure computation on data stream Private stream searching. In [26], Ostrovesky et al. defined the
problem of private filtering where a data stream is searched for predefined keywords. The schemes
are also implemented by Paillier homomorphic cryptosystem. The proposed scheme was improved
by John Bethencourt et al. in [4] reducing the communication and storage complexity. Our scheme

2

suggests framework for richer tasks and is information theoretically secure rather than computationally
secure.

Fully homomorphic encryption In his seminal paper [16], Craig Gentry presented the first fully homo-
morphic encryption (FHE) scheme which is capable of performing encrypted computation on Boolean
circuits. A user specifies encrypted inputs to the program, and the server computes on the encrypted
inputs without gaining information concerning the input or the computation state. Following the out-
line of Gentry’s, many subsequent FHE schemes [17, 30, 6, 19] are proposed and some of which are
even implemented [18]. Most recently, Craig Gentry et al. executed one AES-128 encryption homo-
morphically in eight days [20]. Most encrypted computation examples are restricted to fixed-iteration
loops or Boolean circuits, however, Fletcher et al. try to build a compiler for encrypted computation
of general programs [15]. Fletcher et al. also formally show how a Turing machine operation can be
transformed into an arithmetic circuit that can be evaluated under encryption. The FHE schemes that
follow the outline of Gentry’s original construction are inefficient in that their per-gate computation
over-head is a large polynomial in the security parameter and are furthermore only computationally
secure.

Our contribution We assume there is one dealer D who wants to perform secure private computation
over a very long input stream which may be actually unbounded. The dealer uses m cloud servers or
agents P1, . . . ,Pm which perform a computation over the input stream received from D. The dealer
D sends different input shares to every agent. Agents do not communicate with each other. Any agent
cannot learn anything about the original inputs that D partitions to shares, as the dealer uses Shamir’s
secret sharing to partition any symbol of the original input to be sent to the agents. At any given
stage the dealer D may collect the state of the agents and obtain the computation result. The agents
use memory that is logarithmic in the length of the input, and therefore can accommodate practically
unbounded inputs. We present two types of solutions, by introducing two new automata, the first
one is accumulating automata and the second one is cascaded equations automata.The two types of
automata are practical tools for communicationless MPC and can be implemented on equipments with
low compuation capability, as all the compuations consist of additions and multiplications over small
finite field.

Outline of the paper In Section 2, we exploit the method to implement communicationless secure
and private multi-party computation for any string matching. This string matching example is general-
ized in Section 3 to the definition of accumulating automata and DAG accumulating automata which
can be used to implement algorithms securely and privately. Then, in Section 4, we discuss the rela-
tionship between DAG accumulating automata, secret sharing and secure multi-party computations.
Any algorithm that can be implemented by a DAG accumulating automaton can be secret shared, and
then be securely and privately executed among constant number of participants. Other applications
of accumulating automata beyond string matching are proposed in Section 5. For strictly unbounded
input, in Section 6 we define a new kind of automata named cascaded equations automata and its
application in the scope of secure multi-party computation over bounded and (strictly) unbounded in-
puts. We note however that the scope of languages recognizable by the cascaded equations automata
is more restricted. An implementation of the accumulating automaton to obtain a secure computation
over secret shared file among communicationless clouds is presented in Section 7. Conclusions and
discussions appear in Section 8.

3

2 Secure private multi-party computation for string matching

String matching is a basic task used in a variety of scopes. A pattern (string) has to be found as part
of text processing, also as part of malware (virus) defense, pattern recognition, bioinformatics and
database query. The inputs are text and a pattern, the pattern is usually much shorter than the text. The
goal is to find whether the pattern appears in the text or not. Fig. 1 describes a simple example of string
matching. One brute force method for string matching is to check every single character as being the
first character of the pattern and match the entire pattern against the text, starting at this character
position. In this section, we introduce a new method to implement secure multi-party computation for

TEXT

PATTERN

AL I CE LOV E S BOB

LOV E

Fig. 1: String matching example

string matching, where the text (and possibly the pattern) is unknown to the processing participants.
Using the newly defined string algorithm over directed graph that is presented in Section 2.1, we
propose a communicationless secure private multi-party string matching protocol in Section 2.2. More
communicationless secure private multi-party string matching algorithms are given in Appendix 2.2.

2.1 String matching algorithm over directed graph

We start describing a simplified non-secure version of the algorithm. Then we detail the way to obtain
information theoretically secure computation extending the simplified version. Fig. 2 depicts a directed
graph G which will be used to implement the string matching task of Fig. 1. G is used to check
whether there is a substring LOV E in the text. In G, there are five nodes labeled N1 to N5 and four
arcs labeled L,O, V,E, respectively. N5 is a special node called accumulating node that is depicted
by two concentric circles.

N1 N2 N3 N4 N5

L O V E

Fig. 2: String matching algorithm over directed graph G

Initial marking of the graph At the initial stage, we assign an initial value for every node in the graph.
N1 is initially set to 1. N2 to N5 are initially set to 0. Namely,

N
(0)
1 = 1, N

(0)
2 = N

(0)
3 = N

(0)
4 = N

(0)
5 = 0

Execution of the string matching algorithm Each input value assigns a new (integer) value to every
node. N (j)

i denotes the value of the node Ni immediately after step j. According to the pattern, we
define an input vector v in which each element matches one corresponding element in the pattern.

4

Since the pattern consists of four characters, {L,O, V,E}, we use a vector of four binary values that
represents each possible character in the pattern. If the input character does not appear in the pattern,
then the value of the vector v is set to (0, 0, 0, 0). In particular, when the input symbol is O then the
vector v is set to (0, 1, 0, 0) and when the input symbol is, say C, then the vector v is set to (0, 0, 0, 0).
The value of N1 is initialized to be 1 and is unchanged during the entire string matching process.
For any given input vector (v1, v2, v3, v4), the values of all the marking of nodes of the graph are
simultaneously computed as follows

N
(i+1)
2 = N

(i)
1 · v1

N
(i+1)
3 = N

(i)
2 · v2

N
(i+1)
4 = N

(i)
3 · v3

N
(i+1)
5 = N

(i)
5 +N

(i)
4 · v4

(1)

Equation 1 defines the transition functions for the string matching algorithm. Note that N5, being
accumulated node, accumulates values, while the rest of the nodes recompute values based only on
values of neighboring nodes.
Result of the algorithm At any time, we can check the value of the node N5. If N5 > 0, then we know,
there is at least one match. Actually, the value of the node N5 encodes the number of times the pattern
has occurred in the input stream. Here we should assume that the number of occurrences does not
exceed the maximal integer that the system can maintain and represent for N5.

