
Multi-Bit Differential Fault Analysis of Grain-128 with Very
Weak Assumptions

Prakash Dey1, Abhishek Chakraborty2,
Avishek Adhikari1 and Debdeep Mukhopadhyay2

1 Department of Pure Mathematics
University of Calcutta, Kolkata-700019, India.

2 Department of Computer Science and Engineering
Indian Institute of Technology Kharagpur, Kharagpur-721302, India.

pdprakashdey@gmail.com, abhishek.chakraborty@cse.iitkgp.ernet.in,
avishek.adh@gmail.com, debdeep.mukhopadhyay@gmail.com

Abstract. Very few differential fault attacks (DFA) were reported on Grain-128 so far. In this
paper we present a generic attack strategy that allows the adversary to challenge the cipher under
different multi-bit fault models with faults at a targeted keystream generation round even if bit
arrangement of the actual cipher device is unknown. Also unique identification of fault locations
is not necessary. To the best of our knowledge, this paper assumes the weakest adversarial power
ever considered in the open literature for DFA on Grain-128 and develops the most realistic attack
strategy so far on Grain-128. In particular, when a random area within k ∈ {1, 2, 3, 4, 5} neighbour-
hood bits can only be disturbed by a single fault injection at the first keystream generation round
(k-neighbourhood bit fault), without knowing the locations or the exact number of bits the injected
fault has altered, our attack strategy always breaks the cipher with 5 faults. In a weaker setup even
if bit arrangement of the cipher device is unknown, bad-faults (at the first keystream generation
round) are rejected with probabilities 0.999993, 0.999979, 0.999963, 0.999946 and 0.999921 assum-
ing that the adversary will use only 1, 2, 3, 4 and 5 neighbourhood bit faults respectively for key-IV
recovery.

Keywords: Stream Cipher, Differential Fault Attack, Multi-Bit Fault, SAT Solver.

1 Introduction

Stream ciphers are generally fast algorithms to generate pseudo-random bits. They are used to encrypt
data coming in a stream. Stream ciphers are best for the cases when the amount of data is either unknown,
or continuous - such as network streams. Grain-128 is a hardware based stream cipher and previous works
(such as [1],[2], [3], [5], [6], [8]) show that it is vulnerable to DFA under various assumptions.

In the DFA model, faults are injected into the internal state of the cipher and from the difference of the
normal and the faulty keystream, information about the internal state is partially or completely deduced.
Faults can be injected in a register by under-powering and power spikes, clock glitches, temperature
attacks, optical attacks, electromagnetic (EM) fault injection, etc. The first three methods do not require
expensive equipment, but their effect can hardly be focused to a particular part of the device. On the
other hand, optical and EM methods can affect a very restricted area, but require a more complex setup.

In the DFA reported on Grain family of ciphers so far the adversarial power has evolved from
somewhat impractical and unrealistic to something that has some practical sense but with the hunch
that only single bit faults were considered in all of them to recover the internal state of the cipher. [8]
proposed a DFA on Grain family of ciphers with reasonable assumptions. The work also explored double
and triple bit faults but rejected the cases in favour of single bit faults. Also attack strategy of [8] fails
in case fault locations are not uniquely identified.

In this paper we present a generic attack strategy that allows the adversary to challenge Grain-128
under different multi-bit fault models with faults at a targeted keystream generation round even if bit
arrangement of the actual cipher device is unknown. Also unique identification of fault locations is not
necessary. To the best of our knowledge, this paper assumes the weakest adversarial power ever considered
in the open literature for DFA on Grain-128 and develops the most realistic attack strategy so far on
Grain-128.

In particular, when a random area within k ∈ {1, 2, 3, 4, 5} neighbourhood bits can only be disturbed
by a single fault injection at the first keystream generation round (k-neighbourhood bit fault), without
knowing the locations or the exact number of bits the injected fault has altered, our attack strategy



2

always breaks the cipher with 5 faults. In a weaker setup even if bit arrangement of the cipher device is
unknown, bad-faults (at the first keystream generation round) are rejected with probabilities 0.999993,
0.999979, 0.999963, 0.999946 and 0.999921 assuming that the adversary will use only 1, 2, 3, 4 and 5
neighbourhood bit faults respectively for key-IV recovery.

