
1

High-speed Polynomial Multiplication Architecture
for Ring-LWE and SHE Cryptosystems

Donald Donglong Chen, Nele Mentens, Frederik Vercauteren, Sujoy Sinha Roy,
Ray C.C. Cheung, Derek Pao, and Ingrid Verbauwhede

Abstract—Polynomial multiplication is the basic and most
computationally intensive operation in ring-Learning With Er-
rors (ring-LWE) encryption and “Somewhat” Homomorphic
Encryption (SHE) cryptosystems. In this paper, the Fast Fourier
Transform (FFT) with a linearithmic complexity of O(n logn),
is exploited in the design of a high-speed polynomial multiplier.
A constant geometry FFT datapath is used in the computation
to simplify the control of the architecture. The contribution of
this work is three-fold. First, parameter sets which support
both an efficient modular reduction design and the security
requirements for ring-LWE encryption and SHE are provided.
Second, a versatile pipelined architecture accompanied with
an improved dataflow are proposed to obtain a high-speed
polynomial multiplier. Third, the proposed architecture supports
polynomial multiplications for different lengths n and moduli
p. The experimental results on a Spartan-6 FPGA show that
the proposed design results in a speedup of 3.5 times on average
when compared with the state of the art. It performs a polynomial
multiplication in the ring-LWE scheme (n = 256, p = 1049089)
and the SHE scheme (n = 1024, p = 536903681) in only 6.3µs
and 33.1µs, respectively.

Index Terms—Cryptography, Polynomial multiplication, Num-
ber theoretic transform (NTT), FFT Polynomial multiplication,
Ring-LWE, SHE, Pipelined architecture, Field-programmable
gate array (FPGA).

I. INTRODUCTION

CLASSICAL cryptosystems like RSA [1], [2] and Elliptic
Curve Cryptography (ECC) [3], [4] are based on the

hardness of factoring and the Elliptic Curve Discrete Loga-
rithm Problem (ECDLP), respectively. However, by using the
algorithms proposed by Shor [5], factoring and ECDLP can be
solved in polynomial time by a quantum computer. Though it
is unclear whether a sufficient powerful quantum computer
can be built within decades, with the fast improvement of
cryptanalysis, computation power, and the unpredictable de-
velopment of the quantum computer, post-quantum secure and
yet practical alternatives are needed.

Lattice-based cryptosystems are good candidates for replac-
ing these classical cryptosystems, because of their security
proofs and the fact that there is no known quantum algorithm
that can solve the lattice problem efficiently. Based on the
security of lattice problems, many cryptographic schemes like
the identification scheme [6], encryption schemes [7], [8],

D. Chen, R. Cheung and D. Pao are with the Department of Electronic
Engineering, City University of Hong Kong, Hong Kong. (E-mail: don-
ald.chen@my.cityu.edu.hk, {r.cheung, d.pao}@cityu.edu.hk)

N. Mentens, F. Vercauteren, S. Roy and I. Verbauwhede are with
ESAT/COSIC and iMinds, KU Leuven, Vlaams-Brabant, Leuven, Bel-
gium. (E-mail: {nele.mentens, frederik.vercauteren, sujoy.sinharoy, in-
grid.verbauwhede}@esat.kuleuven.be)

and digital signature scheme [9] have been proposed. Among
them, many encryption schemes are based on the security of
the Learning With Error problem (LWE), which Regev [10]
proved is at least as hard as solving certain lattice problems
in the worst case.

Beside the significant progress in the theory of lattice-
based cryptography, practical implementation issues are gain-
ing attention from the research community [11], [12], [13],
[14], [15], [16], [17]. One important milestone in bridging the
gap between theory and practice is the introduction of ideal
lattices [18]. It reduces the size of the parameter set, which
makes the efficient construction of lattice-based cryptosystems
feasible.

Apart from the practical use in lattice-based cryptography,
ideal lattices can be also applied to the Fully Homomorphic
Encryption (FHE) [19] and “Somewhat” Homomorphic En-
cryption (SHE) scheme [20]. Both FHE and SHE provide se-
cure computation on encrypted data in cloud computing, which
is a significant breakthrough in cryptography. However, due to
the large key size and the complicated computation, there is
still lack of sufficient research on the efficient implementation
of these schemes.

In order to facilitate researchers’ hardware designs of the
ring-LWE and SHE cryptosystems, a versatile and efficient
polynomial multiplier would be of great help. This is because
the most computationally intensive operation in these cryp-
tosystems is the polynomial multiplication, and an efficient
design of the polynomial multiplier will have significant
benefit to the performance of the system.

The first hardware design for the LWE encryption
scheme [8] is proposed by Göttert et al. [21] on FPGA. Due to
the fully parallel design, the throughputs of the encryption out-
perform the software implementation by a factor of 316. The
tradeoff of the parallel design is the large area consumption.

Pöppelmann et al. [22] proposed a fast and yet compact
design for the polynomial multiplication in ring-LWE [23] and
SHE [20]. In their architecture, one butterfly unit is designed
to compute the FFT and IFFT, which reduces the hardware
area usage. However, due to the same design decision of
one butterfly, the parallel property of the FFT could not be
exploited. Thus, a further speedup of this system is possible.

Aysu et al. [24] improved the architecture of [22] and tar-
geted for area-efficient design. The used parameter p = 216+1
is a Fermat number, which enables efficient hardware design.
Specifically, it can both enable efficient modular reduction [25]
and replace multiplication by powers of ω (ω is a power
of 2 in this case) in FFT/IFFT by a simple shift operation.

2

The proposed architecture reduces the number of slices and
block RAMs by around 67% and 80%, respectively. It can
be seen that the selection of parameters that enable efficient
implementations has significant impact on the performance of
the system.

In this paper, a versatile pipelined hardware architecture is
designed for the high-speed polynomial multiplication. The
target of our work is to facilitate users’ efficient design of
cryptosystems like ring-LWE and SHE. In our work, the Fast
Fourier Transform (FFT) [26] with linearithmic complexity
and parallel inter-stage computation, is exploited in the design
of such polynomial multiplier. The main contributions of this
paper are as follows:

• Parameter set selection method which supports both ef-
ficient modular reduction and the security requirement
for ring-LWE encryption and SHE are analyzed and
provided;

• A generic high speed pipelined architecture along with an
improved dataflow are designed to exploit the parallelism
in polynomial multiplication;

• The proposed parameterized architecture supports the
computation of polynomial multiplication for different
lengths n and moduli p;

• The implementation results show that our high speed
design computes a ring-LWE scheme n = 256 multipli-
cation in only 6.3µs and a SHE n = 1024 multiplication
in 33.1µs, which results in a speedup of approximately
3.5 times compared to [22].