2.2 Communicationless secure private multi-party string matching protocol

Next we present a secure multi-party string matching algorithm using Shamir’s secret sharing scheme
to mimic the algorithm presented above. Among the whole protocol, the computation field is a big
finite field. We assume all the computations will not overflow during the execution of the protocol.
Initial stage Nodes’ values are shared among several participants using secret sharing and so are the
entries of the vector that represent each symbol of the input text. For ease of discussion assume that
the input symbols are represented by secret shares of polynomial of degree 1. Since the transition
function includes multiplication, the degree of the polynomial that encodes the value of a certain node
is one more than the degree of the preceding node. For our particular example, we have to use at least
six participants to ensure that the result encoded in N5 can be decoded.

For simplicity, we assume there are six participants P1, . . . ,P6 that undertake the task of multi-
party computation string matching. For the five nodes of the graph, we define five random polynomials
f1 to f5, where fi is of degree i. We use each corresponding polynomial to secret share each node’s
initial value among the six participants, each partner Pi receives one share. We denote the initial share
of the node Nj that is maintained by the participants Pi by S

(0)
Pi,Nj

.
Execution stage Each symbol α is mapped to an input vector v. Then each element in the input vector
v is secret shared into six parts by a random polynomial of degree 1. Each share of the input vector is
then sent to one of the participants. For the participant Pi, 1 ≤ i ≤ 6, the corresponding shares of the
input vector are denoted (Si,v1 , Si,v2 , Si,v3 , Si,v4). We also secret share the number 1 into six shares
by a random polynomial of degree 1. The six shares are denoted as follows

S1,v0 , S2,v0 , S3,v0 , S4,v0 , S5,v0 , S6,v0

where the share Si,v0 will be sent to the participant Pi.

5

Immediately after processing the kth input symbol, the value of the (share of) node Nj that is
stored by the participant Pi is denoted S

(k)
Pi,Nj

. When the dealer sends a vector as follows

(Si,v0 , Si,v1, Si,v2, Si,v3, Si,v4)

Pi executes the following transitions:

S
(k+1)
Pi,N1

= Si,v0

S
(k+1)
Pi,N2

= S
(k)
Pi,N1

· Si,v1

S
(k+1)
Pi,N3

= S
(k)
Pi,N2

· Si,v2

S
(k+1)
Pi,N4

= S
(k)
Pi,N3

· Si,v3

S
(k+1)
Pi,N5

= S
(k)
Pi,N5

+ S
(k)
Pi,N4

· Si,v4

Collection stage Whenever we want to compute the result of the algorithm, we ask all the participants
to send the value that corresponds to N5 back. Having the shares of all participants, we can construct
the actual value of N5 using Lagrange interpolation. The value obtained indicates whether the search
is successful in finding the string or not.
Analysis of the system In the protocol, we have not discussed the computational field. Apparently, the
greatest value is associated with the node N5, this value represents the number of times the pattern
was found in the text, namely, is bounded by the length of the input text. Thus, for every practical
system a field that can be represented by a counter of, say, 128 bits will surely suffice.

Note that the participants do not know the inputs and the results during the entire execution of the
string matching. One can also secure the pattern by executing such string matching over all possible
strings, collect all results, and compute only the result of the pattern of interest.

2.3 Matching several strings simultaneously

The method discussed in the previous subsection is also good for simultaneous multiple strings match-
ing, which means we can search more than one string simultaneously. An example of a directed graph
for matching more than one string at the same time is described in Fig. 3.

N1 N2 N3 N4

. . .

Nn1

N5
. . .

Nn2

N6
. . .

Nn3

N7
. . .

Nn4

αi1 αi2 αi3 αi4 αin

αj1 αj2

αj3 αjn

αk1

αk2 αk3 αkn

Fig. 3: A directed graph for multiple string matching

The transition function for this algorithm given in Equation 2 is similar to the one defined by
Equation 1. In Equation 2, each node value is computed depending on the input and/or the previous

6

state of the node. At step k, under each input, for each node Ni, we compute the next value as follows

N
(k+1)
i =



v0 if i = 0

N
(k)
i−1 · vi if Ni is not an

accumulating node

N
(k)
i +N

(k)
i−1 · vi if Ni is an

accumulating node

(2)

2.4 General string matching

To allow any string matching, we need to address ways to implement the basic wildcard characters
“?” and “*”, as we detail next.
String matching algorithm with question mark in the pattern A character “?” is a character that may be
substituted by any single character of all the possible characters. The directed graph for the matching
algorithm that includes a question mark in the pattern is described in Fig. 4. The arc that represents the
question mark is marked by the integer 1 and implies a transition that uses the marking of the previous
node unchanged (multiplied by 1).

N1 N2 N3 N4 N5 N6 N7

α β α 1 α α

Fig. 4: String matching algorithm with one wildcard “?” in the pattern (αβα?αα)

The transition function for this algorithm given in Equation 3 is similar to the transition function
defined by Equation 2. In step k, under each input, for each node Ni, we compute as follows

N
(k+1)
i =

v0 if i = 0

N
(k)
i−1 if the former edge is labeled by 1

N
(k)
i−1 · vi if Ni is not an accumulating node;

the former edge is not labeled by 1

N
(k)
i +N

(k)
i−1 · vi if Ni is an accumulating node;

the former edge is not labeled by 1

(3)

String matching algorithm with a star wildcard in the pattern A wildcard character “*” is a character
that may be substituted by any number of the characters from all the possible characters. The directed
graph for the matching algorithm for a pattern with a star is described in Fig. 5.

N1 N2 N3 N4 N5 N6

α β α α α

Fig. 5: String matching algorithm with one wildcard “*” in the pattern (αβα ∗ αα)

The transition function for this algorithm given in Equation 4 is similar to the one defined by
Equation 3. In step k, under each input, for each node Ni, we compute as follows

7

N
(k+1)
i =

v0 if i = 0

N
(k)
i−1 · vi if Ni is not an accumulating node

N
(k)
i +N

(k)
i−1 · vi if Ni is an accumulating node

(4)

2.5 Any secure private string matching algorithm

In subsection 2.1 we have shown how to perform a basic string matching algorithm on a directed graph.
In subsection 2.2 we detailed a secure and private implementation of the algorithm in the scenario of
multi-party computation without communication. Based on the basic implementation we present meth-
ods for implementing complicated string matching algorithms with wildcards in the pattern. Thus, we
can implement (practically) any string matching algorithm securely and privately without communi-
cation between participants. The limitation of the value in the accumulating nodes is only theoretic,
as for any text length n (say, even of practically not existing length of 2128 characters) and a pattern
that yields l accumulating nodes, l · log n bits are needed to encode a state. The field of the numbers
should be n or (slightly) bigger.