2 Description of Grain-128

The Grain-128 cipher has three stages namely, Key Loading Algorithm (KLA), Key Scheduling Algo-
rithm (KSA) and Pseudo-Random keystream Generation Algorithm (PRGA). Secret key (128 bit) is
loaded into the NFSR, 96 bit IV is loaded into the first 96 LFSR positions, the last 32 bits of the LFSR
are filled with ones in the KLA. After the KLA, the KSA (256 clock) is used to pseudo-randomise the
internal state without producing any keystream. Instead the output bit is fed back and XOR-ed with the
input, both to the NFSR and to the LFSR. After the completion of the KSA, in the PRGA the output
bit is no longer XOR-ed to the NFSR or to the LFSR but it is used as the Pseudo-Random keystream
bit. During PRGA rounds, the NFSR and LFSR are updated normally. Full description of Grain-128 is
available in [4]. Here we present the version of Grain-128 with index starting from 1 instead of usual 0.

The internal state ISi of Grain-128 consists of two feedback shift registers X (non-linear) and Y (linear)
with inner states Xi = (xi, . . . , xi+127) and Yi = (yi, . . . , yi+127) respectively at the beginning of the
PRGA round i (≥ 1),

ISi = (xi, . . . , xi+127︸ ︷︷ ︸ yi, . . . , yi+127)︸ ︷︷ ︸ .
Xi Yi

The secret key (k1, . . . , k128) and IV (IV1, . . . , IV96) are used to initialize the inner state as follws:

(k1, . . . , k128︸ ︷︷ ︸ IV1, . . . , IV96, 1, . . . , 1)︸ ︷︷ ︸ .
X Y

The keystream bit zi and the new inner state bits xi+128, yi+128 of Grain-128 registers X,Y are generated
respectively as follows:
zi = h(Xi, Yi), xi+128 = u(Xi, Yi), yi+128 = v(Yi) where,
h(Xi, Yi) = xi+2 + xi+15 + xi+36 + xi+45 + xi+64 + xi+73 + xi+89 + yi+93+

xi+12xi+95yi+95 + xi+12yi+8 + yi+13yi+20 + xi+95yi+42 + yi+60yi+79,
u(Xi, Yi) = yi + xi + xi+26 + xi+56 + xi+91 + xi+96 + xi+3xi+67 + xi+11xi+13+

xi+17xi+18 + xi+27xi+59 + xi+40xi+48 + xi+61xi+65 + xi+68xi+84,
v(Yi) = yi + yi+7 + yi+38 + yi+70 + yi+81 + yi+96.

3 Proposed Attack on Grain-128 : Attack Model, Tools and Definitions

This paper assumes that the actual cipher device can be re-keyed with the same key-IV before each fault
injection trial.
For any two integers a and b, with a ≤ b, we denote the set {x : x is an integer with a ≤ x ≤ b} simply
by [a, b]. Also if V = (V1, . . . , Vp) is a vector of length p, we denote Vi simply by V (i) for all i ∈ [1, p].
We shall also use the following notations:

a. For any integer i, ∅+ i = ∅ (∅ being the empty set).
b. For any set S of integers and for any integer i, S + i = {s+ i : s ∈ S}.
c. For any set S if s ∈ S implies that s is a set of integers then for any
integer i, S + i = {s+ i : s ∈ S}.

1. Fault Location. If a fault injection trial flips exactly the bits at the r distinct positions given by
φ = {φ1, . . . , φr} of the internal state, only at the PRGA round t, then the set φ will be called a fault
position and the ordered pair (φ, t) will be called a fault location or simply a fault.
Remark. A fault model is a set of properties of an injected fault that is used to characterize an attack.
In this paper we consider faults at a single PRGA round. Let Γ be the set of all possible fault positions
corresponding to a fault model Σ. We shall represent Σ simply by Γ .

2. The XOR Differential Keystream. Let ISkey,IVi be the internal state of the cipher at PRGA

round i (i ≥ 1). Let us consider a fault (φ, t). Let ISkey,IV,φ,ti be the faulty internal state and let zkey,IV,φ,ti

be the faulty output key bit at that PRGA round i. Then dkey,IV,φ,ti = zkey,IV,φ,ti + zkey,IVi is the XOR



DFA on Grain-128 3

difference of the normal (fault free) keystream bit zkey,IVi from the faulty one zkey,IV,φ,ti at the PRGA

round i. For given n we denote, dkey,IV,φ,t,n = (dkey,IV,φ,t1 , . . . , dkey,IV,φ,tn ). We shall analyse the XOR
differential keystream dkey,IV,φ,t,n for DFA.