The rest of this paper is organized as follows. Section II
recaps the mathematical background. In Section III, the pa-
rameter sets for the ring-LWE encryption scheme and SHE are
analyzed and an efficient parameter set selection method for
modular p reduction are proposed. The high speed pipelined
architecture is described in detail in Section IV. Section V
presents the implementation results and compares our works
with the state of the art. Section VI concludes this paper.

II. MATHEMATICAL PRELIMINARIES

Ideal lattices, which define ideals in the ring Zp[x]/〈f(x)〉
for some irreducible polynomial f(x) of degree n, are good
tools for the construction of various cryptographic schemes.
The polynomial f(x) is represented as f(x) = f0 + f1x +
f2x

2 + · · · + fn−1x
n−1. Suppose a(x) and b(x) are two

polynomials in the ring. The multiplication of a(x) and b(x)
by using the school-book algorithm is calculated as

a(x) · b(x) =
n−1∑
i=0

n−1∑
j=0

aibjx
i+j mod f(x),

with a quadratic complexity of O(n2).
In this paper, we focus on the commonly used case [7] in

which f(x) = xn + 1, n is a power of 2, and p is a prime
number with p ≡ 1 mod 2n. The choice of f(x) = xn + 1
enables the usage of the property xn ≡ −1, which can simplify
the polynomial multiplication as

a(x) · b(x) =
n−1∑
i=0

n−1∑
j=0

(−1)b
i+j
n caibjx

(i+j mod n). (1)

Algorithm 1 Fast Fourier transform algorithm [27]
Let ω be a primitive n-th root of unity in Zp. Let ω−1 be
the inverse number of ω such that ωω−1 ≡ 1 mod p. Let
a = (a0, . . . , an−1) be the coefficient vector of degree n for
the polynomial a(x) = a0 + a1x + a2x

2 + · · · + an−1x
n−1

where ai ∈ Zp, i = 0, 1, . . . , n− 1.

Input: a, ω, ω−1, n, p.
Output: A = FFTn

ω(a).

1: a← Order reverse(a)
2: for i = 0 to log2 n− 1 do
3: for j = 0 to n/2− 1 do
4: Pij ← b j

2log2 n−1−i c × 2log2 n−1−i

5: Aj ← a2j + a2j+1ω
Pij mod p

6: Aj+n
2
← a2j − a2j+1ω

Pij mod p
7: end for
8: if i 6= log2 n− 1 then
9: a← A

10: end if
11: end for
12: return A

Using this property, the multiplication still has quadratic
complexity with n2 multiplications and (n− 1)2 additions or
subtractions.

A. Number Theoretic Transform and Fast Fourier Transform

The Number Theoretic Transform (NTT) is a discrete
Fourier transform defined over a finite ring Zp = Z/pZ [27].
Let ω be a primitive n-th root of unity in Zp, and a(x), A(X)
be polynomials of degree less than n. The n-point NTT are
defined as:

Ai = NTTn
ω(a(x))i :=

n−1∑
j=0

ajω
ij mod p (2)

where i = 0, 1, . . . , n− 1.
Since p is a prime, n has an inverse n−1 modulo p where

n · n−1 ≡ 1 mod p. Similarly ω also has an inverse ω−1.
For Inverse NTT (INTT), the computation is similar to NTT
after replacing ω with ω−1. INTT also needs an additional final
multiplication by n−1 on each element of the output. The NTT
can be computed by using the Fast Fourier Transform (FFT)
datapath [27]. The FFT algorithm is shown in Algorithm 1.

B. Polynomial Multiplication Using FFT

Using FFT, one can compute the cyclic convolution effi-
ciently. However, the polynomial multiplication in Zp is not
equal to the cyclic convolution as shown above. It is obvious
that the computation would become more efficient if we can
compute the polynomial multiplication by using FFT. One way
to achieve this goal is by zero padding.

Let ω be a primitive 2n-th root of unity in Zp. Let
a = (a0, a1, . . . , an−1) and b = (b0, b1, . . . , bn−1) be
the coefficient vectors of polynomials a(x) and b(x), re-
spectively. By appending n zeros to construct arrays â =

3

Table I: The operation analysis and comparison between FFT multiplication
by using zero padding and negative wrapped convolution.

Operation Zero padding Negative wrapped convolution

Multiplication 3n log2 2n+ 4n 3
2
n log2 n+ 5n

Add/Sub 6n log2 2n 3n log2 n

Mod p 9n log2 2n+ 4n 9
2
n log2 n+ 5n

Mod xn + 1 1 0

(a0, . . . , an−1, 0, . . . , 0) and b̂ = (b0, . . . , bn−1, 0, . . . , 0),
respectively, the polynomial multiplication (linear convolution)
of a and b can be computed by FFT and IFFT as

a · b = IFFT2n
ω (FFT2n

ω (â)� FFT2n
ω (b̂)),

where � denotes point-wise multiplication of the coefficients.
In this paper, we refer to the polynomial multiplication

using FFT as FFT multiplication. It can be seen that FFT and
IFFT can be computed with complexity O(n log n) while the
point-wise multiplication can be computed with complexity
O(n), thus the FFT multiplication has linearithmic complexity
O(n log n).

C. FFT Multiplication Using Negative Wrapped Convolution

Though the polynomial multiplication using FFT and IFFT
can be computed with linearithmic complexity, it needs to
double the transformation length and the number of point-
wise multiplications due to the zero padding. We can use the
negative wrapped convolution method [28] to avoid doubling
the effort in the polynomial multiplication in Zp[x]/〈f(x)〉.

The definition of negative wrapped convolution is as
follows. Let c = (c0, c1, · · · , cn−1) be the negative
wrapped convolution of a = (a0, a1, · · · , an−1) and b =
(b0, b1, · · · , bn−1), then the ci are computed as

ci =
i∑

j=0

ajbi−j −
n−1∑

j=i+1

ajbn+i−j .

One can find that the equation above is equal to the
polynomial multiplication over Zp[x]/〈xn+1〉 in equation (1).
This indicates we can perform the polynomial multiplication
over Zp[x]/〈xn + 1〉 by computing the negative wrapped
convolution.

Details of polynomial multiplication using the negative
wrapped convolution are shown in Algorithm 2. In order to
guarantee the existence of φ which satisfies φ2 ≡ ω mod p,
when p is prime and n is power of 2, we should have p ≡ 1
mod 2n.

Using the negative wrapped convolution to compute polyno-
mial multiplication over Zp[x]/〈xn + 1〉, the modular xn + 1
reduction is eliminated. Moreover, compared with the zero
padding method, the length of FFT, IFFT and point-wise
multiplication reduces from 2n to n.

The operation comparison between FFT multiplication by
zero padding and FFT multiplication using negative wrapped
convolution is shown in Table I. Compared with the zero
padding method, the negative wrapped convolution method
saves a considerable number of operations.

