
Locally Decodable and Updatable Non-Malleable

Codes and Their Applications

Dana Dachman-Soled
University of Maryland
danadach@ece.umd.edu

Feng-Hao Liu
University of Maryland
fenghao@cs.umd.edu

Elaine Shi
University of Maryland
elaine@cs.umd.edu

Hong-Sheng Zhou
Virginia Commonwealth University

hszhou@vcu.edu

August 25, 2014

Abstract

Non-malleable codes, introduced as a relaxation of error-correcting codes by Dziem-
bowski, Pietrzak and Wichs (ICS ’10), provide the security guarantee that the message
contained in a tampered codeword is either the same as the original message or is set to
an unrelated value. Various applications of non-malleable codes have been discovered, and
one of the most significant applications among these is the connection with tamper-resilient
cryptography. There is a large body of work considering security against various classes of
tampering functions, as well as non-malleable codes with enhanced features such as leakage
resilience.

In this work, we propose combining the concepts of non-malleability, leakage resilience,
and locality in a coding scheme. The contribution of this work is three-fold:

1. As a conceptual contribution, we define a new notion of locally decodable and updatable
non-malleable code that combines the above properties.

2. We present two simple and efficient constructions achieving our new notion with dif-
ferent levels of security.

3. We present an important application of our new tool – securing RAM computation
against memory tampering and leakage attacks. This is analogous to the usage of
traditional non-malleable codes to secure implementations in the circuit model against
memory tampering and leakage attacks.

Contents

1 Introduction 1
1.1 Techniques . 2
1.2 Related Work . 5

2 Locally Decodable and Updatable Non-Malleable Codes 5
2.1 Preliminary . 5
2.2 New Definitions – Codes with Local Properties 6

3 Our Constructions 10
3.1 Preliminary: Symmetric Encryption . 10
3.2 A First Attempt – One-time Security . 10
3.3 Achieving Security against Continual Attacks . 12
3.4 Instantiations . 16

4 Tamper and Leakage Resilient RAM 16
4.1 Random Access Machines . 17
4.2 Tamper and Leakage-Resilient (TLR) RAM . 18
4.3 Preliminary: Oblivious RAM (ORAM) . 19
4.4 TLR-RAM Construction . 20
4.5 Security Analysis . 22

A Strong Non-malleability 29

1 Introduction

The notion of non-malleable codes was defined by Dziembowski, Pietrzak and Wichs [23] as
a relaxation of error-correcting codes. Informally, a coding scheme is non-malleable against
a tampering function if by tampering with the codeword, the function can either keep the
underlying message unchanged or change it to an unrelated message. Designing non-malleable
codes is not only an interesting mathematical task, but also has important implications in
cryptography; for example, Coretti et al. [13] showed an efficient construction of a mulit-bit
CCA secure encryption scheme from a single-bit one via non-malleable codes. Agrawal et al. [3]
showed how to use non-malleable codes to build non-malleable commitments. Most notably,
the notion has a deep connection with security against so-called physical attacks; indeed, using
non-malleable codes to achieve security against physical attacks was the original motivation of
the work [23]. Due to this important application, research on non-malleable codes has become
an important agenda, and drawn much attention in both coding theory and cryptography.

Briefly speaking, physical attacks target implementations of cryptographic algorithms be-
yond their input/output behavior. For example, researchers have demonstrated that leak-
ing/tampering with sensitive secrets such as cryptographic keys, through timing channel, dif-
ferential power analysis, and various other attacks, can be devastating [41, 42, 6, 7, 2, 33, 47],
and therefore the community has focused on developing new mechanisms to defend against such
strong adversaries [36, 29, 45, 35, 22, 46, 28, 17, 31, 37, 27, 19, 20, 14, 48, 32, 16, 40, 15, 18].
Dziembowski, Pietrzak and Wichs [23] showed a simple and elegant mechanism to secure imple-
mentations against memory tampering attacks by using non-malleable codes – instead of storing
the secret (in the clear) on a device, one instead stores an encoding of the secret. The security
of the non-malleable code guarantees that the adversary cannot learn more than what can be
learnt via black box access to the device, even though the adversary may tamper with memory.

In a subsequent work, Liu and Lysyanskaya [44] extended the notion to capture leakage
resilience as well – in addition to non-malleability, the adversary cannot learn anything about
the underlying message even while obtaining partial leakage of the codeword. By using the ap-
proach outlined above, one can achieve security guarantees against both tampering and leakage
attacks. In recent years, researchers have been studying various flavors of non-malleable codes;
for example some work has focused on constructions against different classes of tampering func-
tions, some has focused on different additional features, (e.g. continual attacks, rates of the
scheme, etc), and some focused on other applications [11, 21, 26, 24, 9, 10, 1, 3].

In this paper, we focus on another important feature inspired from the field of coding theory –
locality. More concretely, we consider a coding scheme that is locally decodable and updatable.
As introduced by Katz and Trevisan [38], local decodability means that in order to retrieve a
portion of the underlying message, one does not need to read through the whole codeword.
Instead, one can just read a few locations at the codeword. Similarly, local updatability means
that in order to update some part of the underlying messages, one only needs to update some
parts of the codeword. Locally decodable codes have many important applications in private
information retrieval [12] and secure multi-party computation [34], and have deep connections
with complexity theory; see [51]. Achieving local decodability and updatability simultaneously
makes the task more challenging. Recently, Chandran et al. [8] constructed a locally decodable
and updatable code in the setting of error-correcting codes. They also show an application to
dynamic proofs of retrievability. Motivated by the above results, we further ask the following
intriguing question:

Can we build a coding scheme enjoying all three properties, i.e., non-malleability,
leakage resilience, and locality? If so, what are its implications in cryptography?

1

Our Results. In light of the above questions, our contribution is three-fold:

(Notions). We propose new notions that combine the concepts of non-malleability, leakage
resilience, and locality in codes. First, we formalize a new notion of locally decodable and
updatable non-malleable codes (against one-time attacks). Then, we extend this new notion
to capture leakage resilience under continual attacks.

(Constructions). We present two simple constructions achieving our new notions. The
first construction is highly efficient—in order to decode (update) one block of the encoded
messages, only two blocks of the codeword must be read (written)—but is only secure against
one-time attacks. The second construction achieves security against continual attacks, while
requiring log(n) number of reads (writes) to perform one decode (update) operation, where
n is the number of blocks of the underlying message.

(Application). We present an important application of our new notion – achieving tamper
and leakage resilience in the random access machine (RAM) model. We first define a new
model that captures tampering and leakage attacks in the RAM model, and then give a
generic compiler that uses our new notion as a main ingredient. The compiled machine will
be resilient to leakage and tampering on the random access memory. This is analogous to
the usage of traditional non-malleable codes to secure implementations in the circuit model.

1.1 Techniques

In this section, we present a technical overview of our results.

Locally Decodable Non-malleable Codes. Our first goal is to consider a combination
of concepts of non-malleability and local decodability. Recall that a coding scheme is non-
malleable with respect to a tampering function f if the decoding of the tampered codeword
remains the same or becomes some unrelated message. To capture this idea, the definition in
the work [23] requires that there exists a simulator (with respect to such f) who outputs same∗

if the decoding of the tampered codeword remains the same as the original one, or he outputs
a decoded message, which is unrelated to the original one. In the setting of local decodability,
we consider encodings of blocks of messages M = (m1,m2, . . . ,mn), and we are able to retrieve
mi by running decenc(M)(i), where the decoding algorithm gets oracle access to the codeword.

The combination faces a subtlety that we cannot directly use the previous definition: sup-
pose a tampering function f only modifies one block of the codeword, then it is likely that dec
remains unchanged for most places. (Recall a dec will only read a few blocks of the code-
word, so it may not detect the modification.) In this case, the (overall) decoding of f(C) (i.e.
(decf(C)(1), . . . ,decf(C)(n))) can be highly related to the original message, which intuitively
means it is highly malleable.

To handle this issue, we consider a more fine-grained experiment. Informally, we require
that for any tampering function f (within some class), there exists a simulator that computes
a vector of decoded messages ~m∗, a set of indices I ⊆ [n]. Here I denotes the coordinates of
the underlying messages that have been tampered with. If I = [n], then the simulator thinks
that the decoded messages are ~m∗, which should be unrelated to the original messages. On the
other hand, if I ([n], the simulator thinks that all the messages not in I remain unchanged,
while those in I become ⊥. This intuitively means the tampering function can do only one of
the following cases:

1. It destroys a block (or blocks) of the underlying messages while keeping the other blocks
unchanged, or

2

2. If it modifies a block of the underlying messages to some unrelated string, then it must
have modified all blocks of the underlying messages to encodings of unrelated messages.

Our construction of locally decodable non-malleable code is simple – we use the idea similar
to the key encapsulation mechanism/data encapsulation mechanism (KEM/DEM) framework.
Let NMC be a regular non-malleable code, and E be a secure (symmetric-key) authenticated
encryption. Then to encode blocks of messages M = (m1, . . . ,mn), we first sample a secret key
sk of E , and output (NMC.enc(sk), E .Encryptsk(m1, 1), . . . , E .Encryptsk(mn, n)). The intuition
is clear: if the tampering function does not change the first block, then by security of the
authenticated encryption, any modification of the rest will become ⊥. (Note that here we
include a tag of positions to prevent permutation attacks). On the other hand, if the tampering
function modified the first block, it must be decoded to an unrelated secret key sk′. Then by
semantic security of the encryption scheme, the decoded values of the rest must be unrelated.
The code can be updated locally: in order to update mi to some m′i, one just need to retrieve
the 1st and (i + 1)st blocks. Then he just computes a fresh encoding of NMC.enc(sk) and the
ciphertext E .Encryptsk(m

′
i), and writes back to the same positions.

Extensions to Leakage Resilience against Continual Attacks. We further consider a
notion that captures leakage attacks in the continual model. First we observe that suppose the
underlying non-malleable code is also leakage resilient [44], the above construction also achieves
one-time leakage resilience. Using the same argument of Liu and Lysyanskaya [44], if we can
refresh the whole encoding, we can show that the construction is secure against continual attacks.
However, in our setting, refreshing the whole codeword is not counted as a solution since this is
in the opposite of the spirit of our main theme – locality. The main challenge is how to refresh
(update) the codeword locally while maintaining tamper and leakage resilience.

To capture the local refreshing and continual attacks, we consider a new model where there is
an updater U who reads the whole underlying messages and decides how to update the codeword
(using the local update algorithm). The updater is going to interact with the codeword in a
continual manner, while the adversary can launch tampering and leakage attacks between two
updates. To define security we require that the adversary cannot learn anything of the underlying
messages via tampering and leakage attacks from the interaction.

We note that if there is no update procedure at all, then no coding scheme can be secure
against continual leakage attacks if the adversary can learn the whole codeword bit-by-bit. In our
model, the updater and the adversary take turns interacting with the codeword – the adversary
tampers with and/or gets leakage of the codeword, and then the updater locally updates the
codeword, and the process repeats. See Section 2 for the formal model.

Then we consider how to achieve this notion. First we observe that the construction above
is not secure under continual attacks: suppose by leakage the adversary can get a full ciphertext
E .Encryptsk(mi, i) at some point, and then the updater updates the underlying message to m′i.
In the next round, the adversary can apply a rewind attack that modifies the codeword back
with the old ciphertext. Under such attack, the underlying messages have been modified to
some related messages. Thus the construction is not secure.

