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Abstract

In this paper, We find a way to construct FSRs. The constructed FSRs can be depicted in many
ways. They are just the FSRs whose characteristic polynomial can be written as g = (x0 +x1)∗f
for some f . Their adjacency graphs do not contain self-loops. Further more, we can divide the
vertexes in their adjacency graphs into two sets such that the edges are all between the two sets.
The number of this class of FSRs is also considered. Besides, some applications in LFSRs and
constructing full cycles are presented.

1 Introduction

Feedback shift registers (FSRs) are simple and efficient hardware devices, and have been used and
studied for many years. Especially in cryptography, FSRs are the basic component in stream cipher.
Despite the widely use and decades of research, some basic theories of FSRs have not been solved.
For example, calculate the cycle structures and adjacency graphs of FSRs.

The cycle structure of a FSR determines the period of sequences that the FSR outputs. In
cryptography, we need FSRs who output sequences with large period. So calculate the cycle structure
is important both from theory and practice. The cycle structures of linear feedback shift registers
(LFSRs) have been solved completely [6]. But for non-linear shift registers (NFSRs), we solved this
problem only in some special cases [8][9][3]. LFSRs are replaced by NFSRs gradually in cryptography,
for numerous attacks that LFSRs may suffer [10][11].

The adjacency graphs of FSRs can be used to construct full cycles. When we change the successor
of two states that in different cycles and be conjugate with each other, we get a big cycle from two
small cycles [6]. Do it repeatedly, we get a full cycle. But calculate the adjacency graph of a FSR
may not be a easy thing. Even for LFSRs, there are no general ways [4]. It is a problem that may
be more difficult than determine the cycle structure. Because cycle structures can be derived from
adjacency graphs easily, but we have no idea how to do it reversely.

This paper is organized as follows.
In section 2, we present the basic knowledge about boolean functions, feedback shift registers, and

adjacency graphs, and explain some notations we will use.
A way to construct (n+1)-stage FSRs from n-stage FSRs is presented in section 3. When combine

the cycles in FSRf and FSRf+1, and treat these n-stage cycles as (n+1)-stage cycles, we get a (n+1)-
stage FSR. It can be proved that the (n+ 1)-stage FSR obtained in this way is FSR(x0+x1)∗f .

In section 4, adjacency graphs are considered. We define the FSR whose adjacency graph has
some special property as dividable FSR. Then we show that dividable FSRs are just the FSRs that we
constructed in section 3. The number of dividable FSRs is determined. For a dividable FSR, there are

1



no self-loops in its adjacency graph. But the reverse is not true. We present an example to illustrate
it at the end of this section.

Some applications are introduced in section 5. For a linear boolean function f , the number of
cycles in FSRf+1 is determined. Some ways to construct full cycles are suggested.

At the end, we conclude this paper.

2 Preliminaries

The purpose of this section is to briefly review boolean functions, feedback shift registers, and adja-
cency graphs respectively and explain some notations that we will use in this paper.

2.1 Boolean functions

Let F2 be the finite field of two-element, Fn
2 be the vector space of dimension n over F2. A boolean

function (or boolean polynomial) f(x0, x1, · · · , xn−1) in n variables is a map from Fn
2 to F2. Especially,

xa0
0 x

a1
1 · · ·x

an−1

n−1 is a boolean function, which takes value 1 at the point (a0, a1, · · · , an−1) and 0
otherwise.

For two boolean functions f(x0, x1, · · · , xn) and g(x0, x1, · · · , xm), we denote

f ∗ g = f(g(x0, x1, · · · , xm), g(x1, x2 · · · , xm+1), · · · , g(xn, xn+1, · · · , xn+m)). (1)

It can be verified, the operation ∗ is not commutative. If h = f ∗ g, we say f is a left ∗-factor of
h, and g is a right ∗-factor of h [5]. Further more, if f is a linear function, we say f is a left linear
∗-factor of h. Given a boolean function h, it is easy to find all the left linear ∗-factor of h [5]. This
fact will be used in section 4.

