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Abstract. Streebog is a new Russian hash function standard. It follows
the HAIFA framework as domain extension algorithm and claims to resist
recent generic second-preimage attacks with long messages. However, we
demonstrate in this article that the specific instantiation of the HAIFA
framework used in Streebog makes it weak against such attacks. More
precisely, we observe that Streebog makes a rather poor usage of the
HAIFA counter input in the compression function, which allows to con-
struct second-preimages on the full Streebog-512 with a complexity as
low as n× 2n/2 (namely 2266) compression function evaluations for long
messages. This complexity has to be compared with the expected 2512

computations bound that an ideal hash function should provide. Our
work is a good example that one must be careful when using a design
framework for which not all instances are secure. HAIFA helps designers
to build a secure hash function, but one should pay attention to the way
the counter is handled inside the compression function.

Key words: Streebog, cryptanalysis, second-preimage attack, diamond
structure, expandable message, HAIFA.

1 Introduction

Hash functions are among the most fundamental primitives in modern cryptogra-
phy. Informally, a cryptographic hash function maps an arbitrarily long message
into a short random looking digest, which acts as the fingerprint of the original
message. As for any cryptographic primitive, one expects some security properties
to be fulfilled and in the case of hash functions we can point to three classical
notions:

• Collision Resistance: it should be computationally infeasible for an adver-
sary to find a pair of distinct messages that have the same hash digest.

• Second-Preimage Resistance: for any given message M , it should be
computationally infeasible for an adversary to find a distinct message M ′

that leads to the same hash digest than M .



• Preimage Resistance: for any given hash digest h, it should be computa-
tionally infeasible for an adversary to find a message M that leads to the
hash digest h.

By “computationally infeasible”, we mean that an attacker should not be able
to break that property with less than a certain number of computations that
depends on n, the bit length of the hash digest. More precisely, we expect that
the best attacks on a cryptographic hash function are generic attacks. In the
case of an ideal hash function, one expects to find a (second)-preimage only after
trying about 2n distinct messages, and to find a collision only after trying about
2n/2 distinct messages (due to the birthday paradox).

A cryptographic hash function is commonly built by iterating a fixed input-
length function called compression function in order to handle arbitrarily long
messages, and the iteration algorithm is referred to as domain extension. In this
article, we mainly discuss the domain extension schemes for cryptographic hash
functions, and consider the compression function as an ideal component.

Generic attacks. The well-known Merkle-Damg̊ard scheme [13, 26] has been
the most popular domain extension scheme in order to build a hash function, e.g.,
MD5, SHA-1 and SHA-2 are built upon such design strategy. However, since 2004,
several weaknesses of Merkle-Damg̊ard scheme have been discovered. In particular,
Kelsey and Schneier published a generic second-preimage attack for long messages
against the Merkle-Damg̊ard scheme [23] in 2005. The attack complexity is roughly
2n−k compression function calls if the original given message is 2k-block long,
with k ≤ n/2. Later, Andreeva et al. gave an alternative attack using a diamond
structure [3]. Their attack also require 2n−k compression function calls if the
original given message is 2k-block long, but only for k ≤ n/3. On the other hand,
it is applicable to a wider range of designs; in particular it can accommodate
a small dithering input in the compression function. It also gives some more
freedom to the adversary: as mentioned in [3], this variant allows “the attacker to
leave most of the target message intact in the second preimage, or to arbitrarily
choose the contents of roughly the first half of the second preimage, while leaving
the remainder identical to the target message.”