One way to handle this type of rewind attacks is to tie all the blocks of ciphertexts to-
gether with a “time stamp” that prevents the adversary from replacing the codeword with
old ciphertexts obtained from leakage. A straightforward way is to hash all the blocks of en-
cryptions using a collision resistant hash function and also encode this value into the non-
malleable code, i.e., C = (NMC.enc(sk, v), E .Encrypt(1,m1), . . . , E .Encrypt(n,mn)), where v =
h(E .Encrypt(1,m1), . . . , E .Encrypt(n,mn)). Intuitively, suppose the adversary replaces a block

3

E .Encrypt(i,mi) by some old ciphertexts, then it would be caught by the hash value v unless he
tampered with the non-malleable code as well. But if he tampers with the non-malleable code,
the decoding will be unrelated to sk, and thus the rest of ciphertexts become “un-decryptable”.
This approach prevents the rewind attacks, yet it does not preserve the local properties, i.e. to
decode a block, one needs to check the consistency of the hash value v, which needs to read
all the blocks of encryptions. To prevent the rewind attacks while maintaining local decodabil-
ity/updatability, we use the Merkle tree technique, which allows local checks of consistency.

The final encoding outputs (NMC.enc(sk, v), E .Encrypt(1,m1), . . . , E .Encrypt(n,mn), T), where
T is the Merkle tree of (E .Encrypt(1,m1), . . . , E .Encrypt(n,mn)), and v is its root (it can also be
viewed as a hash value). To decode a position i, the algorithm reads the 1st, and the (i + 1)st

blocks together with a path in the tree. If the path is inconsistent with the root, then output ⊥.
To update, one only needs to re-encode the first block with a new root, and update the (i+ 1)st

block and the tree. We note that Merkle tree allows local updates: if there is only one single
change at a leaf, then one can compute the new root given only a path passing through the leaf
and the root. So the update of the codeword can be done locally by reading the 1st, the (i+ 1)st

blocks and the path. We provide a detailed description and analysis in Section 3.3.

Application to Tamper and Leakage Resilient RAM Model of Computation. Whereas
regular non-malleable codes yield secure implementations against memory tampering in the cir-
cuit model, our new tool yields secure implementations against memory tampering (and leakage)
in the RAM model.

In our RAM model, the data and program to be executed are stored in the random access
memory. Through a CPU with a small number of (non-persistent) registers1, execution proceeds
in clock cycles: In each clock-cycle memory addresses are read and stored in registers, a compu-
tation is performed, and the contents of the registers are written back to memory. In our attack
model, we assume that the CPU circuitry (including the non-persistent registers) is secure –
the computation itself is not subject to physical attacks. On the other hand, the random access
memory, and the memory addresses are prone to leakage and tampering attacks. We remark
that if the CPU has secure persistent registers that store a secret key, then the problem be-
comes straightforward: Security can be achieved using encryption and authentication together
with oblivious RAM [30]. We emphasize that in our model, persistent states of the CPU are
stored in the memory, which are prone to leakage and tampering attacks. As our model allows
the adversary to learn the access patterns the CPU made to the memory, together with the
leakage and tampering power on the memory, the adversary can somewhat learn the messages
transmitted over the bus or tamper with them (depending on the attack classes allowed on the
memory). For simplicity of presentation, we do not define attacks on the bus, but just remark
that these attacks can be implicitly captured by learning the access patterns and attacking the
memory2.

In our formal modeling, we consider a next instruction function Π, a database D (stored
in the random access memory) and an internal state (using the non-persistent registers). The
CPU will interact (i.e., read/write) with the memory based on Π, while the adversary can launch
tamper and leakage attacks during the interaction.

Our compiler is very simple, given the ORAM technique and our new codes as building

1These non-persistent registers are viewed as part of the circuitry that stores some transient states while the
CPU is computing at each cycle. The number of these registers is small, and the CPU needs to erase the data in
order to reuse them, so they cannot be used to store a secret key that is needed for a long term of computation.

2There are some technical subtleties to simulate all leakage/tampering attacks on the values passing the bus
using memory attacks (and addresses). We defer the rigorous treatment to future work.

4

blocks. Informally speaking, given any next instruction function Π and database D, we first
use ORAM technique to transform them into a next instruction function Π̃ and a database
D̃. Next, we use our local non-malleable code (enc,dec,update) to encode D̃ into D̂; the
compiled next instruction function Π̂ does the following: run Π̃ to compute the next “virtual”
read/write instruction, and then run the local decoding or update algorithms to perform the
physical memory access.

Intuitively, the inner ORAM protects leakage of the address patterns, and the outer local non-
malleable codes prevent an attacker from modifying the contents of memory to some different
but related value. Since at each cycle the CPU can only read and write at a small number of
locations of the memory, using regular non-malleable codes does not work. Our new notion of
locally decodable and updatable non-malleable codes exactly solves these issues!

1.2 Related Work

Different flavors of non-malleable codes were studied [23, 11, 44, 21, 26, 24, 9, 10, 1, 3]. We can
use these constructions to secure implementations against memory attacks in the circuit model,
and also as our building block for the locally decodable/updatable non-malleable codes. See
also Section 3.4 for further exposition.

Securing circuits or CPUs against physical attacks is an important task, but out of the scope
of this paper. Some partial results can be found in previous work [43, 49, 36, 45, 35, 22, 46, 28,
17, 31, 37, 27, 19, 20, 14, 48, 32, 50, 40, 15, 18].

In an independent and concurrent work, Faust et al. [25] also considered securing RAM
computation against tampering and leakage attacks. We note that both their model and tech-
niques differ considerably from ours. In the following, we highlight some of these differences.
The main focus of [25] is constructing RAM compilers for keyed functions, denoted GK, to allow
secure RAM emulation of these functions in the presence of leakage and tampering. In contrast,
our work focuses on construcing compilers that transform any dynamic RAM machine into a
RAM machine secure against leakage and tampering. Due to this different perspective, our
compiler explicitly utilizes an underlying ORAM compiler, while they assume that the mem-
ory access pattern of input function G is independent of the secret state K (e.g., think of G as
the circuit representation of the function). In addition to the split-state tampering and leak-
age attacks considered by both papers, [25] do not assume that memory can be overwritten or
erased, but require the storage of a tamper-proof program counter. With regard to techniques,
they use a stronger version of non-malleable codes in the split-state setting (called continual
non-malleable codes [24]) for their construction. Finally, in their construction, each memory
location is encoded using an expensive non-malleable encoding scheme, while in our construc-
tion, non-malleable codes are used only for a small portion of the memory, while highly efficient
symmetric key authenticated encryption is used for the remainder.

2 Locally Decodable and Updatable Non-Malleable Codes

In this section, we first review the concepts of non-malleable (leakage resilient) codes. Then we
present our new notion that combines non-malleability, leakage resilience, and locality.

2.1 Preliminary

Definition 2.1 (Coding Scheme). Let Σ, Σ̂ be sets of strings, and κ, κ̂ ∈ N be some parameters.
A coding scheme consists of two algorithms (enc,dec) with the following syntax:

5

The encoding algorithm (perhaps randomized) takes input a block of message in Σ and
outputs a codeword in Σ̂.

The decoding algorithm takes input a codeword in Σ̂ and outputs a block of message in Σ.

We require that for any message m ∈ Σ, Pr[dec(enc(m)) = m] = 1, where the probability is
taken over the choice of the encoding algorithm. In binary settings, we often set Σ = {0, 1}κ
and Σ̂ = {0, 1}κ̂.

Definition 2.2 (Non-malleability [23]). Let k be the security parameter, F be some family of
functions. For each function f ∈ F , and m ∈ Σ, define the tampering experiment:

Tamperfm
def
=

{
c← enc(m), c̃ := f(c), m̃ := dec(c̃).

Output : m̃.

}
,

where the randomness of the experiment comes from the encoding algorithm. We say a coding
scheme (enc,dec) is non-malleable with respect to F if for each f ∈ F , there exists a ppt
simulator S such that for any message m ∈ Σ, we have

Tamperfm ≈ IdealS,m
def
=

{
m̃ ∪ {same∗} ← Sf(·).

Output : m if that is same∗; otherwise m̃.

}
Here the indistinguishability can be either computational or statistical.

We can extend the notion of non-malleability to leakage resilience (simultaneously) as the
work of Liu and Lysyanskaya [44].

Definition 2.3 (Non-malleability and Leakage Resilience [44]). Let k be the security parameter,
F , G be some families of functions. For each function f ∈ F , g ∈ G, and m ∈ Σ, define the
tamper-leak experiment:

TamperLeakf,gm
def
=

{
c← enc(m), c̃ := f(c), m̃ := dec(c̃).

Output : (m̃, g(c)).

}
,

where the randomness of the experiment comes from the encoding algorithm. We say a coding
scheme (enc,dec) is non-malleable and leakage resilience with respect to F and G if for any
f ∈ F , g ∈ G, there exists a ppt simulator S such that for any message m ∈ Σ, we have

TamperLeakf,gm ≈ IdealS,m
def
=

{
(m̃ ∪ {same∗}, `)← Sf(·),g(·).

Output : (m, `) if that is same∗; otherwise (m̃, `).

}
Here the indistinguishability can be either computational or statistical.

2.2 New Definitions – Codes with Local Properties

In this section, we consider coding schemes with extra local properties – decodability and up-
datability. Intuitively, this gives a way to encode blocks of messages, such that in order to
decode (retrieve) a single block of the messages, one only needs to read a small number of blocks
of the codeword; similarly, in order to update a single block of the messages, one only needs to
update a few blocks of the codeword.

Definition 2.4 (Locally Decodable and Updatable Code). Let Σ, Σ̂ be sets of strings, and
n, n̂, p, q be some parameters. An (n, n̂, p, q) locally decodable and updatable coding scheme con-
sists of three algorithms (enc,dec,update) with the following syntax:

6

The encoding algorithm enc (perhaps randomized) takes input an n-block (in Σ) message
and outputs an n̂-block (in Σ̂) codeword.

The (local) decoding algorithm dec takes input an index in [n], reads at most p blocks of
the codeword, and outputs a block of message in Σ. The overall decoding algorithm simply
outputs (dec(1),dec(2), . . . ,dec(n)).

The (local) updating algorithm update (perhaps randomized) takes inputs an index in [n]
and a string in Σ ∪ {ε}, and reads/writes at most q blocks of the codeword. Here the string
ε denotes the procedure of refreshing without changing anything.

Let C ∈ Σ̂n̂ be a codeword. For convenience, we denote decC ,updateC as the processes of
reading/writing individual block of the codeword, i.e. the codeword oracle returns or modifies
individual block upon a query. Here we view C as a random access memory where the algorithms
can read/write to the memory C at individual different locations.

Remark 2.5. Throughout this paper, we only consider non-adaptive decoding and updating,
which means the algorithms dec and update compute all their queries at the same time before
seeing the answers, and the computation only depends on the input i (the location). In contrast,
an adaptive algorithm can compute a query based on the answer from previous queries. After
learning the answer to such query, then it can make another query. We leave it as an interesting
open question to construct more efficient schemes using adaptive queries.

Then we define the requirements of the coding scheme.

Definition 2.6 (Correctness). An (n, n̂, p, q) locally decodable and updatable coding scheme (with
respect to Σ, Σ̂) satisfies the following properties. For any message M = (m1,m2, . . . ,mn) ∈ Σn,
let C = (c1, c2, . . . , cn̂) ← enc(M) be a codeword output by the encoding algorithm. Then we
have:

for any index i ∈ [n], Pr[decC(i) = mi] = 1, where the probability is over the randomness
of the encoding algorithm.

for any update procedure with input (j,m′) ∈ [n]× Σ ∪ {ε}, let C ′ be the resulting codeword
by running updateC(j,m′). Then we have Pr[decC

′
(j) = m′] = 1, where the probability

is over the encoding and update procedures. Moreover, the decodings of the other positions
remain unchanged.

Remark 2.7. The correctness definition can be directly extended to handle any sequence of
updates.

Next, we define several flavors of security about non-malleability and leakage resilience.

One-time Non-malleability. First we consider one-time non-malleability of locally decod-
able codes, i.e., the adversary only tampers with the codeword once. This extends the idea of
the non-malleable codes (as in Definition 2.2). As discussed in the introduction, we present the
following definition to capture the idea that the tampering function can only do either of the
following cases:

It destroys a block (or blocks) of the underlying messages while keeping the other blocks
unchanged, or

If it modifies a block of the underlying messages to some unrelated string, then it must have
modified all blocks of the underlying messages to encodings of unrelated messages.