A generalized division algorithm of Boolean functions was proposed by J.Mykkeltveit et al [3].

Lemma 1. [3] Let m,n ∈ N∗ with m 6 n. Let g(x0, x1, · · · , xn) and f(x0, x1, · · · , xm) be two Boolean
functions. If f(x0, x1, · · · , xm) = f1(x0, x1, · · · , xm−1)+xm, then there exist unique Boolean function-
s h0(x0, x1, · · · , xm−1), h1(x0, x1, · · · , xm), · · · , hn−m(x0, x1, · · · , xn−1) and r(x0, x1, · · · , xm−1) such
that

g(x0, x1, · · · , xn) =

n−m∑
i=0

hi(x0, x1, · · · , xm+i−1)f(xi, xi+1, · · · , xm+i) + r(x0, x1, · · · , xm−1). (2)

If r = 0 we say g is divisible by f , denoted by f‖g. The following lemma is directly from above.

Lemma 2. Let f = f1(x0, x1, · · · , xn−1)+xn, g = g1(x0, x1, · · · , xn)+xn+1 be two Boolean functions.
Then f‖g, f + 1‖g if and only if g = (x0 + x1) ∗ f .

2.2 Feedback Shift Registers

A n-stage feedback shift register (FSR) consists of n binary storage cells and a characteristic polyno-
mial f regulated by a single clock. We denote the FSR with characteristic polynomial f by FSRf .

Given a initial state X0 = (x0, · · · , xn−1), FSRf will output a sequence x = x0x1 · · · . It is well
known that, FSRf always output the periodic sequences no matter what the initial state is, if and
only if f can be written as f = x0 + F (x1, · · · , xn−1) + xn for some F . In this case, we say FSRf

is nonsingular. Without specification, all the FSRs in this paper is nonsingular. Denote the set of
sequence that FSRf can generate by G(f). It is easy to see, there are 2n sequences in G(f).

For n-stage FSRf , when start from a initial state X0, FSRf will generate a cycle C = (X0,X1, · · · ,Xl),
where Xi+1 is the next state of Xi for i = 1, · · · , l − 1 and X0 is the next state of Xl, l is the length
of the cycle. For simplicity, the cycle C can be written as C = (x0, x1, · · · , xl), where xi is the
first component of Xi. We call this notation sequence-notation. We warn that, the stage of the
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cycle must be known when sequence-notation is used. Cycle C can be seen as an ordered set with
element in Fn

2 . Sometimes, we do not discriminate between cycle C = (X0,X1, · · · ,Xl) and the set
{X0,X1, · · · ,Xl}.

From the above discussion, the set Fn
2 is divided into cycles C1, · · · , Ck by FSRf . Reversely, it is

easy to see, a division of Fn
2 into cycles determines a n-stage FSR. So we can treat FSRf as a set of

cycles, and use the notation FSRf = {C1, · · · , Ck}.
A FSR is called a linear feedback shift register (LFSR) if its feedback function f is linear and

nonlinear feedback shift register (NFSR) otherwise.
The maximum length of cycles in FSRf is 2n. In this case, FSRf contains only one cycle. We call

FSRf a maximum-length FSR and the cycle a n-stage M-cycle or a full cycle. The output sequences
which corresponding to the M-cycles are called M-sequences or DeBruijn sequences.

In the linear case, the 0-cycle ((0, · · · , 0)) which contains only the 0-state (0, · · · , 0) is always in
LFSRf . So the maximum length of cycles in LFSRf is 2n − 1. In this case, LFSRf contains two
cycles. We call LFSRf a maximum-length LFSR and the cycle which contains all the state in Fn

2

except the 0-state a n-stage m-cycle. The output sequences which corresponding to the m-cycles are
called m-sequences.

The generalized division algorithm introduced in section 2.1 provides an effective way to determine
the inclusion relation of the sequence families of FSRs.

Lemma 3. [3] Let g and f be the characteristic polynomial of two FSRs. Then f‖g if and only if
G(f) ⊆ G(g).

