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Abstract

In this paper, we consider a setting where a user wants to outsource storage of a large amount of
private data, and then perform pattern matching queries on the data; that is, given a data string s and a
“pattern” string p, find all occurrences of p as a substring of s.

We formalize the security properties desired in this type of setting by defining a type of encryption
called queryable encryption. In a queryable encryption scheme, a user can encrypt a message M under a
secret key, and using the secret key can generate tokens for queries q. Applying a token for a query q to
an encryption of M gives the answer to the query q on M . We consider security against both honest-but-
curious and malicious adversaries, and define properties guaranteeing both the correctness of the user’s
results and the privacy of the user’s data. Following the line of work started by [CGKO06], to allow for
efficient constructions, we allow the protocol to leak some information about the user’s data, however
we ensure that this leakage can be precisely captured in the definition. In addition, we allow the query
protocol to involve a small constant number of rounds of interaction.

We construct a queryable encryption scheme for pattern matching queries that is correct and secure
in the malicious model. Our construction is based on efficient symmetric-key building blocks and scales
well with the size of the input: encryption of a data string of length n with security parameter λ takes
O(n) time and produces a ciphertext of size O(nλ), and a query for a pattern string of length m that
occurs k times takes O(m+ k) time and three rounds of communication.



1 Introduction

In traditional symmetric-key encryption schemes, a user encrypts a message so that only the owner of the
corresponding secret key can decrypt it. Decryption is “all-or-nothing”; that is, with the key one can decrypt
the message completely, and without the key one learns nothing about the message. However, many settings,
such as cloud storage, call for encryption schemes that support the evaluation of certain classes of queries
on the data, without decrypting the data. A client may wish to store encrypted data on a cloud server, and
then be able to issue queries on the data to the server in order to make use of the data without retrieving and
decrypting the original ciphertext.

Much work has been done in the setting where the data consists of a set of documents, and the client
wishes to search for combinations of keywords in those documents. (These solutions are often referred to
as symmetric searchable encryption or SSE; see Section 1.1 below.) But what about other types of data or
other types of queries? For example, suppose a medical research lab wants to store its subjects’ genomic
data using a cloud storage service. Privacy concerns may require that this data be encrypted; at the same
time, the researchers need to be able to use and query the data efficiently. Here we consider the case where
researchers want to be able to make substring queries on the stored data (e.g., to search for genetic markers).
The owner of the data would like that the process of performing these queries not reveal much information
to the server about the genomic data or the search strings.

We note that this problem could be solved with SSE, by considering every substring as a separate key-
word; however, this approach would result in a fairly significant storage blowup (SSE scales linearly with
the total number of keywords). Our goal here is to avoid this storage overhead and achieve efficiency com-
parable to the unencrypted scenario.
Queryable encryption. In this paper, we formalize a type of encryption that we call queryable encryption.
A queryable encryption scheme allows for evaluation of some query functionality F that takes as input a
message M and a query q and outputs an answer. A client encrypts a message M under a secret key and
stores the ciphertext on a server. Then, using the secret key, the client can issue a query q by executing an
interactive protocol with the server. At the end of this protocol, the client learns the value of F(M, q). For
example, for pattern matching queries, a query q is a pattern string, the message M is a string, and F(M, q)
returns the set of indices of all occurrences of q as a substring of M .

For security, we will think of the server as an adversary trying to learn information about the message
and the queries. Ideally, we would like that an adversary that is given a ciphertext and that engages in
query protocols for several queries learns nothing about the message or the queries. However, in order to
achieve an efficient scheme, we will allow some limited information about the message and the queries to
be revealed (“leaked”) to the server through the ciphertext and the query protocol. We define notions of
security that specify explicitly what information is leaked, and guarantee that an adversary learns nothing
more than the specified leakage. The idea that it may be acceptable for a queryable encryption to leak some
information to gain efficiency was seen previously in the case of structured encryption [CK10], and to some
extent in the case of searchable encryption [CGKO06].

This is similar in spirit to previous definitions for structured encryption and SSE. However, we have to
generalize in two ways. First, since previous solutions focused on document retrieval, all previous definitions
require that the adversary to learn the list of documents to be returned; here there are no documents, and
all that is required is that the client learn the result of the query. The second difference is that our query
protocol will require a few rounds of communication. In particular for malicious adversaries this must be
treated carefully - while malicious activity in the one round SSE setting may result in the client getting
incorrect results, a malicious attacker in an interactive protocol could potentially also try to learn extra
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information.
We define correctness and security within two adversarial models: honest-but-curious and malicious.

In the honest-but-curious model, the adversary executes the protocol honestly but tries to learn information
about the message and the queries along the way. In the malicious model, the adversary tries to learn
information, possibly by not following the protocol honestly.
Pattern matching encryption. Next, we focus on constructing a pattern matching encryption scheme,
that is, a queryable encryption scheme that supports pattern matching queries – given a string s and a pattern
string p, return all occurrences of p as a substring of s. For example, in the genomic data application re-
searchers may wish to query the database to determine whether a particular cancer marker sequence appears
in any of the data, to count whether a certain probe sequence is rare enough to be useful, or to .....

For efficiency, our goal is space and computation complexity comparable to that of evaluating pattern
matching queries in the unencrypted setting. This means general techniques such as fully homomorphic
encryption [Gen09, BV11, BGV12, GHS12] and functional encryption [BSW11, KSW08, SSW09] will not
be practical. By focusing on the specific functionality of pattern matching queries, we are able to achieve a
scheme with much better efficiency.

To construct a pattern matching encryption scheme, we use suffix trees, a data structure used to ef-
ficiently perform pattern matching on unencrypted data. We combine basic symmetric-key primitives to
develop a method that allows traversal of select edges in a suffix tree in order to efficiently perform pattern
matching on encrypted data, without revealing significant information about the string or the queries.

A suffix string for data string of length n takesO(n log n) space, and searching for a pattern of lengthm
takes O(mk) time, where k is the number of occurrences of the pattern. In our pattern matching encryption
scheme, encryption time and ciphertext size areO(λn), querying for a pattern takes time and communication
complexity O(λm + k), and λ is the security parameter. The query protocol takes a constant number of
rounds of communication. All operations are based only on symmetric-key primitives.

1.1 Related Work

Searchable encryption and structured encryption. We draw on related work on symmetric searchable
encryption (SSE) [CGKO06] and its generalization to structured encryption [CK10]. These works take
the approach of considering a specific type of query and identifying a data structure that allows efficient
evaluation of those queries in an unencrypted setting. The construction then “translates” the data structure
into an encrypted setting, so that the user can encrypt the data structure and send the server a “token” to
evaluate a query on the encrypted structure. This translation is designed to preserve the efficiency of the
unencrypted data structure.

Since the server is processing the query, the server will be able to determine the memory access pattern
of the queries, that is, which parts of memory have been accessed, and when the same memory block is
accessed again.1 The approach to security in SSE and structured encryption is to acknowledge that some
information will be leaked because of the memory access pattern, but to clearly specify the leakage, and to
guarantee that is the only information that the server can learn.

Recently there have been many advances in SSE. [CJJ+13] propose an efficient construction for searches
involving multiple keywords; [CJJ+14, SPS14, KP13, KPR12] look at allowing updates to the stored doc-
uments; and [KO12] propose a UC definition. [WRYU12] use a tree data structure to implement SSE,
essentially storing the encrypted keywords in a tree rather than a hash table. (Note that they are forming a

1Note that this is true even if we use fully homomorphic encryption (e.g., [Gen09, BV11, BGV12, GHS12]) or functional
encryption [BSW11, KSW08, SSW09].
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tree on encrypted data, while we form a tree out of the plaintext and then encrypt the tree structure.) How-
ever, all of these works focus on the problem of retrieving documents based on keywords; there has been
very little work that considers encrypting other, more complex types of data structures.
Predicate encryption and fully homomorphic encryption. Predicate encryption (a special case of func-
tional encryption [BSW11]) allows the secret key owner to generate “tokens” for various predicates; a token
for a predicate f can be evaluated on a ciphertext that encrypts of m to determine whether f(m) is satisfied.
State-of-the-art predicate encryption schemes (e.g., [KSW08, SSW09]) support inner-product queries; that
is, f specifies a vector v, and f(m) = 1 if 〈m, v〉 = 0. Applying an inner product predicate encryption
scheme naively to construct a pattern matching encryption scheme, where the patterns can be of any length,
would result in ciphertexts and query time that are O(nn), where n is the length of the string s, which is
clearly impractical.

Fully homomorphic encryption (FHE), beginning with the breakthrough work of Gentry [Gen09] and
further developed in subsequent work, e.g., [BV11, BGV12, GHS12], allows one to evaluate any arbitrary
circuit on encrypted data without being able to decrypt. FHE would solve the pattern matching encryption
problem (although it would require O(n) query time), but existing constructions are extremely impractical.
Oblivious RAMs. The problem of leaking the memory access pattern is addressed in the work on Oblivi-
ous RAMs [Ost92], which shows how to implement any query in a way that ensures that the memory access
pattern is independent of the query. There has been significant process in making oblivious RAMs efficient;
however, even the most efficient constructions to date (see, e.g., Stefanov et al. [SSS12]) increase the amor-
tized costs of processing a query by a factor of at least log n, where n is the size of the stored data. In
our setting, where we assume that the large size of the dataset may be one of the primary motivations for
outsourcing storage, a log n overhead may be unacceptable.
Secure two-party computation of pattern matching. There have been several works on secure two-party
or multiparty computation (e.g., [DPSZ12, NNOB12]) and specifically on secure pattern matching and other
text processing in the two-party setting (see [BDM+12, MNSS11, HL10, GHS10, KM10, Fri09, TPKC07]).
This is an interesting line of work; however, our setting is rather different. In our setting, the client has
outsourced storage of its encrypted data to a server, and then the client would like to query its data with a
pattern string. The server does not have the data string in the clear; it is encrypted. Thus, even ignoring the
extra rounds of communication, we cannot directly apply secure two-party pattern matching protocols.
Memory delegation and integrity checking. We consider both honest-but-curious and malicious adver-
saries. One way a malicious adversary may misbehave is by returning something other than what was orig-
inally stored on the server. Along these lines, there is related work on memory delegation (e.g., [CKLR11])
and memory checking (e.g., [DNRV09]), verifiable computation (e.g., [BGV11, GGP10]), integrity check-
ing (e.g., [SvDJO12]), and encrypted computation on untrusted programs (e.g., [FvDD12]); the theme of
these works is retrieving and computing on data stored on an untrusted server. For our purposes, since we fo-
cus on the specific functionality of pattern matching encryption in order to achieve an efficient scheme using
simple primitives, we do not need general purpose integrity checking techniques, which can be expensive or
rely on more complex assumptions.

2 Basic Definitions

Here we review some cryptographic primitives we will use. See Appendix B for more details, and for some
notation and definitions of standard cryptographic primitives (e.g., PRFs, PRPs) we will use.
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ε-Almost-Universal Hash Functions An ε-almost-universal hash function is a familyH of hash functions
such that, for any pair of distinct messages, the probability of a hash collision when the hash function is
chosen randomly fromH is at most ε.
Polynomial Hash The following hash function is ε-almost-universal for ε = (n− 1)/2`: View a message
x as a sequence (x1, . . . , xn) of `-bit strings. For any k in the finite field GF(2`), the hash function Hk(x) is
defined as the evaluation of the polynomial px over GF(2`) defined by coefficients x1, . . . , xn, at the point
k. That is, Hk(x) = px(k) = Σn

i=1xik
i−1, where all operations are in GF(2`).

Levin’s trick We will sometimes want to compute a PRF on a long input. In this case, it can be more
efficient to first hash the input down to a short string, and then apply the PRF to the hash output. If the
hash function is ε-almost-universal for some negligible ε, then the resulting construction is still a PRF. This
observation is due to Levin [Lev87] and is known sometimes as Levin’s trick.
Symmetric-Key Encryption We will use symmetric-key encryption schemes that are CPA-secure, which-
key concealing, and in some cases authenticated. The which-key concealing property was introduced by
Abadi and Rogaway [AR02] and (under the name “key hiding”) by Fischlin [Fis99], and says that an ad-
versary cannot tell whether ciphertexts are encrypted under the same key or different keys. The notions of
ciphertext integrity and authenticated encryption (defined below) were introduced by [BR00, KY01, BN00].
Ciphertext integrity says that an adversary given encryptions of messages of its choice cannot construct any
new ciphertexts that decrypt successfully (i.e., decrypt to a value other than ⊥). A symmetric encryption
scheme is authenticated if it has CPA security and ciphertext integrity. For a simple construction from PRFs
in the random oracle model, see Appendix B.

3 Queryable Encryption

We now present the main definitions for our construction.

Definition 3.1. A queryable encryption scheme for message spaceM, query spaceQ, answer space A, and
query functionality F :M×Q→ A, consists of the following probabilistic poly-time (PPT) algorithms.

K ← Gen(1λ): The key generation algorithm takes a security parameter 1λ and generates a secret key K.

CT ← Enc(K,M): The encryption algorithm takes a secret key K and a message M ∈ M, and outputs
a ciphertext CT .

A ← IssueQuery(K, q) ↔ AnswerQuery(CT ): The interactive algorithms
IssueQuery and AnswerQuery compose a query protocol between a client and a server. The client
takes as input the secret key K and a query q, and the server takes as input a ciphertext CT . At the
end of the query protocol, the client outputs an answer A ∈ A; the server has no output. A is a private
output that is not seen by the server.