Algorithm 2 Polynomial multiplication using FFT
Let ω be a primitive n-th root of unity in Zp and φ2 ≡ ω
mod p. Let a = (a0, . . . , an−1), b = (b0, . . . , bn−1) and
c = (c0, . . . , cn−1) be the coefficient vectors of degree n poly-
nomials a(x), b(x), and c(x), respectively, where ai, bi, ci ∈
Zp, i = 0, 1, . . . , n− 1.

Input: a,b, ω, ω−1, φ, φ−1, n, n−1, p.
Output: c where c(x) = a(x) · b(x) mod 〈xn + 1〉.

1: Precompute: ωi, ω−i, φi, φ−i where i = 0, 1, . . . , n− 1
2: for i = 0 to n− 1 do
3: āi ← aiφ

i mod p
4: b̄i ← biφ

i mod p
5: end for
6: Ā← FFTn

ω(ā)
7: B̄← FFTn

ω(b̄)
8: for i = 0 to n− 1 do
9: C̄i ← ĀiB̄i mod p

10: end for
11: c̄← IFFTn

ω(C̄)
12: for i = 0 to n− 1 do
13: ci ← c̄iφ

−i mod p
14: end for
15: return c

III. PARAMETER SET SELECTION FOR EFFICIENT
MODULAR REDUCTION DESIGN

As shown in Table I modular reduction by p is the most
frequently used operation in FFT multiplication, so an efficient
design will have significant impact on the whole architecture.

A. Modular Reduction Algorithm Analysis

Inspired by [25], [29], modular reduction can be computed
efficiently by using Algorithm 3. Carefully examining Algo-
rithm 3 we conclude that a small value of p[k−2 : 0] (small l)
reduces the number of loops in the computation. Furthermore,
if p[k − 2 : 0] is a number with low Hamming weight, the
addition of the corresponding segments of x[m − 1 : k − 1]
can replace the multiplication x[m − 1 : k − 1]p[k − 2 : 0],
which reduces the area usage for modular reduction.

One extreme case which meets the above two conditions
is a Fermat number, for which p[k − 2 : 0] = 1. However,
the currently known Fermat numbers larger than 216 + 1 are
not prime [30], thus we cannot use them in the lattice-based
cryptosystems. In conclusion, the selection of prime p for
which p[k − 2 : 0] is small and with low Hamming weight
will have great benefit for the performance of the modular
reduction operation, thus for the whole FFT multiplication.

B. Efficient and Secure Parameter Selection Restrictions

In order to demonstrate the performance of our design, we
choose parameter sets for the implementation of two popular
cryptosystems, namely ring-LWE encryption and SHE. For
ring-LWE encryption, the parameter sets which can provide
medium and long term security are (n = 256, p = 1049089)
and (n = 512, p = 2941249), respectively [31]. In terms of

4

Algorithm 3 Modular p reduction algorithm
Let k and l be the bit length of p and p[k−2 : 0], respectively.
Let x be the input number with a maximum bit length m = 2k.

Input: x, k, l,m, p.
Output: y = x mod p.

1: while m > k do
2: x← x[k − 2 : 0]− x[m− 1 : k − 1]p[k − 2 : 0]
3: m← m− k + l + 2
4: end while
5: if x < 0 then
6: y ← x+ p
7: else
8: y ← x
9: end if

10: return y

SHE, the parameter sets (n = 1024, p = 1061093377) and
(n = 2048, p = 257 + 25 · 213 + 1) from [20] are chosen.

Taking into account that p[k−2 : 0] is neither small nor has
low Hamming weight for p = 2941249 and p = 1061093377,
these parameters do not result in an efficient design of the
modulo p reduction. Though the Hamming weight of the
non-adjacent form (Page 98 in [32]) of p = 1061093377 is
5, the value of p[k − 2 : 0] is still too large. In order to
improve the performance, searching some nice values of p for
these two parameter sets are necessary. In order to find some
nice p for efficient computation without affecting the security
requirement of ring-LWE encryption and SHE, we have the
following restrictions during the selection of p.

1) p should be a prime number;
2) In order to guarantee that the FFT multiplication can use

negative wrapped convolution, as n is a power of 2, p
should satisfy p ≡ 1 mod 2n;

3) In order to meet the security requirement of LWE
encryption and SHE, for parameter sets with the same n,
the new p should have the same bit size as the original
one;

4) p should be a number with low Hamming weight;
5) p[k − 2 : 0] should be a small number.
Restriction 1 and 2 guarantee the existence of primitive n-th

root of unity ω and φ such that φ2 ≡ ω mod p, that enables
the negative wrapped convolution method in FFT multiplica-
tion. Restriction 1 and 3 are for security consideration while
restriction 4 and 5 enable efficient modular reduction by p.

C. Complexity Analysis and Parameter Selection Process

For each length-n parameter set, the selection process could
be started from the comparison of the k-bit prime numbers.
Among these numbers, the p which has both the lowest
Hamming weight and the smallest p[k − 2 : 0] would be the
best choice. If no such number exists, the process will switch
to the comparison of computation complexity for each modular
p reduction.

Note that the number of loops in Algorithm 3 is d m−k
k−l−2e.

Then, in the i-th loop (i ∈ [0, d m−k
k−l−2e − 1]), one m − (i +

1)k+il+2i+1 by l bits constant multiplication and one k−1

Table II: Secure parameter sets selection and comparison for the ring-LWE
encryption scheme and the “somewhat” homomorphic encryption scheme.
NAF represents non-adjacent form.

Reference Length of
p

Hamming
polynomial (n) Weight

LWE [31] 256 1049089 3
LWE [31] 512 5941249 8

Our proposed 512 4206593 4
SHE [20] 1024 1061093377 13
SHE [20] 1024 1061093377 5 (NAF [32])

Our proposed 1024 536903681 3

SHE [20] 2048 257 + 25 · 213 + 1 5

by m − (i + 1)k + il + 2i + 1 bits subtraction are required.
Let HW be the Hamming weight of p[k − 2 : 0], then one
m − (i + 1)k + il + 2i + 1 by l bits constant multiplication
equivalent to (HW − 1) times m − (i + 1)k + il + 2i + 1
bits additions. In summary, in each loop of the modular p
reduction (i ∈ [0, d m−k

k−l−2e − 1]), there are (HW − 1) times
m− (i−1)k+ il+2i+1 bits additions, 1 time k−1 by m−
(i+1)k+il+2i+1 bits subtraction, and 1 time k bits addition.
Note that the complexity of addition and subtraction are O(k).
The p which leads to the smallest computation complexity in
modular p reduction will be chosen.

Following the selection method above, we select two new
p for parameter sets n = 512 and n = 1024 which enable the
smallest computation efforts in modular p reduction. These
parameter sets for LWE and SHE are listed in Table II for
easy comparison. One can find that our newly selected p have
low Hamming weight and the values of p[k− 2 : 0] are small,
which is suitable for efficient modular p reduction design.