The following lemma can be derived from lemma 2 and lemma 3.

Lemma 4. Let FSRf be a n-stage FSR, FSRg be a (n+1)-stage FSR. Then G(f) ⊆ G(g), G(f+1) ⊆
G(g) if and only if g = (x0 + x1) ∗ f .

2.3 Adjacency Graphs

For a n-stage state X = (x0, x1, · · · , xn−1), its conjugate X̂ and companion X̃ are defined as X̂ =

(x0, x1, · · · , xn−1) and X̃ = (x0, x1, · · · , xn−1), where x denotes the binary complement of x. We call

(X, X̂) a conjugate pair, (X, X̃) a companion pair. Two cycles C1 and C2 are adjacent if they

are disjoint and there exists a state X on C1 whose conjugate X̂ (or companion state X̃) is on C2. It
is well-known that two adjacent cycles C1 and C2 are joined into a single cycle when the successors
of X and X̂ are interchanged.

This is the basic idea of the cycle joining method introduced in [6]. The problem of determining
conjugate pairs between cycles leads to the definition of adjacency graph.

Definition 1. [12][13] For an FSR, its adjacency graph is an undirected graph where the vertexes
correspond to the cycles in it, and there exists an edge between two vertexes if and only if they share
a conjugate pair.

In an adjacency graph, two vertexes may be connected by more than one edge. In this case, the
edge between two vertexes sharing exactly m conjugate pairs can be labeled with an integer m [2].

At the end of this section, we present a property of adjacency graph, which will be used in section
4.

Theorem 1. For any FSR, the adjacency graph is connected.

Proof. Suppose for FSRf , the adjacency graph is not connected. Denote the adjacency graph of FSRf

by G. Then we can find a proper subgraph H of G such that, H is a connected graph and there are
no edges between the vertexes in H and the vertexes not in H. Using the cycle joining method we
can join the cycles in H into a single cycle C. The cycle C has the property that when the state X
is in C then X̃ is also in C. In the next paragraph we will show that a cycle with this property is a
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full cycle (this conclusion has been left as a exercise in [2]), this will be contradict with H is a proper
subgraph, and complete the proof.

For any state Y = (y0, y1, · · · , yn−1) ∈ Fn
2 , we need to show that Y is in C. Let X0 =

(x0, x1, · · · , xn−1) be a state in C. Then as the next state of X0, (x1, · · · , xn−1, 0) or (x1, · · · , xn−1, 1)
is in C. Consider the property C has, we know that both (x1, · · · , xn−1, 0) and (x1, · · · , xn−1, 1)
are in C. So X1 = (x1, · · · , xn−1, y0) is in C. Similarly, X2 = (x2, · · · , xn−1, y0, y1), · · · ,Xn−1 =
(xn−1, y0, · · · , yn−2),Y = (y0, y1, · · · , yn−1) is in C.

3 A Class of FSRs

In this section, we present a way to construct a class of FSRs. First, we introduce some notations of
cycles.

Let C = (X0,X1, · · · ,Xl−1) be a n-stage cycle, where l is the length of the cycle and Xi =
(xi, xi+1, · · · , xi+n−1) is a n-stage state in the cycle for i = 0, · · · , l − 1. The subscribes are taken
modulo l (similarly hereinafter). When using the sequence-notation, the cycle can be written as
C = (x0, x1, · · · , xl−1). Now we can construct another cycle C+ = (X+

0 ,X
+
1 , · · · ,X

+
l−1), where

X+
i = (xi, xi+1, · · · , xi+n−1, xi+n), i = 0, 1, · · · , l − 1. It is easy to verify that the definition is

meaningful. C+ is a (n+ 1)-stage cycle of length l. When using sequence-notation, the cycle C+ can
be written as C+ = (x0, x1, · · · , xl−1), the same notation as C. But we note that, C and C+ are
different cycles, for they be of different stages respectively n and n + 1. We call C+ the extended
cycle of C.