3 Accumulating automata

In this section, we generalize the string matching scheme by defining general accumulating automata
(AA) and then show ways to implement dag accumulating automata that are directed acyclic (not
necessarily connected) graphs structure. Then, we define ways to mark the AAs and the corresponding
semantics for such marking. At last we give a concrete example for DAA.

Accumulating automata are state-transition systems formally defined next:

Definition 1. An accumulating automaton is a triple A = (V,Σ, T) where:

– V is a set of variables, called nodes. A node is either regular or accumulating. For an accumu-
lating automaton, marking operation means to assign value for each node and updating process
of an automaton means to refresh all the nodes on new input. On updating, the new marking of a
regular node is a function of the marking of neighboring nodes and the inputs, while the marking
computation function of an accumulating node also considers the node’s previous value;

– Σ is the alphabet, which is the set of input symbols (or characters) that the automaton should
operate on. 1 is defined as a special symbol to denote any symbol in the alphabet;

– T is a set of transitions. A triple (p1, α, p2) ∈ V × Σ → V is called a transition or arc, and is
written δ(p1, α) = p2. For every δ in T there exist p, q ∈ V and α ∈ Σ such that δ(p, α) = q.

We remark that, one may consider a more expensive operation, where δ(p, r, α) = q, p · r · α = q
(or even an operation that multiplies the marking of more than two nodes). This type of operation
yields an addition of the degree of the polynomial used to secret share the node.

Accumulating automaton is represented by a (possibly disconnected) directed graph where each
regular node is depicted by a circle, accumulating node by two concentric circles, and transitions by
(directed) arcs. Input symbols are labeled as symbols above the corresponding transitions. Node q is
called free node, if, for any node p and any input symbol α, no transition can fulfill δ(p, α) = q.

8

Definition 2. (Dag Accumulating Automata (DAA)) Accumulating automaton that defines a graph G
that is acyclic, namely, without cycles and self-loops is a dag accumulating automaton. In other words,
dag accumulating automaton is an accumulating automaton for which it holds for any p in V, there
does not exist α1, . . . , αn ∈ Σ and δ1, . . . , δn ∈ T , such that

δn(· · · δ2(δ1(p, α1)), α2) · · ·) = p

Moreover, for every p and q in V , if there exists α ∈ Σ such that δ(p, α) = q then p ̸= q.

Definition 3. (Marking of accumulating automata) A marking of an accumulating automaton A =
(V,Σ, T) is a vector of values, one integer value for each node in V . A marked automaton A is a
4-tuple (V,Σ, T,M), where M is the marking vector.

Definition 4. (Execution semantics of AA) The behavior of an accumulating automaton is defined as
a relation on its markings, as follows. Assume that immediately after the jth input symbol, node pi
has the value n

(j)
pi . On inputting the (j + 1)st symbol α, for all the transitions δ(pt, αi) = pi, where

pt ∈ V, αi ∈ Σ, the new value of pi is computed as

– If pi is a regular node, then

n(j+1)
pi =

∑
δ(pt, αi) = pi,
∀pt ∈ V ; α = αi

n(j)
pt +

∑
δ(pt, αi) = pi,
∀pt ∈ V ; α = 1

n(j)
pt

– If pi is an accumulating node, then

n(j+1)
pi = n(j)

pi +
∑

δ(pt, αi) = pi,
∀pt ∈ V ; α = αi

n(j)
pt +

∑
δ(pt, αi) = pi,
∀pt ∈ V ; α = 1

n(j)
pt

Marking and execution of accumulating automata We give a simple example of dag accumulating
automaton DAAαβγ=(V,Σ, T) in Fig. 6. By checking the marking of this automaton, we can decide
whether the input stream is αβγ or not. It means that we will use this dag accumulating automaton as
deterministic finite automaton that checks whether the input language is αβγ or not. The four regular
nodes are V = {N1, N2, N3, N4}. The input symbols are from the alphabet Σ = {α, β, γ}. N1 is a
free node and is always assigned 0. The transitions are:

N2 = δ1(N1, α); N3 = δ2(N2, β); N4 = δ3(N3, γ)

Initial marking of DAAαβγ The initial marking of the automaton is:

N
(0)
1 = 1; N

(0)
2 = 0; N

(0)
3 = 0; N

(0)
4 = 0

The initial marking automaton is depicted in Fig 6.
Execution of the DAA DAAαβγ Executing the DAA means to retrieve symbols one by one from the
input stream and input to the DAA. The input triggers transitions of the automaton resulting in a
new marking. Assume the input symbol is α, then we set the input vector to v = (v0, v1, v2, v3) =
(0, 1, 0, 0), and compute the new marking of the automaton.

The transitions are computed as follows

N
(1)
1 = v0 = 0; N

(1)
2 = N

(0)
1 · v1 = 1; N

(1)
3 = N

(0)
2 · v2 = 0; N

(1)
4 = N

(0)
3 · v3 = 0

9

1

N1

0

N2

0

N3

0

N4

0 · · · 0 α β γ

Fig. 6: Example of dag accumulating automaton DAAαβγ and the initial marking

0

N1

1

N2

0

N3

0

N4

0 · · · 0 α β γ

Fig. 7: Marking of DAAαβγ after processing the input vector v = (0, 1, 0, 0) which represents the
input α

Here, the new marking of the automaton is as in Fig 7.
Description of the marking of DAAαβγ The marking of DAAαβγ is changed by the input symbol
that is sent by the dealer. At any time, we can check the marking of DAAαβγ . If the marking is
(0, 0, 1, 0), we know the input stream is αβ. Accumulating automaton DAAαβγ can be used to accept
the language αβγ. The marking of DAAαβγ reveals whether the input stream is accepted or not.
Correctness of DAAαβγ We will analyze the marking of the automaton under all possible input
streams to check whether the automaton represents the function properly or not. Prior to the first
input the marking of DAAαβγ is (1, 0, 0, 0) and the state of the automaton is “rejected”. If (1) the first
input symbol is not α; (2) the first input symbol is α, the second symbol is not β; (3) the first two input
symbols are αβ, the third symbol is not γ, then the marking of DAAαβγ is (0, 0, 0, 0), and therefore
the state of the automaton is “rejected”. In all the three cases above, any successive additional input
symbol will not change the marking of the automaton to (0, 0, 0, 1), thus, implying that the whole
input stream will be rejected.