IV. PIPELINED ARCHITECTURE FOR FFT
MULTIPLICATION

In this section, we will first describe the architecture design
of the FFT multiplier. Then the pipelined architecture of
the FFT multiplier will be introduced in detail. Finally, the
memory control mechanism will be presented.

A. Top Level Architecture Design for FFT Multiplier

The algorithm of polynomial multiplication using FFT is
presented in Algorithm 2. Carefully examining the algorithm,
one can find that steps 3,4 and steps 6,7 have no data
dependency. This enables a high speed design by computing
each of these two steps in parallel.

In order to enable two FFT computations in parallel, the
smallest architecture consists of two butterflies together with
two multipliers. These processing units can compute two
coefficients for FFT(ā) and FFT(b̄) concurrently. IFFT is
different from FFT in the multiplication by ω−i instead of ωi,
and an additional multiplication by n−1 at the end of the last
stage. Hence, the processing units of the FFT can be fully
reused to compute the IFFT. Since only one IFFT instead of
two is required, the two butterflies and multipliers are all used
to compute IFFT(C̄) in parallel, which doubles the speed for
the IFFT.

With the processing units mentioned above, we found that
in the last stage of the FFT, when the two multipliers are

5

Base multiplier

M Modular p reduction

ROMs which store the

powers of ω or ɸ

Butterfly

unit

M

M

Butterfly

unit

M

M

ROMs

[ω
i

,ɸ
i

]

.

.

.
.

.

.

.

.

.

.

.

.

.

.

DOUTDIN

RAM Set

RAM A0

RAM A1

DOUTDIN

RAM Set

RAM B0

RAM B1

DOUTDIN

RAM Set

RAM A0
RAM A1

DOUTDIN

RAM Set

RAM B0
RAM B1

ROMs

[ɸ
i

]

ROMs

[ω
i

,ɸ
i

]

ROMs

[ɸ
i

]

ROMs

[ω
i

,ɸ
i

]

FFT Processor

FFT Processor

Inputa0

Inputb0

.
Outputc0

.

Inputa1

Inputb1

Outputc1

.
Outputc3

c
2,4i

FFT

multiplier

c
1,2i

c
1,2i+1

r
2i

r
2i+1

M

M

M

M

c
2,4i+1

c
2,4i+2

c
2,4i+3

d
2i

d
2i+1

d
2i+3

d
2i+2

c1

r
d

c2

*

*
Polynomial multiplication

(a) The top level architecture for the FFT multiplier

(c) An implementation example for decryption in ring-

LWE cryptosystem by using the proposed FFT multiplier

(b) The decryption dataflow of the ring-LWE

cryptosystem [9]

Гlog
2

p˥

Гlog
2

p˥

Гlog
2

p˥

Гlog
2

p˥

Гlog
2

p˥

Outputc2
Гlog

2

p˥

Гlog
2

p˥

Гlog
2

p˥

.

.

.

.
Decoder

m

Figure 1: The top level architecture and an implementation example for the proposed FFT multiplier. There are registers between each two operators, we omit
them in figure (a) for simplicity.

ɸ
i

ɸ
i

ɸ
-i

n
-1

a

b

a · b

FFT

FFT

Point-wise

multiplication
IFFT

Figure 2: Data flow of the proposed FFT multiplication.

still working on multiplication by powers of ω, the point-wise
multiplication is available for computation. In order to pipeline
the last stage of the FFT with point-wise multiplication,
two more multipliers are added to compute the point-wise
multiplications ĀiB̄i and Āi+n

2
B̄i+n

2
, respectively, between

the FFT and IFFT computations.
Following the design ideas mentioned previously, a

pipelined architecture for the FFT multiplier is designed and
presented in Figure 1 (a). As can be seen from Figure 1 (a),
four input buses are designed to enable a pipelined input.
After a certain computation cycle, four coefficients of the
resulting polynomial appear at the output at each cycle. These
coefficient outputs can be fed into other operators of the
ring-LWE or SHE cryptosystems for further computation. An
implementation example of ring-LWE decryption system by
using the proposed FFT multiplier is shown in Figure 1 (c).

1) Proposed Working Dataflow for the FFT Multiplier:
The proposed architecture operates according to the dataflow
depicted in Figure 2. Two butterflies work in parallel and are
responsible for FFT(ā) and FFT(b̄). For the inverse FFT, two

Table III: The cycle analysis of each operation of the proposed FFT multiplier
and the improved design. The cycle requirement for the pipeline delay is
negligible compared with the total cycle requirement, hence omitted for
simplicity.

Operation Our proposed Our improved

Multiply by φi n
2 n

2FFT (stage 0) n
2

FFT (stage 1 – log2 n− 2) n
2
(log2 n− 2) n

2
(log2 n− 2)

FFT (stage log2 n− 1) n
2

n
2and point-wise multiplication

IFFT n
4
log2 n

n
4
log2 n

Multiply by n−1 n
4 n

4Multiply by φ−i n
4

butterflies compute one IFFT(C̄) in parallel. Note that the
multiplication by powers of φ and point-wise multiplication
are absorbed in the first stage and last stage FFT, respectively,
thus only n

4 more cycles are required for the multiplication by
powers of φ−1.

The cycle requirement of each operation of the FFT mul-
tiplication is shown in Table III. The total cycle requirement
for one FFT multiplication is 3n

4 log2 n+ n.
2) Improved Dataflow for the FFT Multiplier: Carefully

examining Algorithm 1, one can find that when i = 0 (stage
0), Pij always equal to 0, hence ωPij = 1. This indicates the
multiplication a2j+1 · ωPij in stage 0 is meaningless because
it is always equal to a2j+1. Or putting it in a different way,
one can replace the multiplication by ωPij in stage 0 by the
multiplication by φi. With this design, the multiplication by
φi can be pipelined with stage 0 of the FFT, which leads to a
reduction of n

2 cycles compared with the original design.
In the original design, n−1 and φ−i are precomputed, and

6

Stage 0 Stage 1 Stage 2 Stage 3

0

8

4

12

2

10

6

14

1

9

5

13

3

11

7

15

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

0

0

0

0

0

0

0

0

0

0

0

0

4

4

4

4

0

0

2

2

4

4

6

6

0

1

2

3

4

5

6

7

Figure 3: Datapath of the constant geometry FFT. The numbers in the middle
of the lines represent the value of Pij in Algorithm 1.

the multiplication of these values is performed separately. Our
improved design simplifies the computation by precomputing
the products n−1φ−i. With this design the number of cycles
for the multiplication by n−1 and φ−i is reduced from n

2 to
n
4 . The cycle requirement of each operation of the FFT mul-
tiplication is shown in Table III. The total cycle requirement
for one FFT multiplication is reduced to

3n

4
log2 n+

n

4
.