We call a cycle C prime cycle, if there is no conjugate pair (companion pair) in C. For a
prime cycle C, we can construct a (n − 1)-stage cycle: C− = (X−0 ,X

−
1 , · · · ,X

−
l−1), where X−i =

(xi, xi+1, · · · , xi+n−2), i = 0, 1, · · · , l − 1. The definition is meaningful, because the states in C− are
all different from each other, and X→ Y implies X− → Y−. We warn that, C− is meaningful if and
only if C is a prime cycle. We call C− the reduced cycle of C.

Theorem 2. Let FSRf = {C1, C2, · · · , Ck}, FSRf+1 = {D1, D2, · · · , Dt} be two FSRs, then

{C+
1 , C

+
2 , · · · , C

+
k , D

+
1 , D

+
2 , · · · , D

+
t }

is a FSR whose characteristic polynomial is g = (x0 + x1) ∗ f .

Proof. Let n be the stage of FSRf and FSRf+1. Let X ∈ Fn+1
2 be a (n + 1)-stage state, write

X = (x0, x1, · · · , xn). Define X− = (x0, x1, · · · , xn−1). Suppose for FSRf , state X− is in cycle Ci,
and for FSRf+1 state X− is in cycle Dj . If f(x0, x1, · · · , xn) = 0, then the state X is in C+

i . If
f(x0, x1, · · · , xn) = 1, then f(x0, x1, · · · , xn) + 1 = 0, so the state X is in D+

j . In any case, X belong

to some cycle of {C+
1 , C

+
2 , · · · , C

+
k , D

+
1 , D

+
2 , · · · , D

+
t }. So {C+

1 , C
+
2 , · · · , C

+
k , D

+
1 , D

+
2 , · · · , D

+
t } is a

division of Fn+1
2 into cycles. Such division corresponding to a (n+ 1)-stage FSR, denoted as FSRg

Consider the output sequences of FSRg, FSRf and FSRf+1, we have G(g) = G(f) ∪ G(f + 1).
According to lemma 4, g = (x0 + x1) ∗ f .

We present an example as the end of this section.

Example 1. Let f(x) = x0 + x1x2 + x3, then

FSRf = {C1 = (000), C2 = (001, 010, 100), C3 = (011, 111, 110, 101)}
FSRf+1 = {D1 = (000, 001, 011, 110, 100), D2 = (010, 101), D3 = (111)}
FSRg = {C+

1 = (0000), C+
2 = (0010, 0100, 1001), C+

3 = (0111, 1110, 1101, 1011),

D+
1 = (0001, 0011, 0110, 1100, 1000), D+

2 = (0101, 1010), D+
3 = (1111)}

(3)

where g = (x0 + x1) ∗ f = x0 + x1 + x1x2 + x2x3 + x3 + x4.
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4 The Adjacency Graph of Dividable FSRs

In this section, we consider the adjacency graph of FSRs, whose characteristic polynomial g can be
written as g = (x0 + x1) ∗ f for some f .

Definition 2. A FSR is called dividable if we can divide the vertexes in the adjacency graph of the
FSR into two sets, such that the edges are all between the two sets.

Let FSRg be a n-stage dividable FSR, the cycles in FSRg can be divide into two sets A and B such
that the edges in the adjacency graph of FSRg all between A and B, we denote FSRg = (A|B). Write
A = {C1, C2, · · · , Ck},B = {D1, D2, · · · , Dt}. Let A = C1 ∪ C2 ∪ · · · ∪ Ck, B = D1 ∪D2 ∪ · · · ∪Dt.
Since there are 2n−1 edges in the adjacency graph of n-stage FSRs, and the edges are all between A
and B, we get |A| = |B| = 2n−1, B = {X̂|X ∈ A}, B = {X̃|X ∈ A}.

It is easy to see, a dividable FSR contains only prime cycles.

Theorem 3. FSRg is dividable if and only if g = (x0 + x1) ∗ f for some f .