In other words, if and only if the first three input symbols are αβγ, then the marking of DAAαβγ

is (0, 0, 0, 1), and the state of the automaton is “accepted”. Any extra input(s) will change the marking
of the automaton to (0, 0, 0, 0), and the state of the automaton is also changed to “rejected”.

4 Dag accumulating automata and communicationless multi-party computation

Assume one dealer wants to execute DAA under a long input stream with the help of m servers without
the leakage of the marking of the automaton and the whole input to the automaton. The dealer may
secret share the marking of the DAA into m shares and assign each share to one of the servers. When
the dealer wants to execute the DAA, she secretly shares each input into m shares and sends each
share to a distinct server. Each server will manipulate its local DAA share and local input share to
obtain a share of the new marking of the DAA. At some point, the dealer will ask all the servers
to send shares back and use these shares to construct the current marking of the original DAA. An
unprivileged subgroup of the servers will have no information concerning the inputs (but an upper
bound on its length) and/or the computation result. The servers do not know, in terms of information
theoretical security, the actual value of the input sequence and the marking of the DAA.

Before stating the relationship between DAA and secret sharing, we define a route and the polyno-
mial degree of a node in (the graph G of) a DAA and define the polynomial degree of the entire DAA.
We also define the accumulating field of a DAA. A sequence of nodes {Ni1 , . . . , Nik+1

} is a route, if
there are a sequence of transitions {δj1 , . . . , δjk} and input symbols {αt1 , . . . , αtk}, such that

δj1(Ni1 , αt1) = Ni2 , · · · , δjk(Nik , αtk) = Nik+1

10

The longest route always starts in a free node, i.e., a node with no incoming arcs. Let t be the secret
sharing threshold, the minimal number of participants needed to reveal the automaton state, where
t− 1 is the polynomial degree in which the marking of the free nodes and the inputs are encoded.

Definition 5. (Polynomial degree of a node and a DAA) Assuming t to be the secret sharing threshold,
for any node Ni in a DAA, if the maximal length of a route from a free node to Ni is len, the polynomial
degree of Ni is deg = (len+1)(t− 1). The greatest polynomial degree of a node in a DAA is defined
to be the polynomial degree of the DAA.

Note that, an accumulating automaton with cycles (beyond self-cycles with corresponding character 1
as demonstrated in the sequel) implies an infinite polynomial degree.

Theorem 1. For any DAA with polynomial degree d, we can implement and execute the DAA among
d participants without communication and hide the (practically) unbounded input stream except an
upper bound on the length of the input.

Definition 6. (Accumulating field of a DAA) The maximal number that should be represented by a
marking variable in a dag accumulating automaton DAA is defined as accumulating field of DAA.

We should use sufficient accumulating field to avoid overflow during the execution. The total
number of accumulating nodes an ≤ |V | and the maximal number of active outgoing edges aoe ≤ |V |
of a node, imply a bound on the accumulating field. Each edge is active when the dealer assigns 1 to
the label of the edge. Note that, unlike traditional deterministic automaton, in our case, there can be
several edges from one node with the same label that lead to (at most |V |−1) distinct nodes. Note that
aoe is bounded by |V | − 1. The worst case is considered, where all accumulating nodes are lined one
after the other (possibility according to a topological sort output), each multiplying its value by the
number of outgoing arcs as an input to the next node in the line. Basically, for bounding the possible
values, we consider the maximal value that can be accumulated in the ith node to be the value that is
added after multiplication by aoe, to the marking of the (i+ 1)st node with each input.

Theorem 2. For an input stream of length n and a constant sized DAA the computing field of each
node is in Θ(log n) bits.

5 The use of AA/DAA beyond string matching

In this section, we will give some applications of dag accumulating automaton which can recognize
regular language, context free language and context sensitive language. We will also present several
extensions to the transition function of directed accumulating automaton, namely: the possibility of
the dealer to ignore characters, the possibility of loops with unconditional arcs, denoted by the label
1, and harvesting of result by comparing values. In some cases, the graph of the DAA is not connected
allowing the implementation of every connected component by a different set of participants. We give
the structure and initial marking of each DAA that can recognize a particular language in the above
classes. Since every DAA can be securely and privately executed according to the scheme presented
in Section 4, we only concern ourselves with the description of the DAA.

11

S0start S1

β

β

α

α

γ γ

Fig. 8: Flip flop automaton Aff

1

N1

1

N2

0

N3

1 . . . 1 α

β

Fig. 9: DAAff for Implementing the flip flop automaton

5.1 Implementing flip flop automaton

Assume we have an automaton Aff depicted in Fig 8 in which the initial state is S0.
Initial marking and execution of DAAff Dag accumulating automaton DAAff of flip flop automaton
can be found in Fig. 9. The alphabet of DAAff is Σ = {α, β}. On initializing the automaton, N1 is
set to 1, N2 is set to 1 and N3 is set to 0. Let the (k+1)th input symbol be mapped to v = (v0, v1, v2).
The dealer will send different mapping vector depending on different input symbol. If the input symbol
is α, v is set to (1, 1, 0). If the input symbol is β, v is set to (1, 0, 1). If the input symbol is γ, the
dealer will discard it. Note that we allow such an action by the dealer, as well as sending spontaneous
inputs and several characters in one input vector simultaneously. Then, we compute the new value of
all the nodes as follows

N
(k+1)
1 = v0

N
(k+1)
2 = N

(k)
1 · v1

N
(k+1)
3 = N

(k)
1 · v2

(5)

Result of DAAff After any input symbol, we can check the marking of DAAff . If N2 is 1, the current
state of automaton Aff is S0. If N3 is 1, the current state of automaton Aff is S1.
Correctness of DAAff According to the transitions of DAAff , we can see (1) if the input symbol is
α, N2 will be set to 1; (2) if the input symbol is β, N1 will be set to 0 and N2 will be set to 1.

5.2 Recognizing regular language (αβα)∗ and α(αβα)∗

Recognizing the regular language (αβα)∗

Dag accumulating automaton of the algorithm In Fig. 10 is the dag accumulating automaton DAA(αβα)∗

for recognizing the regular language (αβα)∗. The alphabet of DAA(αβα)∗ is Σ = {α, β}. There is
no free node in this automaton. Accumulating node is N5.
Initial marking and execution of DAA(αβα)∗ The first node N1 is initially set to 1 while all the other
nodes are initially set to 0. For each input symbol, we compute the new marking of the automaton. Let
the (k + 1)th input symbol be mapped to v = (v1, v2). If the input symbol is α, v is set to (1, 0). If
the input symbol is β, v is set to (0, 1).