Correctness. For correctness we require the following property. For all λ ∈ N, q ∈ Q, M ∈ M, let
K ← Gen(1λ), CT ← Enc(K,M), and A ← IssueQuery(K, q) ↔ AnswerQuery(CT ). Then Pr[A =
F(M, q)] = 1− negl(λ).

This correctness property ensures correct output if all algorithms are executed honestly. (This is the usual
way in which correctness is defined for similar types of schemes, such as searchable encryption, structured
encryption, and functional encryption.) However, it does not say anything about the client’s output if the
server does not honestly execute AnswerQuery.
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Correctness against malicious adversaries. We also consider a stronger property, correctness against
malicious adversaries, which says that the client’s output will be correct if all algorithms are executed
honestly, but the client will output ⊥ if the server does not execute AnswerQuery honestly. Thus, the server
may misbehave, but it cannot cause the client to unknowingly produce incorrect output.

More formally, correctness against malicious adversaries requires the following. For all PPT algorithms
A, for all λ ∈ N, q ∈ Q, M ∈ M, let K ← Gen(1λ), CT ← Enc(K,M), and A ← IssueQuery(K, q) ↔
A(CT ). If A honestly executes AnswerQuery, then Pr[A = F(M, q)] = 1 − negl(λ). If A deviates from
AnswerQuery in its input-output behavior, then Pr[A = ⊥] = 1− negl(λ).
Discussion. Note that, although the above is called a queryable “encryption scheme”, it does not include
an explicit decryption algorithm, as the client might not ever intend to retrieve the entire original message.
However, we could easily augment the functionality F with a query that returns the entire message.

Note also that typically we expect M to be quite large, while the representation of q and F(M, q) are
small, so we would like the query protocol to be efficient relative to the size of q and F(M, q). Without
such efficiency goals, designing a queryable encryption scheme would be trivial. AnswerQuery could return
the entire ciphertext, and IssueQuery could decrypt the ciphertext to get M and compute F(M, q) directly.

Our queryable encryption definition generalizes previous definitions of searchable encryption [CGKO06]
and structured encryption [CK10], in the following ways.

Queryable encryption allows any general functionality F . In contrast, the definition of searchable en-
cryption is tied to the specific functionality of returning documents containing a requested keyword. Struc-
tured encryption is a generalization of searchable encryption, but the functionalities are restricted to return
pointers to elements of an encrypted data structure. Since we allow general functionalities, our definition is
similar to those of functional encryption. The main difference between queryable encryption and functional
encryption is in the security requirements, which we will describe in the next section.

Also, queryable encryption allows the query protocol to be interactive. In searchable encryption, struc-
tured encryption, and functional encryption, the query protocol consists of two algorithms TK ← Token(K, q)
and A ← Query(TK,CT ). The client constructs a query token and sends it to the server, and the server
uses the token and the ciphertext to compute the answer to the query, which it sends back to the client. We
can think of these schemes has having a one-round interactive query protocol. Our definition allows for
arbitrary interactive protocols, which may allow for better efficiency or privacy.

We do not need the server to actually learn the answer to the query. After the server’s final message,
the client may do some additional computation using its secret key to compute the answer. Since the server
does not see the final answer, we are able to achieve stronger privacy guarantees.

3.1 Honest-but-Curious (L1,L2)-CQA2 Security

We first consider security in an honest-but-curious adversarial model. In this model, we assume that the
server is honest (it executes the algorithms honestly), but curious (it can use any information it sees in the
honest execution to learn what it can about the message and queries).

Ideally, we would like to guarantee that ciphertexts and query protocols reveal nothing about the message
or the queries. However, such a strict requirement often makes it very difficult to achieve an efficient scheme.
Therefore, we relax the security requirement somewhat so that some information may be revealed (leaked)
to the server. The security definition will be parameterized by two “leakage” functions L1,L2. L1(M)
denotes the information about the message that is leaked by the ciphertext. For any j, L2(M, q1, . . . , qj)
denotes the information about the message and all queries made so far that is leaked by the jth query.

We would like to ensure that the information specified byL1 andL2 is the only information that is leaked
to the adversary, even if the adversary can choose the message that is encrypted and then adaptively choose
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the queries for which it executes a query protocol with the client. To capture this, our security definition
considers a real experiment and an ideal experiment, and requires that the view of any adaptive adversary in
the real experiment be simulatable given only the information specified by L1 and L2.

Following [CK10], we call the definition (L1,L2)-CQA2 security, where the name “CQA2” comes from
“chosen query attack”, somewhat analogous to CCA2 (chosen ciphertext attack) for symmetric encryption,
where an adversary can make adaptive decryption queries after receiving the challenge ciphertext.

Definition 3.2 (Honest-but-Curious (L1,L2)-CQA2 Security). Let E = (Gen,Enc,Query) be a queryable
encryption scheme for message space M, query space Q, answer space A, and query functionality F :
M×Q→ A. For functions L1 and L2, adversaryA, and simulator S, consider the following experiments:

RealE,A(λ): The challenger first runs Gen(1λ) to generate secret key K. The adversary A outputs a mes-
sageM . The challenger runs Enc(K,M) to generate a ciphertextCT , and sendsCT toA. The adver-
sary adaptively chooses a polynomial number of queries, q1, . . . , qt. For each query qi, the challenger
sends the adversary the view vi of an honest server in the interactive protocol IssueQuery(K, qi) ↔
AnswerQuery(CT ). Finally, A outputs a bit b, and b is output by the experiment.

IdealE,A,S(λ): First, A outputs a message M . The simulator S is given L1(M) (not M itself), and outputs
a value CT . The adversary adaptively chooses a polynomial number of queries, q1, . . . , qt. For each
query qi, the simulator is given L2(M, q1, . . . , qi) (not qi itself), and it outputs a simulated view vi.
Finally, A outputs a bit b, and b is output by the experiment.

We say that E is (L1,L2)-CQA2 secure against honest-but-curious adversaries if, for all PPT adversaries
A, there exists a simulator S such that |Pr[RealE,A(λ) = 1]− Pr[IdealE,A,S(λ) = 1]| ≤ negl(λ).

Discussion. The above definition is based heavily on the definition for structured encryption [CK10] and
generalizes it to interactive query protocols. It is also loosely related to simulation-based definitions for
functional encryption [BSW11], with one important difference: In our definition, we only consider a single
ciphertext; security is not guaranteed to hold if multiple ciphertexts are encrypted under the same key. Note
that security for only one ciphertext only makes sense in the symmetric-key setting, since in the public-key
setting one can encrypt any number of messages with the public key. In our application, it will be reasonable
to expect that each instantiation of the scheme will be used to encrypt only one message.

Although in some applications, it may be interesting and sufficient to model the server as an honest-
but-curious adversary, often we will be interested in a stronger adversarial model. That is, we would like to
ensure privacy against even a malicious adversary – one that does not execute its algorithms honestly. In the
next section, we present a definition of security against malicious adversaries.

3.2 Malicious (L1,L2)-CQA2 Security

The definition of (L1,L2)-CQA2 security against malicious adversaries is similar to the one for honest-
but-curious adversaries, except for the following two differences. First, for each query qi, instead of
just receiving the view of the server, the adversary will interact with either an honest challenger running
IssueQuery(K, qi) in the real game, or with the simulator given L2(M, q1, . . . , qi) in the ideal game.

Second, at the end of the protocol for qi, the adversary outputs the description of a function gi of its
choice. In the real game, the adversary receives gi(A1, . . . , Ai), where Aj is the private answer output by
the client for query qj . In the ideal game, the adversary receives gi(A′1, . . . , A

′
i), where A′j = ⊥ if the client

output ⊥ in the query protocol for qj ; otherwise, A′j = F (M, qj).
This last step of the game is necessary in the malicious case because the adversary may learn extra

information based on the client’s responses to the incorrectly formed messages from the adversary. The
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client’s private output, although not sent to the server in the actual query protocol, can be thought of as a
response to the last message sent by the adversary. We want to capture the notion that, even if the adversary
were able to learn some function gi of the client’s private outputs A1, . . . , Ai, it would not learn more than
gi(F (M, q1), . . . , F (M, qi)). For any Aj = ⊥, in the evaluation of gi, F (M, qj) is replaced by ⊥.

Definition 3.3 (Malicious (L1,L2)-CQA2 security). Let E = (Gen,Enc,Query) be a queryable encryption
scheme for message spaceM, query space Q, answer space A, and query functionality F :M×Q → A.
For functions L1 and L2, adversary A, and simulator S, consider the following experiments:

Real’E,A(λ): The challenger begins by running Gen(1λ) to generate a secret key K. The adversary A
outputs a message M . The challenger runs Enc(K,M) to generate a ciphertext CT , and sends CT
to A. The adversary adaptively makes a polynomial number of queries q1, . . . , qt. For each query
qi, first A interacts with the challenger, which runs IssueQuery(K, qi). Let Ai be the challenger’s
private output from the protocol for qi. Then A outputs a description of a function gi, and it receives
hi ← gi(A1, . . . , Ai). Finally, A outputs a bit b.

Ideal’E,A,S(λ): First, A outputs a message M . The simulator S is given L1(M) (not M itself), and out-
puts a value CT . The adversary adaptively makes a polynomial number of queries q1, . . . , qt. For
each query qi, first the simulator is given L2(M, q1, . . . , qi) (not qi itself), and A interacts with the
simulator. Then A outputs a description of a function gi, and it receives hi ← gi(A

′
1, . . . , A

′
i), where

A′i = ⊥ if the simulator output ⊥ in the query protocol for qi; otherwise, A′i = F(M, qi). Finally, A
outputs a bit b.

We say that E is (L1,L2)-CQA2 secure against malicious adversaries if, for all PPT adversaries A, there
exists a simulator S such that

|Pr[Real’E,A(λ) = 1]− Pr[Ideal’E,A,S(λ) = 1]| ≤ negl(λ) .

3.3 Pattern Matching Encryption

Definition 3.4 (Pattern matching encryption). A pattern matching encryption scheme for an alphabet Σ is a
queryable encryption scheme for:
• message spaceM = Σ∗,
• query space Q = Σ∗,
• answer space A = P(N), and
• query functionality F where F(s, p) is the set of indices of all the occurrences of p as a substring of
s. That is, F(s, p) = {i|s[i..i+m− 1] = p}, where m = |p|.

4 Pattern Matching Encryption Construction

Our goal is to construct a pattern matching scheme – a queryable encryption scheme that supports the
functionality F , where F(s, p) returns the indices of all occurrences of p as a substring of s.
Suffix Trees We first look to pattern matching algorithms for unencrypted data. There are several known
pattern matching algorithms [KJP77, BM77, KR87, AC75], varying in their preprocessing efficiency and
query efficiency. Most of these algorithms have preprocessing time O(m) and query time O(n), where n is
the length of the string s and m is the length of the pattern p. Pattern matching using suffix trees, however,
has preprocessing timeO(n) and query timeO(m). This is ideal for our applications, where the client stores
one string s encrypted on the server, and performs queries for many pattern strings p. Therefore, we will
focus on pattern matching using suffix trees as the basis for our scheme.
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A suffix tree for a string s of length n is defined as a tree such that the paths from the root to the leaves
are in one-to-one correspondence with the n suffixes of s, edges spell non-empty strings, each internal node
has at least two children, and any two edges edges coming out of a node start with different characters. For
a suffix tree for a string s to exist, s must be prefix-free; if it is not, we can first append a special symbol $
to make s prefix-free. Figure 1 in Appendix A shows a suffix tree for an example string, “cocoon”.

Pattern matching using suffix trees uses the following important observation: a pattern p is a substring
of s if and only if it is a prefix of some suffix of s. Thus, to search s for a pattern p, search for a path from
the root of which p is a prefix.

For a string of length n, a suffix tree can be constructed in O(n) time [Ukk95, Far97]. It can be easily
shown that a suffix tree has at most 2n nodes. However, if for each node we were to store the entire string
spelled on the edge to that node, the total storage would be O(n2) in the worst case. (To see this, consider
the suffix tree for the string s1 . . . sn, where each si is unique. The suffix tree would contain a distinct edge
for each of the n suffixes s1 . . . sn, s2 . . . sn, . . . sn; these suffixes have a total length O(n2).) To represent a
suffix tree in O(n) space, for each node u other than the root, one stores the start and end indices into s of
the first occurrence of the substring on the edge to u. One also stores the string s. Using this representation,
a suffix tree takes O(n) storage and can be used to search for any pattern p of length m in O(m) time, and
to return the indices of all occurrences of p in O(m+ k) time, where k is the number of occurrences.

A few observations about suffix trees will be useful in our construction: For any node u, let ρ(u) be the
string spelled out on the path from the root to u. The string ρ(u) uniquely identifies a node u in a suffix tree,
i.e., no two distinct nodes u and u′ have ρ(u) = ρ(u′). Let us also define ρ̂(u) to be the string spelled out
on the path from the root to the parent of u, followed by the first character on the edge to u. Since no two
edges coming out of a node start with the same character, ρ̂(u) also uniquely identifies u. Furthermore, the
set of indices in s of occurrences of ρ(u) is exactly the same as the set of indices of occurrences of ρ̂(u).