7

Definition 2.8 (Non-malleability of Locally Decodable Codes). An (n, n̂, p, q)-locally decodable
coding scheme with respect to Σ, Σ̂ is non-malleable against the tampering function class F if
for all f ∈ F , there exists some simulator S such that for any M = (m1, . . . ,mn) ∈ Σn, the

experiment TamperfM is (computationally) indistinguishable to the following ideal experiment
IdealS,M :

(I, ~m∗) ← S(1k), where I ⊆ [n], ~m′ ∈ Σn. (Intuitively I means the coordinates of the
underlying message that have been tampered with).

If I = [n], define ~m = ~m∗; otherwise set ~m|I = ⊥, ~m|Ī = M |Ī , where ~x|I denotes the
coordinates ~x[v] where v ∈ I, and the bar denotes the complement of a set.

The experiment outputs ~m.

Remark 2.9. Here we make two remarks about the definition:

1. In the one-time security definition, we do not consider the update procedure. In the next
paragraph when we define continual attacks, we will handle the update procedure explicitly.

2. One-time leakage resilience of locally decodable codes can be defined in the same way as
Definition 2.3.

Security against Continual Attacks. In the following, we extend the security to handle
continual attacks. Here we consider a third party called updater, who can read the underlying
messages and decide how to update the codeword. Our model allows the adversary to learn the
location that the updater updated the messages, so we also allow the simulator to learn this
information. This is without loss of generality if the leakage class G allows it, i.e. the adversary
can query some g ∈ G to figure out what location was modified. On the other hand, the updater
does not tell the adversary what content was encoded of the updated messages, so the simulator
needs to simulate the view without such information. We can think of the updater as an honest
user interacting with the codeword (read/write). The security intuitively means that even if the
adversary can launch tampering and leakage attacks when the updater is interacting with the
codeword, the adversary cannot learn anything about the underlying encoded messages (or the
updated messages during the interaction).

Our continual experiment consists of rounds: in each round the adversary can tamper with
the codeword and get partial information. At the end of each round, the updater will run
update, and the codeword will be somewhat updated and refreshed. We note that if there is
no refreshing procedure, then no coding scheme can be secure against continual leakage attack
even for one-bit leakage at a time3, so this property is necessary. Our concept of “continuity”
is different from that of Faust et al. [24], who considered continual attacks on the same original
codeword (the tampering functions can be chosen adaptively). Our model does not allow this
type of “resetting attacks.” Once a codeword has been modified to f(C), the next tampering
function will be applied on f(C).

We remark that the one-time security can be easily extended to the continual case (using a
standard hybrid argument) if the update procedure re-encodes the whole underlying messages
(c.f. see the results in the work [44]). However, in the setting above, we emphasize on the local
property, so this approach does not work. How to do a local update while maintaining tamper
and leakage resilience makes the continual case challenging!

3If there is no refreshing procedure, then the adversary can eventually learn the whole codeword bit-by-bit by
leakage. Thus he can learn the underlying message.

8

Definition 2.10 (Continual Tampering and Leakage Experiment). Let k be the security pa-
rameter, F ,G be some families of functions. Let (enc,dec,update) be an (n, n̂, p, q)-locally
decodable and updatable coding scheme with respect to Σ, Σ̂. Let U be an updater that takes
input a message M ∈ Σn and outputs an index i ∈ [n] and m ∈ Σ. Then for any blocks of
messages M = (m1,m2, . . . ,mn) ∈ Σn, and any (non-uniform) adversary A, any updater U ,
define the following continual experiment CTamperLeakA,U ,M :

The challenger first computes an initial encoding C(1) ← enc(M).

Then the following procedure repeats, at each round j, let C(j) be the current codeword and
M (j) be the underlying message:

• A sends either a tampering function f ∈ F and/or a leakage function g ∈ G to the
challenger.

• The challenger replaces the codeword with f(C(j)), or sends back a leakage `(j) =
g(C(j)).

•We define ~m(j) def
=
(
decf(C(j))(1), . . . ,decf(C(j))(n)

)
.

• Then the updater computes (i(j),m)← U(~m(j)) for the challenger.

• Then the challenger runs updatef(C(j))(i(j),m) and sends the index i(j) to A.

• A may terminate the procedure at any point.

Let t be the total number of rounds above. At the end, the experiment outputs(
`(1), `(2), . . . , `(t), ~m(1), . . . , ~m(t), i(1), . . . , i(t)

)
.

Definition 2.11 (Non-malleability and Leakage Resilience against Continual Attacks). An
(n, n̂, p, q)-locally decodable and updatable coding scheme with respect to Σ, Σ̂ is continual non-
malleable against F and leakage resilient against G if for all ppt (non-uniform) adversaries
A, and ppt updaters U , there exists some ppt (non-uniform) simulator S such that for any
M = (m1, . . . ,mn) ∈ Σn, CTamperLeakA,U ,M is (computationally) indistinguishable to the
following ideal experiment IdealS,U ,M :

The experiment proceeds in rounds. Let M (1) = M be the initial message.

At each round j, the experiment runs the following procedure:

• At the beginning of each round, S outputs (`(j), I(j), ~w(j)), where I(j) ⊆ [n].

• Define

~m(j) =

{
~w(j) if I(j) = [n]

~m(j)|I(j) := ⊥, ~m(j)|Ī(j) := M (j)|Ī(j) otherwise,

where ~x|I denotes the coordinates ~x[v] where v ∈ I, and the bar denotes the complement
of a set.

• The updater runs (i(j),m) ← U(~m(j)) and sends the index i(j) to the simulator. Then
the experiment updates M (j+1) as follows: set M (j+1) := M (j) for all coordinates except
i(j), and set M (j+1)[i(j)] := m.

Let t be the total number of rounds above. At the end, the experiment outputs(
`(1), `(2), . . . , `(t), ~m(1), . . . , ~m(t), i(1), . . . , i(t)

)
.

9

3 Our Constructions

In this section, we present two constructions. As a warm-up, we first present a construction that
is one-time secure to demonstrate the idea of achieving non-malleability, local decodability and
updatability simultaneously. Then in the next section, we show how to make the construction
secure against continual attacks.

3.1 Preliminary: Symmetric Encryption

A symmetric encryption scheme consists of three ppt algorithms (Gen,Encrypt,Decrypt) such
that:

The key generation algorithm Gen takes as input a security parameter 1k returns a key sk.

The encryption algorithm Encrypt takes as input a key sk, and a message m. It returns a
ciphertext c← Encryptsk(m).

The decryption algorithm Decrypt takes as input a secret key sk, and a ciphertext c. It
returns a message m or a distinguished symbol ⊥. We write this as m = Decryptsk(c)

We require that for any m in the message space, it should hold that

Pr[sk← Gen(1k); Decryptsk(Encryptsk(m)) = m] = 1.

We next define semantical security, and then the authenticity. In the following, we define a
left-or-right encryption oracle LRsk,b(·, ·) with b ∈ {0, 1} and |m0| = |m1| as follows:

LRsk,b(m0,m1)
def
= Encryptsk(mb).

Definition 3.1 (Semantical Security). A symmetric encryption scheme E = (Gen,Encrypt,Decrypt)
is semantically secure if for any non-uniform ppt adversary A, it holds that |2·Advpriv

E (A)−1| =
negl(k) where

Advpriv
E (A) = Pr

[
sk← Gen(1k); b← {0, 1} : ALRsk,b(·,·)(1k) = b

]
.

Definition 3.2 (Authenticity [39, 5, 4]). A symmetric encryption scheme E = (Gen,Encrypt,Decrypt)
is semantically secure if for any non-uniform ppt adversary A, it holds that Advauth

E (A) =
negl(k) where

Advauth
E (A) = Pr[sk← Gen(1k), c∗ ← AEncryptsk(·) : c∗ 6∈ Q ∧ Decryptsk(c

∗) 6∈⊥]

where Q is the query history A made to the encryption oracle.

3.2 A First Attempt – One-time Security

Construction. Let E = (Gen,Encrypt,Decrypt) be a symmetric encryption scheme, NMC =
(enc,dec) be a coding scheme. Then we consider the following coding scheme:

enc(M): on input M = (m1,m2, . . . ,mn), the algorithm first generates the encryption key
sk ← E .Gen(1k). Then it computes c ← NMC.enc(sk), ei ← E .Encryptsk(mi, i) for i ∈ [n].
The algorithm finally outputs a codeword C = (c, e1, e2, . . . , en).

decC(i): on input i ∈ [n], the algorithm reads the first block and the (i + 1)-st block of
the codeword to retrieve (c, ei). Then it runs sk := NMC.dec(c). If the decoding algorithm
outputs ⊥, then it outputs ⊥ and terminates. Else, it computes (mi, i

∗) = E .Decryptsk(ei).
If i∗ 6= i, or the decryption fails, the algorithm outputs ⊥. If all the above verifications pass,
the algorithm outputs mi.

10

update(i,m′): on inputs an index i ∈ [n], a block of message m′ ∈ Σ, the algorithm runs
decC(i) to retrieve (c, ei) and (sk,mi, i). If the decoding algorithm returns ⊥, the algorithm
writes ⊥ to the first block and the (i+ 1)-st block. Otherwise, it computes a fresh encoding
c′ ← NMC.enc(sk), and a fresh ciphertext e′i ← E .Encryptsk(m

′, i). Then it writes back the
first block and the (i+ 1)-st block with (c′, e′i).

To analyze the coding scheme, we make the following assumptions of the parameters in the
underlying scheme for convenience:

1. The size of the encryption key is k (security parameter), i.e. |sk| = k.

2. Let Σ be a set, and the encryption scheme supports messages of length |Σ| + log n. The
ciphertexts are in the space Σ̂.

3. The length of |NMC.enc(sk)| is less than |Σ̂|.
Then clearly, the above coding scheme is an (n, n+ 1, 2, 2)-locally updatable and decodable

code with respect to Σ, Σ̂. The correctness of the scheme is obvious by inspection. The rate
(ratio of the length of messages to that of codewords) of the coding scheme is 1− o(1).

Theorem 3.3. Assume E is a symmetric authenticated encryption scheme, and NMC is a non-
malleable code against the tampering function class F . Then the coding scheme presented above
is one-time non-malleable against the tampering class

F̄ def
=

f : Σ̂n+1 → Σ̂n+1 and |f | ≤ poly(k), such that :

f = (f1, f2), f1 : Σ̂n+1 → Σ̂, f2 : Σ̂n → Σ̂n,

∀(x2, . . . , xn+1) ∈ Σ̂n, f1(·, x2, . . . , xn+1) ∈ F
f(x1, x2, . . . , xn+1) = (f1(x1, x2, . . . , xn+1), f2(x2, . . . , xn+1)) .

 .

We have presented the intuition in the introduction. Before giving the detailed proof, we
make the following remark.

Remark 3.4. The function class F̄ may look complex, yet the intuition is simple. The tampering
function restricted in the first block (the underlying non-malleable code) falls into the class F –
this is captured by f1 ∈ F ; on the other hand, we just require the function restricted in the rest
of the blocks to be polynomial-sized – this is captured by |f2| ≤ |f | ≤ poly(k).

For our construction, it is inherent that the function f2 cannot depend on x1 arbitrarily.
Suppose this is not the case, then f2 can first decode the non-malleable code, encrypt the decoded
value and write the ciphertext into x2, which breaks non-malleability. However, if the underlying
coding scheme is non-malleable and also leakage resilient to G, then we can allow f2 to get
additional information g(x1) for any g ∈ G. Moreover, the above construction is one-time
leakage resilient.

We present the above simpler version for clarity of exposition, and give this remark that our
construction actually achieves security against a broader class of tampering attacks.