Therefore, regardless of how the compression function is designed, a Merkle-
Damg̊ard hash function can simply not achieve the security of 2n with respect to
second-preimage resistance. Consequently, the research community designed new
domain extension schemes in order to overcome the inherent weaknesses of the
original Merkle-Damg̊ard construction. In their original second-preimage attack,
Kelsey and Schneier already suggest this approach, and mention that “XORing
in a monotomic counter as part of the round function would resist the attacks”.
Later, Biham and Dunkelman proposed the HAIFA domain extension scheme [7],
which became quite popular. The main feature of HAIFA is that it adds a counter
(which corresponds to the number of previously hashed message bits) as an extra
input parameter to the compression function during the iteration process, in order
to make each compression function call different. On the one hand, this is widely
believed to provide resistance against second-preimage attacks, and this can be



proved under strong randomness assumptions for the compression function [10].
On the other hand, this means the compression function must accept an extra
input, which must be processed securely to avoid security issues. In particular,
compression function attacks can take advantage of this input [4, 9, 16, 19], even
though the effect on the iterated function is not obvious. Recently, many new
dedicated hash functions have been designed following the HAIFA framework,
including some SHA-3 candidates (BLAKE [5], ECHO [6], Shavite-3 [8], Shabal [12],
Skein [14]), as well as Streebog, which has been standardized by the Russian
government as GOST R 34.11-2012 [27] and by IETF as RFC 6896 [20].

Our contributions. In this article, we focus on the security of Streebog

hash function with respect to the second-preimage resistance. According to the
designers, Streebog is based on the HAIFA framework, and is explicitly claimed
to resist second-preimage attacks with long message [17,30]3.

While we are not aware of any generic second-preimage attack on the HAIFA
framework, we emphasize that HAIFA acts as a generic framework, without
explicitly specifying how the counter should be involved in the compression
function computation. On the other hand, Streebog, as an instantiation of the
HAIFA framework, has fully specified the way how the counter is used inside the
compression function. This instantiation is quite provocative as the counter is
simply XORed to the internal state variable of the compression function. Thus,
it is necessary to evaluate whether this simple approach is sound or not (at least
with respect to the second-preimage resistance). This analysis will also shed some
light on the statement of Kelsey and Schneier that “XORing in a monotomic
counter” is sufficient to avoid those attacks.

Unfortunately, we show in this article that Streebog’s method to incorporate
the counter does not strengthen its security with respect to second-preimage
resistance. More precisely, we observe that during the sequential iteration of the
compression function, the counter injection at block i interacts with the counter
injection at next block i+1. The iteration of the compression function in Streebog

can then be transformed into an equivalent form, for which a counter-independent
function is used multiple times during the hashing process. This behavior reduces
to almost zero the extra security brought by the HAIFA framework over the
regular Merkle-Damg̊ard construction. Thanks to our findings, we describe two
second-preimage attacks on the full Streebog-512. In Section 4, we give an
attack using a diamond structure, similar to the attack of [3]. It requires about
2342 compression function evaluations for long messages with at least 2179 blocks.
In Section 5, we give attack using an expandable message, similar to the attack
of [23]. It requires only 2266 compression function evaluations for long messages
with at least 2259 blocks. For short messages of 2x blocks, the first attack gives a
complexity of about 2x · 2512−x when x < 179, while the second attack gives a

3 These documents also claim that Streebog is resistant to the herding attack from
Kerlsey and Kohno [22], but it is well known that this attack is applicable to HAIFA
if no salt is used [7].



complexity of about 2523−x when x < 259. Note that this increases linearly with
the decrease of the message block length (ignoring the logarithmic factor).

The rest of the article is organized as follows. In Section 2, we provide a
description of the Streebog hash function, and then discuss our main observation
on the usage of the counter value in Section 3. We detail how this observation
can be used in order to mount second-preimage attacks of the full Streebog-512
hash function in Section 4 (using a diamond structure), and in Section 5 (using
an expandable message). Finally, we draw conclusions in Section 6.

2 Specifications of Streebog

2.1 Domain extension of Streebog

Streebogis a family of two hash functions, Streebog-256 and Streebog-512

that has hash output sizes 256 and 512 bits respectively [20,27]. In this article,
we only consider the large version Streebog-512 and we simply refer to it as
Streebog.