Proof. Suppose FSRg is dividable. Let FSRg = (A|B), whereA = {C1, C2, · · · , Ck},B = {D1, D2, · · · , Dt}.
Define A− = {C−1 , C

−
2 , · · · , C

−
k },B− = {D−1 , D

−
2 , · · · , D

−
t }. Since the cycles in A and B are all prime

cycles, the definition is meaningful. Let A = C1 ∪ C2 ∪ · · · ∪ Ck, B = D1 ∪ D2 ∪ · · · ∪ Dt. Because
there is no companion pair in A (or B), we have the following conclusion:

Let X1,X2 be two states in A (or B), then X1 6= X2 implies X−1 6= X−2 .

This means A− and B− are two divisions of Fn−1
2 into cycles. So we get two (n−1)-stage FSRs, write

A− =FSRf , B− =FSRf ′ .
Let X ∈ Fn−1

2 be a (n − 1)-stage state. Suppose X ∈ C−i ,X ∈ D−j for some i and j. Let

Y1 ∈ Ci,Y2 ∈ Dj such that Y−1 = X,Y−2 = X. Then we have Y1 = Y2 or Y1 = Ỹ2. Since

Y1 ∈ A,Y2 ∈ B and A∩B = ∅, we get Y1 = Ỹ2. This means the next state of X in C−i is companion
with the next state of X in D−j . Since X is a arbitrary state in Fn−1

2 , we get f ′ = f + 1.

It is easy to see, Ci = (C−i )+, i = 1, 2, · · · , k, and Dj = (D−j )+, j = 1, 2, · · · , t. According to
theorem 2, g = (x0 + x1) ∗ f .

Conversely, suppose g = (x0 + x1) ∗ f for some f . Denote FSRf = {C1, C2, · · · , Ck}, FSRf+1 =
{D1, D2, · · · , Dt}. According to theorem 2, we have FSRg = {C+

1 , C
+
2 , · · · , C

+
k , D

+
1 , D

+
2 , · · · , D

+
t }.

Define A = {C+
1 , C

+
2 , · · · , C

+
k },B = {D+

1 , D
+
2 , · · · , D

+
t }, A = C+

1 ∪ C
+
2 ∪ · · · ∪ C

+
k , B = D+

1 ∪D
+
2 ∪

· · · ∪D+
t .

Suppose there are two states X,Y in A (or B) such that X = Ỹ. Then the state X− (= Y−)
would appear twice in FSRf (FSRf+1), which is impossible. Further more, it is easy to see that

|A| = |B| = 2n. So we get B = {X̂|X ∈ A}, B = {X̃|X ∈ A}. This implies that the edges in the
adjacency graph of FSRg are all between A and B. So FSRg is dividable and FSRg = (A|B).

For a boolean function g, we can determine whether x0 + x1 is a linear ∗-factor of g or not easily
[5]. So it is easy to determine whether FSRg is dividable or not.

Example 2. Let g = x0 + x1x2 + x2x3 + x4 be the characteristic polynomial of FSRg. It is easy to
see g = (x0 + x1) ∗ f , where f = x0 + x1 + x2 + x1x2 + x3. So FSRg is dividable. The cycles in FSRg

is as follows

C1 = (0000), C2 = (0001, 0010, 0100, 1000), C3 = (0011, 0111, 1110, 1100, 1001)

C4 = (0101, 1010), C5 = (0110, 1101, 1011), C6 = (1111)

We can divide the cycles into two sets {C1, C3, C4} ∪ {C2, C5, C6}. The adjacency graph of FSRg is
shown as follows.
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We can see that there are no edges in {C1, C3, C4} and in {C2, C5, C6}. The edges are all between
{C1, C3, C4} and {C2, C5, C6}.

Further more, we can calculate the number of dividable FSRs.

Theorem 4. There are 22
n−2−1 dividable FSRs in the n-stage FSRs.