For any given string s, a suffix tree is generally not unique (the children of each node may be ordered in
any way). For the remainder of the paper, we will assume that when a suffix tree is constructed, the children
of every node are “ordered” lexicographically according to some canonical order of the alphabet. Thus, for
a given string s, we talk about the unique suffix tree for s; we can also talk about the ith child of a node in a
well-defined way. In the example in Figure 1, the suffix tree for “cocoon” is constructed with respect to the
ordering (c, o, n). In Figure 1, u5 and u6 are the first and second children, respectively, of u2.

4.1 Notation

Before we describe our pattern matching encryption scheme, we introduce some helpful notation. Some of
the notation will be relative to a string s and its suffix tree Trees, even though they are not explicit parameters.

u: a node in Trees
ε: the empty string
par(u): the parent node of u. If u is the root, par(u) is undefined.
child(u, i): the ith child node of u. If u has fewer than i children, child(u, i) is undefined.
deg(u): the out-degree (number of children) of u
ρ(u): the string spelled on the path from the root to u. ρ(u) = ε if u is the root.
ρ̂(u): For any non-root node u, ρ̂(u) = ρ(par(u))‖u1, where u1 is the first character on the

edge from par(u) to u. If u is the root, ρ̂(u) = ε.
leaf i: the ith leaf node in Trees, where the leaves are numbered 1 to n, left to right
lenu: the length of the string ρ̂(u)
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indu: the index in s of the first occurrence of ρ(u) (equivalently, of ρ̂(u)) as a substring. That
is, indu is the smallest i such that ρ̂(u) = s[i..i + lenu − 1]. If ρ(u) = ε, indu is
defined to be 0.

lposu: the position (between 1 and n) of the leftmost descendant of u. That is, leaf lposu is the
leftmost leaf in the subtree rooted at u.

numu: the number of occurrences in s of ρ(u) (equivalently, of ρ̂(u)) as a substring. If ρ(u) =
ε, numu is defined to be 0. Note that for non-root nodes u, numu is equal to the number
of leaves in the subtree rooted at u.

To illustrate the notation above, let us look at the suffix tree in Figure 1 for the string “cocoon”. In this
tree, we have u2 = par(u3), u3 = child(u2, 1), deg(u2) = 2, ρ(u3) = “cocoon”, ρ̂(u3) = “coc”, leaf 5 =
u8, indu2 = 1, lposu2 = 1,numu2 = 2.

4.2 Intuition

Our construction will make use of a dictionary, which is a data structure that stores key-value pairs (k, V ),
such that for any key k the corresponding value V can be retrieved efficiently (in constant time).

We will use a symmetric encryption scheme ESKE, a PRF F , and a PRP P . The key generation algorithm
will generate three keys KD,KC,KL for ESKE, and four keys K1,K2,K3,K4. (We will explain how the keys
are used as we develop the intuition for the construction.)
First attempt. We first focus on constructing a queryable encryption scheme for a simpler functionality
F ′, where F ′(s, p) computes whether p occurs as a substring in s, and, if so, the index of the first occurrence
in s of p. We will also only consider correctness and security against an honest-but-curious server for now.

As a first attempt, let ESKE be a CPA-secure symmetric encryption scheme, and encrypt a string s =
s1 . . . sn in the following way. First, construct the suffix tree Trees for s. Then construct a dictionary D,
where for each node u in Trees, there is an entry with search key FK1(ρ(u)) and value ESKE.Enc(KD, indu),
and let the ciphertext consist of the dictionary D. Then, in the query protocol for a query p, the client sends
FK1(p). The server then checks whether D contains an entry with search key FK1(p). If so, it returns
D(FK1(p)), which the client decrypts using KD to get the index of the first occurrence in s of p.

For example, for our example string “cocoon”, the ciphertext in this first attempt would consist of the
dictionary shown in Figure 2 in Appendix A.

The obvious problem with this approach is that it only works for patterns that are substrings of s that
end exactly at a node; it does not work for finding substrings of s that end partway down an edge.
Returning a possible match. To address this problem, we observe that we can uniquely identify each
node u by ρ̂(u) instead of ρ(u). Furthermore, if u is the last node (farthest from the root) for which any
prefix of p equals ρ̂(u), then either p is not a substring of s, or p ends partway down the path to u and the
indices in s of the occurrences of ρ̂(u) are the same as the indices in s of the occurrences of p.

In the dictionary D, we will now use ρ̂(u) instead of ρ(u) as the search key for a node u. We will
say that a prefix p[1..i] is a matching prefix if p[1..i] = ρ̂(u) for some u, i.e., there is a dictionary entry
corresponding to p[1..i]; otherwise, p[1..i] is a non-matching prefix.

The ciphertext will also include an arrayC of character-wise encryptions of s, withC[i] = ESKE.Enc(KC, si).
In the query protocol, the client will send T1, . . . , Tm, where Ti = FK1(p[1..i]). The server finds the en-
try D(Tj), where p[1..j] is the longest matching prefix of p. The server will return the encrypted index
ESKE.Enc(KD, ind) stored in D(Tj). The client will then decrypt it to get ind , and request the server to send
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C[ind ], . . . , C[ind +m−1]. The client can decrypt the result to check whether the decrypted string is equal
to the pattern p and thus, whether p is a substring of s.
Returning all occurrences. We would like to return the indices of all occurrences of p in s, not just the
first occurrence or a constant number of occurrences. However, in order to keep the ciphertext size O(n),
we need the storage for each node to remain a constant size. In a naive approach, in each dictionary entry
we would store encryptions of indices of all of the occurrences of the corresponding string. However, this
would take O(n2) storage in the worst case.

We will use the observation that the occurrences of the prefix associated with a node are exactly the
occurrences of the strings associated with the leaves in the subtree rooted at that node. Each leaf corresponds
to exactly one suffix. So, we construct a leaf array L of size n, with the leaves numbered 1 to n from left to
right. Each element L[i] stores an encryption of the index in s of the string on the path to the ith leaf. That
is, L[i] = ESKE.Enc(KL, ind leaf i). In the encrypted tuple in the dictionary entry for a node u we also store
lposu, the leaf position of the leftmost leaf in the subtree rooted at u, and numu, the number of occurrences
of ρ̂(u). That is, the value in the dictionary entry for a node u is now ESKE.Enc(KD, (indu, lposu,numu))
instead of ESKE.Enc(KD, indu). The server will return ESKE.Enc(KD, (indu, lposu,numu)) for the last node
umatched by a prefix of p. The client then decrypts to get indu, lposu,numu, asks for C[ind], . . . , C[ind+
m−1], decrypts to determine whether p is a substring of s, and if so, asks forL[lposu], . . . , L[lposu+num−
1] to retrieve all occurrences of p in s.
Hiding common non-matching prefixes among queries. The scheme outlined so far works; it supports
the desired pattern matching query functionality, against an honest-but-curious adversary. However, it leaks
a lot of unnecessary information; we add a number of improvements to reduce the information that is leaked.

For any two queries p and p′ whose first j prefixes are the same, the values T1, . . . , Tj in the query
protocol will be the same. Therefore, the server will learn that p[1..j] = p[1..j′], even though p[1..j] may
not be contained in s at all. Memory accesses will reveal to the server when two queries share a prefix p[1..j]
that is a matching prefix (i.e., contained in the dictionary), but we would like to hide when queries share
non-matching prefixes.

To hide when queries share non-matching prefixes, we change each Ti to be an ESKE encryption of
f
(i)
1 = FK1(p[1..i]) under the key f (i)2 = FK2(p[1..i]). The dictionary entry for a node u will contain values
f2,i for its children nodes, where f2,i = FK2(ρ̂(child(u, i)). Note that f2,i is the key used to encrypt Tj for
any pattern p whose prefix p[1..j] is equal to ρ̂(child(u, i)). In the query protocol, the server starts at the
root node, and after reaching any node, the server tries using each of the f2,i for that node to decrypt each
of the next Tj’s, until it either succeeds and reaches the next node or it reaches the end of the pattern.
Hiding node degrees, lexicographic order of children, number of nodes in suffix tree. Since the max-
imum degree of any node is the size d of the alphabet, we hide the degree of each node by creating dummy
random f2,i values so that there are d in total. To hide the lexicographic order of the children and hide which
of the f2,i are dummy values, we store the f2,i in a random permuted order in the dictionary entry.

Similarly, since a suffix tree for a string of length n contains at most 2n nodes, we will hide the exact
number N of nodes in the suffix tree by constructing 2n−N dummy entries in D. For each dummy entry,
the search key is a random value f1, and the value is (f2,1, . . . , f2,d,W ), where f2,1, . . . , f2,d are random
and W is an encryption of 0.
Hiding string indices and leaf positions. In order to hide the actual values of the string indices ind , . . . , ind+
m−1 and the leaf positions lpos, . . . , lpos +num−1, we make use of a pseudorandom permutation family
P of permutations [n] → [n]. Instead of sending (ind , . . . , ind + m − 1), the client applies the permu-
tation PK3 to ind , . . . , ind + m − 1 and outputs the resulting values in a randomly permuted order as
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(x1, . . . , xm). Similarly, instead of sending (lpos, . . . , lpos + num − 1), the client applies the permuta-
tion PK4 to lpos, . . . , lpos + num − 1 and outputs the resulting values in a randomly permuted order as
(y1, . . . , ynum). Note that while the server does not learn the actual indices or leaf positions, it still learns
when two queries ask for the same or overlapping indices or leaf positions.
Handling malicious adversaries. The scheme described so far satisfies correctness against an honest-
but-curious adversary, but not a malicious adversary, since the client does not perform any checks to ensure
that the server is sending correct messages. The scheme also would not satisfy security against a malicious
adversary for reasonable leakage functions, since an adversary could potentially gain information by sending
malformed or incorrect ciphertexts during the query protocol.

To handle a malicious adversary, we will require ESKE to be an authenticated encryption scheme. Thus,
an adversary will not be able to obtain the decryption of any ciphertext that is not part of the dictionary D or
the arraysC or L. Also, we add auxiliary information to the messages encrypted, to allow the client to check
that any ciphertext returned by the adversary is the one expected by the honest algorithm. The client will be
able to detect whether the server returned a ciphertext that is in D but not the correct one, for example.

Specifically, we will encrypt (si, i) instead of just si, so that the client can check that it is receiving
the correct piece of the ciphertext. Similarly, we will encrypt (ind leaf i , i) instead of just ind leaf i . For the
dictionary entries, in addition to indu,numu, and lposu, we will include lenu, f1(u), f2,1(u), . . . , f2,d(u) in
the tuple that is encrypted. The client can then check whether the W sent by the adversary corresponds to
the longest matching prefix of p, by verifying that FK1(p[1..len]) = f1, and that none of the f2,1, . . . , f2,d
successfully decrypts any of the Tj for j > len .

4.3 Final construction

Let F : {0, 1}λ × {0, 1}∗ → {0, 1}λ be a PRF, and let P : {0, 1}λ × [n] → [n] be a PRP. Let ESKE =
(Gen,Enc,Dec) be an authenticated, which-key-concealing symmetric encryption scheme. Our pattern
matching encryption scheme EPM for an alphabet Σ with |Σ| = d is as follows.

Gen(1λ): Choose random strings KD,KC,KL,K1,K2,K3,K4
R← {0, 1}λ.2 The secret key is

K = (KD,KC,KL,K1,K2,K3,K4).

Enc(K, s): Let s = s1 . . . sn ∈ Σn. Construct the suffix tree Trees for s.

1. Construct a dictionary D as follows.
For any node u, define f1(u) := FK1(ρ̂(u)) and f2(u) := FK2(ρ̂(u)).
For each node u in Trees (including the root and leaves), proceed as follows:

• Choose a random permutation πu : [d]→ [d].
• For i = 1, . . . , d, let f2,i(u) = f2(child(u, πu(i)) if 1 ≤ πu(i) ≤ deg(u); otherwise let

f2,i(u)
R← {0, 1}λ.

• LetXu = (indu, lposu,numu, lenu, f1(u), f2,1(u), . . . , f2,d(u)), and letWu = ESKE.Enc(KD, Xu).
• Store Vu = (f2,1(u), . . . , f2,d(u),Wu) with search key κu = f1(u) in D.

Let N denote the number of nodes in Trees. Construct 2n − N dummy entries in D as fol-
lows. For each dummy entry, choose random strings f1, f2,1, . . . , f2,d

R← {0, 1}λ, and store
(f2,1, . . . , f2,d, ESKE.Enc(KD, 0)) with search key f1 in D.

2We will assume for simplicity that ESKE.Gen simply chooses a random key k
R← {0, 1}λ, so throughout the construction we

will use random values as ESKE keys. To allow for general ESKE.Gen algorithms, instead of using a random value r directly as a key,
we could use a key generated by ESKE.Gen with r providing ESKE.Gen’s random coins.
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2. Construct an array C as follows: for i = 1, . . . , n, set C[PK3(i)] = ESKE.Enc(KC, (si, i)) .

3. Construct an array L as follows: For i = 1, . . . , n, set L[PK4(i)] = ESKE.Enc(KL, (ind leaf i , i)).

Output the ciphertext CT = (D,C,L).

IssueQuery(K, p)↔ AnswerQuery(CT ): The interactive query protocol, between a client with K and p
and a server with CT , runs as follows.

Let p = p1 . . . pm ∈ Σm, and let CT = (D,C,L).