3) Memory Utilization: In order to enable pipelining in our
architecture, simple dual-port RAMs (RAMs), which can read
and write concurrently, are used to store the coefficient arrays.
In our architecture, at least four RAMs are necessary to feed
four coefficients into the FFT processors at each cycle; each
RAM is responsible for the storage of n/2 coefficients. In
our design, eight RAMs are employed by using the ping-pong
alternative storage mechanism of which the details will be
explained in the later subsections.

Instead of generating ωi, ω−i, φi, φ−i and n−1 on the fly,
ROMs are used for the storage of these precomputed values.
In the FFT computation, one ROM is enough to store the
values of ωi because the two FFT processors always need the
same ωi input. In the IFFT computation, the ROM usage is
the same but a dual-port mode is required for the fact that the
ω−i inputs are different in the final stage of IFFT.

4) FFT Architecture Selection: Constant geometry
FFT [33], which shares the same datapath for all the stages,
is a good candidate for our pipelined design. The constant
geometry FFT algorithm is shown in Algorithm 1. A 16-point
constant geometry FFT datapath is depicted in Figure 3. As
can be seen, the datapath for constant geometry FFT is the
same both inter- and intra-stage, which makes the read/write
control of the sub-stage architecture as simple as of the whole
stage.

One may argue that in-place FFT is also a good candidate, in
which the storage addresses of input and output are the same.
However, the read/write addresses of in-place FFT are different
from one stage to another. This makes the read/write control
of the in-place FFT more complex than the constant geometry
FFT; different control logics are required to manipulate the
RAM read/write addresses in different stages. Since high speed
is the primary target of our design, the simple control in
constant geometry FFT, which could lead to a higher operating
frequency of the multiplier, becomes our first choice.

B. Building Blocks and Memory Control Mechanism

1) Modular p Reduction: The architecture for modular
reduction by p = 1048098 is introduced as an example in
Figure 4. Note that the design for other p is similar. The
newly selected p are numbers with low Hamming weight,
thus the constant multiplication x[m − 1 : k − 1]p[k − 2 : 0]
can be performed by adding the corresponding segments of
x[m − 1 : k − 1]. Using this approach can both reduce the
carry chain of the adder and save logic for the shift operation.
Moreover, when the bit-width for the shift operation is larger
than the bit width of x[m − 1 : k − 1] as shown in the solid
line box in Figure 4, the addition can be also eliminated.

It is worth to note that after the first subtraction, the
later operations should support a signed representation of the
operands. After reducing the bit length to dlog2 pe (signed
number), a detection on the sign bit decides whether a further
addition is required to bound the value within [0, p− 1].

2) Butterfly Unit for FFT/IFFT: The butterfly unit for
constant geometry FFT/IFFT is shown in Figure 5. The
butterfly processor and the channel selector constitute the
butterfly unit. The butterfly processor performs the addition
and subtraction with modular reduction in FFT/IFFT (i.e. Step
5, 6 in Algorithm 1). A channel selector [34] is responsible
for wiring the coefficients back to their corresponding RAMs.

3) Pipeline Depth Control for Pipeline read/write: The
pipelined dataflow example of a 16-point constant geometry
FFT/IFFT is depicted in Figure 6. In order to achieve 100%
usage of the FFT processor in the FFT/IFFT computation, two
coefficients are required as inputs at each cycle consecutively
without pipeline bubbles intra- and inter- stage. Therefore,
we should first guarantee that within each stage, the RAM
input time d + n

2 − 1 + n
2 (k − 1) (k is the stage number) of

the last two coefficients (i.e. an
2 −1, an−1) is smaller than the

output time 3n
4 −1+ n

2 (k−1) of the first output among these
two coefficients (i.e. an

2 −1). Hence, the pipeline delay should
satisfy d < n/4 in order to guarantee the values within each
stage connect without any bubble.

Figure 6 provides an example for this situation. In this
figure, where d = 3 < n/4, the RAM input time (time 18)
of the last two coefficients (i.e. a7, a15) of stage 2 is smaller
than the RAM output time (time 19) of the first output among
these two coefficients (i.e. a7) within the same stage. Thus the
RAM output can follow the RAM input immediately without
any delay within the stage.

However, if the condition d < n/4 is met, a read/write
collision will occur between each stage in the RAMs; the

7

x[k-2:0] - x[m-1:k-1] × p[k-2:0]

x[m-1:k-1] × p[k-2:0]

20

42

20

33

20

24

0

21
.

p
22

9

13

22

23

32

.

13

9

4

13

14

23

.

4

4

13

.

4

5

x

y

Figure 4: Architecture of the modular reduction by p = 1048098. As shown in the solid line box, when the bit width for shift operation (The shift bit width
is 9) is larger than the bit width of x[m− 1 : k − 1] (The bit width of x[m− 1 : k − 1] is 4), the addition can be eliminated.

Channel selectorButterfly processor

.

..

.

.

.

.Butterfly_in0

Butterfly_in1

Sele_out0

Sele_out1

Figure 5: Architecture of the butterfly unit. Selecting the black-colored channels in the channel selector enables output schedule as shown in Figure 8 while
selecting the gray-colored channels enables the in-sequence output schedule.

processed new data for the next stage FFT/IFFT will overwrite
the unread data of the current stage. As described as an
example in Figure 6, coefficient a0, a1 of stage 1 will be at the
output of the RAM at time 8, after d = 3 cycles, the processed
new coefficient a8 for stage 2 will be written back to RAM
at time 11. However, following the schedule of FFT/IFFT, the
coefficient a8 of stage 1 will not be computed until time 12.
Since the values of a8 for stage 1 and stage 2 should be stored
in the same RAM address, a direct write back of the stage 2
a8 will overwrite the unread stage 1 a8 value. This will create
a wrong stage 1 FFT input of a8 at time 13.

Therefore, a read-before-write behavior could only provide
a correct read for the coefficients with indices smaller than
d/2. In order to solve this collision problem without adding
pipelining bubbles, one could double the number of RAM
blocks and use the ping-pong alternative storage method.
Manipulated by the control signals, multiplexers are used to
select the RAM blocks as shown in Figure 1.

4) Coefficient RAM control mechanism: Carefully exam-
ining the coefficient input schedules for FFT/IFFT (output
schedules for the RAMs) of each stage of Algorithm 1, we can
find that there are two input schedules for the butterfly of the
constant geometry FFT. The first input schedule is for stage
0, where the coefficients with small indices (a0, . . . , an

2 −1)
are led to one input, while the coefficients with large in-
dices (an

2
, . . . , an−1) are led to the other input. The second

type of input schedule is for the rest of the stages, where
the coefficients with even indices (a0, a2, . . . , an−2) are led
to the first input, while the coefficients with odd indices
(a1, a3, . . . , an−1) are led to the other input. Therefore, we
can arrange the coefficient storage in the RAMs as shown in

a10 a12a2 a4 a6

a9 a11 a13a3 a5 a7

12 13 14 158 9 10 11 20 21 22 2316 17 18 19 ...