Remark. We shall drop the key, IV superscript when there is no need to emphasise them. Following the
simplified notation, dkey,IV,φ,t,n becomes dφ,t,n = (dφ,t1 , . . . , dφ,tn ). One should note that each dφ,ti may be
thought of as a function of the Key-IV pair. Since the cipher device is re-keyed before each fault injection,
after the fault injection, at the fault injection PRGA round t we have, ISφ,tt (e) = ISt(e) + 1, ∀e ∈ φ and

ISφ,tt (e) = ISt(e), ∀e ∈ [1, 256] \ φ.

Since we are considering the XOR differential keystream for finitely many PRGA rounds, it may
happen that XOR differential keystreams corresponding to two fault locations match exactly with each
other.

3. Signature of Fault Locations. After a fault (φ, t) is injected in the PRGA round t, we shall study

the l PRGA rounds t, . . . , t+ l − 1. We consider the XOR differential keystream dφ,t,n = (dφ,t1 , . . . , dφ,tn )

where n = t+ l − 1. It should be noted that dφ,t1 = · · · = dφ,tt−1 = 0 as the fault is injected at the PRGA

round t. We now treat key-IV as variables and each dφ,ti as a function of the Key-IV pair.

For certain (φ, t) there may be some special values in dφ,t,n such that

(A) dφ,ti = b, b ∈ {0, 1} irrespective of Key-IV.

(B) dφ,ti , dφ,tj 6∈ {0, 1}, i 6= j, but dφ,ti = dφ,tj happens deterministically irrespective of Key-IV.

(C) dφ,ti , dφ,tj 6∈ {0, 1}, i 6= j, but dφ,ti = dφ,tj + 1 happens deterministically irrespective of Key-IV.

For each fault location (φ, t) the signature [8], sigφ,t of the fault (φ, t) is defined to be the 4-tuple

sigφ,t = (sig1φ,t, sig
0
φ,t, sig

=
φ,t, sig

6=
φ,t) as explained below, where each of sigeφ,t, e ∈ {1, 0,=, 6=} will be

called a component of sigφ,t.

We define,

sigbφ,t = {i ∈ [t, n] : dφ,ti = b}, b ∈ {0, 1}.

sig=φ,t = {{i1, . . . , ip} : i1, . . . , ip ∈ [t, n], dφ,ti1 = · · · = dφ,tip 6∈ {0, 1} and ∃ no ir ∈ [t, n] other than i1, . . . , ip

such that dφ,tir = dφ,ti1 }.
sig 6=φ,t = {{i, j} : i, j ∈ [t, n], dφ,ti + dφ,tj = 1 and dφ,ti , dφ,tj 6∈ {0, 1}} .

If dφ,ti = b, b ∈ {0, 1} holds irrespective of Key-IV, we shall say that: “all the XOR differential keystreams
are fixed to b at the position i under the fault (φ, t)”. One should note that, (A) sigbφ,t is the set of the
positions (PRGA rounds) where the XOR differential keystreams are fixed to b under the fault (φ, t), (B)
sig=φ,t gives sets of PRGA rounds where the XOR differential keystreams are deterministically equal (but

not fixed) irrespective of Key-IV under the fault (φ, t) and (C) sig 6=φ,t gives pairs of PRGA rounds where
the XOR differential keystreams are deterministically different (but not fixed) irrespective of Key-IV
under the fault (φ, t).

Remark. The signatures are Key-IV independent and depend only on fault locations and the cipher
design. Since signature of faults are constructed for finitely many PRGA rounds it may happen that (1)
for some fault locations some signature component becomes completely void and (2) signatures of two
fault locations match exactly with each other.

4. We now use the following notation:
For any integer i, sigφ,t + i = (sig1φ,t + i, sig0φ,t + i, sig=φ,t + i, sig 6=φ,t + i).

The next theorem shows that “for a fixed fault position φ we do not need to compute signatures for all
fault locations (φ, t)”.