Proof sketch of Theorem 3.3. To show the theorem, for any function f ∈ F̄ , we need to construct

a ppt simulator S such that for any message blocks M = (m1, . . . ,mn), we have TamperfM
c
≈

IdealS,M as Definition 2.8. We describe the simulator as follows; here the ppt simulator S has
oracle access to f = (f1, f2) ∈ F̄ .

Sf(·) first runs sk← E .Gen(1k) and computes n encryptions of 0, i.e. ei ← E .Encryptsk(0) for
i ∈ [n].

Let f ′1(·) def
= f1(·, e1, e2, . . . , en), and let S ′ be the underlying simulator of the non-malleable

code NMC with respect to the tampering function f ′1. Then Sf(·) simulates S ′f ′1(·) internally;

11

here S uses the external oracle access to f to compute the responses for the queries made
by S ′. At some point, S ′ returns an output m′ ∈ Σ ∪ {same∗}.
If m′ = same∗, then S computes (e′1, e

′
2, . . . , e

′
n) ← f2(e1, e2, . . . , en). Let I be set of the

indices where e′ is not equal to e, i.e., I = {i : e′i 6= ei}. Then S outputs (I,~ε), where ~ε
denotes the empty vector.

Else if m′ 6= same∗, S sets sk′ := m′, and computes (e′1, e
′
2, . . . , e

′
n) ← f2(e1, e2, . . . , en), and

sets ~m∗ := (E .Decryptsk′(e
′
1), . . . , E .Decryptsk′(e

′
n)). Then S outputs ([n], ~m∗).

To show TamperfM ≈ IdealS,M , we consider an intermediate hybrid IdealS∗,M where S∗ is
the same as S, except in the first place it generates ei ← E .Encryptsk(mi, i) for i ∈ [n]. Then
we can argue that IdealS∗,M ≈ IdealS,M . This is by the property of semantic security of the
encryption scheme: suppose an adversary can distinguish IdealS∗,M from IdealS,M , then we
can build a reduction to break the encryption scheme by embedding the challenge ciphertexts
in the first place (of S and S∗), and then simulating the rest procedures, which are identical in
the two cases.

Then we consider another intermediate experiment IdealS∗∗,M , where the experiment is
the same as IdealS∗,M except when S∗∗ obtains m′ by running real tampering experiment
f1(NMC.enc(sk), e1, e2, . . . , en) and outputs same∗ if the outcome is the original sk. By the
property of the underlying non-malleable code NMC, IdealS∗,M ≈ IdealS∗∗,M . Finally, we

want to show that TamperfM ≈ IdealS∗∗,M . This is by the properties of the authenticity of
the encryption scheme. Since with overwhelming probability, if f2 changed any block of the
ciphertext, the decryption will be ⊥. This completes the sketch of the proof.

3.3 Achieving Security against Continual Attacks

As discussed in the introduction, the above construction is not secure if continual tampering and
leakage is allowed – the adversary can use a rewind attack to modify the underlying message to
some old/related messages. We handle this challenge using a technique of Merkle tree, which
preserves local properties of the above scheme. We present the construction in the following:

Definition 3.5 (Merkle Tree). Let h : X × X → X be a hash function that maps two blocks of
messages to one.4 A Merkle Tree Treeh(M) takes input a message M = (m1,m2, . . . ,mn) ∈ X n.
Then it applies the hash on each pair (m2i−1,m2i), and resulting in n/2 blocks. Then again, it
partitions the blocks into pairs and applies the hash on the pairs, which results in n/4 blocks.
This is repeated log n times, resulting a binary tree with hash values, until one block remains.
We call this value the root of Merkle Tree denoted Rooth(M), and the internal nodes (including
the root) as Treeh(M). Here M can be viewed as leaves.

Theorem 3.6. Assuming h is a collision resistant hash function. Then for any message M =

(m1,m2, . . . ,mn) ∈ X n, any polynomial time adversary A, Pr
[
(m′i, pi)← A(M,h) : m′i 6= mi, pi

is a consistent path with Rooth(M)
]
≤ negl(k).

Moreover, given a path pi passing the leaf mi, and a new value m′i, there is an algorithm that
computes Rooth(M ′) in time poly(log n, k), where M ′ = (m1, . . . ,mi−1,m

′
i,mi+1, . . . ,mn).

Construction. Let E = (Gen,Encrypt,Decrypt) be a symmetric encryption scheme, NMC =
(enc,dec) be a non-malleable code, H is a family of collision resistance hash functions. Then
we consider the following coding scheme:

4Here we assume |X | is greater than the security parameter.

12

enc(M): on input M = (m1,m2, . . . ,mn), the algorithm first generates encryption key
sk ← E .Gen(1k) and h ← H. Then it computes ei ← E .Encryptsk(mi) for i ∈ [n], and
T = Treeh(e1, . . . , en), R = Rooth(e1, . . . , en). Then it computes c ← NMC.enc(sk, R, h),
The algorithm finally outputs a codeword C = (c, e1, e2, . . . , en, T).

decC(i): on input i ∈ [n], the algorithm reads the first block, the (i + 1)-st block, and
a path p in the tree (from the root to the leaf i), and it retrieve (c, ei, p). Then it runs
(sk, R, h) = NMC.dec(c). If the decoding algorithm outputs ⊥, or the path is not consistent
with the root R, then it outputs ⊥ and terminates. Else, it computes mi = E .Decryptsk(ei).
If the decryption fails, output ⊥. If all the above verifications pass, the algorithm outputs
mi.

update(i,m′): on inputs an index i ∈ [n], a block of message m′ ∈ Σ, the algorithm runs
decC(i) to retrieve (c, ei, p). Then the algorithm can derive (sk, R, h) = NMC.dec(c). If the
decoding algorithm returns ⊥, the update writes ⊥ to the first block, which denotes failure.
Otherwise, it computes a fresh ciphertext e′i ← E .Encryptsk(m

′), a new path p′ (that replaces
ei by e′i) and a new root R′, which is consistent with the new leaf value e′i. (Note that this
can be done given only the old path p as Theorem 3.6.) Finally, it computes a fresh encoding
c′ ← NMC.enc(sk, R′, h). Then it writes back the first block, the (i + 1)-st block, and the
new path blocks with (c′, e′i, p

′).

To analyze the coding scheme, we make the following assumptions of the parameters in the
underlying scheme for convenience:

1. The size of the encryption key is k (security parameter), i.e. |sk| = k and the length of the
output of the hash function is k.

2. Let Σ be a set, and the encryption scheme supports messages of length |Σ|. The ciphertexts
are in the space Σ̂.

3. The length of |NMC.enc(sk, v)| is less than |Σ̂|, where |v| = k.

Clearly, the above coding scheme is an (n, 2n + 1, O(log n), O(log n))-locally updatable and
decodable code with respect to Σ, Σ̂. The correctness of the scheme is obvious by inspection.
The rate (ratio of the length of messages to that of codewords) of the coding scheme is 1/2−o(1).

Theorem 3.7. Assume E is a semantically secure symmetric encryption scheme, and NMC is
a non-malleable code against the tampering function class F , and leakage resilient against the
function class G. Then the coding scheme presented above is non-malleable against continual
attacks of the tampering class

F̄ def
=

f : Σ̂2n+1 → Σ̂2n+1 and |f | ≤ poly(k), such that :

f = (f1, f2), f1 : Σ̂2n+1 → Σ̂, f2 : Σ̂2n → Σ̂2n,

∀(x2, . . . , x2n+1) ∈ Σ̂n, f1(· , x2, . . . , x2n+1) ∈ F ,
f(x1, x2, . . . , x2n+1) = (f1(x1, x2, . . . , x2n+1), f2(x2, . . . , x2n+1)) .

 ,

and is leakage resilient against the class

Ḡ def
=

{
g : Σ̂2n+1 → Y and |g| ≤ poly(k), such that :

∀ (x2, . . . , x2n+1) ∈ Σ̂n, g(· , x2, . . . , x2n+1) ∈ G.

}
.

The intuition of this construction can be found in the introduction. Before giving the detailed
proof, we make a remark.

Remark 3.8. Actually our construction is secure against a broader class of tampering func-
tions. The f2 part can depend on g′(x1) as long as the function g′(·) together with the leakage

13

function g(·, x2, . . . , x2n+1) belong to G. That is, the tampering function f = (f1, f2, g
′) and the

leakage function g satisfy the constraint g′(·) ◦ g(·, x2, . . . , x2n+1) ∈ G (Here we use ◦ to denote
concatenation). For presentation clarity, we choose to describe the simpler but slightly smaller
class of functions.

Proof of Theorem 3.7. To prove the theorem, for any adversary A, we need to construct a
simulator S, such that for initial message M ∈ Σn, any updater U , the experiment of continual
attacks TamperLeakA,U ,M is indistinguishable from the ideal experiment IdealS,U ,M .

The simulator S first samples random coins for the updater U , so its output just depends
on its input given the random coins. Then S works as follows:

Initially S samples sk ← E .Gen(1k), h ← H, and then generates n encryptions of 0, i.e.,
~e(1) := (e1, e2, . . . , en) where ei ← E .Encryptsk(0) for i ∈ [n]. Then S computes T (1) :=
Treeh(e1, . . . , en). Here let R(1) be the root of the tree. S keeps global variables: sk, h, a flag
flag = 0, and a string C = ε (empty string).

At each round j, let g(j) ∈ Ḡ, f (j) = (f
(j)
1 , f

(j)
2) ∈ F̄ be some leakage/ tampering functions

specified by the adversary. If the flag is 0, i.e. flag = 0, then S does the following:

• First, S sets (e1, e2, . . . , en) := ~e(j), T := T (j), and R := R(j). Then S defines f ′1(·) def
=

f
(j)
1 (·, e1, e2, . . . , en, T), and g′(·) def

= g(j)(·, e1, e2, . . . , en, T). Let S ′ be the simulator of
the underlying leakage resilient non-malleable code NMC with respect to the tampering
and leakage functions f ′1(·) and g′(·).
• Then S computes (m′, `′) ← S ′f ′1(·),g′(·), and sets `(j) := `′, and (e′1, e

′
2, . . . , e

′
n, T

′) :=

f
(j)
2 (e1, e2, . . . , en, T).

• If m′ = same∗, S sets I(j) = {u : e′u 6= eu}, i.e. the indices where e′ is not equal to e,
and set ~w(j) := ~ε, the empty vector. S outputs {`(j), I(j), ~w(j)} for this round.

Then upon receiving an index i(j) ∈ [n] from the updater, then S checks whether the
path passing the leaf e′

i(j)
in the Merkle Tree T ′ is consistent with the root R, and does

the following:

– If the check fails, he sets flag := 1, C := (⊥, e′1, . . . , e′n, T ′), and then exits the loop
of this round.

– Otherwise, he sets ~e(j+1) := (e′1, e
′
2, . . . , e

′
n) for all indices except i(j). He creates

a fresh ciphertext e ← E .Encryptsk(0), and sets ~e(j+1)[i(j)] := e (simulating the
update). He updates the path passing through the i(j)-th leaf in T ′ and the root
R, and set T (j+1) := T ′, R(j+1) := R (the updated ones).

• Else if m′ 6= same∗, then S sets I(j) := [n], and sets the flag to be 1, i.e. flag := 1. He
parses m′ = (sk′, h′, R′), and uses the key sk′ to compute ~w(j) = (E .Decryptsk′(e

′
1), . . . ,

E .Decryptsk′(e
′
n)). Then he outputs {`(j), I(j), ~w(j)} for this round.

Then S computes (i(j),m)← U(~w(j)) on his own. Let C ′ = (NMC.enc(sk′, h′, R′), e′1, . . . , e
′
n, T

′)
be a codeword, and S runs updateC

′
(i(j),m). Let C∗ be the resulting codeword, and

S updates the global variable C := C∗.

Else if flag = 1, S simulates the real experiment faithfully:

• S outputs `(j) = g(j)(C), and computes C ′ = f (j)(C).

• Set ~w(j)[v] := dec(C′)(v), i.e. running the real decoding algorithm. Then S outputs
{`(j), I(j) = [n], ~w(j)} for this round.