...

...

...

...

Stage 1

...

...

...

...

...

Stage 2

Stage 2 Stage 3

a8 a10 a12a0 a2 a4 a6

a9 a11 a13a1 a3 a5

a6a5a4a3a2a1

a10a9 a11 a12 a13 a14

a5a4a3a2a1a0

a10a8 a9 a11 a12 a13

a10 a12a2 a4 a6

a9 a11 a13a3 a5 a7

...

...

Stage 1

...

...

Stage 2

a8 a10 a12 a14a0 a2 a4 a6

a9 a11 a13 a15a1 a3 a5 a7

a8

...

...

...

...

Stage 2 Stage 3

a6a5a4a3a2a1

a10a9 a11 a12 a13 a14

a4a3a2a1a0

a10a8 a9 a11 a12

a7

a15

Time

FFT

input

FFT

output

RAM

output

RAM

input

a0

a1

a0

a8

a0

a1

a0

a8

a14

a15

a7

a15

a7

a8

a14

a15

Figure 6: The pipelined dataflow and the read/write collision example of
a 16-point constant geometry FFT. The solid arrows guide the coefficient
dependency without read/write collision while the dashed arrows lead the
coefficient dependency which will cause read/write collision.

Figure 7. With this design, a reverse order read operation in
stage 0 and a sequence read in other stages provides the correct
coefficient schedule for FFT/IFFT.

When it comes to the input schedule of RAMs, we should
first consider the output schedule of stage 0 to stage log2 n−2
in the FFT. From Algorithm 1, we can find that the index gap
between the outputs of each butterfly is n/2, and these two
indices have the same parity. Since simple dual-port RAMs
are used, with the storage arrangement shown in Figure 7,
these two outputs cannot be written back to the same RAM
concurrently. Notice that the output indices between two cycles
have different parity. The channel selector can be used to
tackle this problem. The input/output schedule of the butterfly

8

Stage 0

Other stages

BRAM A BRAM B

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 2 4 6 8 10 12 14 1 3 5 7 9 11 13 15

Figure 7: Coefficient storage arrangement of 16-point FFT/IFFT in RAMs.

processor and the channel selector is depicted in Figure 8.
With this design, the two outputs from the butterfly can be
written back to the corresponding RAMs at each cycle with
only 1 cycle delay.

The output schedule of stage log2 n − 1 in the FFT deter-
mines the input of stage 0 of the IFFT. In order to make the
output of the IFFT in sequence order, the input of the IFFT
should be in reverse order as compared to the FFT. Hence, the
coefficient storage in stage 0 for the IFFT in RAMs should be
in sequence, which is the same as stage 0 in the FFT shown in
Figure 7. Note that the indices of two coefficients generated
by the butterfly processor have the same parity, which makes
a direct write back to the RAMs possible. By selecting the
gray-colored channels from the channel selector, which are
shown in Figure 5, the in-sequence coefficient storage can be
implemented.

V. FPGA OPTIMIZATION RESULTS AND COMPARISONS

The proposed architecture is implemented on a Spartan-6
(xc6slx100-3) FPGA using Verilog. The post place-and-route
(PAR) implementation results are generated using Xilinx ISE
14.7 with the default synthesis option.

In order to facilitate future comparisons, the results which
the FFT multipliers are built by pure LUTs are provided
(Design 1). In order to guarantee the speed and have a rela-
tively fair comparison of the area-latency product with [22],
we tried to construct the base multiplier by using as less DSPs
as in [22]. For this reason the 58 × 58-bit base multipliers
for n = 2048 FFT multiplier are constructed by using
Karatsuba’s algorithm [35]. We also tried to reduce the BRAM
number by using block memory to realize RAMs and using
distributed memory to build ROMs (Design 2). In order to
achieve the high-speed target, we fully use the DSPs and block
RAMs (BRAMs) in the device to realize the base multiplier
and RAM/ROM, respectively (Design 3). The implementation
results of the above designs are shown in Table IV.

In our design, LUT based components are combined with
registers to split into balanced delay paths, which make the
design operate under high frequency. Note that the critical path
is the route between the input and output of the base multiplier
or the RAM. Therefore, the speed performance of the base
multiplier or the RAM determines the operating frequency of
the whole system. The cycle delay of the base multiplier is
set to the optimum number in order to achieve the highest
operating frequency, thus the total cycle count may be different
for the same length n FFT multipliers.

The comparisons between the latest work of Pöppelmann
et al. [22] and our Design 2 are shown in Table V. We compare
the area-latency product for the FFT multipliers which have
the same number of DSPs and less BRAM usage than [22]
(n = 256, 512, and 1024). The best achieved improvement on

Table IV: Implementation results of the proposed high-speed polynomial
multiplier on a Spartan-6 (xc6slx100-3) FPGA. The superscript number (1),
(2), and (3) for length n represent Design 1, 2, and 3, respectively. A 18Kbit
BRAM is denoted as 1 BRAM while 0.5 BRAM represents a 9Kbit one.

Length LUT Slice DSP BRAM Period Cycles Latency
n (ns) (µs)

256(1) 4407 1471 0 0 4.050 1618 6.552
256(2) 2829 886 4 4 3.877 1618 6.272
256(3) 1754 580 16 8.5 3.802 1630 6.197

512(1) 6119 2062 0 0 4.454 3618 16.114
512(2) 3750 1348 4 4 3.938 3622 14.263
512(3) 2502 870 16 8.5 3.946 3630 14.323

1024(1) 10801 3176 0 0 5.150 7959 40.988
1024(2) 6689 2112 4 8 4.154 7967 33.094
1024(3) 2464 915 16 14 4.050 7971 32.282

2048(1) 37552 10120 0 0 9.471 17382 164.62
2048(2) 20762 6154 12 28 5.423 17402 94.371
2048(2) 14105 4406 12 50 4.805 17402 83.616
2048(3) 6295 2374 64 50 4.751 17454 82.923

area-latency product is 68% for the n = 512 multiplier. The
performance gain is mainly thanks to the newly selected p,
which enables a more efficient modular p reduction design.

The improvement is 36.5% for the n = 1024 FFT multi-
pliers. This is because the usage of distributed memory and
the construction of the base multipliers (using both DSP and
LUTs) consume more LUTs in this case, which increase the
number of slices and reduce the operating frequency. It can
be seen from the latency comparison of the two Design 2
results for n = 2048 multiplier that for the large data size
FFT multiplier, block memory instead of distributed memory
is preferred to achieve high speed in FPGA.

In our design, the cycle requirement of a length-n polyno-
mial multiplication is

3n

4
log2 n+

n

4
.

In the work of [22] the cycle requirement is
3n

2
log2 n+

11n

2
.

Compared with [22], our design will save at least 50% of the
cycles in the computation, theoretically. It can be seen that the
cycle reduction is higher than 60% for the four FFT multipliers
in our design.