Proof. Let FSRf1 ,FSRf2 be two (n− 1)-stage FSRs. We have

(x0 + x1) ∗ f1 = (x0 + x1) ∗ f2 ⇔ f1 − f2 = x1 ∗ (f1 − f2)⇔ f1 = f2 or f1 = f2 + 1.

So (x0 + x1) ∗ f1 6= (x0 + x1) ∗ f2 if and only if f1 6= f2 and f1 6= f2 + 1.
Define a map ψ from the (n − 1)-stage FSRs to the n-stage FSRs: ψ(FSRf ) = FSR(x0+x1)∗f .

Then ψ is a two-to-one map. The image of ψ is just the n-stage dividable FSRs. So there are 22
n−2−1

dividable FSRs in the n-stage FSRs.

Theorem 5. For a dividable FSR, there is only one way for us to divide the cycles in the FSR.

Proof. Let FSRg be dividable. Suppose FSRg = (A|B) = (A′|B′), and A′ 6= A, A′ 6= B. Define
C1 = A ∩ A′, C2 = A ∩ B′, C3 = B ∩ A′, C4 = B ∩ B′. The cycles in FSRg are divided into four sets
C1, C2, C3, C4. Consider the adjacency graph of FSRg, because there are no edges in A, and C1, C2 are
subsets of A, so there are no edges between C1 and C2. Similarly there are no edges between C1 and C3,
C4 and C2, C4 and C3 in the adjacency graph. Define D1 = C1∪C4,D2 = C2∪C3. The above discussion
shows that there are no edges between D1 and D2 in the adjacency graph. So the adjacency graph of
FSRg is not connected. This is contradict with Theorem 1.

Next, we propose another class of FSRs which take dividable FSRs as its subclass.

Definition 3. A FSR is called prime if there is no self-loop in the adjacency graph of the FSR.

The prime FSRs are precisely the FSRs which contain only prime cycles.
It can be seen that, a dividable FSR is always prime. In reverse, whether a prime FSR is always

dividable? For stage n = 2, 3, 4, the answer is yes. But for n = 5, we find a negative example.

Example 3. Let g = x0 + x1x2x4 + x1x3x4 + x5, the cycles in FSRg are as follows

C1 = (00000), C2 = (00001, 00010, 00100, 01000, 10000), C3 = (00011, 00110, 01100, 11000, 10001),

C4 = (00101, 01010, 10100, 01001, 10010), C5 = (00111, 01110, 11100, 11001, 10011),

C6 = (01011, 10111, 01111, 11110, 11101, 11010, 10101), C7 = (01101, 11011, 10110), C8 = (11111).

It can be verified that FSRg is a prime FSR, for there are no conjugate pairs in Ci, i = 1, 2, · · · , 8.
But FSRg is not dividable, because x0 + x1 is not a left ∗-factor of g. The adjacency graph of FSRg

is shown below.
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Corollary 1. There are at least 22
n−2−1 prime FSRs in the n-stage FSRs.

Calculate the number of prime FSRs and find a way to determine whether a FSR is prime or not
is the next work we need to do.

5 Some Applications

5.1 Applications in LFSRs

In [1], D-morphism was proposed to construct FSRs. We restate it briefly in the way useful to us.
D-morphism is defined as follows.

D : Fn+1
2 → Fn

2

(x0, x1, · · · , xn) 7→ (x0 + x1, x1 + x2, · · · , xn−1 + xn).
(4)

Let C be a n-stage cycle, define D−1(C) = {X|D(X) ∈ C}. It can be verified, for any state
X ∈ D−1(C) there is one and only one state Y in D−1(C) can be the successor of X. Define X→ Y,
the states in D−1(C) form cycles. Let FSRf = {C1, C2, · · · , Ck} be a n-stage FSR. Combine all the
cycles in D−1(Ci), i = 1, · · · , k, we get a division of Fn+1

2 into cycles. So we get a (n+ 1)-stage FSR,
denoted as FSRg. It was proved in [1] that: g = f ∗ (x0 + x1).