1. The client computes, for i = 1, . . . ,m, f (i)1 = FK1(p1 . . . pi), f
(i)
2 = FK2(p1 . . . pi) , and sets

Ti = ESKE.Enc(f
(i)
2 , f

(i)
1 ). The client sends the server (T1, . . . , Tm).

2. The server proceeds as follows, maintaining variables f1, f2,1, . . . , f2,d,W . Initialize (f2,1, . . . , f2,d,W )
to equal D(FK1(ε)), where ε denotes the empty string.
For i = 1, . . . ,m :

For j = 1, . . . , d:
Let f1 ← ESKE.Dec(f2,j , Ti). If f1 6= ⊥, update (f2,1, . . . , f2,d,W ) to equal D(f1), and

break (proceed to the next value of i). Otherwise, do nothing.
At the end, the server sends W to the client.

3. The client runs X ← ESKE.Dec(KD,W ). If X = ⊥, output ⊥ and end the protocol. Otherwise,
parse X as (ind , lpos,num, len, f1, f2,1, . . . , f2,d). Check whether FK1(p[1..len]) = f1. If
not, output ⊥ and end the protocol. Otherwise, check whether ESKE.Dec(f2,i, Tj) = ⊥ for any
j ∈ {len + 1, . . . ,m} and i ∈ {1, . . . , d}. If so, output ⊥ and end the protocol. If ind = 0,
output ∅. Otherwise, choose a random permutation π1 : [m] → [m]. For i = 1, . . . ,m, let
xπ1(i) = PK3(ind + i− 1). The client sends (x1, . . . , xm) to the server.

4. The server sets Ci = C[xi] for i = 1, . . . ,m and sends (C1, . . . , Cm) to the client.

5. For i = 1, . . . ,m, the client runs Y ← ESKE.Dec(KC, Cπ1(i)). If Y = ⊥, output ⊥ and end
the protocol. Otherwise, let the result be (p′i, j). If j 6= ind + i − 1, output ⊥. Otherwise,
if p′1 . . . p

′
m 6= p, then the client outputs ∅ as its answer and ends the protocol. Otherwise,

the client chooses a random permutation π2 : [num] → [num]. For i = 1, . . . ,num , let
yπ2(i) = PK4(lpos + i− 1). The client sends (y1, . . . , ynum) to the server.

6. The server sets Li = L[yi] for i = 1, . . . ,num , and sends (L1, . . . , Lnum) to the client.

7. For i = 1, . . . ,num , the client runs ESKE.Dec(KL, Lπ2(i)). If the result is ⊥, the client outputs
⊥ as its answer. Otherwise, let the result be (ai, j). If j 6= lpos + i − 1, output ⊥. Otherwise,
output the answer A = {a1, . . . , anum}.

4.4 Efficiency

In analyzing the efficiency of our construction, we will assume data is stored in computer words that hold
log n bits; therefore, we will treat values of size O(log n) as constant size.

We assume encryption and decryption using ESKE take O(λ) time. Also we assume the dictionary is
implemented in such a way that dictionary lookups take constant time (using hash tables, for example).
Efficient batch implementation of PRFs. Assuming the evaluation of a PRF takes time linear in the
length of its input, in a naive implementation of our scheme, computing the PRFs f1(u) and f2(u) for all
nodes u would take O(n2). This is because even though there are only at most 2n nodes, the sum of the
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lengths of the strings ρ̂(u) associated with the nodes u can be O(n2). Similarly, computing the PRFs used
for T1, . . . , Tm would take O(m2) time. It turns out that we can take advantage of the way the strings we
are applying the PRFs to are related, to speed up the batch implementation of the PRFs for all of the nodes
of the tree. We will use two tools: the polynomial hash, and suffix links (described below).

To compute the PRF of a string x, we will first hash x to λ bits using the polynomial hash, and then
apply the PRF (which takes time O(λ) on the hashed input). To efficiently compute the hashes of all of the
strings ρ̂(u), we use a trick that is used in the Rabin-Karp rolling hash (see Cormen et al. [CLRS09],e.g.).
(A rolling hash is a hash function that can be computed efficiently on a sliding window of input; the hash
of each window reuses computation from the previous window.) The Rabin-Karp hash is the polynomial
hash, with each character of the string viewed as a coefficient of the polynomial applied to the random key
of the hash. The key observation is that the polynomial hash H allows for constant-time computation of
Hk(x1 . . . xn) fromHk(x2 . . . xn), and also ofHk(x1 . . . xn) fromHk(x1 . . . xn−1). To see this, notice that
Hk(x1 . . . , xn) = x1 + k ·Hk(x2 . . . xn), and Hk(x1 . . . xn) = Hk(x1 . . . xn−1) + xnk

n−1.
Using this trick, for any string x of length `, we can compute the hashesHk(x[1..i]) for all i = 1, . . . ,m

in total time O(λm). Thus, the T1, . . . , Tm can be computed in time O(λm).
To compute the hashes of ρ̂(u) for all nodes u in time O(n), we need one more trick. Many efficient

suffix tree construction algorithms include suffix links: Each non-leaf node u with associated string ρ(u) =
a||B, where a is a single character, has a pointer called a suffix link pointing to the node u′ whose associated
string ρ(u′) is B. It turns out that connecting the nodes in a suffix tree using the suffix links forms another
tree, in which the parent of a node u is the node u′ to which u’s suffix link points. To see this, notice that
each internal node has an outgoing suffix link, and each node’s suffix link points to a node with a shorter
associated string of one fewer character, so there can be no cycles.

Since ρ̂(u) = ρ(par(u))||u1, we can first compute the hashes of ρ(u) for all non-leaf nodes u, and then
compute ρ̂(u) for all nodes u in constant time from ρ(par(u)). To compute ρ(u) for all nodes u, we traverse
the tree formed by the suffix links, starting at the root, and compute the hash of ρ(u) for each u using ρ(u′),
where u′ is u’s parent in the suffix link tree. Each of these computations takes constant time, since ρ(u) is
the same as ρ(u′) but with one character appended to the front. Therefore, computing the hashes of ρ(u) for
all non-leaf nodes u (and thus, computing the hashes of ρ̂(u) for all nodes u) takes total time O(n).
Encryption efficiency. Using the efficient batch implementation of PRFs suggested above, the PRFs f1(u)
and f2(u) can be computed for all nodes u in the tree in total time O(λn). Therefore, the dictionary D of
2n entries can be computed in total time O(λn). The arrays C and L each have n elements and can be
computed in time O(λn). Therefore, encryption takes time O(λn) and the ciphertext is of size O(λn).
Query protocol efficiency. In the query protocol, the client first computes T1, . . . , Tm. Using the efficient
batch PRF implementation above, computing the f (i)1 and f (i)2 for i = 1, . . . ,m takes total time O(m), and
computing each ESKE.Enc(f

(i)
2 , f

(i)
1 ) takes O(λ) time, so the total time to compute T1, . . . , Tm is O(λm).

To find W , the server performs at most md decryptions and dictionary lookups, which takes total time
O(λm). The client then computes x1, . . . , xm and the server retrieves C[x1], . . . , C[xm], in time O(m).
If the answer is not ∅, the client then computes y1, . . . , ynum and the server retrieves L[y1], . . . , L[ynum ] in
timeO(num), in timeO(num). Thus, both the client and the server take computation timeO(λm+num) in
the query protocol. (Since we are computing an upper bound on the query computation time, we can ignore
the possibility that the server cheats and the client aborts the protocol by outputting ⊥.) The query protocol
takes three rounds of communication, and the total size of the messages exchanged is O(λm+ num).
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4.5 Security

We first give some notation for the leakage of this scheme. We say that a query p visits a node u in the
suffix tree Trees for s if ρ̂(u) is a prefix of p. For any j let pj denote the jth query, and let mj = |pj |. Let
nj denote the number of nodes visited by the query for pj in s, let uj,i denote the ith such node, and let
lenj,i = |ρ̂(uj,i)|. Let numj denote the number of occurrences of pj as a substring of s. Let ind j denote
the index ind in the ciphertext W returned by AnswerQuery for pj . Note that ind j is the index in s of the
longest matching prefix of pj , which is also the index in s of the longest prefix of pj that is a substring of s.
Let lposj denote the leaf index lpos in the ciphertextW returned by AnswerQuery for pj . If pj is a substring
of s, lposj is equal to the position (between 1 and n, from left to right) of the leftmost leaf ` for which pj is
a prefix of ρ̂(`).

Briefly: The query prefix pattern QP for a query pj tells which of the previous queries p1, . . . , pj−1
visited each of the nodes visited by pj . The index intersection pattern IP for a query pj essentially tells when
any of the indices ind j , . . . , ind j +mj − 1 are equal to or overlap with any of the indices ind i, . . . , ind i +
mi − 1 for any previous queries pi. The leaf intersection pattern LP for a query pj essentially tells when
any of the leaf positions lposj , . . . , lposj + numj − 1 are equal to or overlap with any of the leaf positions
lpos i, . . . , lpos i + numi − 1 for any previous queries pi.

The leakage of the scheme EPM is as follows. L1(s) is just n = |s|. L2(s, p1, . . . , pj) consists of

(mj = |pj |, {lenj,i}
nj
i=1, QP(s, p1, . . . , pj), IP(s, p1, . . . , pj), LP(s, p1, . . . , pj)) .

For a more formal definition and an example of the leakage, see Appendix D.1.
Security Theorems See Appendix D.2 and C for proofs of the following theorems.
Theorem 4.1. Let L1 and L2 be as defined above. If F is a PRF, P is a PRP, and ESKE is a CPA-secure,
key-private symmetric-key encryption scheme, then the pattern matching encryption scheme EPM satisfies
malicious (L1,L2)-CQA2 security.

Theorem 4.2. If ESKE is an authenticated encryption then EPM is correct against malicious adversaries.

5 Conclusion

We presented a definition of queryable encryption schemes and defined security against both honest-but-
curious and malicious adversaries making chosen query attacks. Our security definitions are parameterized
by leakage functions that specify the information that is revealed about the message and the queries by the
ciphertext and the query protocols.

We constructed an efficient pattern matching scheme – a queryable encryption scheme that supports
finding all occurrences of a pattern p in an encrypted string s. Our approach is based on suffix trees.
Our construction uses only basic symmetric-key primitives (pseudorandom functions and permutations and
an authenticated, which-key-concealing encryption scheme). The ciphertext size and encryption time are
O(λn) and query time and message size are O(λm+ k), where λ is the security parameter, n is the length
of the string, m is the length of the pattern, and k is the number of occurrences of the pattern. Querying
requires only 3 rounds of communication.

While we have given a formal characterization of the leakage of our pattern matching scheme, it is an
open problem to analyze the practical cost of the leakage. Given the leakage from several “typical” queries,
what can a server infer about the message and the queries? For some applications, the efficiency may be
worth the leakage tradeoff, especially in applications where current practice does not use encryption at all.
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A Suffix Tree Figures

The following figures illustrate suffix trees and the “first attempt” scheme described in the intuition for the
main construction.

B Notation and Primitives

B.1 Basic Notation

We write x R← X to denote an element x being sampled uniformly at random from a finite setX , and x← A
to denote the output x of an algorithm A. We write x||y to refer to the concatenation of strings x and y, and
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Figure 1: A suffix tree for the string s =“cocoon”. We will use the node labels u1, . . . , u9 later to explain
how the pattern matching encryption scheme works.

node key value
u1 FK1(ε) ESKE.Enc(KD, 0)

u2 FK1(“co”) ESKE.Enc(KD, 1)

u3 FK1(“cocoon”) ESKE.Enc(KD, 1)

u4 FK1(“coon”) ESKE.Enc(KD, 3)

u5 FK1(“o”) ESKE.Enc(KD, 2)

u6 FK1(“ocoon”) ESKE.Enc(KD, 2)

u7 FK1(“oon”) ESKE.Enc(KD, 4)

u8 FK1(“on”) ESKE.Enc(KD, 5)

u9 FK1(“n”) ESKE.Enc(KD, 6)

Figure 2: The dictionary composing the ciphertext for the string “cocoon” in the “first attempt” scheme.
Note that the node identifiers u1, . . . , u9 are not a part of the dictionary; they are provided for the purpose
of cross-referencing with the suffix tree in Figure 1.
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|x| to refer to the length of a string x. If x = x1 . . . xn is a string of n characters, and a and b are integers,
1 ≤ a, b ≤ n, then x[a..b] denotes the substring xaxa+1 . . . xb. We sometimes use ε to denote the empty
string. In other places ε will be used to denote a quantity that is negligible in the security parameter; the
intended meaning of ε will be clear from context.

If T is a tuple of values with variable names (a, b, . . .), then T.a, T.b, . . . refer to the values in the tuple.
If n is a positive integer, we use [n] to denote the set {1, . . . , n}. If S is a set, P(S) is the corresponding
power set, i.e., the set of all subsets of S.

We use λ to refer to the security parameter, and we assume all algorithms implicitly take λ as input. A
function ν : N → N is negligible in λ if for every positive polynomial p(·) there exists an integer λp > 0
such that for all λ > λp, ν(λ) < 1/p(λ). We let negl(λ) denote an unspecified negligible function in λ.