During the computation process, Streebog updates the internal state h as
well as two other internal variables: Σ that denotes the checksum of the message
blocks already processed, and the counter N that refers to the number of already
hashed bits. Both the message block size and the intermediate hash variable
size are 512 bits. The dedicated domain extension consists of three stages that
we describe below (see also Figure 1). Let M be the input message, and we
denote |M | its bit length. In the rest of the article, we also denote hi the internal
state variable h after the i-th application of the compression function g, which is
defined in more details in Section 2.2.

Stage 1. This phase initializes the hash state. The three variables Σ, N and
h are assigned to 0, 0 and IV respectively, where IV refers to the initialization
vector of Streebog, and has been publicly defined by the designers.

Stage 2. The input message M is divided into 512-bit blocks m1||m2|| · · · ||mt,

where t =
⌈
|M |
512

⌉
. The block mi, 1 ≤ i ≤ t, is processed according to the following

operations:

hi ←−g(N,hi−1,mi); N ←−N + 512; Σ ←−Σ +mi.

Stage 3. Pad the last block with 10 · · · 0 so that it becomes full, and we denote
this padded block m. Then, process this padded last block with:

ht+1 ←−g(N,ht,m); N ←−N + (|M | mod 512); Σ ←−Σ +m.

After all the message blocks have been processed, two extra compression
function calls are applied:

ht+2 ←−g(0, ht+1, |M |); ht+3 ←−g(0, ht+2, Σ).
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Figure 1: The domain extension algorithm of Streebog.

Finally, ht+3 is the hash digest for Streebog-512. In the case of Streebog-256,
the 256 MSBs of ht+3 are outputted as hash digest.

2.2 The compression function of Streebog

As described in the introduction, the designers of Streebog have chosen to adopt
the HAIFA model in the design of the compression function g. This framework
has been initially introduced to differentiate the successive applications of the
compression function calls by adding a counter as additional input parameter.
Here, we mainly focus on how the counter N is used in the compression function
g(N,hi−1,mi), which is described in Figure 2. Particularly, we emphasize that
f is a deterministic function independent of the counter N . Since the detailed
algorithm of f is not related to our attack, we omit its description in this
paper, and refer the interested reader to the original document [20, 27]. Yet
we would like to point out that f shares high similarity with the compression
function of Whirlpool hash function [28], which leads to the analysis results on
Streebog [1, 2, 31] that share similarity with the attacks on Whirlpool [25,29].

For the sake of simplicity, we consider that the counter value equals the
number of compression calls rather than the number of processed bits. Practically,
this only consists in performing a right-shift operations of 9 bit positions on the
counter value. This simplification does not change any of the results described in
this article, while easing the reading of the technical contents.

3 Our observation

In this section, we propose an equivalent representation of the domain extension
algorithm of Streebog, which we use in the next section to launch a second-
preimage attack on the full hash function.

First of all, we describe this equivalent description of the compression function,
which is depicted in Figure 3. The counter variable N coming from the HAIFA
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Figure 2: The compression function g(N,hi−1,mi) of Streebog produces the new
chaining variable hi.

design is simply XORed to the internal state hi−1 prior to the application of the
function f (but after the feed-forward branching, see Figure 2), which makes it
possible to linearly shift the addition before and after the feed-forward in the
original compression function. Formally, we have the following equivalence:

hi =hi−1 ⊕ f(hi−1 ⊕ i,mi) ⇐⇒
{
hi = F (hi−1 ⊕ i,mi)⊕ i,
F (x,mi) = f(x,mi)⊕ x.

Note that the counter value i is now XORed to both the input hash variable
and the output hash variable of F (see Figure 3), while F itself is a deterministic
function which is independent of the counter parameter i.

i i

hi−1

mi

hif

F

Figure 3: An equivalent representation of Streebog’s compression function: the internal
function F has been made independent of the counter value.