Theorem 1. For any fault location (φ, t), sigφ,t = sigφ,1 + t− 1.

Proof. Let fault be injected at the PRGA round 1 at position φ and (s1, s2, . . ., s256) be the corresponding
internal state (IS) where each of sj is a variable.

We now assume that the XOR differential keystream bit (XOR DKB) dφ,1i = 1. Then this happens (at
the PRGA round i) independent of the internal state (IS) at the PRGA round 1.



4

PRGA
round

Fault Free Inter-
nal State

XOR
DKB

PRGA
round

Fault Free Internal
State

XOR
DKB

1 IS at PRGA round 1 dφ,11 t IS at PRGA round t dφ,tt
2 IS at PRGA round 2 dφ,12 t+ 1 IS at PRGA round t+ 1 dφ,tt+1

3 IS at PRGA round 3 dφ,13 t+ 2 IS at PRGA round t+ 2 dφ,tt+2

i IS at PRGA round i dφ,1i = 1 t+ i− 1 IS at PRGA round t+i−1 dφ,tt+i−1 = 1

Thus dφ,1i = 1⇔ dφ,tt+i−1 = 1 and hence i ∈ sig1φ,1 ⇔ t+ i− 1 ∈ sig1φ,t.
This shows that sig1φ,t = sig1φ,1 + t− 1.
With similar arguments the theorem follows.

Remark. (1) In consequence of the above theorem it can be said that if fault is injected in the same
position then a pattern is generated from the fault injection PRGA round, in the XOR differential
keystream, all previous keystream bits being 0’s. (2) For any fault (φ, t) if t = 1, we shall drop the
subscript ‘t’ form its signature and signature components. Thus with this simplified notation sigφ,1 =

(sig1φ,1, sig
0
φ,1, sig

=
φ,1, sig

6=
φ,1) becomes sigφ = (sig1φ, sig

0
φ, sig

=
φ , sig

6=
φ ) and in this case sigφ will be called

the signature of the fault position φ.

We now present methods for computing the signature components of sigφ.

4 Signature Generation

Let us consider a fault position φ. We generate sig1φ, sig0φ using the probabilistic algorithm GenSig10

(Generate Signature One and Zero) and sig=φ , sig 6=φ using the deterministic algorithm GenSigSym as
described below. This increases the fault identification and bad-fault rejection success probabilities.
The deterministic algorithm GenSigSym has implementation limitations. However, the probabilistic
algorithm GenSig10 is much more efficient.

Algorithm 1. GenSig10(φ, Ω, Number of PRGA round = L1)
1. For Ω number of distinct uniformly random independent Key-IV pair :
2. Generate XOR differential keystreams upto round L1 under the fault (φ, 1)
3. Find positions (PRGA rounds) at which all the generated XOR differential

keystreams are fixed
4. If b ∈ {0, 1} is at a fixed position : then add the position to sigbφ
5. return : sig1φ, sig0φ.

Algorithm 2. GenSigSym(φ, Number of PRGA round = L2)
1. Define 256 symbolic variables over GF(2) and initialise the inner state with

this symbolic variables. This will represent the inner state at the beginning
of the PRGA round 1.

2. Compute symbolically the XOR differential keystream dφ,1,L2 .

3. Observe the XOR differential keystream and compute sig=φ and sig 6=φ .

Let i be an actual fixed position (PRGA round) for b ∈ {0, 1} under the fault (φ, 1). Then the algorithm
GenSig10 will surely append i to sigbφ. But if i is not a fixed position, then Pr(The algorithm appends i to

sigbφ) = 1/2Ω provided we assume that 0 and 1 are equally probable at the position i (since i is not a fixed
position) and the XOR differential bit generated at the position i for each Key-IV pair are independent
(Key-IV pairs are distinct uniformly random and independent). Therefore taking large value of Ω it can
be guaranteed that the algorithm generates correct signatures with very small failure probability. e.g.,
simply taking Ω = 1000 we have 1/2Ω = 10−Ωlog102 ≈ 10−301 which is practically negligible.
Remark. The algorithmGenSig10 is generic in nature and is capable of coping with any computationally
feasible fault model Γ . It taps statistical weakness of the cipher under DFA.