12

1N1 0

N2

0

N3

1

N4

0 N5

0

N6

0

N7

α β α

β α
β

1

1

1

Fig. 10: DAA(αβα)∗ for recognizing the regular language (αβα)∗ and the initial marking

We compute the new value of all the regular nodes as follows

N
(k+1)
1 = N

(k)
7

N
(k+1)
2 = N

(k)
1 · v1

N
(k+1)
3 = N

(k)
2 · v2

N
(k+1)
4 = N

(k)
3 · v1

N
(k+1)
6 = N

(k)
1

N
(k+1)
7 = N

(k)
6

(6)

We compute the new value of accumulating node N5 as follows

N
(k+1)
5 = N

(k)
5 +N

(k)
1 · v2 +N

(k)
2 · v1 +N

(k)
3 · v2 (7)

Result of DAA(αβα)∗ After any input symbol, we can check the marking of DAA(αβα)∗ . Only if
N4 = 1 and N5 = 0, the input stream is accepted, otherwise rejected.

Note, among the self-loop defined by N1, N6 and N7, the degree for the secret sharing is not
changed, since it involves multiplication by a constant 1.

Correctness of DAA(αβα)∗ According to the transitions of DAA(αβα)∗ , we can see (1) in the initial
marking of the automaton, N4 is set to 1, N5 is set to 0; (2) if the input stream is (αβα)∗, N4 will be
set to 1, N5 stay 0; (3) if the input stream is not (αβα)∗, N4 will be set to 0 and/or N5 will not be 0.

Recognizing the regular language α(αβα)∗

Dag accumulating automaton of the algorithm In Fig. 11 is the dag accumulating automaton DAAα(αβα)∗

for recognizing the regular language α(αβα)∗. The alphabet of DAAα(αβα)∗ is Σ = {α, β}.

Initial marking and execution of DAAα(αβα)∗ The free node N1 is initially set to 1 while all the other
nodes are initially set to 0. For each input symbol, we compute the new marking of the automaton.
Let the (k + 1)th input symbol be mapped to v = (v0, v1, v2) where v0 is always set to 0. If the input
symbol is α, v is set to (0, 1, 0). If the input symbol is β, v is set to (0, 0, 1).

13

1

N1

0

N2

0

N3

0

N4

0

N5

0

N6

0

N7

0 N8

0 · · · 0 α

α

α β α
1

1

1

β
β α

β
β

Fig. 11: DAAα(αβα)∗ for recognizing the regular language α(αβα)∗ and the initial marking

We compute the new value of all the regular nodes as follows

N
(k+1)
1 = v0

N
(k+1)
2 = N

(k)
1 · v1 +N

(k)
7

N
(k+1)
3 = N

(k)
2 · v1

N
(k+1)
4 = N

(k)
3 · v2

N
(k+1)
5 = N

(k)
1 · v1 +N

(k)
4 · v1

N
(k+1)
6 = N

(k)
2

N
(k+1)
7 = N

(k)
6

(8)

We compute the new value of the accumulating node N8 as follows

N
(k+1)
8 = N

(k)
8 +N

(k)
1 · v2 +N

(k)
2 · v2

+N
(k)
3 · v1 +N

(k)
4 · v2 +N

(k)
5 · v2

(9)

Result of DAAα(αβα)∗ After any input symbol, we can check the marking of DAAα(αβα)∗ . Only if
N5 = 1 and N8 = 0, the input stream is accepted, otherwise rejected.
Correctness of DAAα(αβα)∗ According to the transitions of DAAα(αβα)∗ , we can see (1) in the initial
marking of the automaton, N5 is set to 0, N8 is set to 0; (2) if the input stream is α, N5 will be set to 1,
N8 will stay 0; (3) if the input stream is α(αβα)∗, N5 will be set to 1, N8 will stay 0; (4) if the input
stream is not α(αβα)∗ or α, N5 will be set to 0 or N8 will not equal 0.

5.3 Recognizing the context free language αsβs

Dag accumulating automaton of the algorithm In Fig. 12 is the dag accumulating automaton DAAαsβs

for recognizing the context free language αsβs. The alphabet of DAAαsβs
is Σ = {α, β}.

Initial marking and execution of DAAαsβs
All the free nodes N1, N3, N5 are initially set to 1 while the

other nodes are initially set to 0. Let the (k+1)th input symbol be mapped to v = (v0, v
′
0, v

′′
0 , v1, v2),

where v0, v′0 will always be set to 1 and v′′0 will always be set to 0. When we compute the new marking
of the automaton, v0 is given to N1, v′0 is given to N3 and v′′0 is given to N5. If the input symbol is α,
v is set to (1, 1, 0, 1, 0). If the input symbol is β, v is set to (1, 1, 0, 0, 1).

14

1

N1

0

N2

1

N3

0

N4

1

N5

0

N6

0

N7

0

N8

1 · · · 1

1 · · · 1

0 · · · 0

α

β

α β α

β

Fig. 12: DAAαsβs
for recognizing the regular language αsβs and the initial marking

We compute the new value of all the regular nodes as follows

N
(k+1)
1 = v0

N
(k+1)
3 = v′1

N
(k+1)
5 = v′′1

(10)

We compute all the accumulating nodes as follows

N
(k+1)
2 = N

(k)
2 +N

(k)
1 · v1

N
(k+1)
4 = N

(k)
4 +N

(k)
3 · v2

N
(k+1)
6 = N

(k)
6 +N

(k)
5 · v1

N
(k+1)
7 = N

(k)
7 +N

(k)
6 · v2

N
(k+1)
8 = N

(k)
8 +N

(k)
7 · v1 +N

(k)
5 · v2

(11)

Result of DAAαsβs
After any input symbol, we can check the marking of DAAαsβs

. If N8 > 0, the
input stream is rejected. Only if N2 = N4 and N8 = 0, the input stream is accepted.
Correctness of DAAαsβs

According to the transitions of DAAαsβs
and the input mapping, node N2

and N4 count all the α and β symbols in the input stream respectively. While checking the input
stream, if (1) the first input symbol is β, node N8 is set to 1; (2) there is one or more α symbols after
symbol β, node N8 increases by 1.