Following standard GMR notation [GMR88], if p(·, ·, . . .) is a predicate, the notation Pr[a ← A; b ←
B; . . . : p(a, b, . . .)] denotes the probability that p(a, b, . . .) is true after a ← A, b ← B, . . . are executed in
order. We write AO to represent that algorithm A can make oracle queries to algorithm O. We will assume
that adversaries are stateful algorithms; that is, an adversary A maintains state across multiple invocations
by implicitly taking its previous state as input and outputting its updated state.

If f is a function with domainD, and S ⊆ D, then f [S] denotes the image of S under f . If F : K×D →
R is a family of functions from D to R, where K, D, and R are finite sets, we write FK for the function
defined by FK(x) = F (K,x).

B.2 Pseudorandom Functions and Permutations

A pseudorandom function family (PRF) is a family F of functions such that no probabilistic polynomial-
time (PPT) adversary can distinguish a function chosen randomly from F from a uniformly random function,
except with negligible advantage.

Definition B.1 (Pseudorandom Function Family). Let D and R be finite sets, and let F : {0, 1}λ×D → R
be a family of functions. Let R denote the set of all possible functions Z : D → R. F is a pseudorandom
function family (PRF) if for all PPT adversaries A,

|Pr[K
R← {0, 1}λ : AFK (1λ) = 1]− Pr[Z

R← R : AZ(1λ) = 1]| ≤ negl(λ) .

Similarly, a pseudorandom permutation family (PRP) is a family of functions such that no PPT adversary
can distinguish a function randomly chosen from F and a uniformly random permutation, except with
negligible advantage.

Definition B.2 (Pseudorandom Permutation Family). Let D be a finite set, and let F : {0, 1}λ ×D → D
be a family of functions. Let P denote the set of all possible permutations (one-to-one, onto functions)
P : D → D. F is a pseudorandom permutation family (PRP) if for all PPT adversaries A,

|Pr[K
R← {0, 1}λ : AFK (1λ) = 1]− Pr[P

R← P : AP (1λ) = 1]| ≤ negl(λ) .

B.3 ε-Almost-Universal Hash Functions

An ε-almost-universal hash function is a family H of hash functions such that, for any pair of distinct
messages, the probability of a hash collision when the hash function is chosen randomly from H is at most
ε.
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Definition B.3 (ε-Almost-Universal Hash Function). Let U and B be finite sets, and let H : {0, 1}λ×U →
B be a family of hash functions. H is ε-almost-universal if for any x, x′ ∈ U , x 6= x′,

Pr[t
R← {0, 1}λ : Ht(x) = Ht(x

′)] ≤ ε .

Let us look at an example of a known ε-almost-universal hash construction, which we shall use later.

Example B.4. [Polynomial hash] We view a message x as a sequence (x1, . . . , xn) of `-bit strings. For any
k in the finite field GF(2`), the hash function Hk(x) is defined as the evaluation of the polynomial px over
GF(2`) defined by coefficients x1, . . . , xn, at the point k. That is, Hk(x) = px(k) = Σn

i=1xik
i−1, where all

operations are in GF(2`).
The hash function family defined above is ε-almost-universal, for ε = (n− 1)/2`. To see this, suppose

Hk(x) = Hk(x
′) for some x 6= x′. Then px(k) = px′(k). This means px−x′(k) = Σn

i=1(xi − x′i)ki−1 = 0,
where at least one of (xi − x′i) is not 0. Since px−x′(·) is a non-zero polynomial of degree at most n− 1, it
can have at most n − 1 roots. The probability that a k chosen randomly from GF(2`) will be one of the at
most n− 1 roots is at most (n− 1)/2`.

B.4 PRF Composed with Almost Universal Hashing

When computing a PRF on a long input, it can be more efficient to first hash the input down to a short string,
and then apply the PRF to the hash output. If the hash function is ε-almost-universal for some negligible
ε, then the resulting construction is still a PRF. This observation is due to Levin [Lev87] and is known
sometimes as Levin’s trick.

The following theorem says that a PRF composed with an ε-almost-universal hash function, where ε is
negligible, gives another PRF. A proof of this theorem has been given previously in [Dod]; we include a
version of that proof here, for completeness.

Theorem B.5. Let p be some polynomial. Let F : {0, 1}λ×B → R be a PRF, and letH : {0, 1}p(λ)×U →
B be an ε-almost-universal hash function for some ε = negl(λ). Then F (H) : {0, 1}λ+p(λ) × U → R,
defined by FK,t(x) = FK(Ht(x)), is a PRF.

Proof. Let A be an adversary attacking the PRF property of F (H). We wish to show that A’s advantage
in distinguishing FK(Ht(·)) for random K, t from Z(·), where Z is a uniformly random function from U
to R, is negl(λ). To do so, we first argue that A’s advantage in distinguishing FK(Ht(·)) from Y (Ht(·)),
where Y is a uniformly random function from B to R, is negl(λ). We then argue that A’s advantage in
distinguishing Y (Ht(·)) from Z(·) is negl(λ). Therefore, A’s total advantage in distinguishing FK(Ht(·))
from Z(·) is negl(λ).

By the PRF property of F , we immediately have that A’s advantage in distinguishing FK(Ht(·)) for a
random K from Y (Ht(·)) is at most negl(λ).

Next, to see that A cannot distinguish Y (Ht(·)) for a random t from Z(·), let x1, . . . , xq be the queries
A makes to its oracle. (Without loss of generality, assume x1, . . . , xq are distinct.) If all of the hashes
Ht(x1), . . . ,Ht(xq) are distinct, then Y (Ht(·)) and Z(·) will both output q uniformly random, independent
values, so A will not be able to distinguish the two functions.

Therefore, A’s advantage in distinguishing Y (Ht(·)) from Z(·) is at most the probability of a collision
among Ht(x1), . . . ,Ht(xq). Let X denote the event that a collision occurs among Ht(x1), . . . ,Ht(xq).
Since Y is a uniformly random function, each output of Y (Ht(·)) is a uniformly random, independent value
(independent of the input and of t), until and unless X occurs. Once X occurs, the subsequent outputs of
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Y (Ht(·)) do not affect the probability of X . Therefore, to analyze the probability of X , we can think of
x1, . . . , xq as being chosen before and independently of t.

There are at most q2 pairs i < j, and by the ε-almost universality of H , for each pair there is at most an
ε probability of a collision. Thus, the probability of X is at most q2ε, which is negl(p(λ)) = negl(λ).

All together, A’s distinguishing advantage is at most negl(λ).

B.5 Symmetric-Key Encryption

Definition B.6 (Symmetric-Key Encryption). A symmetric (or symmetric-key) encryption scheme consists
of the following PPT algorithms.

Gen(1λ): The key generation algorithm takes a security parameter λ and generates a secret key K.

Enc(K,m): The encryption algorithm takes a secret key K and a message m and returns a ciphertext c.
Note that Enc will be randomized, but we omit the randomness as an explicit input.

Dec(K, c): The decryption algorithm is a deterministic algorithm that takes a secret key K and a ciphertext
c and returns a message m or a special symbol ⊥.

Correctness. For correctness, we require that for all λ and for all m, letting K ← Gen(1λ), we have
Dec(K,Enc(K,m)) = m.

CPA Security. We require indistinguishability under chosen-plaintext
attacks (IND-CPA), or CPA security, which is defined using the following game. First, the challenger runs
Gen(1λ) to generate a secret key K, which is kept hidden from the adversary. Next, the adversary is al-
lowed to make any number of queries to an encryption oracle Enc(K, ·). The adversary then outputs two
equal-length challenge messages m0 and m1 and receives a challenge ciphertext equal to Enc(K,mb) for
a random choice of b ∈ {0, 1}. The adversary can make more queries to the encryption oracle. Finally, it
outputs a guess b′ of the bit b. The adversary wins the game if b′ = b.

The adversary’s advantage is the difference between the probability that it wins the game and 1/2 (from
guessing randomly). CPA security says that no PPT adversary can win the above game with more than
negligible advantage.

Definition B.7 (CPA security). A symmetric encryption scheme (Gen,Enc,Dec) is CPA-secure if for all
PPT adversaries A,

|Pr[K ← Gen(1λ); (m0,m1)← AEnc(K,·)(1λ); b
R← {0, 1}; c← Enc(K,mb);

b′ ← AEnc(K,·)(c) : b′ = b]− 1/2| ≤ negl(λ) ,

where the two messages (m0,m1) output by A must be of equal length.

Which-Key Concealing. We will also require symmetric encryption schemes to satisfy a property called
which-key concealing. The which-key concealing property was introduced by Abadi and Rogaway [AR02]
and (under the name “key hiding”) by Fischlin [Fis99].

The which-key-concealing requirement says, roughly, that an adversary cannot tell whether ciphertexts
are encrypted under the same key or different keys. More formally, which-key concealing is defined via a
game, in which the adversary tries to distinguish between the following two experiments. In one experiment,
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Gen(1λ) is run twice, to generate two keys K and K ′. The adversary is given a “left” oracle Enc(K, ·) and
a “right” oracle Enc(K ′, ·), to both of which it is allowed to make any number of queries. The adversary
then outputs a bit. The other experiment is the same, except that only one key K is generated, and both
of the left and right oracles output Enc(K, ·). The adversary’s advantage is the difference between the
probability that it outputs 1 in the two experiments. Which-key concealing says that no PPT adversary can
win the above game with more than negligible advantage. Note that in order for an encryption scheme to be
which-key-concealing, clearly it must be randomized.

Definition B.8 (Which-Key Concealing). A symmetric encryption
scheme (Gen,Enc,Dec) is which-key-concealing if for all PPT adversaries A,

|Pr[K ← Gen(1λ);K ′ ← Gen(1λ);AEnc(K,·),Enc(K′,·)(1λ) = 1]−
Pr[K ← Gen(1λ);AEnc(K,·),Enc(K,·)(1λ) = 1]| ≤ negl(λ) .

Let us now see an example of a symmetric encryption scheme that is CPA-secure and which-key-
concealing.

Example B.9 (Exor). Let p be a polynomial, and let F : {0, 1}λ × {0, 1}λ → {0, 1}p(λ) be a PRF. The
encryption scheme Exor for message spaceM = {0, 1}p(λ) is defined as follows.

Gen(1λ): Let K R← {0, 1}λ be the secret key.

Enc(K,m): Let r R← {0, 1}λ, and output c = (r, FK(r)⊕m).

Dec(K, c): Let c = (r, x). Output m = x⊕ FK(r).

Bellare et al. [BDJR97] proved that the above scheme is CPA-secure:

Theorem B.10. [BDJR97] If F is a PRF, then Exor is CPA-secure.

We will prove that Exor is which-key-concealing.

Theorem B.11. If F is a PRF, then Exor is which-key-concealing.

Proof. Let A be an adversary playing the which-key-concealing game.
We first replace Exor in the which-key-concealing game with a modified scheme E ′xor. E ′xor is the same as

Exor, except that FK is replaced with a uniformly random function R : {0, 1}λ → {0, 1}p(λ). By the PRF
property of F , replacing Exor with E ′xor can change A’s advantage in the which-key-concealing game by at
most a negligible quantity.

So, supposeA is playing the which-key-concealing game for E ′xor. SupposeAmakes a total of q queries,
m1, . . . ,mq, to its encryption oracles, where each mi is a query to either the left or the right oracle. Let
(ri, xi) denote the answer to the ith query, and let yi = xi ⊕mi.

If there are any i and j such that ri = rj and mi is a query to the left oracle while mj is a query to the
right oracle, then A will be able to distinguish whether the two oracles use the same key based on whether
yi = yj . However, if all of r1, . . . , rq are distinct, then for any key the encryption algorithm will choose
each yi as a uniformly random, independent value, soA will gain no information about which experiment it
is in and can do no better than a random guess.

Thus, A’s advantage in winning the which-key-concealing game for E ′xor is at most the probability that
any of r1, . . . , rq are equal, which is upper bounded by q2/2λ. Combining this with the negligible difference
in A’s advantage against E ′xor and against Exor, we have that A’s advantage in winning the which-key-
concealing game for Exor is negligible.
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Ciphertext integrity and authenticated encryption. We will also sometimes require a symmetric en-
cryption scheme to have a property called ciphertext integrity. The notions of ciphertext integrity and au-
thenticated encryption (defined below) were introduced by [BR00, KY01, BN00]. Ciphertext integrity says,
roughly, that an adversary given encryptions of messages of its choice cannot construct any new ciphertexts
that decrypt successfully (i.e., decrypt to a value other than ⊥).

Formally, ciphertext integrity is defined using the following game. First, the challenger runs Gen(1λ)
to generate a secret key K, which is kept hidden from the adversary. The adversary then adaptively makes
a polynomial number of queries, m1, . . . ,mq. To each query mi the challenger responds by sending ci ←
Enc(K,mi) to the adversary. Finally, the adversary outputs a value c. The adversary wins the game if c is
not among the previously received ciphertexts {c1, . . . , cq} and Dec(K, c) 6= ⊥.

We define the advantage of an adversaryA in attacking the ciphertext integrity of a symmetric encryption
scheme as the probability that A wins the above game.

Definition B.12 (Ciphertext integrity). A symmetric encryption scheme (Gen,Enc,Dec) has ciphertext in-
tegrity if for all PPT adversaries A, A’s advantage in the above game is at most negl(λ).

Definition B.13 (Authenticated encryption). A symmetric encryption scheme is an authenticated encryption
scheme if it has CPA security and ciphertext integrity.