5 Fault Location Determination

Let Γ be a fault model and the adversary has computed sigφ for all φ ∈ Γ . Adversary is fully confident
that any injected fault (position) will be in Γ .



DFA on Grain-128 5

In this stage the adversary actually injects a fault into the cipher device and compares the XOR dif-
ferential keystream with pre-computed signatures of all possible faults in order to identify the fault
location.
We define, n1 = max(

⋃
φ∈Γ (sig1φ

⋃
sig0φ)), n2 = max(

⋃
φ∈Γ (

⋃
A∈sig=φ

⋃
sig 6=φ

A)) and end(Γ ) = max(n1, n2).

1. Obtain the fault-free keystream. In this stage we need a XOR differential keystream of length
n = end(Γ ) + T − 1 in order to match it with all possible pre-computed signatures, if fault is injected at
the known PRGA round T .
2. Let a fault be injected at an unknown position ψ at the known PRGA round T . Compute the faulty
keystream and obtain dψ,T,n = (dψ,T1 , . . . , dψ,Tn ).

3. Define, supportb = {i ∈ [1, n] : dψ,Ti = b}, ∀ b ∈ {0, 1}.
4. pf = allPossibleFaults known(Γ, T, dψ,T,n) as described in Algorithm 3.

Algorithm 3. allPossibleFaults known(Γ, t, dψ,t,n)
1. pf = ∅
2. for all φ ∈ Γ :
3. if isaPossibleFault(φ, t, dψ,t,n) == True : // Algorithm 4
4. pf = pf

⋃
{(φ, t)}

5. return pf

Algorithm 4. isaPossibleFault(φ, t, dψ,t,n)
output : “True” if (φ, t) is a possible fault location else “False”.
1. sigφ,t = sigφ,1 + t− 1
2. if sig1φ,t ⊆ support1 :

3. if sig0φ,t ⊆ support0 :

4. if sig=φ,t == ∅ :

5. if sig 6=φ,t == ∅ :

6. return True
7. else :

8. if ∀{i, j} ∈ sig 6=φ,t ⇒ dψ,ti + dψ,tj = 1 :

9. return True
10. else : return False
11. else :

12. if ∀A ∈ sig=φ,t and ∀i, j ∈ A, i < j ⇒ dψ,ti = dψ,tj :

13. if sig 6=φ,t == ∅ :

14. return True
15. else :

16. if ∀{i, j} ∈ sig 6=φ,t ⇒ dψ,ti + dψ,tj = 1 :

17. return True
18. else : return False
19. else : return False
20. else : return False
21. else : return False

The basic idea is to check whether the pre-computed pattern (signature) of a fault location occurs in the
XOR differential keystream. If the pattern due to a fault location (φ, t) occurs in the XOR differential
keystream, then it is a possible fault location, otherwise we reject it. It should be noted that from the
construction it immediately follows that the actual fault location (ψ, T ) ∈ pf . Now if pf is singleton
then, (ψ, T ) is uniquely determined. When pf is not singleton we do not need to reject the case as a
failure. We shall address the issue in the next section.

6 Recovering the Internal State of the Cipher

The adversary wishes to recover the internal state of the cipher at the PGRA round t. In the online
phase, the adversary inject faults to the cipher device at PRGA round t, re-keying each time, for m
times. Let Qj be the set of possible faults returned by the fault location determination algorithm at the

j-th fault injection trial, zj = (zj1, . . . , z
j
n) being the corresponding faulty keystream of length n (> t),

∀j ∈ [1,m]. We now consider the Cartesian product set Q = Q1 × · · · ×Qm. Then one of the elements,
say α of Q corresponds to the actual m injected faults.
The adversary starts with the following information:



6

1. m fault locations, given by β = ((φ1, t), . . . , (φm, t)) ∈ Q.
2. normal (fault free) keystream z = (z1, . . . , zn) of length n.
3. m faulty keystreams z1, . . . , zm each of length n.
The adversary either surely knows or guess that the faulty keystream zj occurred due to the fault (φj , t)
based on the cardinality of Qj , j ∈ [1,m].

6.1 Generating Polynomial Equations

We use procedure similar to [8] in order to obtain a system of polynomial equations, modifying the fault
injection strategy in order to cope with multi-bit faults at any targeted round.