5.4 Recognizing the context sensitive language αsβsγs

Dag accumulating automaton of the algorithm In Fig. 13 is the dag accumulating automaton DAAαsβsγs

for recognizing the context sensitive language αsβsγs. The alphabet of DAAαsβsγs
is Σ = {α, β, γ}.

Initial marking and execution of DAAαsβsγs
All the free nodes N1, N3, N5, N7 are initially set to

1 while the other nodes are initially set to 0. Let the (k + 1)th input symbol be mapped to v =
(v0, v

′
0, v

′′
0 , v

′′′
0 , v1, v2, v3), where v0, v

′
0, v

′′
0 will always be set to 1 and v′′′0 will always be set to 0.

When we compute the new marking of the automaton, v0 is given to N1, v′0 is given to N3, v′′0 is given
to N5 and v′′′0 is given to N7. If the input symbol is α, v is set to (1, 1, 1, 0, 1, 0, 0). If the input symbol
is β, v is set to (1, 1, 1, 0, 0, 1, 0). If the input symbol is γ, v is set to (1, 1, 1, 0, 0, 0, 1). The transitions
are similar to the previous example, they are depicted in Fig. 13, and their detailed listing is omitted.

15

1N1 0

N2

1N3 0

N4

1

N5

0

N6

1

N7

0

N8

0

N9

0

N10

0

N11

0 N12

1 · · · 1 1 · · · 1

1 · · · 1

0 · · · 0

α β

γ

α β γ

¬γ

¬α

α

α

α

γ

Fig. 13: DAAαsβsγs
for recognizing the regular language αsβsγs and the initial marking

Result of DAAαsβsγs
After any input symbol, we can check the marking of DAAαsβsγs

. Only if
N2 = N4 = N6 and N11 = 0, the input stream is accepted, otherwise rejected.
Correctness of DAAαsβsγs

According to the transitions of DAAαsβsγs
and the input mapping, node

N2, N4 and N6 count all the α, β and γ symbols in the input stream respectively. On checking the
input stream, (1) if the first input symbol is not α, node N11 is set to 1; (2) if there is one α after
symbol β, node N11 increases by 1; (3) if there is one γ after symbol α, node N11 increases by 1; (4)
if there is one non-γ symbol after symbol γ, node N11 increases by 1.

6 Cascaded equations automata

In this section, we consider the same problem discussed in above sections under different scenario in
which the input stream may be actually unbounded. We will solve this problem by introducing a new
automata named cascaded equations automata. Firstly, we define what is cascaded equations and how
to execute the cascaded equations. Then we show how to map the cascaded equations into automaton.

Definition 7 (Cascaded equations). Cascaded equations is a series of equations , e1, e2, . . . , ef ,
where the results and inputs of the first equations e1, e2, . . . , ei are used to compute the result of the
next equation ei+1.

An example of cascaded equations:

e1 : N
(k+1)
1 = N

(k)
1 + v1

e2 : N
(k+1)
2 = N

(k)
2 +N

(k+1)
1 · v2

e3 : N
(k+1)
3 = N

(k)
3 +N

(k+1)
1 ·N (k+1)

2 · v3
(12)

In Equation 12, there are three equations e1, e2, e3 with three variables N1, N2, N3 and three inputs
v1, v2, v3.

16

Definition 8 (Execution of cascaded equations). Cascaded equations are computed serially from
e1 to ef . The first equation is computed, then the second and so on. At the end, the last equation is
computed.

Consider the following cascaded equations:

e1 : N
(k+1)
1 = N

(k)
1 + v1

e2 : N
(k+1)
2 = N

(k)
2 +N

(k+1)
1 · v2

(13)

There are two equations, e1 and e2, in the cascaded equations described in Equation 13. The two
equations compute a vector of variables (N1, N2) using a vector of inputs (v1, v2). Before executing
the cascaded equations, we initialize the variables of the vector. Then, at the execution stage, we
compute new values for N1 and N2 in a sequential fashion using modular two arithmetics, first using
e1 to compute N1 and then e2 that computes N2. The input symbols (v1, v2) may have one of the
possible values (00), (01), (10) and (11). The state of the automaton is defined by a vector of the
values of N1 and N2, this vector may have the following values (00), (01), (10) or (11). A node of
the automaton is denoted s(N1, N2) and the input vector is denoted (11), (10), (01) and (00) by α,
β, γ and τ respectively. By computing the cascaded equations using modular two arithmetics, we can
obtain the automaton depicted in Fig. 14a.

Next, we consider the following cascaded equations:

e1 : N
(k+1)
1 = v1

e2 : N
(k+1)
2 = N

(k)
2 +N

(k+1)
1 · v2

(14)

By computing the cascaded equations in Equation 14 using arithmetic modular two, we can get the
corresponding automaton which is depicted in Fig. 14b. A node is denoted s(N1N2). The input vector
(11), (10) and (01) are denoted by α, β and γ respectively.

s0 s3

s1s2

α

α

α

αβ ββ β

γ

γ

γ

γ

τ

ττ

τ

(a) Cascaded permutation automata

s0 s3

s1s2

α

α

α

α

β

β

β β

γ

γ

γ
γ

(b) Cascaded reset and permutation automata

Fig. 14: Automata mapped from two cascaded equations

Next, we explain multi-party execution of cascaded equations automata over strictly unbounded
input stream. We use secret sharing to facilitate secure multi-party executions of the cascaded equa-
tions automata. The execution of cascaded equations automata is performed into three stages: initial

17

stage, execution stage and collection stage. We use the automaton in Fig. 14a to demonstrate how the
multi-party execution works.
Initial stage Each variable’s values in the cascaded equation automata are shared among several par-
ticipants using secret sharing. Entries of the vector that represent each symbol of the input symbol are
also secret shared. For the particular example in Fig. 14a, we assume that the input symbols are repre-
sented by secret shares of polynomial of degree 1. If one equation includes multiplication, the degree
of the polynomial that encodes the value of the variable will be more than the degree of the variable in
the preceding equation. For the example in Fig. 14a, we have to use at least three participants to ensure
that N2 can be secret shared correctly among all the participants. For the two variable N1 and N2, we
define two random polynomials f1 and f2 with degree 1 and 2. We use each corresponding polyno-
mial to secret share each node’s initial value among the three participants, each participant receives
one share of N1 and N2.
Execution stage The dealer maps each input symbol α to an input vector v. Then each element in the
input vector v is secret shared into three parts by a random polynomial of degree 1. Each share of the
input vector is then sent to one of the participants. Each participant computes the new value of N1 and
N2, according to the Equation 13. Then, every participant gets the new share of N1 and N2.
Collection stage Whenever we want to compute the result of the algorithm, we ask all the participants
to send the value that corresponds to N1 and N2 back. Having the shares of all participants, we can
reconstruct the actual value of N1 and N2 using Lagrange interpolation. The value obtained indicates
the current state of the automaton in Fig. 14a.