Let us now see an example of an authenticated encryption scheme. One way to construct an authenticated
encryption scheme is “encrypt-then-MAC” [BN00]. (A MAC is a message authentication code, the details
of which we do not give here; instead, we will just use the fact that a PRF defines a secure MAC.) Using
encrypt-then-MAC, one first encrypts a messagemwith a CPA-secure scheme to get a ciphertext c′, and then
computes a MAC of c′ to get a tag t. The ciphertext is then c = (c′, t). The decryption algorithm verifies
that t is a valid tag for c′ and then decrypts c′ using the CPA-secure scheme. In the following example, we
apply encrypt-then-MAC to Exor to obtain an authenticated encryption scheme Exor-auth (which, like Exor, is
also which-key-concealing).

Example B.14 (Exor-auth). Let p be a polynomial, and let F : {0, 1}λ × {0, 1}λ → {0, 1}p(λ) and G :

{0, 1}λ × {0, 1}λ+p(λ) → {0, 1}λ be PRFs. The encryption scheme Exor-auth for message space M =

{0, 1}p(λ) is defined as follows.

Gen(1λ): Choose K1,K2
R← {0, 1}λ and let K = (K1,K2) be the secret key.

Enc(K,m): Let r R← {0, 1}λ, and output c = (r, x = FK1(r)⊕m, t = GK2(r||x)).

Dec(K, c): Let c = (r, x, t). If t 6= GK2(r||x), output ⊥. Otherwise, output m = x⊕ FK1(r).

Theorem B.15. Exor-auth is an authenticated encryption scheme.

Proof. The theorem follows directly from the following facts: (1) G is a PRF and therefore defines a MAC,
(2) Exor is CPA-secure, and (3) applying encrypt-then-MAC to a CPA-secure scheme gives an authenticated
encryption scheme [BN00].

Exor-auth also retains the which-key-concealing property of Exor.

Theorem B.16. Exor-auth is which-key-concealing.
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Proof. The proof is very similar to the which-key-concealing proof for Exor. We first replace Exor-auth with a
modified scheme E ′xor-auth in which F andG are replaced with random functionsR1 andR2, respectively. By
the PRF property of F and G, this changes A’s advantage in winning the which-key-concealing game by at
most a negligible quantity. Now, supposeA makes q encryption queries, m1, . . . ,mq. Let (ri, xi, ti) denote
the response to the ith query, and let yi = xi⊕mi. If all of r1, . . . , rq are distinct and all of r1||x1, . . . , rq||xq
are distinct, then for any key the encryption algorithm will choose all of the yi and ti as uniformly random,
independent values, so A will gain no information about which experiment it is in. But if all of the ri are
distinct, then so are all of the ri||xi. Therefore, A’s advantage against E ′xor-auth is at most the probability that
any of the ri are equal, which is upper bounded by q2/2λ. All together, A’s advantage against Exor-auth is
negligible.

C Correctness Against Malicious Adversaries

We will show that EPM is correct against malicious adversaries.

Theorem C.1. If ESKE is an authenticated encryption scheme, then EPM is correct against malicious adver-
saries.

Proof. It is fairly straightforward to see that if the adversary executes AnswerQuery honestly, then the
client’s output will be correct.

We will argue that for each of the places where A could output an incorrect value, the client will detect
A’s cheating and output ⊥, with all but negligible probability.

Lemma C.2. If ESKE is an authenticated encryption scheme, then if an adversaryA outputs an incorrect W
in the query protocol, the client’s response to W will be ⊥, with all but negligible probability.

Proof. In the protocol for a query p, the client runs ESKE.Dec(KD,W ) to get either ⊥ or a tuple X , which it
parses as (ind , lpos,num, len, f1, f2,1, . . . , f2,d). The client outputs⊥ if any of the following events occur:

• (Event W.1) ESKE.Dec(KD,W ) = ⊥, or

• (Event W.2) W decrypts successfully, but f1 6= FK1(p[1..len]), or

• (Event W.3) W decrypts successfully and f1 = FK1(p[1..len]), but
ESKE.Dec(f2,i, Tj) 6= ⊥ for some i ∈ {1, . . . , d}, j > len .

On the other hand, if the adversary cheats, thenW is not the ciphertext in the dictionary entryD(FK1(p[1..i])),
where p[1..i] is the longest matching prefix of p, which means one of the following events:

• (Event W.1′) W is not a ciphertext in D,

• (Event W.2′) W is a ciphertext in D but not for any prefix of p. That is, W = D(κ) where κ is not
equal to FK1(p[1..i]) for any i.

• (EventW.3′)W is a ciphertext inD for a prefix of p, but there is a longer matching prefix of p. That is,
W = D(FK1(p[1..i])) for some i, but there exists a j > i such that there is an entry D(FK1(p[1..j])).
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We want to show that if the adversary cheats, then the client will output ⊥.
If event W.1′ occurs, then we will show below that W.1 occurs with all but negligible probability, by the

ciphertext integrity of ESKE.
If event W.2′ occurs, then event W.2 occurs with all but negligible probability upper bounded by 1/2λ,

the probability that FK1(p[1..len]) = f1 when f1 is an independent, random value.
If event W.3′ occurs, then clearly W.3 also occurs.
It remains to show that event W.1′ implies event W.1 with all but negligible probability.
Suppose an adversaryA causes eventW.1′ but not eventW.1. Then theW output byA is not among the

ciphertexts in the dictionary, but ESKE.Dec(KD,W ) 6= ⊥. Then we can use A to construct an algorithm B
that breaks ciphertext integrity of ESKE. Algorithm B executes EPM honestly, except that in the encryption
algorithm, instead of generating each Wu as ESKE.Enc(KD, Xu), it queries its encryption oracle on Xu and
uses the resulting ciphertext as cj . Then, when A outputs W , B outputs W in the ciphertext integrity game.
Note that A’s view is the same as when it is interacting with the real scheme EPM. If W is not among the
ciphertexts inD, but ESKE.Dec(KD,W ) 6= ⊥, then B wins the ciphertext integrity game. Therefore, ifA has
probability ε of causing event W.1′ but not event W.1, B wins the ciphertext integrity game with the same
probability ε.

Lemma C.3. If ESKE is an authenticated encryption scheme, then if an adversary A outputs incorrect
C1, . . . , Cm in the query protocol, the client’s response to C1, . . . , Cm will be ⊥, with all but negligible
probability.

Proof. In the query protocol, for each i, the client outputs ⊥ if either of the following events occur:

• (Event C.1) ESKE.Dec(KC, Ci) = ⊥, or

• (Event C.2) ESKE.Dec(KC, Ci) = (p′i, j) where j is not the correct index.

On the other hand, if the adversary cheats and outputs incorrect C1, . . . , Cm, then for some i, Ci 6=
C[xi], which means either of the following events:

• (Event C.1′) Ci is not among C[1], . . . , C[n], or

• (Event C.2′) Ci = C[k] where k 6= xi.

We want to show that if the adversary cheats, then the client will output ⊥.
For any i, if event C.1′ occurs, then we will show below that event C.1 occurs with all but negligible

probability, by the ciphertext integrity of ESKE.
If event C.2′ occurs, then event C.2 occurs, since if Ci = C[k] for some k 6= xi, Ci will decrypt to

(sj , j) for an incorrect index j.
It remains to show that for any i event C.1′ implies event C.1, with all but negligible probability. Sup-

pose an adversary A causes event C.1′ but not event C.1. Then Ci is not among C[1], . . . , C[n], but
ESKE.Dec(KC, Ci) 6= ⊥. Then we can use A to construct an algorithm B that breaks ciphertext integrity
of ESKE. B executes EPM honestly, except that in the encryption algorithm, instead of generating each cj
as ESKE.Enc(KC, (sj , j)), it queries its encryption oracle on (sj , j) and uses the resulting ciphertext as cj .

Then, when A outputs C1, . . . , Cm, B chooses a random i′
R← {1, . . . ,m} and outputs Ci′ in the ciphertext

integrity game. Note that A’s view is the same as when it is interacting with the real scheme EPM. If Ci is
not among C[1], . . . , C[n], but ESKE.Dec(KC, Ci) 6= ⊥, then B wins the ciphertext integrity game if i′ = i.
Therefore, if A has probability ε of causing event C.1′ but not event C.1 for any i, B wins the ciphertext
integrity game with probability at least ε/m.
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Lemma C.4. If ESKE is an authenticated encryption scheme, then if an adversary A outputs incorrect
L1, . . . , Lnum in the query protocol, the client’s response to L1, . . . , Lnum will be ⊥, with all but negligible
probability.

The proof is omitted, since it almost identical to the proof of Lemma C.3.
We have shown that if an adversary A cheats when producing any of its outputs to the client, the client

will output⊥with all but negligible probability. Therefore, EPM is correct against malicious adversaries.

D Security

We now prove that our pattern matching encryption scheme satisfies malicious-(L1,L2)-CQA2 security for
certain leakage functions L1 and L2.

D.1 Leakage

Before we describe the leakage of our scheme, we define some relevant notions.
We say that a query p visits a node u in the suffix tree Trees for s if ρ̂(u) is a prefix of p. For any j let

pj denote the jth query, and let mj = |pj |. Let nj denote the number of nodes visited by the query for pj in
s, let uj,i denote the ith such node, and let lenj,i = |ρ̂(uj,i)|. Let numj denote the number of occurrences
of pj as a substring of s. Let ind j denote the index ind in the ciphertext W returned by AnswerQuery for
pj . Note that ind j is the index in s of the longest matching prefix of pj , which is also the index in s of the
longest prefix of pj that is a substring of s. Let lposj denote the leaf index lpos in the ciphertext W returned
by AnswerQuery for pj . If pj is a substring of s, lposj is equal to the position (between 1 and n, from left to
right) of the leftmost leaf ` for which pj is a prefix of ρ̂(`).

The query prefix pattern for a query pj tells which of the previous
queries p1, . . . , pj−1 visited each of the nodes visited by pj .

Definition D.1 (Query prefix pattern). The query prefix pattern QP(s, p1, . . . , pj) is a sequence of length
nj , where the ith element is a list listi of indices j′ < j such that the j′th query also visited uj,i.

The index intersection pattern for a query pj essentially tells when any of the indices ind j , . . . , ind j +
mj − 1 are equal to or overlap with any of the
indices ind i, . . . , ind i +mi − 1 for any previous queries pi.

Definition D.2 (Index intersection pattern). The index intersection pattern
IP(s, p1, . . . , pj) is a sequence of length j, where the ith element is equal to
r1[{ind i, . . . , ind i +mi − 1}] for a fixed random permutation r1 : [n]→ [n].

The leaf intersection pattern for a query pj essentially tells when any of the leaf positions lposj , . . . , lposj+
numj−1 are equal to or overlap with any of the leaf positions lpos i, . . . , lpos i+numi−1 for any previous
queries pi.

Definition D.3 (Leaf intersection pattern). The leaf intersection pattern
LP(s, p1, . . . , pj) is a sequence of length j, where the ith element is equal to
r2[{lpos i, . . . , lpos i + numi − 1}] for a fixed random permutation r2 : [n]→ [n].

The leakage of the scheme EPM is as follows. L1(s) is just n = |s|. L2(s, p1, . . . , pj) consists of

(mj = |pj |, {lenj,i}
nj
i=1, QP(s, p1, . . . , pj), IP(s, p1, . . . , pj), LP(s, p1, . . . , pj)) .
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For example, consider the string s “cocoon” (whose suffix tree is shown in Figure 1) and a sequence of
three queries, p1 = “co”, p2 = “coco”, and p3 = “cocoa”. Then the leakage L1(s) is n = 6.

The query for “co” visits node u2, the retrieved indices into s are 1, 2, and the retrieved leaf positions are
1, 2. The query for “coco” visits nodes u2 and u3, the indices retrieved are 1, 2, 3, 4, and the leaf positions
retrieved are 1. The query for “cocoa” visits nodes u2 and u3, the indices retrieved are 1, 2, 3, 4, 5, and no
leaf positions are retrieved (because there is not a match).

Thus, the leakage L2(s, p1, p2, p3) consists of:

• the lengths 2, 4, 5 of the patterns,

• the query prefix pattern, which says that p1, p2, p3 visited the same first node, and then p2 and p3
visited the same second node,

• the index intersection pattern, which says that two of the indices returned for p2 are the same as the
two indices returned for p1, and four of the indices returned for p3 are the same as the four indices
returned for p2, and

• the leaf intersection pattern, which says that the leaf returned for p2 is one of the two leaves returned
for p1.

D.2 Malicious (L1,L2)-CQA2 Security

Theorem D.4. Let L1 and L2 be defined as in Section D.1. If F is a PRF, P is a PRP, and ESKE is a
CPA-secure, key-private symmetric-key encryption scheme, then the pattern matching encryption scheme
EPM satisfies malicious (L1,L2)-CQA2 security.

Proof. We define a simulator S that works as follows. S first chooses random keys KD,KC,KL
R← {0, 1}λ.

Ciphertext. Given L1(s) = n, S constructs a simulated ciphertext as follows.

1. Construct a dictionaryD as follows. For i = 1, . . . , 2n, choose fresh random values κi, f2,1, . . . , f2,d,
R←

{0, 1}λ, and store Vi = (f2,1, . . . , f2,d,W = ESKE.Enc(KD, 0)) with search key κi in D.