• Then S computes (i(j),m)← U(~w(j)) on his own, and runs updateC
′
(i(j),m). Let C∗

be the resulting codeword after the update, and S updates the variable C := C∗.

14

To show CTamperLeakA,U ,M ≈ IdealS,U ,M , we consider several intermediate hybrids.

Hybrid H0: This is exactly the experiment IdealS,U ,M .

Hybrid H1: This experiment is the same as H0 except the simulator does not generate sk
of the encryption scheme. Whenever he needs to produce a ciphertext (only in the case when
flag = 0), the hybrid provides oracle access to the encryption algorithm E .Encryptsk(·), where
the experiment samples sk privately.

It is not hard to see that the experiment H0 is identical to H1. Then we define another
hybrid:

Hybrid H2: This experiment is the same as H1 except, the encryption oracle does not gives
E .Encryptsk(0) to the simulator; instead, it gives encryptions of the real messages (in the first
place, and in the update when flag = 0), as in the real experiment.

By a simple reduction argument, we can establish the following claim.

Claim 3.9. Suppose the encryption scheme is semantically secure, then H1 is computationally
indistinguishable from H2.

Hybrid H3: This experiment is the same as H2 except, the simulator does not use the under-
lying S ′ of the non-malleable code to produce (m′, `′) (in the case when flag = 0). Let R be the
current root of the Merkle Tree, h be the hash function, sk be the secret key of the encryption
oracle. In this experiment, the simulator generates an encoding of NMC.enc(sk, h,R) and then
applies the tampering and leakage function faithfully as the real experiment TamperLeakf,g.
If the outcome is still (sk, h,R), then the simulator treats this as same∗. Otherwise, it uses the
decoded value to proceed. Then the rest follows exactly as H2.

Then we can establish the following claim:

Claim 3.10. Suppose the underlying coding scheme NMC is non-malleable and leakage resilience
against F and G, then H2 is computationally indistinguishable from H3.

Proof Sketch. We can show this by considering the following sub-hybrids: H2,j : in the first j
rounds, the simulator generates (m′, `′) according to the experiment TamperLeak, and in the
rest S ′. By the property of the coding scheme, we can show each adjacent sub-hybrids are
computationally indistinguishable by reduction. Note that the simulator refreshes the encoding
of (sk, h,R) at each round, so we can apply the hybrid argument. From the description, we have
H2 = H2,0, and H2,t = H3, where t is the total number of rounds.

Finally we want to show the following claim:

Claim 3.11. Suppose the hash function comes from a collision resilient hash family, then H3

is computationally indistinguishable from CTamperLeakA,U ,M .

Proof. We observe that the only difference between H3 and CTamperLeakA,U ,M is the gener-

ation of ~m(j) at each round (when the flag is 0). In the experiment CTamperLeakA,U ,M , ~m(j) is

generated by honestly decoding the codeword at each position, i.e.
(
decf(C(j))(1), . . . ,decf(C(j))(n)

)
.

In H3, ~m(j) is generated by first computing (m′, e′1, . . . , e
′
n, T

′) := f(C(j)). In the case where
m′ 6= same∗, the two experiments are identical. In the case where m′ = same∗, H3 sets
~m(j)[v] = ⊥ if e′v 6= ev. The only situation that these two hybrids deviate is when e′v 6= ev

15

but there is another consistent path in T ′ with the root R. For this situation, dec(v) 6= ⊥ in
CTamperLeak, but H3 will set ~m[v] := ⊥. However, we claim this event can happen with a
negligible probability, or otherwise we can break the security of the Merkle Tree (Theorem 3.6)
by simulating the hybrid H3. This completes the proof of the claim.

Putting everything together, we show that CTamperLeakA,U ,M ≈ IdealS,U ,M .

3.4 Instantiations

In this section, we describe several constructions of non-malleable codes against different classes
of tampering/leakage functions. To our knowledge, we can use the explicit constructions (of the
non-malleable codes) in the work [23, 11, 44, 24, 26, 1, 3].

First we overview different classes of tampering/leakage function allowed for these results:
the constructions of [23] work for bit-wise tampering functions, and split-state functions in the
random oracle model. The construction of Choi et al. [11] works for small block tampering
functions. The construction of Liu and Lysyanskaya [44] achieves both tamper and leakage
resilience against split-state functions in the common reference string (CRS) model. The con-
struction of Dziembowski et al. [21] achieves information theoretic security against split-state
tampering functions, but their scheme can only support encoding for bits, so it cannot be used
in our construction. The subsequent construction by Aggarwal et al. [1] achieves information
theoretic security against split-state tampering without CRS. We believe that their construc-
tion also achieves leakage resilience against some length bounded split-state leakage yet their
paper did not claim it. The construction by Faust et al. [26] is non-malleable against small-
sized tampering functions. Another construction by Faust et al. [24] achieves both tamper and
leakage resilience in the split-state model with CRS. The construction of Aggarwal et al. [3] is
non-malleable against permutation functions.

Then we remark that actually there are other non-explicit constructions: Cheraghchi and
Guruswami [10] showed the relation non-malleable codes and non-malleable two source extrac-
tors (but constructing a non-malleable two-source extractor is still open), and in another work
Cheraghchi and Guruswami [9] showed the existence of high rate non-malleable codes in the
split-state model but did not give an explicit (efficient) construction.

Finally, we give a concrete example of what the resulting class looks like using the con-
struction of Liu and Lysyanskaya [44] as the building block. Recall that their construction
achieves both tamper and leakage resilience for split-state functions. Our construction has the
form (NMC.enc(sk, h, T),Encrypt(m1), . . . ,Encrypt(mn), T). So the overall leakage function g
restricted in the first block (i.e. g1) can be a (poly-sized) length-bounded split-state function;
g on the other hand, can leak all the other parts. For the tampering, the overall tampering
function f restricted in the first block (i.e. f1) can be any (poly-sized) split-state function. On
the other hand f restricted in the rest (i.e. f2) can be just any poly-sized function. We also
remark that f2 can depend on a split-state leakage on the first part, say g1, as we discussed in
the previous remark above.

4 Tamper and Leakage Resilient RAM

In this section, we first introduce the notations of the Random Access Machine (RAM) model
of computation in presence of tampering and leakage attacks in Section 4.1. Then we define

16

the security of tamper and leakage resilient RAM model of computation in Section 4.2, recall
the building block Oblivious RAM (ORAM) in Section 4.3, and then give a construction in
Section 4.4. and the security analysis in Section 4.5.

4.1 Random Access Machines

We consider RAM programs to be interactive stateful systems 〈Π, state, D〉, where Π denotes
a next instruction function, state the current state stored in registers, and D the content of
memory. Upon state and an input value d, the next instruction function outputs the next
instruction I and an updated state state′. The initial state of the RAM machine, state, is set
to (start, ∗). For simplicity we often denote RAM program as 〈Π, D〉. We consider four ways of
interacting with the system:

Execute(x): A user can provide the system with Execute(x) queries, for x ∈ {0, 1}u, where u
is the input length. Upon receiving such query, the system computes (y, t,D′)← 〈Π, D〉(x),
updates the state of the system to D := D′ and outputs (y, t), where y denotes the output of
the computation and t denotes the time (or number of executed instructions). By Execute1(x)
we denote the first coordinate of the output of Execute(x).

doNext(x): A user can provide the system with doNext(x) queries, for x ∈ {0, 1}u. Upon
receiving such query, if state = (start, ∗), set state := (start, x), and d := 0r; Here ρ = |state|
and r = |d|. The system does the following until termination:

1. Compute (I, state′) = Π(state, d). Set state := state′.

2. If I = (wait) then set state := 0ρ, d := 0r and terminate.

3. If I = (stop, z) then set state := (start, ∗), d := 0r and terminate with output z.

4. If I = (write, v, d′) then set D[v] := d′.

5. If I = (read, v,⊥) then set d := D[v].

Let I1, . . . , I` be the instructions executed by doNext(x). All memory addresses of ex-
ecuted instructions are returned to the user. Specifically, for instructions Ij of the form
(read, v,⊥) or (write, v, d′), v is returned.

Tamper(f): We also consider tampering attacks against the system, modeled by Tamper(f)
commands, for functions f . Upon receiving such command, the system sets D := f(D).

Leak(g): We finally consider leakage attacks against the system, modeled by Leak(g) com-
mands, for functions g. Upon receiving such command, the value of g(D) is returned to the
user.

Remark 4.1. A doNext(x) instruction groups together instructions performed by the CPU in a
single clock cycle. Intuitively, a (wait) instruction indicates that a clock cycle has ended and the
CPU waits for the adversary to increment the clock. In contrast, a (stop, z) instruction indicates
that the entire execution has concluded with output z. In this case, the internal state is set back
to the start state.

We require that each doNext(x) operation performs exactly ` = `(k) = poly(k) instructions
I1, . . . , I` where: The final instruction is of the form I` = (stop, ·) or I` = (wait). For fixed
`1 = `1(k), `2 = `2(k) such that `1 + `2 = ` − 1, we have that the first `1 instructions are of
the form I` = (read, ·,⊥) and the next `2 instructions are of the form I` = (write, v, d′). We
assume that `, `1, `2 are implementation-specific and public. The limitations on space are meant
to model the fact that the CPU has a limited number of registers and that no persistent state is
kept by the CPU between clock cycles.

17

Remark 4.2. We note that Execute(x) instructions are used by the ideal world adversary—who
learns only the input-output behavior of the RAM machine and the run time—as well as by the
real world adversary. The real world adversary may also use the more fine-grained doNext(x) in-
struction. We note that given access to the doNext(x) instruction, the behavior of the Execute(x)
instruction may be simulated.

Remark 4.3. We note that our model does not explicitly allow for leakage and tampering on
instructions I. E.g. when an instruction I = (write, v, d′) is executed, we do not directly allow
tampering with the values v, d′ or leakage on d′ (note that v is entirely leaked to the adversary).
Nevertheless, as discussed in the introduction, since we allow full leakage on the addresses, the
adversary can use the tampering and leakage attacks on the memory to capture the attacks on
the instructions. We defer a rigorous treatment and analysis of such attacks to future work. In
this work, for simplicity of presentation we assume these instructions are not subject to direct
attacks.

4.2 Tamper and Leakage-Resilient (TLR) RAM

A tamper and leakage resilient (TLR) RAM compiler consists of two algorithms (CompMem,CompNext),
which transform a RAM program 〈Π, D〉 into another program 〈Π̂, D̂〉 as follows: On input
database D, CompMem initializes the memory and internal state of the compiled machine, and
generates the transformed database D̂; On input next instruction function Π, CompNext gener-
ates the next instruction function of the compiled machine.

Definition 4.4. A TLR compiler (CompMem,CompNext) is tamper and leakage simulatable
w.r.t. function families F ,G, if for every RAM next instruction function Π, and for any ppt
(non-uniform) adversary A there exists a ppt (non-uniform) simulator S such that for any
initial database D ∈ {0, 1}poly(k) we have

TamperExec(A,F ,G, 〈CompNext(Π),CompMem(D)〉) ≈ IdealExec(S, 〈Π, D〉)

where TamperExec and IdealExec are defined as follows:

TamperExec(A,F ,G, 〈CompNext(Π),CompMem(D)〉): The adversary A interacts with the
system 〈CompNext(Π),CompMem(D)〉 for arbitrarily many rounds of interactions where, in
each round:

1. The adversary can “tamper” by executing a Tamper(f) command against the system,
for some f ∈ F .

2. The adversary can “leak” by executing a Leak(g) command against the system, and
receiving g(D) in return.

3. The adversary requests a doNext(x) command to be executed by the system. Let I1, . . . , I`
be the instructions executed by doNext(x). If I` is of the form (stop, z) then output z is
returned to the adversary. Moreover, all memory addresses corresponding to instruc-
tions I1, . . . , I`−1 are returned to the adversary.