The latency comparison between [22] and our design is
depicted in Figure 9. Compared with [22], our high-speed
pipelined architecture has approximately 3.5 times speedup
on average. The speedup is mainly achieved by the reduction
in cycles and the increase of operating frequency. The cycle
reduction is achieved thanks to the pipelined design and the
improved dataflow while the increase in frequency is achieved
by the simple read/write control of the constant geometry FFT.
When compared with the software implementation from [20],
which takes 11ms for an n = 2048 FFT multiplication by
using 2.1GHz Intel Core 2 Duo, our design realizes a speedup
of approximately 130 times.

VI. CONCLUSIONS AND FUTURE WORKS

A high-speed pipelined design for FFT multiplication is pre-
sented for efficient implementation of ring-LWE and “some-

9

a
7

a
6

a
5

a
4

a
3

a
2

a
1

a
0

a
10

a
8

a
9

a
11

a
12

a
13

a
14

a
15

B u tterfl y

p ro c es s o r

I n p u t se q u e n c e s

T i m e

Ou tp u t se q u e n c e s

C h an n el

s el ec to r

Ou tp u t se q u e n c e s

T i m e k+3 k+2 k+1 k+0k+7 k+6 k+5 k+4k+3 k+2 k+1 k+0k+7 k+6 k+5 k+43 2 1 07 6 5 4 k+8

...

a
10

a
12

a
14

a
0

a
2

a
4

a
6

a
9

a
11

a
13

a
15

a
1

a
3

a
5

a
7

a
8

a
14

a
6

a
12

a
4

a
10

a
2

a
8

a
0

a
3

a
1

a
9

a
11

a
5

a
13

a
7

a
15

Figure 8: Input and output schedule of the butterfly processor and the channel selector of a 16-point FFT (one stage example from stage 1 to stage log2 n−2).
k is the pipelined delay of the butterfly processor.

Table V: Comparisons between the design of Pöppelmann et al. [22] and our high-speed FFT multiplier on a Spartan-6 (xc6slx100-3) FPGA.

Design Appli- Length Slice DSP BRAM Period Cycles Latency Area-latency product Improvement Cycle red. Speedup
cation n (ns) (µs) (slice × µs) (%) (%) (times)

[22] LWE 256 640 4 5.5 4.587 4806 22.045 14108 - - -
Design 2 LWE 256 886 4 4 3.877 1618 6.272 5556 60.6 66.3 ×3.51

[22] LWE 512 1145 4 7 5.181 10174 52.711 60354 - - -
Design 2 LWE 512 1348 4 4 3.938 3622 14.263 19226 68.1 64.4 ×3.70

[22] SHE 1024 997 4 11.5 5.154 21405 110.32 109989 - - -
Design 2 SHE 1024 2112 4 8 4.154 7967 33.094 69894 36.5 62.8 ×3.33

[22] SHE 2048 1310 16 22.5 6.211 45453 282.31 369826 - - -
Design 2 SHE 2048 6154 12 28 5.423 17402 94.371 580759 - 61.7 ×2.99
Design 2 SHE 2048 4406 12 50 4.805 17402 83.616 368412 - 61.7 ×3.38

1 2 3 4
0

50

100

150

200

250

300

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

20481024512256

La
te

nc
y

(
s)

Polynomial length (n)

 Poppelman et al. [22]
 Our design

Sp
ee

du
p

(t
im

es
)

 Speedup of our design

Figure 9: The comparison of the latency between the design of Pöppelmann
et al. [22] and our design.

what” homomorphic encryption cryptosystems. Parameter se-
lection restrictions and an efficient selection method are ana-
lyzed and provided. Considering both security and efficiency
of the design, new parameter sets for the ring-LWE encryption
scheme and the SHE scheme are selected. Four parameter
sets with n ranging from 256 to 2048 are implemented to
demonstrate the performance of our FFT multipliers. The
implementation results on a Spartan-6 FPGA show that our
architecture achieves a 3.5 times speedup on average when
compared with the state of the art. The results also show
that the selected new parameters p support efficient modular
p reduction design, which improves the performance of the
whole FFT multiplier.

Future works will exploit the full usage of the processing
units of the proposed pipelined architecture, and will simplify
the control logic of our design. We will consider using the
ATHENa framework to improve the synthesis results [36].

We will also investigate how to incorporate the proposed FFT
multiplier in the ring-LWE and SHE cryptosystems.

REFERENCES

[1] R. L. Rivest, A. Shamir, and L. Adleman, “A method for obtaining digital
signatures and public-key cryptosystems,” Communications of the ACM,
vol. 21, no. 2, pp. 120–126, 1978.

[2] M.-D. Shieh, J.-H. Chen, W.-C. Lin, and H.-H. Wu, “A new algorithm
for high-speed modular multiplication design,” Circuits and Systems I:
Regular Papers, IEEE Transactions on, vol. 56, no. 9, pp. 2009–2019,
Sept 2009.

[3] N. Koblitz, A. Menezes, , and S. Vanstone, “The state of elliptic curve
cryptography,” Designs, Codes and Cryptography, vol. 19, no. 2-3, pp.
173–193, 2000.

[4] R. Azarderakhsh, K. Jarvinen, and M. Mozaffari-Kermani, “Efficient
algorithm and architecture for elliptic curve cryptography for extremely
constrained secure applications,” Circuits and Systems I: Regular Papers,
IEEE Transactions on, vol. 61, no. 4, pp. 1144–1155, April 2014.

[5] P. Shor, “Algorithms for quantum computation: discrete logarithms and
factoring,” in Foundations of Computer Science, 1994 Proceedings., 35th
Annual Symposium on, 1994, pp. 124–134.

[6] V. Lyubashevsky, “Lattice-based identification schemes secure under
active attacks,” in Public Key Cryptography PKC 2008, ser. Lecture
Notes in Computer Science, R. Cramer, Ed. Springer Berlin Heidelberg,
2008, vol. 4939, pp. 162–179.

[7] V. Lyubashevsky, C. Peikert, and O. Regev, “On ideal lattices and learn-
ing with errors over rings,” in Advances in Cryptology EUROCRYPT
2010, ser. Lecture Notes in Computer Science, H. Gilbert, Ed. Springer
Berlin Heidelberg, 2010, vol. 6110, pp. 1–23.

[8] R. Lindner and C. Peikert, “Better key sizes (and attacks) for LWE-based
encryption,” in Topics in Cryptology CT-RSA 2011, ser. Lecture Notes in
Computer Science, A. Kiayias, Ed. Springer Berlin Heidelberg, 2011,
vol. 6558, pp. 319–339.

[9] V. Lyubashevsky, “Lattice signatures without trapdoors,” in Advances
in Cryptology EUROCRYPT 2012, ser. Lecture Notes in Computer
Science, D. Pointcheval and T. Johansson, Eds. Springer Berlin
Heidelberg, 2012, vol. 7237, pp. 738–755.