2. Choose an arbitrary element σ0 ∈ Σ. Construct an array C, where C[i] = ESKE.Enc(KC, (σ0, 0)) for
i = 1, . . . , n.

3. Construct an array L, where L[i] = ESKE.Enc(KL, 0) for i = 1, . . . , n.

Output CT = (D,C,L).
Tables. In order to simulate the query protocol, S will need to do some bookkeeping.
S will maintain two tables T1 and T2, both initially empty. T1 contains all currently defined tuples

(i, j, κ) such that the entry in D with search key κ represents the jth node visited by the ith query. We write
T1(i, j) = κ if (i, j, κ) is an entry in T1.
T2 contains all currently defined tuples (κ, f2, f lag, flag1, . . . , f lagd), where for the node u represented

by the entry D(κ), κ = f1(u), f2 = f2(u), flag indicates whether u has been visited by any query,
and flagi indicates whether child(u, πu(i)) has been visited. The value of each flag is either “visited” or
“unvisited”. We write T2(κ) = (f2, f lag, flag1, . . . , f lagd) if (κ, f2, f lag, flag1, . . . , f lagd) is an entry
in T2.

Choose an arbitrary entry (κ∗, V ∗) in D to represent the root node of Trees. In T2(κ), set all flags to
“unvisited” and set f2 = 0. (The f2 for the root node will never be used, so it is fine to set it to 0.) Define
T1(i, 0) = κ∗ for any i.
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Query protocols. For the jth token query pj , S is given L2(s, p1, . . . , pj), which consists of mj = |pj |,
{lenj,i}

nj
i=1, QP(s, p1, . . . , pj), IP(s, p1, . . . , pj), and LP(s, p1, . . . , pj).

For t = 1, . . . , nj , if listt = QP(pj , s)[t] is non-empty (i.e., the node uj,t was visited by a previous
query), let j′ be one of the indices in listt. Let κ = T1(j′, t) and let (f2, f lag, flag1, . . . , f lagd) = T2(κ).
Tlenj,t = ESKE.Enc(f2, κ). Set T1(j, t) = κ.

If instead listt is empty, choose a random unused entry (κ, V ) in D to represent the node uj,t, and
set T1(j, t) = κ. Let κ′ = T1(j, t − 1) and let (f2, f lag, flag1, . . . , f lagd) = T2(κ′). Choose a random
i ∈ {1, . . . , d} such that flagi is “unvisited”, and set flagi to “visited”. Let f2,i be D(κ′).f2,i. Set Tlent =
ESKE.Enc(f2,i, κ), set T2(κ).f2 = f2,i, set T2(κ).f lag to “visited”, and set T2(κ).f lagi to “unvisited” for
i = 1, . . . , d.

For any i 6= lent for any t = 1, . . . , nj , choose a random f2
R← {0, 1}λ, and let Ti = ESKE.Enc(f2, 0).

Send (T1, . . . , Tm) to the adversary.
Upon receiving a W from the adversary, check whether W = D(T1(j, nj)).W . If not, output ⊥. Other-

wise, let (x1, . . . , xm) be a random ordering of the elements of the set IP(pj , s)[j], and send (x1, . . . , xm)
to the adversary.

Upon receiving C1, . . . , Cm from the adversary, check whether Ci = C[xi] for each i. If not, output ⊥.
Otherwise, let (y1, . . . , ynum) be a random ordering of the elements of LP(pj , s)[j], and send (y1, . . . , ynum)
to the adversary.

Upon receiving L1, . . . , Lnum from the adversary, check whether Li = L[yi] for each i. If not, output
⊥.

This concludes the description of the simulator S.
Sequence of games. We now show that the real and ideal experiments are indistinguishable by any PPT
adversary A except with negligible probability. To do this, we consider a sequence of games G0, . . . , G16

that gradually transform the real experiment into the ideal experiment. We will show that each game is
indistinguishable from the previous one, except with negligible probability.

Game G0. This game corresponds to an execution of the real experiment, namely,

• The challenger begins by running Gen(1λ) to generate a key K.

• The adversary A outputs a string s and receives CT ← Enc(K, s) from the challenger.

• A adaptively chooses patterns p1, . . . , pq. For each pi, A first interacts with the challenger,
who is running IssueQuery(K, pi) honestly. Then A outputs a description of a function gi, and
receives gi(A1, . . . , Ai) from the challenger, where Ai is the challenger’s private output from
the interactive protocol for pi.

Game G1. This game is the same as G0, except that in G1 the challenger is replaced by a simulator that
does not generate keys K1,K2 and replaces FK1 and FK2 with random functions. Specifically, the
simulator maintains tables R1, R2, initially empty. Whenever the challenger in G0 computes FKi(x)
for some x, the simulator uses Ri(x) if it is defined; otherwise, it chooses a random value from
{0, 1}λ, stores it as Ri(x), and uses that value.

A hybrid argument shows that G1 is indistinguishable from G0 by the PRF property of F .

Lemma D.5. If F is a PRF, then G0 and G1 are indistinguishable, except with negligible probability.

Proof. We consider a hybrid game H1. H1 is the same as G0 except that it uses R1 in place of FK1 .
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Suppose an adversary A can distinguish G0 from H1. Then we can construct an algorithm B that
attacks the PRF property of F with the same advantage. B acts as A’s challenger in G0, except that
whenever there is a call to FK1(x), B queries its oracle on x. When A outputs a guess bit, B outputs
the same guess bit. If B’s oracle is a function from F , A’s view will be the same as in game G0,
while if it is a random function, A’s view will be the same as in game H1. Thus, B answers its
challenge correctly wheneverA does, and breaks the PRF property of F with the same advantage that
A distinguishes games G0 and H1.

A similar argument shows that games H1 and G1 are indistinguishable by the PRF property of F .
Thus, we conclude that G0 and G1 are indistinguishable.

Game G2. This game is the same as G1, except that in G2 the simulator does not generate keys K3,K4 and
replaces PK3 and PK4 with random permutations. Specifically, the simulator maintains tables R3 and
R4, initially empty. Whenever the simulator in G1 computes PKi(x) for some x, the simulator in G2

uses Ri(x), if it is defined; otherwise, it chooses a random value in [n] that has not yet been defined
as Ri(y) for any y, and uses that value.

A hybrid argument similar to the one used for G0 and G1 shows that G1 and G2 are indistinguishable
by the PRP property of P .

Lemma D.6. If P is a PRP, then G2 and G1 are indistinguishable, except with negligible probability.

Proof. We consider a hybrid game H1. Game H1 is the same as G1 except that it uses R3 in place of
PK3 .

Suppose A can distinguish G0 from H1. Then we can construct an algorithm B that attacks the PRF
property of F with the same advantage. B acts as A’s challenger in G1, except that whenever there is
a call to PK3(x), B queries its oracle on x. WhenA outputs a guess bit, B outputs the same guess bit.
If B’s oracle is a function from P , A’s view will be the same as in game G1, while if it is a random
permutation, A’s view will be the same as in game H1. Thus, B answers its challenge correctly
whenever A does, and breaks the PRP property of P with the same advantage that A distinguishes
games G1 and H1.

A similar argument shows that games H1 and G2 are indistinguishable by the PRP property of P .
Thus, we conclude that G1 and G2 are indistinguishable.

Game G3. This is the same as G2, except that we modify the simulator as follows. For any query, when the
simulator receives C1, . . . , Cm from the adversary in response to indices x1, . . . , xm, the simulator’s
decision whether to output ⊥ is not based on the decryptions of C1, . . . , Cm. Instead, it outputs ⊥ if
Ci 6= C[xi] for any i. Otherwise, the simulator proceeds as in G2.

We argue that games G3 and G2 are indistinguishable by the ciphertext integrity of ESKE.

Lemma D.7. If ESKE has ciphertext integrity, then G2 and G3 are indistinguishable, except with
negligible probability.

Proof. We analyze the cases in which G2 and G3 each output ⊥ in response to C1, . . . , Cm.

For each i, G2 outputs ⊥ if either of the following events occur:

• (Event C.1) ESKE.Dec(KC, Ci) = ⊥, or
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• (Event C.2) ESKE.Dec(KC, Ci) = (p′i, j) where j is not the correct index.

For each i, G3 outputs ⊥ if Ci 6= C[xi], which happens if either of the following events occur:

• (Event C.1′) Ci is not among C[1], . . . , C[n], or

• (Event C.2′) Ci = C[k] where k 6= xi.

If G3 outputs ⊥ for some i then G2 outputs ⊥ except with negligible probability, as we already
showed by ciphertext integrity of ESKE in Lemma C.3 in the proof of correctness of EPM against
malicious adversaries.

If G2 outputs ⊥, if event C.1 occurred, then C.1′ also occurred, since Ci will decrypt successfully
if it is one of C[1], . . . , C[n]. If event C.2 occurred, then either C.1′ or C.2′ occurred, since Ci will
decrypt to the correct value if Ci = C[xi]. Therefore, if G2 outputs ⊥ for some i, so does G3.

Thus, G2 and G3 are indistinguishable except with negligible probability.

Game G4. This game is the same as G3, except for the following differences. The simulator does not
decrypt the C1, . . . , Cm from the adversary. For any query p, instead of deciding whether to output ∅
based on the decryptions ofC1, . . . , Cm, the simulator outputs ∅ if p is not a substring of s. Otherwise,
the simulator proceeds as in G3.

As we showed in Lemmas C.2 and C.3, if the adversary does not send the correct W , the client will
respond with⊥, and if the adversary does not send the correctC1, . . . , Cm, the client will also respond
with ⊥. Therefore, if the simulator has not yet output ⊥ when it is deciding whether to output ∅, then
C1, . . . , Cm are necessarily the correct ciphertexts, and the decryptions p′1, . . . , p

′
m computed in G3

match p if and only if p is a substring of s. Therefore, G3 and G4 are indistinguishable.

Game G5 . This game is the same as G4, except that in G5, for i = 1, . . . , n, instead of setting ci =
ESKE.Enc(KC, (si, i)), the simulator sets ci = ESKE.Enc(KC, (σ0, 0)), where σ0 is an arbitrary element
of Σ.

Note that in both G4 and G5, KC is hidden and the ci’s are never decrypted. A hybrid argument shows
that games G4 and G5 are indistinguishable by CPA security of ESKE.

Lemma D.8. If ESKE is a CPA-secure encryption scheme, then G4 and G5 are indistinguishable,
except with negligible probability.

Proof. We show this via a series of n+1 hybrid gamesH0, . . . ,Hn. Let σ0 be an arbitrary element of
Σ. InHi, during the encryption phase, for i′ ≤ i, the simulator computes ci′ as ESKE.Enc(KC, (σ0, 0)).
For i′ > i, it computes ci′ as ESKE.Enc(KC, (si′ , i

′)). The rest of the game proceeds as in G4. Note
that H0 = G4 and Hn = G5.

If there is an adversary A that can distinguish Hi−1 from Hi for any i ∈ {1 . . . n}, then we can
construct an algorithm B that attacks the CPA security of ESKE with the same advantage.

B acts as the simulator in Hi−1, with the following exceptions. During the encryption phase, for
i′ < i, B generates ci′ by querying the encryption oracle on (σ0, 0), and for i′ > i, B generates ci′
by querying the encryption oracle on (si′ , i

′). B outputs (si, i), (σ0, 0) as its challenge, and uses the
challenge ciphertext as ci.
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Now, if B’s challenger returns an encryption of (si, i), then A’s view will be the same as in Hi−1,
while if the challenger returns an encryption of (σ0, 0), then A’s view will be the same as in Hi.
Thus, B answers its challenge correctly whenever A does, and breaks the CPA security of ESKE with
the same advantage that A distinguishes games Hi−1 and Hi.

Since there are a polynomial number of gamesH0, . . . ,Hn, we conclude thatH0 = G4 andHn = G5

are indistinguishable.

Game G6. This game is the same as G5, except that we eliminate the use of the random permutation R3,
in the following way. For i = 1, . . . , n, the simulator set C[i] = ci instead of C[R3(i)] = ci, where
ci = ESKE.Enc(KC, (σ0, 0)). Furthermore, for any query pj , the simulator is given an additional input
IP(s, p1, . . . , pj) (as defined in Section D.1). To generate (x1, . . . , xm) in the query protocol, the
simulator outputs a random ordering of the elements in IP(s, p1, . . . , pj)[j].

Since each ci is an encryption under KC of (σ0, 0), it does not matter whether the ci’s are permuted
in C; if we permute the ci’s or not, the result is indistinguishable. After we eliminate the use of
R3 in generating C, R3 is only used by the simulator to compute (x1, . . . , xm). Thus, we can re-
place the computation of (x1, . . . , xm) for each query pj with a random ordering of the elements of
IP(s, p1, . . . , pj)[j], and the result will be indistinguishable.

Game G7. This is the same as G6, except that we modify the simulator as follows. For any query, when
the simulator receives L1, . . . , Lnum from the adversary in response to indices y1, . . . , ynum , the sim-
ulator’s decision whether to output ⊥ is not based on the decryptions of the L1, . . . , Lnum ; instead, it
outputs ⊥ if Li 6= L[yi] for any i; otherwise, it proceeds to compute the answer A as in G6.

A hybrid argument shows that games G6 and G7 are indistinguishable by the ciphertext integrity of
ESKE.

Lemma D.9. If ESKE has ciphertext integrity, then G6 and G7 are indistinguishable, except with
negligible probability.

The proof is omitted since it is nearly identical to the proof for G2 and G3.