The output of the game consists of the output of the adversary A at the end of the interaction,
along with (1) all input-output pairs (x1, y1), (x2, y2), . . ., (2) all responses to leakage queries
`1, `2, . . . (3) all outputs of doNext(x1), doNext(x2),

IdealExec(S, 〈Π, D〉): The simulator interacts with the system 〈Π, D〉 for arbitrarily many
rounds of interaction where, in each round, it runs an Execute(x) query for some x ∈ {0, 1}u
and receives output (y, t). The output of the game consists of the output of the simulator S
at the end of the interaction, along with all of the execute-query inputs and outputs.

18

For simplicity of exposition, we assume henceforth that the next instruction function Π to
be compiled is the universal RAM next instruction function. In other words, we assume that
the program to be executed is stored in the initial database D.

4.3 Preliminary: Oblivious RAM (ORAM)

An ORAM compiler ORAM consists of two algorithms (oCompMem, oCompNext), which trans-
form a RAM program 〈Π, D〉 into another program 〈Π̃, D̃〉 as follows: On input database D,
CompMem initializes the memory and internal state of the compiled machine, and generates the
transformed database D̃; On input next instruction function Π, CompNext generates the next
instruction function of the compiled machine, Π̃.

Correctness. We require the following correctness property: For every choice of security
parameter k, every initial database D and every sequence of inputs x1, . . . , xp, where p = p(k)
is polynomial in k, we have that with probability 1− negl(k) over the coins of oCompMem,

(Execute1(x1), . . . ,Execute1(xp)) =
(

Ẽxecute1(x1), . . . , Ẽxecute1(xp)
)
,

where Execute1(x) denotes the first coordinate of the output of Execute(x) w.r.t. 〈Π, D〉 and

Ẽxecute1(x) denotes the first coordinate of the output of Execute(x) w.r.t. 〈oCompNext(Π), oCompMem(D)〉.

Security. Let ORAM = (oCompMem, oCompNext) be an ORAM complier and consider the
following experiment:

Experiment Exptoram
A (k, b):

1. The adversary A selects two initial databases D0, D1.

2. Set initial contents of memory of the RAM machine to D̃ := oCompMem(Db). Set the
initial state of the RAM machine to state := (start, ∗).

3. The adversary A and the challenger participate in the following procedure for an arbitrary
number of rounds:

• For x ∈ {0, 1}u, A submits a doNext(x) query.

• Execute the doNext(x) query w.r.t. 〈oCompNext(Π), D̃〉 and update the state of the
system. Let I1, . . . , I` be the instructions executed by the RAM machine. For each
j ∈ [`], if Ij is of the form (·, vj , ·), for some vj , output vj to A. Otherwise, output
vj = ⊥. Let v = v1, . . . , v` be the output obtained by A in the current round.

4. Finally, the adversary outputs a guess b′ ∈ {0, 1}. The experiment evaluates to 1 iff b′ = b.

Definition 4.5. An ORAM construction ORAM = (oCompMem, oCompNext) is access-pattern
hiding if for every ppt adversary A, the following probability, taken over the randomness of the
experiment and b ∈ {0, 1}, is negligible:∣∣∣∣Pr[Exptoram

A (k, b) = 1]− 1

2

∣∣∣∣ .

19

4.4 TLR-RAM Construction

Here we first give a high-level description of our construction. More detailed construction and
a theorem statement follow. The security proof will be given in next section.

High-level Description of Construction Let D be the initial database and let ORAM =
(oCompMem, oCompNext) be an ORAM compiler. Let NMCode = (enc,dec,update) be a
locally decodable and updatable code. We present the following construction TLR-RAM =
(CompMem,CompNext) of a tamper and leakage resilient RAM compiler. In order to make our
presentation more intuitive, instead of specifying the next message function CompNext(Π), we
specify the pseudocode for the doNext(x) instruction of the compiled machine. We note that
CompNext(Π) is implicitly defined by this description.

TLR-RAM takes as input an initial database D and a next instruction function Π and does
the following:

CompMem: On input security parameter k and initial database D, CompMem does:

• Compute D̃ ← oCompMem(D), and output D̂ ← enc(D̃).

• Initialize the ORAM state stateORAM := (start, ∗) and dORAM := 0r, where r = |dORAM|.
doNext(x): On input x, do the following until termination:

1. If dORAM = ⊥ then abort.

2. Compute (I, state′ORAM)← oCompNext(Π)(stateORAM, dORAM). Set stateORAM := state′ORAM.

3. If I = (wait) then set stateORAM := 0ρ and dORAM := 0r and terminate. Here ρ =
|stateORAM| and r = |dORAM|.

4. If I = (stop, z) then set stateORAM := (start, ∗), d := 0r and terminate with output z.

5. If I = (write, v, d′) then run updateD̂(v, d′).

6. If I = (read, v,⊥) then set dORAM := decD̂(v).

Detailed Description of Construction Let ORAM = (oCompMem, oCompNext) be an
ORAM compiler and let NMCode = (enc,dec,update) be a locally decodable and updatable
code. We view dec and update as RAM machines and denote by Πdec, Πupdate the correspond-
ing next message functions. We present the following tamper and leakage resilient RAM compiler
TLR-RAM = (CompMem,CompNext). Here, the parameters r = r(k), u = u(k), ρ = ρ(k) are
polynomials in the security parameter k that are implementation-dependent. The complier
TLR-RAM takes as input an initial database D and a next instruction function Π and does the
following:

CompMem: On input security parameter k and initial database D, CompMem does the follow-
ing:

• Run oCompMem to compute D̃ ← oCompMem(D),
and to initialize stateORAM := (start, ∗), and dORAM := 0r.

• Output D̂ ← enc(D̃).

• Initialize state
def
= stateORAM||statecode||mode := (start, ∗)||(start, ∗)||⊥

and d
def
= dcode||dORAM := 0r||0r.

20

CompNext: On input next instruction function Π, let Π̃ = oCompNext(Π) be the next in-
struction function of the ORAM compiled machine. CompNext(Π) is the next instruction
function of the TLR-RAM compiled machine. It takes as input (state, d) and does the
following:

• Parse state = stateORAM||statecode||mode. Here mode ∈ {UP, DEC,⊥}
• If dORAM = ⊥ then abort.

• If statecode = (start, ∗): Compute (IORAM, state′ORAM) := Π̃(stateORAM, dORAM).

1. If IORAM is of the form IORAM = (wait) then set I := (wait).
Set state := state′ORAM||statecode||mode.
Ouput (I, state).

2. If IORAM is of the form (stop, z) then set I := (stop, z).
Set state := state′ORAM||statecode||mode.
Ouput (I, state).

3. If IORAM is of the form (write, v, d′) then set statecode := (start, v, d′).
Set I := (read, 0,⊥) where (read, 0,⊥) denotes a dummy read.
Set state := stateORAM||state′code||UP.
Output (I, state).

4. If IORAM is of the form (read, v,⊥) then set statecode := (start, v).
Set I := (read, 0,⊥) where (read, 0,⊥) denotes a dummy read.
Set state := stateORAM||state′code||DEC.
Output (I, state).

• Otherwise if statecode 6= (start, ∗):
If mode = UP, compute (Icode, state′code) := Πupdate(statecode, dcode).

If mode = DEC, compute (Icode, state′code) := Πdec(statecode, dcode).

1. If Icode is of the form (stop, z) then set I := (read, 0,⊥), where (read, 0,⊥) denotes
a dummy read.
Set dORAM := z, set state′code := (start, ∗), set state := state′ORAM||state′code||⊥.
Output (I, state).

2. If Icode is of the form (read, v̂,⊥), set I := Icode.
Set state := state′ORAM||state′code||DEC.
Output (I, state).

3. If Icode is of the form (write, v̂, d̂′), set I := Icode.
Set state := state′ORAM||state′code||UP.
Output (I, state).
Upon execution of I, dcode will be set to D̂[v̂].

We are now ready to present the main theorem of this section:

Theorem 4.6. Assume ORAM = (oCompMem, oCompNext) is an ORAM compiler which is
access-pattern hiding and assume NMCode = (enc,dec,update) is a locally decodable and
updatable code which is continual non-malleable against F and leakage resilient against G. Then
TLR-RAM = (CompMem,CompNext) presented above is tamper and leakage simulatable w.r.t.
function families F ,G.

21

4.5 Security Analysis

In this section we prove Theorem 4.6. We begin by defining the simulator S. Let Scode be the
simulator guaranteed by the security of NMCode = (enc,dec,update).

For simplicity of exposition, we assume that for every x, given the runtime t of Execute(x)
with respect to 〈Π, D〉, the runtime of Execute(x) with respect to 〈oCompNext(Π), oCompMem(D)〉
is equal to p(t), p(·) is a fixed polynomial known to the simulator. This is indeed the case for
the instantiation of our compiler with known underlying building blocks.

Simulator S:

Setup: On input security parameter k, S does the following:

• Choose a dummy databaseD0, compute D̃ ← oCompMem(D0). Initialize stateORAM :=
(start, ∗), dORAM = 0r.

• Instantiate the adversary A and the NMCode simulator Scode.
• Initialize output variable out = ⊥ and counter c = 0.

Adversarial query (g, f, doNext(x)): If stateORAM = (start, ∗), set stateORAM = (start, x),
submit query Execute(x) to oracle, and receive (z, t). Set out = z and c = t.

Forward (g, f) to Scode. Upon receiving Scode’s output, (`, I, ~w), forward ` to A.

Case: I 6= [n]. Execute a doNext(x) instruction w.r.t. 〈oCompNext(Π), D̃〉. Let I1, . . . I˜̀
be the sequence of instructions executed by doNext(x). Recall that the first ˜̀1 in-
structions are reads, the next ˜̀2 instructions are writes, ˜̀1 + ˜̀

2 + 1 = ˜̀ and that˜̀, ˜̀1, ˜̀2 are public.

Let ~v = v1, . . . , v˜̀−1
be the vector of read/write locations corresponding to I1, . . . I˜̀.

For 1 ≤ i ≤ ˜̀1, do the following:

• If dORAM = ⊥ then abort.

• Output Sdec
vi to A, where Sdec

vi be the ordered set of memory access locations
corresponding to dec(vi). If vi ∈ I, set dORAM = ⊥.

For ˜̀1 + 1 ≤ i ≤ ˜̀1 + ˜̀2, S does the following:

• If dORAM = ⊥ then abort.

• Output Supdate
vi toA, where Supdate

vi be the ordered set of memory access locations
corresponding to update(vi). Play the part of the updater interacting with Scode
and submit index v to Scode.

Set c := c− 1− σ · (˜̀1 + ˜̀2), where σ is the number of instructions in a dec,update.
If c = 0, output out to A and set stateORAM = (start, ∗).

Case: I = [n]. Do the following until termination:

1. If dORAM = ⊥ then abort.

2. Compute (I, state′ORAM)← oCompNext(Π)(stateORAM, dORAM). Set stateORAM :=
state′ORAM.

3. If I = (wait) then set stateORAM := 0ρ, dORAM := 0r and terminate.

4. If I = (stop, z) then set stateORAM = (start, ∗), d := 0r, output z to A and
terminate.

22

5. If I = (read, v,⊥) then set dORAM = ~wv. Output Sdec
v to A.

6. If I = (write, v, d′) then do the following: Output Supdate
v to A. Play the part of

the updater interacting with Scode and submit index v to Scode.

Lemma 4.7. Assume ORAM = (oCompMem, oCompNext) and NMCode = (enc,dec,update)
are as in Theorem 4.6. Let Π be the universal RAM next instruction function. For any ppt
adversary A, and any initial database D ∈ {0, 1}poly(k) we have

TamperExec(A,F ,G, 〈CompNext(Π),CompMem(D)〉) ≈ IdealExec(S, 〈Π, D〉)

To prove Lemma 4.7 we consider the sequence of hybrids H0, H1, H1.5, H2, defined below.
We denote by outkA,Hi

, the output distribution of the adversary A on input security parameter
k in Hybrid Hi, for i ∈ {0, 1, 1.5, 2}.