Let the fault free internal state at the PRGA round i (≥ t) be ISi = (Xi, Yi) where Xi = (xi, . . ., xi+127)
and Yi = (yi, . . . , yi+127), the internal state at PRGA round t being ISt = (xt, . . ., xt+127, yt, . . . , yt+127).
We treat each xi and yi as variables and consider the PRGA rounds t, . . . , n. Corresponding to each
key-stream bit zi, we introduce two new variables xi+128, yi+128 (i ≥ t) and obtain the following three
equations: zi = h(Xi, Yi), xi+128 = u(Xi, Yi), yi+128 = v(Yi). Thus we have in total 2N + 256 variables
and 3N equations, where N = n− t+ 1.

Let us now consider the fault (φj , t). Since the cipher device is re-keyed before each fault injection, after

the fault injection, if the faulty internal state at PRGA round i be ISji then at the targeted fault injection

PRGA round t we have, ISjt (e) = ISt(e) + 1, ∀e ∈ φj and ISjt (e) = ISt(e), ∀e ∈ [1, 256] \ φj . Again

corresponding to each key-stream bit zi, we introduce two new variables xji+128, yji+128 (i ≥ t) and obtain
three more equations. In this case we have additional 2N variables and 3N equations.

Thus if we consider m faults, after these many re-keyings, the total number of variables is 2(m+1)N+256
and the total number of equations is 3(m+ 1)N .

Now the system of polynomial equations are simply passed on to the SAT solver in sage for extracting
solution for the variables xt, . . ., xt+127, yt, . . ., yt+127 and to mean this we shall use the phrase that
“(β, t, n, z, z1, . . ., zm) are passed on to the SAT solver”.

6.2 Recovering the Internal State with SAT Solver

Now we pass (β, t, n, z, z1, . . ., zm) to the SAT solver, for each element β of Q. Multiple solutions may
be obtained. Solution from the element α, if returned, will surely correspond to the actual internal state
of the cipher at the PRGA round t. Assuming each returned solution as a possible internal state at the
PRGA round t, we simply use “Guess and Determine Strategy” [7] to detect the correct internal state.
If we have a match, the internal state together with the actual fault locations (not needed any more)
will be recovered.

If the cardinality of Q and SAT solving time for m faults are low then the internal state can be
recovered in reasonable time with 100% success. Otherwise we have to re-key the cipher device for more
fault injection trials.
Remark. (1) During this phase a limit should be placed on the running time of the SAT solver. (2)
When β does not correspond to the actual m injected fault, the polynomial equations may be unsatisfiable
and in this case the SAT solver may terminate quickly throwing an error message.

7 Alien Fault Model

Authors of [8] showed that if the adversary is confident that an injected fault is atmost a triple bit fault
and if she restrict herself to single bit faults only for internal state recovery then with high probability
she can detect and reject exactly the cases of multiple bit (double and triple bit) faults.

In this paper, we generalise this notion. If Γ is a fault model such that the adversary is capable of
computing signatures for all fault positions in Γ then, Γ will be called a native fault model and faults
corresponding to the native fault model Γ will be called native faults.

Let us consider a fault model Σ. Adversarial power guarantees that any injected fault will be in Σ
but Σ is too large and the adversary simply cannot compute the signatures for all fault positions in Σ.
In this case she chooses a computationally feasible proper subset Γ of Σ and computes signatures for all
fault positions in Γ . Since signatures corresponding to the fault positions in Σ \ Γ are not computed,
corresponding faults if occur simply cannot be identified. But the Adversary wants to detect such a case
and reject the faulty keystream. The faults in Σ \ Γ will be called ‘alien faults’ (bad-faults) and Σ will



DFA on Grain-128 7

be called an ‘alien fault model’ with respect to Γ . If Σ is the set of all possible fault positions (due to
faults affecting only the single targeted PRGA round), then in particular the alien faults in Σ \ Γ will
be called ‘absolute alien faults’. If Γ is such that, (1) native faults in Γ can be identified with very high
probability and (2) absolute alien faults can be detected (and hence can be rejected) with very high
probability, then attack is possible on a cipher device with completely unknown bit-arrangement.