[10] O. Regev, “On lattices, learning with errors, random linear codes,
and cryptography,” in Proceedings of the Thirty-seventh Annual ACM
Symposium on Theory of Computing, ser. STOC ’05. New York, NY,
USA: ACM, 2005, pp. 84–93.

[11] J. Buchmann, D. Cabarcas, F. Göpfert, A. Hülsing, and P. Weiden, “Dis-
crete ziggurat: A time-memory trade-off for sampling from a gaussian
distribution over the integers,” in Selected Areas in Cryptography – SAC
2013, ser. Lecture Notes in Computer Science, T. Lange, K. Lauter, and
P. Lisonk, Eds. Springer Berlin Heidelberg, 2014, pp. 402–417.

10

[12] S. Sinha Roy, F. Vercauteren, and I. Verbauwhede, “High precision
discrete gaussian sampling on fpgas,” in Selected Areas in Cryptography
– SAC 2013, ser. Lecture Notes in Computer Science, T. Lange,
K. Lauter, and P. Lisonk, Eds. Springer Berlin Heidelberg, 2014, pp.
383–401.

[13] S. S. Roy, F. Vercauteren, N. Mentens, D. D. Chen, and I. Verbauwhede,
“Compact ring-lwe based cryptoprocessor,” in Cryptographic Hardware
and Embedded Systems – CHES 2014, ser. LNCS. Springer, 2014,
vol. PP, pp. 1–1.

[14] T. Pöppelmann, L. Ducas, and T. Güneysu, “Enhanced lattice-based
signatures on reconfigurable hardware,” Cryptology ePrint Archive,
Report 2014/254, 2014, http://eprint.iacr.org/.

[15] A. Boorghany and R. Jalili, “Implementation and comparison of lattice-
based identification protocols on smart cards and microcontrollers,”
Cryptology ePrint Archive, Report 2014/078, 2014, http://eprint.iacr.
org/.

[16] S. S. Roy, O. Reparaz, F. Vercauteren, and I. Verbauwhede, “Compact
and side channel secure discrete gaussian sampling,” Cryptology ePrint
Archive, Report 2014/591, 2014, http://eprint.iacr.org/.

[17] T. Güneysu, V. Lyubashevsky, and T. Pöeppelmann, “Lattice-based sig-
natures: Optimization and implementation on reconfigurable hardware,”
Computers, IEEE Transactions on, vol. PP, no. 99, pp. 1–1, 2014.

[18] V. Lyubashevsky and D. Micciancio, “Generalized compact knapsacks
are collision resistant,” in Automata, Languages and Programming,
ser. Lecture Notes in Computer Science, vol. 4052. Springer Berlin
Heidelberg, 2006, pp. 144–155.

[19] C. Gentry, “Fully homomorphic encryption using ideal lattices,” in Pro-
ceedings of the 41st Annual ACM Symposium on Theory of Computing,
ser. STOC ’09. New York, NY, USA: ACM, 2009, pp. 169–178.

[20] K. Lauter, M. Naehrig, and V. Vaikuntanathan, “Can homomorphic
encryption be practical?” in Proceedings of the 3rd ACM workshop on
Cloud computing security workshop, ser. CCSW ’11. ACM, 2011, pp.
113–124.

[21] N. Göttert, T. Feller, M. Schneider, J. Buchmann, and S. Huss, “On the
design of hardware building blocks for modern lattice-based encryption
schemes,” in Cryptographic Hardware and Embedded Systems CHES
2012, ser. Lecture Notes in Computer Science, E. Prouff and P. Schau-
mont, Eds. Springer Berlin Heidelberg, 2012, vol. 7428, pp. 512–529.

[22] T. Pöppelmann and T. Güneysu, “Towards efficient arithmetic for lattice-
based cryptography on reconfigurable hardware,” in Progress in Cryp-
tology LATINCRYPT 2012, ser. Lecture Notes in Computer Science,
A. Hevia and G. Neven, Eds. Springer Berlin Heidelberg, 2012, vol.
7533, pp. 139–158.

[23] C. Gentry, C. Peikert, and V. Vaikuntanathan, “Trapdoors for hard
lattices and new cryptographic constructions,” in Proceedings of the 40th
Annual ACM Symposium on Theory of Computing, ser. STOC ’08. New
York, NY, USA: ACM, 2008, pp. 197–206.

[24] A. Aysu, C. Patterson, and P. Schaumont, “Low-cost and area-efficient
fpga implementations of lattice-based cryptography,” in Hardware-
Oriented Security and Trust (HOST), 2013 IEEE International Sym-
posium on, 2013, pp. 81–86.

[25] R. Zimmermann, “Efficient VLSI implementation of modulo (2n ± 1)
addition and multiplication,” in Computer Arithmetic – ARITH 1999,
1999, pp. 158 – 167.

[26] J. Cooley and J. Turkey, “An algorithm for the machine computation of
complex Fourier series,” Mathematics of Computation, vol. 19, no. 90,
pp. 297–301, 1965.

[27] J. M. Pollard, “The fast Fourier transform in a finite field,” Mathematics
of Computation, vol. 25, pp. 365–374, 1971.

[28] V. Lyubashevsky, D. Micciancio, C. Peikert, and A. Rosen, “SWIFFT:
A modest proposal for FFT hashing,” in Fast Software Encryption, ser.
Lecture Notes in Computer Science, K. Nyberg, Ed. Springer Berlin
Heidelberg, 2008, vol. 5086, pp. 54–72.

[29] J. A. Solinas, “Generalized Mersenne Numbers,” Faculty of Mathemat-
ics, University of Waterloo, Tech. Rep., 1999.

[30] H. J. Naussbaumer, Fast Fourier transform and convolution algorithms.
Springer, Berlin, Germany, 1982.

[31] M. Rückert and M. Schneider, “Estimating the security of lattice-based
cryptosystems,” in Cryptology ePrint Archive, Report 2010/137, 2010.

[32] D. Hankerson, A. Menezes, and S. Vanstone, in Guide to Elliptic Curve
Cryptography. Springer-Verlag, 2004.

[33] M. Pease, “An adaptation of the fast Fourier transform for parallel
processing,” Journal of the Association for Computing Machinery,
vol. 15, pp. 252–264, 1968.

[34] D. Chen, G. Yao, C. Koc, and R. C. C. Cheung, “Low complex-
ity and hardware-friendly spectral modular multiplication,” in Field-

Programmable Technology (FPT), 2012 International Conference on,
2012, pp. 368–375.

[35] A. Karatsuba and Y. Ofman, “Multiplication of multidigit numbers on
automata,” Soviet Physics Doklady, vol. 7, no. 7, pp. 595–596, 1963.

[36] “ATHENa: Automated Tool for Hardware EvaluatioN.” [Online].
Available: http://cryptography.gmu.edu/athena/