We give some formal definitions of cascaded equations automaton below.

Definition 9. Mapping from cascaded equation to automaton Each equation in cascaded equations
has a result. We select the results of the equations to define a vector. The vector’s value encodes a node
in the cascaded equations automaton. A vector of variables of the cascaded equations is regarded as
the input symbols to the mapping automaton.

Every cascaded equations can be mapped to an automaton by mapping variables of the equations
into a node of the automaton.

Theorem 3. The cascaded equations automata scheme information theoretically secures the inputs
and the states of the automaton.

We can also define a product of automata by executing several cascade automata in parallel. Two
or more cascade equations with the same input can be merged together to obtain a new automaton.

Theorem 4. Let A = A1 × . . . × Ak be a cascade product of automata and let B be a permutation
automaton. Let

|A1| = . . . = |Ak| = |B|

and assume that for every i = 1, ..., k the automaton Ai is either a reset automaton or a permutation
automaton that can be represented by a cascaded equation, where all transitions are in the same cyclic
group as the transitions of B. Then, A can be secretly shared for unbounded split input by n+1 parties
with threshold 1 where n is computed as follows.
Computing n: Let Φi be a function of the input and the states of A1, ..., Ai−1 that outputs the input for
Ai. Representing Φi as a multivariate polynomial we have that its highest degree is of the form

xα1
1 · ... · xαi−1

i1

Define ni = n1 · α1 + ...+ ni−1 · αi−1. Then, n is defined by max(n1, ..., nk).

18

This result can be further generalized by having B (and each Ai) be either a reset automaton or
a set of non-intersecting permutation automata (i.e., there are several non-intersecting sets of nodes
and each one is a permutation automaton). One additional generalization is the use of other modular
operation (beyond mod 2) and hence larger fields. The realization of non-permutation automaton as
in Fig. 14b, yields an important generalization of pure permutation automaton, since permutation
automaton can be implemented by using only additions of secret shares.

7 Secure and private repeated computations on a secret shared file

In this section, we use methods introduced in the former sections on a fixed (large) file. Firstly, we
secret share the file (e.g., biometric data) and store the shares in clouds for future computation. Then
one can repeatedly and iteratively compute (for example, search the file for different strings) on the
secret shared file by constructing the accumulating automaton for the needed computation and sending
a copy of the automaton (possibly in different times) to each cloud that maintains shares of the file.
Then, each cloud calculates on the accumulating automaton using their file share as the input. At
the end, each cloud sends the final state of the accumulating automaton back as an answer for the
computation request. The final states received from the cloud enable the reconstruction of the state of
each node of the accumulating automaton to obtain the computation result (for example, whether the
string was found or not). Sketch of the scheme is depicted in Fig. 15.

Cloud 1

Cloud 2

Cloud 3

Cloud i

Cloud n

U1

User1

U2

User2

U3

User3

P File Provider

Fig. 15: Secure and private computation on a secret shared file among communicationless clouds

Next we detail the different stages of the scheme: Setup, Initialization, AutomatonConstruction,
AutomatonExection and ResultReconstruction.
Setup In this stage the basic parameters for the whole scheme are defined: the Alphabet (e.g., ASCII,
binary) that the scheme works on, the computation field of all the accumulating automata and the
biggest polynomial degree the system can deal with.
Initialization In this stage the given file f , the chosen Alphabet and number of clouds are used to
output secret shares of each character of the file, where each character is encoded by a vector of secret
shares, one secret share for each possible character.

19

AutomatonConstruction This stage uses the user computation task as an input and outputs an automa-
ton.
AutomatonExecution This stage uses the accumulating automaton and the shares of the file to out-
put the result of the computation. The result is the share of the final marking of the accumulating
automaton.
ResultReconstruction This is the final stage in which the user receives the marking shares to output
the computation result.

Next we demonstrate the scheme with a simple example. Assume provider Peter wants to store a
network log file in clouds and user David wants to search the string “attack America” in the file. But
Peter does not want to give the whole file to David in clear text. Firstly, Peter uses the Initialization
stage to produce stream of shares of his log file (vector of shares for each character, character after
a character) and then store each stream in a different cloud (or cloud virtual machine) not necessar-
ily simultaneously. Clouds are not aware about their counterparts in the process. Then, David uses
AutomatonConstruction to get an accumulating automaton for the searching task (in some cases
it is possible to give different independent parts of the accumulating automaton to different clouds).
David sends the accumulating automaton to each cloud. Every cloud runs the AutomatonExecution
on their shares of the file and the accumulating automaton. Each cloud sends the marks of the final
states of the accumulating automaton back to David. David executes ResultReconstruction to find
the computation result. During the whole procedure, no cloud knows the exact network log file and
only David knows the computation result.

We have implemented a testing program of this system in SAGE, the source code can be found at:
http://blog.sina.com.cn/s/blog_9f0384e70101gj8x.html.

8 Conclusion and discussion

In this paper, we proposed two new computation infrastructures the accumulating automata and the
cascaded equations automata and their usage in the construction of secure and private multi-party
computation among participants that use no communication among themselves while processing prac-
tically or really unbounded input stream. In particular, we can execute any string matching privately
and securely in terms of information theoretically security. We demonstrate that other canonical ex-
amples of regular languages, context free languages and context sensitive languages can be computed
efficiently in terms of information theoretical security. Remote authentication and data stream pro-
cessing systems using cloud services can be implemented based on our schemes. We note that it is
possible to design a general accumulating automata (in the style of FPGA) in which each original
symbol is mapped to several symbols, so that the dealer is able to choose the non-participating arcs
by always assigning zero to their labels. At last, the information sent by malfunctioning participants
or even malicious participants may be eliminated from the collected information by standard (error
correcting) schemes such as the Berlekamp Welch method [32].

References

1. Gilad Asharov and Yehuda Lindell. A full proof of the bgw protocol for perfectly-secure multiparty computation. IACR
Cryptology ePrint Archive, 2011:136, 2011.

2. Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. Completeness theorems for non-cryptographic fault-tolerant
distributed computation. In Proceedings of the Twentieth Annual ACM Symposium on Theory of Computing, STOC
’88, pages 1–10, New York, NY, USA, 1988. ACM.