Game G8. This game is the same as G7, except for the following differences. The simulator does not
decrypt the L1, . . . , Lnum from the adversary. For any query pj , instead of computing the answer Aj
using the decryptions of L1, . . . , Lnum , if Aj has not already been set to ⊥ or ∅, the simulator sets
Aj = F(s, pj).

As we showed in Lemmas C.2, C.3, and C.4, if any of the W , C1, . . . , Cm or L1, . . . , Lnum from
the adversary are incorrect, the client will respond to the incorrect message with ⊥. Therefore, if the
simulator has not yet output⊥when it is computingAj , then the adversary has executed AnswerQuery
honestly, and Aj = F(s, pj) (by correctness of EPM). Therefore, G7 and G8 are indistinguishable.

Game G9. This game is the same as G8, except that in G9, for each i = 1, . . . , n, the simulator generates
each `i as ESKE.Enc(KL, 0) instead of ESKE.Enc(KL, (ind leaf i , i)).

A hybrid argument shows that G8 and G9 are indistinguishable by the CPA security of ESKE.

Lemma D.10. If ESKE is a CPA-secure encryption scheme, then G8 and G9 are indistinguishable,
except with negligible probability.
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The proof is omitted since it is nearly identical to the proof for G4 and G5.

Game G10. This game is the same as G9, except that we eliminate the use of the random permutation R4,
in the following way. For i = 1, . . . , n, the simulator set L[i] = `i instead of L[R4(i)] = `i, where
`i = ESKE.Enc(KL, 0). Furthermore, for any query pj , the simulator is given an additional input
LP(s, p1, . . . , pj) (as defined in Section D.1). To generate (y1, . . . , ynum) in the query protocol, the
simulator outputs a random ordering of the elements in LP(s, p1, . . . , pj)[j].

The argument for game G10 is analogous to the one for game G6. Since each `i is an encryption
under KL of 0, it does not matter whether the `i’s are permuted in L; if we permute the `i’s or not,
the result is indistinguishable. After we eliminate the use of R4 in generating L, R4 is only used by
the simulator to compute (y1, . . . , ynum). Thus, we can replace the computation of (y1, . . . , ynum) for
each query pj with a random ordering of the elements of LP(s, p1, . . . , pj)[j], and the result will be
indistinguishable.

Game G11. This is the same as G10, except that we modify the simulator as follows. For any query, when
the simulator receives a W from the adversary in response to T1, . . . , Tm, the simulator’s decision
whether to output ⊥ will not based on the decryption of W . Instead, it will output ⊥ if W is not the
ciphertext in the dictionary entry D(R1(p[1..i])), where p[1..i] is the longest matching prefix of p.
Otherwise, the simulator proceeds as in G10.

We argue that games G10 and G11 are indistinguishable by the ciphertext integrity of ESKE.

Lemma D.11. If ESKE has ciphertext integrity, then G10 and G11 are indistinguishable, except with
negligible probability.

Proof. We analyze the cases in which G10 and G11 each output ⊥ in response to a W .

G10 runs ESKE.Dec(KD,W ) to get either⊥ or a tupleX , which it parses as (ind , lpos,num, len, f1, f2,1, . . . , f2,d).
G10 outputs ⊥ if any of the following events occur:

• (Event L.1) ESKE.Dec(KD,W ) = ⊥, or

• (Event L.2) W decrypts successfully, but f1 6= R1(p[1..len]), or

• (Event L.3) W decrypts successfully and f1 = R1(p[1..len]), but
ESKE.Dec(f2,i, Tj) 6= ⊥ for some i ∈ {1, . . . , d}, j > len .

G11 outputs ⊥ if W is not the ciphertext in the dictionary entry D(R1(p[1..i])), where p[1..i] is the
longest matching prefix of p, which is the case if any of the following events occur:

• (Event L.1′) W is not a ciphertext in D,

• (Event L.2′) W is a ciphertext in D but not for any prefix of p. That is, W = D(κ) where κ is
not equal to R1(p[1..i]) for any i.

• (Event L.3′) W is a ciphertext in D for a prefix of p, but there is a longer matching prefix of
p. That is, W = D(R1(p[1..i])) for some i, but there exists a j > i such that there is an entry
D(R1(p[1..j])).

IfG11 outputs⊥ in response toW for any query, thenG10 also outputs⊥ except with negligible prob-
ability, as we already showed by ciphertext integrity of ESKE in Lemma C.2 in the proof of correctness
of EPM against malicious adversaries.
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If G10 outputs ⊥, then G11 also outputs ⊥, since if W is the ciphertext in D(R1(p[1..i])), then
W will decrypt successfully, with f1 = R1(p[1..len]), and ESKE.Dec(f2,k, Tj) = ⊥ for all k ∈
{1, . . . , d}, j > i.

Thus, G10 and G11 are indistinguishable except with negligible probability.

Game G12. This is the same as G11, except that the simulator in G12 does not decrypt the W from the
adversary in the query protocol.

Since the simulator in G11 no longer uses any values from the decryption of W , G12 is indistinguish-
able from G11.

Game G13. This is the same as G12, except that in G13, for each node u the simulator generates Wu as
ESKE.Enc(KD, 0) instead of ESKE.Enc(KD, Xu).

A hybrid argument shows that G12 and G13 are indistinguishable by the CPA security of ESKE.

Lemma D.12. If ESKE is a CPA-secure encryption scheme, then G12 and G13 are indistinguishable,
except with negligible probability.

The proof is omitted since it is nearly identical to the proof for G4 and G5.

Game G14. This is the same as game G13, except that in the query protocol, for any non-matching pre-
fix p[1..i], the simulator replaces Ti with an encryption under a fresh random key. That is, for
any query p, for any prefix p[1..i], i = 1, . . . ,m, if p[1..i] is a non-matching prefix, the simu-
lator chooses a fresh random value r and sets Ti ← ESKE.Enc(r,R1(p[1..i])); otherwise, it sets
Ti ← ESKE.Enc(R2(p[1..i]), R1(p[1..i])) as in game G13.

For any k and i, let pk denote the kth query, and let Tk,i denote the Ti produced by the simulator for
the kth query. The only way an adversary A may be able to tell apart G13 and G14 is if two queries
share a non-matching prefix; that is, there exist i, j, j′ such that j 6= j′ and pj [1..i] = pj′ [1..i]. In this
case, G14 will use different encryption keys to generate Ti,j and Ti,j′ , while G13 will use the same
key. Note that the decryption keys for Ti,j and Ti,j′ will never be revealed toA in either game. Thus, a
hybrid argument shows that G13 and G14 are indistinguishable by the which-key-concealing property
of ESKE.

Lemma D.13. If ESKE is a which-key-concealing encryption scheme, then games G13 and G14 are
indistinguishable, except with negligible probability.

Proof. Suppose there exists an adversary A that can distinguish G13 and G14. Let qmax be an upper
bound on the number of queries A chooses, and let mmax be an upper bound on the length of A’s
queries, where qmax and mmax are polynomial in λ.

Consider the following sequence of qmax(mmax+1) hybrid games. For each i ∈ {0, . . . ,mmax}, j ∈
{1, . . . , qmax}, game Hi,j is the same as G13, with the following exceptions.

• For j′ < j, for each i′, if pj′ [1..i′] is non-matching, choose a fresh random value r and set
Tj′,i′ ← ESKE.Enc(r,R1(pj′ [1..i])), as in game G14.

• For the jth query pj , for i′ ≤ i, if pj [1..i′] is non-matching, again choose a fresh random value
r and set Tj,i′ ← ESKE.Enc(r,R1(pj [1..i

′])), as in game G14.
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Note that H0,1 = G13 and Hmmax,qmax = G14.

Now, we argue that if there is an adversary A that can distinguish Hi−1,j from Hi,j for any i ∈
{1, . . . ,mmax}, j ∈ {1, . . . , qmax}, then we can construct an algorithm B that attacks the which-key-
concealing property of ESKE with the same advantage.

B will act as the simulator in Hi−1,j , with the following exception. If pj [1..i] is non-matching, B
first queries its left encryption oracle on R1(pj [1..i]) and sets Tj,i to the resulting ciphertext. B then
remembers pj [1..i], and for any later queries pj′ that share the prefix pj [1..i], B queries its right oracle
on R1(pj [1..i]) and uses the resulting ciphertext as Tj′,i. Otherwise, B proceeds as in Hi−1,j .

Now, if both of B’s encryption oracles are for the same key, then Tj,i and the Tj′,i for all future queries
p′j that share the prefix pj [1..i] will be encrypted under the same random key, and A’s view will be
the same as in Hi−1,j . On the other hand, if the two encryption oracles are for different keys, then Tj,i
will have been generated using a different random key from that used to generate Tj′,i for all future
queries pj′ that share the prefix pj [1..i], and A’s view will be the same as in Hi,j .

Note that if pj [1..i] is a matching prefix, so B does not output a challenge, then Hi−1,j and Hi,j are
identical, soA’s view is the same as in both Hi−1,j and Hi,j . Thus, Hi−1,j and Hi,j are indistinguish-
able by the key hiding property of ESKE.

We can show by a very similar reduction that games Hmmax,j and H1,j+1 are indistinguishable. Since
there are a polynomial number of hybrid games, we conclude then that games H0,1 = G13 and
Hmmax,qmax = G14 are indistinguishable.

Game G15. This is the same as game G14, except that in the query protocol for any pattern p, for any non-
matching prefix p[1..i], the simulator replaces Ti with an encryption of 0. That is, for any query p,
for any prefix p[1..i], i = 1, . . . ,m, if p[1..i] is non-matching, the simulator chooses a fresh random
value r and sets Ti ← ESKE.Enc(r, 0); otherwise, it sets Ti ← ESKE.Enc(r,R1(p[1..i])) as in game
G14.

The only way an adversary A may be able to tell apart G14 and G15 is if a prefix pj [1..i] is non-
matching. In this case, in G14, Tj,i will be an encryption of 0, while in G15, Tj,i will be an encryption
of R1(pj [1..i]). The decryption key for Tj,i will never be revealed toA in either game. Thus, a hybrid
argument shows that games G14 and G15 are indistinguishable by the CPA security of ESKE.

Lemma D.14. If ESKE is a CPA-secure encryption scheme, then games G14 and G15 are indistin-
guishable, except with negligible probability.

Proof. Suppose there exists an adversary A that can distinguish G14 and G15. Let qmax be an upper
bound on the number of queries thatA chooses, and let mmax be an upper bound on the length ofA’s
queries, where qmax and mmax are polynomial in λ.

We consider a sequence of qmax(mmax + 1) hybrid games. For each
i ∈ {0, . . . ,mmax}, j ∈ {1, . . . , qmax}, game Hi,j is the same as G14, with the following exceptions.

• For j′ < j, for each i′, if pj′ [1..i′] is non-matching, choose a fresh random value r and set
Tj′,i′ ← ESKE.Enc(r, 0), as in game G15.

• For the jth query pj , for i′ ≤ i, if pj [1..i′] is non-matching, again choose a fresh random value
r and set Tj,i ← ESKE.Enc(r, 0) as in game G15.
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Note that H0,1 = G14 and Hmmax,qmax = G15.

Now, we argue that if there is an adversary A that can distinguish Hi−1,j from Hi,j for any i ∈
{1, . . . ,mmax}, j ∈ {1, . . . , qmax}, then we can construct an algorithm B that attacks the CPA secu-
rity of ESKE with the same advantage.

B acts as the simulator in Hi−1,j , with the following exception. If pj [1..i] is non-matching, it chooses
a fresh random value r and outputs r, 0 as its challenge in the CPA-security game, and sets Ti,j to be
the resulting ciphertext. Otherwise, B proceeds as in Hi−1,j . Note that in both Hi−1,j and Hi,j , the
random key r is used to encrypt only one ciphertext.

Now, if the CPA-security challenger gave B an encryption of r, then A’s view will be the same as in
Hi−1,j . On the other hand if the CPA-security challenger returned an encryption of 0, then A’s view
will be the same as in Hi,j .

Note that if pj [1..i] is a matching prefix, so B does not produce a challenge, then Hi−1,j and Hi,j are
identical, soA’s view is the same as in both Hi−1,j and Hi,j . Thus, Hi−1,j and Hi,j are indistinguish-
able by the CPA security of ESKE.

We can show by a very similar reduction that games Hmmax,j and H1,j+1 are indistinguishable. Since
there are a polynomial number of hybrid games, we conclude then that games H0,1 = G14 and
Hmmax,qmax = G15 are indistinguishable.

Game G16. This is the final game, which corresponds to an execution of the ideal experiment. In G16, the
simulator is replaced with the simulator S defined above.

The differences between G15 and G16 are as follows. In G16, the simulator no longer uses the string
s when creating the dictionary D, and for each query p, it no longer uses p when creating T1, . . . , Tm.
When constructingD, whenever the simulator inG15 generates a value by applying a random function
to a string, S generates a fresh random value without using the string. Note that all of the ρ̂(u) strings
used in D are unique, so S does not need to ensure consistency between any of the random values.
Then, for any query pj , for each matching prefix pj [1..i], S constructs Ti to be consistent with D
and with prefix queries using the query prefix pattern QP(s, p1, . . . , pj). While the simulator in G15

associates entries in D to strings when it first constructs D, S associates entries in D to strings as it
answers each new query. However, both simulators produce identical views.
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