Hybrid H0: This is the simulated experiment IdealExec(S, 〈Π, D〉).

Hybrid H1: This hybrid is the same as Hybrid H0 except for the following change is made
to the simulator’s algorithm: In the Setup stage, the real database D is used to compute
D̃ ← oCompMem(D) (instead of D̃ ← oCompMem(D0)).

Claim 4.8.
{outkA,H0

}k∈N
c
≈ {outkA,H1

}k∈N.

This follows from the security of the ORAM scheme ORAM = (oCompMem, oCompNext).
Details follow.

Proof. The only difference between the two Hybrids is that in Hybrid H0 when doNext(x) is
executed, the vector ~v = v1, . . . , v˜̀−1

is computed using the result of a doNext(x) instruction

w.r.t. 〈oCompNext(Π), D̃〉, where D̃ ← oCompMem(D0) (and D0 is the dummy database). On
the other hand, in Hybrid H1, the vector ~v = v1, . . . , v˜̀−1

is computed using the result of a

doNext(x) instruction w.r.t. 〈oCompNext(Π), D̃〉, where D̃ ← oCompMem(D) (and D is the real
initial database). Thus, a distinguisher for Hybrids H0 and H1 immediately yields a distinguisher
breaking the access pattern hiding property of ORAM = (oCompMem, oCompNext).

Hybrid H1.5: We consider the following modification of the Hybrid H1 experiment:
Upon a doNext(x) query submitted by the adversary A. If I 6= [n], execute the following

code: (otherwise, the experiment remains unchanged):

Do the following until termination:

1. If dORAM = ⊥ then abort.

2. Compute (I, state′ORAM)← oCompNext(Π)(stateORAM, dORAM). Set stateORAM := state′ORAM.

3. If I = (wait) then set stateORAM := 0ρ, dORAM := 0r and terminate.

4. If I = (stop, z) then set stateORAM := (start, ∗), d := 0r and terminate with output z.

5. If I = (read, v,⊥) then if v /∈ I, set dORAM = D̃[v]. Otherwise, set dORAM = ⊥. Let Sdec
v

be the ordered set of memory access locations corresponding to dec(v). Output Sdec
v to

A.

23

6. If I = (write, v, d′) then do the following: S plays the part of the updater interacting with
Scode and submits index v to Scode. Let Supdate

v be the ordered set of memory access
locations corresponding to update(v). Output Supdate

v to A.

Claim 4.9.
{outkA,H1

}k∈N ≡ {outkA,H1.5
}k∈N.

Proof. Intuitively, the difference between Hybrid H1 and H1.5 is that in H1 in each doNext query,
the memory locations ~v = v1, . . . , v˜̀−1

are pre-computed, whereas in H1.5, the memory locations
v1, . . . , v˜̀−1

are computed on the fly. In particular, in H1, the addresses ~v are computed assuming

that each instruction of the form (read, vi,⊥) sets dORAM to the correct value dORAM = D̃[vi].
On the other hand, in H1.5, dORAM may not be set to D̃[vi]. However, since we are in the case
where I 6= [n], the only way this can happen is if vi ∈ I, in which case dORAM is set to ⊥. But
now, if vi ∈ I, then dORAM is set to ⊥ in both H1 and H1.5 when the corresponding instruction
(read, vi,⊥) is simulated. Moreover, once dORAM is set to ⊥ then the execution immediately
aborts in both H1 and H1.5. Thus, the view of the adversary is identical in H1 and H1.5.

Hybrid H2: This is the real experiment TamperExec(A, F,G, 〈CompNext(Π),CompMem(D)〉).

Claim 4.10.
{outkA,H1

}k∈N
c
≈ {outkA,H2

}k∈N.

This follows from the security of the locally decodable and updatable code NMCode =
(enc,dec,update). Details follow.

Proof. We claim that Hybrid H1.5 can be perfectly simulated given the output of IdealS,U ,M ,
while Hybrid H2 can be perfectly simulated given the output of TamperLeakA′,U ,M , where
A′ = A and S = S and U is the following updater:

The Updater U :

• U keeps persistent state stateORAM which is initialized to (start, ∗) and dORAM which is
initialized to 0r.

• On input D̃, U does the following:

• If dORAM = ⊥, then U aborts.

• Otherwise, U computes (I, state′ORAM) := oCompNext(Π)(stateORAM, dORAM)

and sets stateORAM := state′ORAM.

• If I is of the form (read, v,⊥), then U sets dORAM = D̃[v] and outputs ⊥.

• If I is of the form (write, v, d), then U outputs (v, d).

• Otherwise, U outputs ⊥.

Thus, indistinguishability of hybrids H1.5 and H2 reduces to indistinguishability of IdealS,U ,M
and TamperLeakA′,U ,M . This concludes the proof of Claim 4.10.

24

Acknowledgement. We thank Yevgeniy Dodis for helpful discussions.

References

[1] Divesh Aggarwal, Yevgeniy Dodis, and Shachar Lovett. Non-malleable codes from additive
combinatorics. In STOC, 2014. http://eprint.iacr.org/2013/201. 1, 5, 16

[2] Dakshi Agrawal, Bruce Archambeault, Josyula R. Rao, and Pankaj Rohatgi. The EM
side-channel(s). In Burton S. Kaliski Jr., Çetin Kaya Koç, and Christof Paar, editors,
CHES 2002, volume 2523 of LNCS, pages 29–45. Springer, August 2002. 1

[3] Shashank Agrawal, Divya Gupta, Hemanta K. Maji, Omkant Pandey, and Manoj Prab-
hakaran. Explicit non-malleable codes resistant to permutations. In Cryptology ePrint
Archive, Report 2014/316, 2014. 1, 5, 16

[4] Mihir Bellare and Chanathip Namprempre. Authenticated encryption: Relations among
notions and analysis of the generic composition paradigm. In Tatsuaki Okamoto, editor,
ASIACRYPT 2000, volume 1976 of LNCS, pages 531–545. Springer, December 2000. 10

[5] Mihir Bellare and Phillip Rogaway. Encode-then-encipher encryption: How to exploit
nonces or redundancy in plaintexts for efficient cryptography. In Tatsuaki Okamoto, editor,
ASIACRYPT 2000, volume 1976 of LNCS, pages 317–330. Springer, December 2000. 10

[6] Eli Biham and Adi Shamir. Differential fault analysis of secret key cryptosystems. In
Burton S. Kaliski Jr., editor, CRYPTO’97, volume 1294 of LNCS, pages 513–525. Springer,
August 1997. 1

[7] Dan Boneh, Richard A. DeMillo, and Richard J. Lipton. On the importance of eliminating
errors in cryptographic computations. Journal of Cryptology, 14(2):101–119, 2001. 1

[8] Nishanth Chandran, Bhavana Kanukurthi, and Rafail Ostrovsky. Locally updatable and
locally decodable codes. In Yehuda Lindell, editor, TCC 2014, volume 8349 of LNCS, pages
489–514. Springer, February 2014. 1

[9] Mahdi Cheraghchi and Venkatesan Guruswami. Capacity of non-malleable codes. In Moni
Naor, editor, ITCS 2014, pages 155–168. ACM, January 2014. 1, 5, 16

[10] Mahdi Cheraghchi and Venkatesan Guruswami. Non-malleable coding against bit-wise and
split-state tampering. In Yehuda Lindell, editor, TCC 2014, volume 8349 of LNCS, pages
440–464. Springer, February 2014. 1, 5, 16

[11] Seung Geol Choi, Aggelos Kiayias, and Tal Malkin. BiTR: Built-in tamper resilience. In
Dong Hoon Lee and Xiaoyun Wang, editors, ASIACRYPT 2011, volume 7073 of LNCS,
pages 740–758. Springer, December 2011. 1, 5, 16

[12] Benny Chor, Eyal Kushilevitz, Oded Goldreich, and Madhu Sudan. Private information
retrieval. J. ACM, 45(6):965–981, 1998. 1

[13] Sandro Coretti, Ueli Maurer, Bjorn Tackmann, and Daniele Venturi. From single-bit to
multi-bit public-key encryption via non-malleable codes. In Cryptology ePrint Archive,
Report 2014/324, 2014. 1

25

http://eprint.iacr.org/2013/201

[14] Dana Dachman-Soled and Yael Tauman Kalai. Securing circuits against constant-rate
tampering. In Reihaneh Safavi-Naini and Ran Canetti, editors, CRYPTO 2012, volume
7417 of LNCS, pages 533–551. Springer, August 2012. 1, 5

[15] Dana Dachman-Soled and Yael Tauman Kalai. Securing circuits and protocols against
1/poly(k) tampering rate. In Yehuda Lindell, editor, TCC 2014, volume 8349 of LNCS,
pages 540–565. Springer, February 2014. 1, 5

[16] Ivan Damg̊ard, Sebastian Faust, Pratyay Mukherjee, and Daniele Venturi. Bounded tamper
resilience: How to go beyond the algebraic barrier. In Kazue Sako and Palash Sarkar, edi-
tors, ASIACRYPT 2013, Part II, volume 8270 of LNCS, pages 140–160. Springer, December
2013. 1

[17] Yevgeniy Dodis and Krzysztof Pietrzak. Leakage-resilient pseudorandom functions and
side-channel attacks on Feistel networks. In Tal Rabin, editor, CRYPTO 2010, volume
6223 of LNCS, pages 21–40. Springer, August 2010. 1, 5

[18] Alexandre Duc, Stefan Dziembowski, and Sebastian Faust. Unifying leakage models: From
probing attacks to noisy leakage. In Phong Q. Nguyen and Elisabeth Oswald, editors,
EUROCRYPT 2014, volume 8441 of LNCS, pages 423–440. Springer, May 2014. 1, 5

[19] Stefan Dziembowski and Sebastian Faust. Leakage-resilient cryptography from the inner-
product extractor. In Dong Hoon Lee and Xiaoyun Wang, editors, ASIACRYPT 2011,
volume 7073 of LNCS, pages 702–721. Springer, December 2011. 1, 5

[20] Stefan Dziembowski and Sebastian Faust. Leakage-resilient circuits without computational
assumptions. In Ronald Cramer, editor, TCC 2012, volume 7194 of LNCS, pages 230–247.
Springer, March 2012. 1, 5

[21] Stefan Dziembowski, Tomasz Kazana, and Maciej Obremski. Non-malleable codes from
two-source extractors. In Ran Canetti and Juan A. Garay, editors, CRYPTO 2013, Part
II, volume 8043 of LNCS, pages 239–257. Springer, August 2013. 1, 5, 16

[22] Stefan Dziembowski and Krzysztof Pietrzak. Leakage-resilient cryptography. In 49th FOCS,
pages 293–302. IEEE Computer Society Press, October 2008. 1, 5

[23] Stefan Dziembowski, Krzysztof Pietrzak, and Daniel Wichs. Non-malleable codes. In An-
drew Chi-Chih Yao, editor, ICS 2010, pages 434–452. Tsinghua University Press, January
2010. 1, 2, 5, 6, 16, 29

[24] Sebastian Faust, Pratyay Mukherjee, Jesper Buus Nielsen, and Daniele Venturi. Continuous
non-malleable codes. In Yehuda Lindell, editor, TCC 2014, volume 8349 of LNCS, pages
465–488. Springer, February 2014. 1, 5, 8, 16

[25] Sebastian Faust, Pratyay Mukherjee, Jesper Buus Nielsen, and Daniele Venturi. A tam-
per and leakage resilient random access machine. In Cryptology ePrint Archive, Report
2014/338, 2014. 5

[26] Sebastian Faust, Pratyay Mukherjee, Daniele Venturi, and Daniel Wichs. Efficient non-
malleable codes and key-derivation for poly-size tampering circuits. In Phong Q. Nguyen
and Elisabeth Oswald, editors, EUROCRYPT 2014, volume 8441 of LNCS, pages 111–128.
Springer, May 2014. 1, 5, 16