The adversary may use a number of strategy in choosing Γ . She may choose the fault model Γ
depending on her knowledge or best guess on the cipher device. She may choose those fault positions
which are more likely to occur by experimenting on similar cipher device if she has that privilege. If
that is not possible she chooses more relaxed absolute alien fault model where any possible fault can
occur but she will only use the native faults to recover the internal state of the cipher, rejecting alien
faults with some probability. Success in a chosen native fault model is not guaranteed but is purely
experiment based. One should note that different fault models might crucially affect the capabilities and
the complexities of the attack strategy. The adversary is now very weak and will require more re-keying
of the cipher device. Depending on the cipher device there may be some fault models that produce the
best or the worst results.

Fault Location Determination in Alien Fault Model
The adversary will use the same fault location determination algorithm to identify or to detect a fault.
When considering an alien fault model, error will occur if the injected fault is alien but the fault location
determination algorithm identifies it as a native fault. Thus error occurs if possible faults pf returned
by the fault location determination algorithm is non-empty when injected fault is alien and pf = ∅ will
surely imply that an alien fault is injected.

Recovering Internal State in This Case
Internal state recovery process in this case will be the same as described in Section 6. Depending on
the chosen native faults, since the fault location determination algorithm is probabilistic, it may happen
that the fault location determination algorithm returns an erroneous fault (fault was alien but wrongfully
identified as native). In this case the adversary may have to use the “Guess and Determine” strategy to
recover the internal state of the cipher device by matching fault free keystream with the original one and
re-keying the cipher device again for more fault injection trials if necessary.

8 Experimental Results

Attack strategy in this paper is generic. In particular we demonstrate the attack strategy for the sce-
nario, denoted by the symbol nbdMBFk, in which randomly chosen atmost k consecutive location (k-
neighbourhood bit fault) can be disturbed by a single fault injection without knowing the locations or the
exact number of bits the injected fault has altered. In this paper we consider the popular convention of
treating IS(e), IS(e+ 1), IS(e+ 2), . . . , IS(e+p−1) as p neighbouring bits (IS representing the internal
state of the cipher) but in real life the arrangement may not follow this pattern. However this does not
affect our analysis.

For each fault position φ we used the algorithm GenSig10(φ,Ω,L1) to generate sig1φ and sig0φ by taking

L1 = 1000, Ω = 1000 while GenSigSym(φ,L2) was used to generate sig=φ and sig 6=φ by taking L2 = 150.
Here we present experimental results for (comparing) k = 1, 2, 3, 4, 5. The case for k = 1 results in the
same native fault model considered in [8].

Abbreviations: (POS, Probability of Success), (NOE, Number of Experiments), (NOT, Number of
Timed out cases).

Our Arsenal
1. One standalone desktop PC with AMD 4.0 GHz FX-8350 processor and 32 GB RAM, referred to as
AMD.
2. A Beowulf Cluster of 20 desktop PC each with 2.60 GHz Intel Pentium E5300 Dual-core processor
and 4 GB RAM connected via LAN and setupped for Distributed Parallel Computing, referred to as
BEOWULF.
3. Ubuntu 12.04 LTS Operating System.
4. Mathematical software sage-6.1.1.
5. SAT solver Cryptominisat-2.9.6 installed in sage.
The BEOWULF cluster (all available cores) was used to (1) generate sig1φ and sig0φ, (2) compute the
success rates (probabilities) and (3) SAT solving where as the standalone AMD (only a single core) was



8

used to generate sig=φ and sig 6=φ .

All the experiments were performed assuming PRGA round 1 as the targeted round.

Probability of Identifying a Random Native Fault Location

For each column of the following table, we considered a set of 220 experiments.

Grain-128
k 1 2 3 4 5
POS 1.0 1.0 0.997974 0.958305 0.927482
Avg Fault 1.0 1.0 1.000051 1.040921 1.107610

Explanation: For k = 5, POS (Avg Fault) = 0.927482 (1.107610) means that the fault location determi-
nation algorithm had uniquely identified actual fault locations with a probability of 0.927482 and average
number of faults returned by the fault location determination algorithm in 220 experiments is 1.107610
which is very low. For k = 3, 4 the average number of faults returned by the fault location determination
algorithm are even lower. For k = 1, 2 the success rates are 100% in uniquely identifying actual fault
locations.