For a cycle C = (X1, · · · ,Xk), the weight of C is defined to be W (C) =
∑k

i=1 xi, where xi is the
first component of Xi. We have the following lemma, which can be derived from [1].

Lemma 5. [1] Suppose there are s cycles of odd weight, t cycles of even weight in FSRf . Then there
are s+ 2t cycles in FSRf∗(x0+x1).

Since the operation ∗ is not commutative, (x0 + x1) ∗ f 6= f ∗ (x0 + x1) generally. But when f is
a linear boolean function, we have (x0 + x1) ∗ f = f ∗ (x0 + x1). So in the linear case, combine the
conclusion in [1] with our conclusion, we can get more results.

Theorem 6. Let f be a linear boolean function. Suppose there are t cycles of even weight in FSRf .
Then there are t cycles in FSRf+1.

Proof. Suppose there are s cycles of odd weight in FSRf , and there are u cycles in FSRf+1. Then
there are s+ 2t cycles in FSRf∗(x0+x1) according to lemma 5. Further more, according to theorem 2
there are s+u cycles in FSR(x0+x1)∗f . Since f is a linear boolean function, (x0+x1)∗f = f ∗(x0+x1).
So FSRf∗(x0+x1) =FSR(x0+x1)∗f , and s+ 2t = s+ t+ u. Therefore u = t.

5.2 Applications in constructing full cycles

The adjacency graph of dividable FSR has a very good property, so we can use it to construct
maximum-length FSRs.

First, we show a way to construct (n + 1)-stage maximum-length FSRs from n-stage maximum-
length FSRs.
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Theorem 7. Let FSRf be a n-stage maximum-length FSR. Suppose D1, · · · , Dt are the cycles in

FSRf+1. Let (ai,1, · · · , ai,n) be a state in Di, i = 1, · · · , t. Define g = (x0+x1)∗f+
∑t

i=1 x
ai,1

1 · · ·xai,n
n .

Then FSRg is a (n+ 1)-stage maximum-length FSR.

Proof. Let li be the number of states in Di, i = 1, · · · , t. Denote the full cycle in FSRf by C1. Then
the adjacency graph of FSR(x0+x1)∗f can be depicted as follows.

So if we choose a state from each cycle D+
1 , · · · , D

+
t arbitrarily, and change the successor of this state

with its conjugate state, we get a full cycle.

Next, we show another way to construct maximum-length FSRs, which start from maximum-length
LFSRs. The conclusion we will get can be found in [3][7], but we use a totally different way, and our
method is more simple and direct.

Let FSRf be a n-stage maximum-length LFSR. In FSRf , there are two cycles. One cycle is 0-cycle
((0, · · · , 0)) which contains only the 0-state (0, · · · , 0), denoted as C1. The other cycle contains all
the states except 0-state, denoted as C2. The two cycles are all of even weight. According to theorem
6, there are two cycles in FSRf+1. It is easy to see, the 1-cycle ((1, · · · , 1)) which contains only the
1-state (1, · · · , 1) is in FSRf+1, denoted as D1. So the other cycle in FSRf+1 contains all the states
except 1-state, denoted as D2.

FSR(x0+x1)∗f = ({C+
1 , C

+
2 }|{D

+
1 , D

+
2 }) is dividable. The adjacency graph of FSR(x0+x1)∗f can be

depicted as follows.

Change the successor of conjugate pairs properly, we get full cycles.

Theorem 8. [3] Let FSRf be a n-stage maximum-length LFSR. Define

g = (x0 + x1) ∗ f + x01 · · ·x0n + x11 · · ·x1n + xa1
1 · · ·xan

n

where (a1, · · · , an) is a arbitrary n-stage state except (0, · · · , 0) and (1, · · · , 1). Then FSRg is a
(n+ 1)-stage maximum-length FSR.

6 Conclusion

We find a way to construct FSRs. The cycle structure and adjacency graph of the constructed FSRs
are considered. We also calculate the number of this FSRs. Besides, some applications in LFSRs and
constructing full cycles are suggested.
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