26

[27] Sebastian Faust, Krzysztof Pietrzak, and Daniele Venturi. Tamper-proof circuits: How
to trade leakage for tamper-resilience. In Luca Aceto, Monika Henzinger, and Jiri Sgall,
editors, ICALP 2011, Part I, volume 6755 of LNCS, pages 391–402. Springer, July 2011.
1, 5

[28] Sebastian Faust, Tal Rabin, Leonid Reyzin, Eran Tromer, and Vinod Vaikuntanathan.
Protecting circuits from leakage: the computationally-bounded and noisy cases. In Henri
Gilbert, editor, EUROCRYPT 2010, volume 6110 of LNCS, pages 135–156. Springer, May
2010. 1, 5

[29] Rosario Gennaro, Anna Lysyanskaya, Tal Malkin, Silvio Micali, and Tal Rabin. Algorithmic
tamper-proof (ATP) security: Theoretical foundations for security against hardware tam-
pering. In Moni Naor, editor, TCC 2004, volume 2951 of LNCS, pages 258–277. Springer,
February 2004. 1

[30] Oded Goldreich and Rafail Ostrovsky. Software protection and simulation on oblivious
rams. Journal of the ACM, 43(3):431–473, 1996. 4

[31] Shafi Goldwasser and Guy N. Rothblum. Securing computation against continuous leakage.
In Tal Rabin, editor, CRYPTO 2010, volume 6223 of LNCS, pages 59–79. Springer, August
2010. 1, 5

[32] Shafi Goldwasser and Guy N. Rothblum. How to compute in the presence of leakage. In
53rd FOCS, pages 31–40. IEEE Computer Society Press, October 2012. 1, 5

[33] J. Alex Halderman, Seth D. Schoen, Nadia Heninger, William Clarkson, William Paul,
Joseph A. Calandrino, Ariel J. Feldman, Jacob Appelbaum, and Edward W. Felten. Lest
we remember: Cold boot attacks on encryption keys. In USENIX Security Symposium,
pages 45–60, 2008. 1

[34] Yuval Ishai and Eyal Kushilevitz. On the hardness of information-theoretic multiparty
computation. In Christian Cachin and Jan Camenisch, editors, EUROCRYPT 2004, volume
3027 of LNCS, pages 439–455. Springer, May 2004. 1

[35] Yuval Ishai, Manoj Prabhakaran, Amit Sahai, and David Wagner. Private circuits II:
Keeping secrets in tamperable circuits. In Serge Vaudenay, editor, EUROCRYPT 2006,
volume 4004 of LNCS, pages 308–327. Springer, May / June 2006. 1, 5

[36] Yuval Ishai, Amit Sahai, and David Wagner. Private circuits: Securing hardware against
probing attacks. In Dan Boneh, editor, CRYPTO 2003, volume 2729 of LNCS, pages
463–481. Springer, August 2003. 1, 5

[37] Ali Juma and Yevgeniy Vahlis. Protecting cryptographic keys against continual leakage. In
Tal Rabin, editor, CRYPTO 2010, volume 6223 of LNCS, pages 41–58. Springer, August
2010. 1, 5

[38] Jonathan Katz and Luca Trevisan. On the efficiency of local decoding procedures for error-
correcting codes. In 32nd ACM STOC, pages 80–86. ACM Press, May 2000. 1

[39] Jonathan Katz and Moti Yung. Unforgeable encryption and chosen ciphertext secure modes
of operation. In Bruce Schneier, editor, FSE 2000, volume 1978 of LNCS, pages 284–299.
Springer, April 2000. 10

27

[40] Aggelos Kiayias and Yiannis Tselekounis. Tamper resilient circuits: The adversary at the
gates. In Kazue Sako and Palash Sarkar, editors, ASIACRYPT 2013, Part II, volume 8270
of LNCS, pages 161–180. Springer, December 2013. 1, 5

[41] Paul C. Kocher. Timing attacks on implementations of Diffie-Hellman, RSA, DSS, and
other systems. In Neal Koblitz, editor, CRYPTO’96, volume 1109 of LNCS, pages 104–113.
Springer, August 1996. 1

[42] Paul C. Kocher, Joshua Jaffe, and Benjamin Jun. Differential power analysis. In Michael J.
Wiener, editor, CRYPTO’99, volume 1666 of LNCS, pages 388–397. Springer, August 1999.
1

[43] David Lie, Chandramohan A. Thekkath, Mark Mitchell, Patrick Lincoln, Dan Boneh,
John C. Mitchell, and Mark Horowitz. Architectural support for copy and tamper resistant
software. In ASPLOS, pages 168–177, 2000. 5

[44] Feng-Hao Liu and Anna Lysyanskaya. Tamper and leakage resilience in the split-state
model. In Reihaneh Safavi-Naini and Ran Canetti, editors, CRYPTO 2012, volume 7417
of LNCS, pages 517–532. Springer, August 2012. 1, 3, 5, 6, 8, 16

[45] Silvio Micali and Leonid Reyzin. Physically observable cryptography (extended abstract).
In Moni Naor, editor, TCC 2004, volume 2951 of LNCS, pages 278–296. Springer, February
2004. 1, 5

[46] Krzysztof Pietrzak. A leakage-resilient mode of operation. In Antoine Joux, editor, EU-
ROCRYPT 2009, volume 5479 of LNCS, pages 462–482. Springer, April 2009. 1, 5

[47] Thomas Ristenpart, Eran Tromer, Hovav Shacham, and Stefan Savage. Hey, you, get off of
my cloud: exploring information leakage in third-party compute clouds. In Ehab Al-Shaer,
Somesh Jha, and Angelos D. Keromytis, editors, ACM CCS 09, pages 199–212. ACM Press,
November 2009. 1

[48] Guy N. Rothblum. How to compute under AC0 leakage without secure hardware. In
Reihaneh Safavi-Naini and Ran Canetti, editors, CRYPTO 2012, volume 7417 of LNCS,
pages 552–569. Springer, August 2012. 1, 5

[49] G. Edward Suh, Dwaine E. Clarke, Blaise Gassend, Marten van Dijk, and Srinivas Devadas.
AEGIS: architecture for tamper-evident and tamper-resistant processing. In Proceedings of
the 17th Annual International Conference on Supercomputing, ICS 2003, pages 160–171,
2003. 5

[50] Amit Vasudevan, Jonathan M. McCune, James Newsome, Adrian Perrig, and Leendert van
Doorn. CARMA: a hardware tamper-resistant isolated execution environment on commod-
ity x86 platforms. In Heung Youl Youm and Yoojae Won, editors, ASIACCS 12, pages
48–49. ACM Press, May 2012. 5

[51] Sergey Yekhanin. Locally decodable codes. Foundations and Trends in Theoretical Com-
puter Science, 6(3):139–255, 2012. 1

28

A Strong Non-malleability

Here we first recall the Strong Non-malleability notion originally defined by Dziembowski et
al. [23]. Then we define Strong Non-malleability against one-time, and continual attacks re-
spectively. We remark that our constructions in Section 3 can achieve the stronger notion of
non-malleability if the underlying non-malleable code is the stronger one. We defer the rigorous
analysis to the later version of this paper.

Definition A.1 (Strong Non-malleability [23]). Let k be the security parameter, F be some
family of functions. For each function f ∈ F , and m ∈ Σ, define the tampering experiment

StrongNMf
m

def
=

{
c← enc(m), c̃ := f(c), m̃ := dec(c̃)

Output : same∗ if c̃ = c, and m̃ otherwise.

}
The randomness of this experiment comes from the randomness of the encoding algorithm.

We say that a coding scheme (enc,dec) is strong non-malleable with respect to the function
family F if for any m,m′ ∈ Σ and for each f ∈ F , we have:

{StrongNMf
m}k∈N ≈ {StrongNMf

m′}k∈N
where ≈ can refer to statistical or computational indistinguishability.

One time security Strong Non-malleability against one-time physical attacks is defined as
follows.

Definition A.2 (Strong Non-malleability of Locally Decodable Codes). Let k be the security pa-
rameter, F be some family of functions. For each function f ∈ F , and M = (m1,m2, . . . ,mn) ∈
Σn, define the tampering experiment

StrongNMf
M

def
=

C ← enc(M), C̃ = f(C), m̃i = decC̃(i) for i ∈ [n].

If ∃ i such that m̃i 6= ⊥ & C̃ and C are not identical for all queries by dec(i),
then output: (m̃1, m̃2, . . . , m̃n).

Else, set m′i = same∗ if C and C̃ are identical for all queries of dec(i);
otherwise m′i = ⊥. Then output: (m′1,m

′
2, . . . ,m

′
n).

The randomness of this experiment comes from the randomness of the encoding and decoding
algorithms.

We say that a locally decodable coding scheme (enc,dec,update) is strong non-malleable
against the function class F if for any M,M ′ ∈ Σn and for any f ∈ F , we have:

{StrongNMf
M}k∈N ≈ {StrongNMf

M ′}k∈N
where ≈ can refer to statistical or computational indistinguishability.

Continual security Strong Non-malleability against continual physical attacks is defined as
follows.

Definition A.3 (Strong Continual Tampering and Leakage Experiment). Let k be the security
parameter, F ,G be some families of functions. Let (enc,dec,update) be an (n, n̂, p, q)-locally
decodable and updatable coding scheme with respect to Σ, Σ̂. Let U be an updater that takes

29

input a message M and outputs an index i ∈ [n] and m ∈ Σ. Then for any blocks of messages
M = (m1,m2, . . . ,mn) ∈ Σn, and any (non-uniform) adversary A, any updater U , define the
following experiment StrongTLA,U ,M :

• The challenger first computes an initial encoding C(1) ← enc(M).

• Then the following procedure repeats, at each round j, let C(j) be the current codeword and
M (j) be the underlying message:

– A sends either a tampering function f ∈ F and/or a leakage function g ∈ G to the
challenger.

– The challenger replaces the codeword with f(C(j)), or sends back a leakage `(j) =
g(C(j)).

– Then we define ~m(j) for the following two conditions:

∗ If there exists i such that decf(C(j))(i) 6= ⊥ and C(j) and f(C(j)) are not identical

for all queries from dec(i), then set ~m(j) = (decf(C(j))(1), . . . ,decf(C(j))(n)).

∗ Else, for i ∈ [n], let m′i = same∗ if f(C(j)) and C(j) are identical for all queries
of dec(i), otherwise m′i = ⊥. Then set ~m(j) = (m′1,m

′
2, . . . ,m

′
n).

– Then the updater sends (i(j),m) ← U(M (j)) to the challenger, and the challenger

runs updatef(C(j))(i(j),m) and sends the index i(j) to A.

– A may terminate the procedure at any point.

• Let t be the total number of rounds above. At the end, the experiment outputs(
`(1), `(2), . . . , `(t), ~m(1), . . . , ~m(t), i(1), . . . , i(t)

)
.

Definition A.4 (Strong Non-malleability and Leakage Resilience against Continual Attacks).
An (n, n̂, p, q)-locally decodable and updatable coding scheme with respect to Σ, Σ̂ is strong con-
tinual non-malleable against F and leakage resilient against G if for all ppt (non-uniform) ad-
versaries A, any ppt updater U , any messages M,M ′ ∈ Σn, the experiments StrongTLA,U ,M
and StrongTLA,U ,M ′ are (computationally) indistinguishable.

30

	Introduction
	Techniques
	Related Work

	Locally Decodable and Updatable Non-Malleable Codes
	Preliminary
	New Definitions – Codes with Local Properties

	Our Constructions
	Preliminary: Symmetric Encryption
	A First Attempt – One-time Security
	Achieving Security against Continual Attacks
	Instantiations

	Tamper and Leakage Resilient RAM
	Random Access Machines
	Tamper and Leakage-Resilient (TLR) RAM
	Preliminary: Oblivious RAM (ORAM)
	TLR-RAM Construction
	Security Analysis

	Strong Non-malleability