SAT Solving: Results

Behaviour of SAT solvers and the time to return a solution could hardly be predicted. For each SAT
solving trial (with cutting number 4) we first generated an inner state (by choosing key-IV randomly)
and m random faults uniformly and independently. For each SAT solving trial (compiled codes were not
used) we allocated a time limit of 4 hours. If the SAT solver does not self terminate within that allocated
time we agree to terminate it forcefully and mark the case as a TIMEOUT (which may have resulted in
a success if enough time was permitted). Very few such case occurred for m = 4 during experimentation
while the case for m = 5 always resulted in a success. For each row of the following table, we performed
SAT experiments independently.

Grain-128 Time in Seconds if SUCCESS
k m N NOE NOT MinTime MaxTime AvgTime
1 4 256 160 5 9.80 12301.04 650.77
2 4 256 160 4 9.38 10803.83 811.91
3 4 256 160 7 10.40 14071.91 426.38
4 4 256 160 6 10.25 14378.43 679.92
5 4 256 160 8 8.88 10294.13 419.93

1 5 256 1500 0 5.18 1923.07 52.61
2 5 256 1500 0 4.86 3110.49 52.76
3 5 256 1500 0 6.06 1909.46 52.75
4 5 256 1500 0 6.38 1383.41 52.90
5 5 256 1500 0 3.66 2250.79 52.52

Probability of Rejecting Absolute Alien Faults

For each column of the following table, we considered a set of 220 experiments.

Grain-128
k 1 2 3 4 5

POS 0.999993 0.999979 0.999963 0.999946 0.999921

Thus absolute alien faults are rejected with very high probability. Experimental results show that for
these cases it is not required to know the actual bit arrangement of the cipher device since native faults
are identified with very high probability.



DFA on Grain-128 9

9 Conclusion

This paper considers multi-bit faults for key-IV recovery. Attack strategy in this paper is generic and
allows the adversary to challange the cipher under different fault models with faults at a targeted PRGA
round. For k-neighbourhood bit fault (k ∈ {1, 2, 3, 4, 5}) at the PRGA round 1, not more than 5 faults
always breaks the cipher. Also the bit arrangement of the cipher device may be unknown. The algorithm
GenSig10 is slower than D-GRAIN [8] but it can cope with any multi-bit fault. Thus allowing the
adversary to challenge any multi-bit fault model. The validity of the randomised algorithm GenSig10 is
further justified by the experiments when the probabilities were calculated. In all such experiments the
fault detection algorithm never rejected an injected native fault.

References

1. Banik, S., Maitra, S., and Sarkar, S. A differential fault attack on the grain family of stream ciphers. In
Cryptographic Hardware and Embedded Systems–CHES 2012. Springer, 2012, pp. 122–139.

2. Banik, S., Maitra, S., and Sarkar, S. A differential fault attack on the grain family under reasonable
assumptions. In Progress in Cryptology-INDOCRYPT 2012. Springer, 2012, pp. 191–208.

3. Berzati, A., Canovas, C., Castagnos, G., Debraize, B., Goubin, L., Gouget, A., Paillier, P., and
Salgado, S. Fault analysis of grain-128. In Hardware-Oriented Security and Trust, 2009. HOST’09. IEEE
International Workshop on (2009), IEEE, pp. 7–14.

4. Hell, M., Johansson, T., Maximov, A., and Meier, W. A stream cipher proposal: Grain-128. http:

//www.ecrypt.eu.org/stream/p3ciphers/grain/Grain128_p3.pdf.
5. Karmakar, S., and Chowdhury, D. R. Fault analysis of grain-128 by targeting nfsr. In Progress in

Cryptology–AFRICACRYPT 2011. Springer, 2011, pp. 298–315.
6. Karmakar, S., and Chowdhury, D. R. Fault analysis of grain family of stream ciphers. IACR Cryptology

ePrint Archive 2014 (2014), 261.
7. Rohani, N., Noferesti, Z., Mohajeri, J., and Aref, M. R. Guess and determine attack on trivium family.

In Embedded and Ubiquitous Computing (EUC), 2010 IEEE/IFIP 8th International Conference on (2010),
IEEE, pp. 785–790.

8. Sarkar, S., Banik, S., and Maitra, S. Differential fault attack against grain family with very few faults
and minimal assumptions. IACR Cryptology ePrint Archive 2013 (2013), 494.