20

3. Josh Cohen Benaloh. Secret sharing homomorphisms: Keeping shares of a secret sharing. In Andrew M. Odlyzko,
editor, CRYPTO, volume 263 of Lecture Notes in Computer Science, pages 251–260. Springer, 1986.

4. John Bethencourt, Dawn Xiaodong Song, and Brent Waters. New techniques for private stream searching. ACM Trans.
Inf. Syst. Secur., 12(3), 2009.

5. G. R. Blakley. Safeguarding cryptographic keys. Managing Requirements Knowledge, International Workshop on,
0:313, 1979.

6. Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. Fully homomorphic encryption without bootstrapping.
Electronic Colloquium on Computational Complexity (ECCC), 18:111, 2011.

7. Ronald Cramer, Ivan Damgård, and Yuval Ishai. Share conversion, pseudorandom secret-sharing and applications to
secure computation. In Joe Kilian, editor, TCC, volume 3378 of Lecture Notes in Computer Science, pages 342–362.
Springer, 2005.

8. Ivan Damgård and Rune Thorbek. Efficient conversion of secret-shared values between different fields. IACR Cryptol-
ogy ePrint Archive, 2008:221, 2008.

9. Shlomi Dolev, Juan Garay, Niv Gilboa, and Vladimir Kolesnikov. Swarming secrets. In Proceedings of the 47th annual
Allerton conference on Communication, control, and computing, Allerton’09, pages 1438–1445, Piscataway, NJ, USA,
2009. IEEE Press.

10. Shlomi Dolev, Juan A. Garay, Niv Gilboa, and Vladimir Kolesnikov. Secret sharing krohn-rhodes: Private and perennial
distributed computation. In Bernard Chazelle, editor, ICS, pages 32–44. Tsinghua University Press, 2011.

11. Shlomi Dolev, Juan A. Garay, Niv Gilboa, Vladimir Kolesnikov, and Yelena Yuditsky. Brief announcement: Efficient
private distributed computation on unbounded input streams. In Marcos K. Aguilera, editor, DISC, volume 7611 of
Lecture Notes in Computer Science, pages 431–432. Springer, 2012.

12. Shlomi Dolev, Limor Lahiani, and Moti Yung. Secret swarm unit, reactive k-secret sharing. In K. Srinathan, C. Pandu
Rangan, and Moti Yung, editors, INDOCRYPT, volume 4859 of Lecture Notes in Computer Science, pages 123–137.
Springer, 2007.

13. Shlomi Dolev, Limor Lahiani, and Moti Yung. Secret swarm unit: Reactive k-secret sharing. Ad Hoc Networks,
10(7):1291–1305, 2012.

14. Wenliang Du and Mikhail J. Atallah. Secure multi-party computation problems and their applications: a review and
open problems. In Victor Raskin, Steven J. Greenwald, Brenda Timmerman, and Darrell M. Kienzle, editors, NSPW,
pages 13–22. ACM, 2001.

15. Christopher Fletcher, Marten van Dijk, and Srinivas Devadas. Compilation techniques for efficient encrypted computa-
tion. Cryptology ePrint Archive, Report 2012/266, 2012.

16. Craig Gentry. Fully homomorphic encryption using ideal lattices. In Michael Mitzenmacher, editor, STOC, pages
169–178. ACM, 2009.

17. Craig Gentry. Toward basing fully homomorphic encryption on worst-case hardness. In Tal Rabin, editor, CRYPTO,
volume 6223 of Lecture Notes in Computer Science, pages 116–137. Springer, 2010.

18. Craig Gentry and Shai Halevi. Implementing gentry’s fully-homomorphic encryption scheme. IACR Cryptology ePrint
Archive, 2010:520, 2010.

19. Craig Gentry and Shai Halevi. Fully homomorphic encryption without squashing using depth-3 arithmetic circuits. In
Rafail Ostrovsky, editor, FOCS, pages 107–109. IEEE, 2011.

20. Craig Gentry, Shai Halevi, and Nigel P. Smart. Homomorphic evaluation of the aes circuit. In Safavi-Naini and Canetti
[27], pages 850–867.

21. Oded Goldreich. The Foundations of Cryptography - Volume 2, Basic Applications. Cambridge University Press, 2004.
22. Shafi Goldwasser. Multi-party computations: Past and present. In James E. Burns and Hagit Attiya, editors, PODC,

pages 1–6. ACM, 1997.
23. Yan Huang, Jonathan Katz, and David Evans. Quid-pro-quo-tocols: Strengthening semi-honest protocols with dual

execution. In IEEE Symposium on Security and Privacy. IEEE, 2012.
24. Yan Huang, Jonathan Katz, and David Evans. Efficient secure two-party computation using symmetric cut-and-choose.

In Advances in Cryptology–CRYPTO 2013, pages 18–35. Springer, 2013.
25. Payman Mohassel, Salman Niksefat, Seyed Saeed Sadeghian, and Babak Sadeghiyan. An efficient protocol for oblivious

dfa evaluation and applications. In Orr Dunkelman, editor, CT-RSA, volume 7178 of Lecture Notes in Computer Science,
pages 398–415. Springer, 2012.

26. Rafail Ostrovsky and William E Skeith III. Private searching on streaming data. Journal of Cryptology, 20(4):397–430,
2007.

27. Reihaneh Safavi-Naini and Ran Canetti, editors. Advances in Cryptology - CRYPTO 2012 - 32nd Annual Cryptology
Conference, Santa Barbara, CA, USA, August 19-23, 2012. Proceedings, volume 7417 of Lecture Notes in Computer
Science. Springer, 2012.

28. Adi Shamir. How to share a secret. Commun. ACM, 22(11):612–613, 1979.

21

29. abhi shelat and Chih-hao Shen. Fast two-party secure computation with minimal assumptions. In Proceedings of the
2013 ACM SIGSAC Conference on Computer & Communications Security, CCS ’13, pages 523–534, New York,
NY, USA, 2013. ACM.

30. Marten van Dijk, Craig Gentry, Shai Halevi, and Vinod Vaikuntanathan. Fully homomorphic encryption over the
integers. In Henri Gilbert, editor, EUROCRYPT, volume 6110 of Lecture Notes in Computer Science, pages 24–43.
Springer, 2010.

31. Brent Waters. Functional encryption for regular languages. In Safavi-Naini and Canetti [27], pages 218–235.
32. Lloyd R Welch and Elwyn R Berlekamp. Error correction for algebraic block codes, December 30 1986. US Patent

4,633,470.

22