We now pay attention to the sequential iteration of the above equivalent
compression function in Stage 2 of the domain extension. For the sake of simplicity,
we detail here the case of two consecutive blocks (see Figure 4).

i i
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i+ 1 i+ 1mi+1
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F

Figure 4: Two consecutive compression function calls in the equivalent representation:
the counter addition in between the two calls can be combined and controlled.



As we can see, during the end of the i-th message block computation until
the beginning of the (i+ 1)-th message block computation, the output of F is
updated twice by XORing consecutively the counter values i and i+ 1. We define

∆(i)
def
= i⊕ (i+ 1),

F∆(i)(X,Y )
def
= F (X,Y )⊕∆(i).

From this observation, we get yet another equivalent representation of the
consecutive compression function iterations during Stage 2 of Streebog, as
shown in Figure 5.

i⊕(i+1)

F

i i i+ 1

hi

F∆(i)

(i+1)⊕(i+2)

F

i+ 1 i+ 2

hi+2

F∆(i+1)

Figure 5: Two consecutive compression function blocks in the equivalent representation.

Next, we investigate the relation between the functions F∆(i), 1 ≤ i ≤ t. In
the most simple case, we can easily see that ∆(i) = i⊕ (i+ 1) = 1 always holds
as long as i is an even integer. Consequently, the very same function F1 is used
every even integer index during the iterations in Figure 5. We list the first values
of ∆(i) in Table 1, and one can see that there is a lot of structure: sequences
of length 2s − 1 seem to repeat every 2s steps. More formally, we compare the
functions F∆(i) and F∆(i+2s) for any 0 ≤ i < 2s − 1, where s can be any positive
integer smaller than 512. Let 〈i〉 denote the s-bit binary representation of that
integer i. We have:

∆(i) = 〈i〉 ⊕ 〈i + 1〉
∆(i+ 2s) = (1||〈i〉)⊕ (1||〈i + 1〉) = 〈i〉 ⊕ 〈i + 1〉.

Thus, we conclude that F∆(i) and F∆(i+2s) are the same function for any 0 ≤ i <
2s − 1. By extending this simple reasoning, we can generalize and demonstrate
that F∆(i) and F∆(i+j×2s) are the same function for any 0 ≤ i < 2s − 1 and any
integer j. This is illustrated in Figure 6.

Table 1: First values of ∆(i).

i: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
∆(i): 1 3 1 7 1 3 1 15 1 3 1 7 1 3 1 31 1 3 1 7 1 3 1 15
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Figure 6: Functions F∆(i) and F∆(j×2s+i) are the same

Finally, we present an equivalent representation of the sequential iteration
in Stage 2 of the domain extension of Streebog in Figure 7, where Fi denotes
the function for F∆(j×2s+i) with 0 ≤ i ≤ 2s − 2, and Gj denotes the functions

F∆(j×2s−1), where j is any integer. Let l be
⌊
t
2s

⌋
and p be the reminder of

t mod 2s.

F0 F1
. . . F2s−2 G1IV

0

...
...

...
...

F0 F1
. . . F2s−2 Gl

F0 F1
. . . Fp ht

t+ 1

F2s−2 ◦ · · ·F1 ◦ F0

Figure 7: The equivalent representation of Stage 2

4 Second-preimage attack on full Streebog with a
diamond

Based on the equivalent description of the Stage 2 computation of Streebog
presented in the previous section, we now describe a second-preimage attack on
the full Streebog-512 hash function with time complexity equivalent to 2342

compression function evaluations for an original message of at least 2179 blocks.
Our main observation provides a way to remove the security benefits brought

by the counter of the HAIFA design in the Streebog hash function. This is due to
a poor usage of this counter, which allows an adversary to reuse previously known
second-preimage techniques on the classical Merkle-Darmg̊ard construction. In
particular, we can use the diamond structure introduced by Kelsey and Kohno [22]
on the function F2s−2 ◦ · · ·F1 ◦ F0, which is reused several times. Indeed, this



technique allows to construct a large multicollision set of 2d d-block messages, all
hashing to a single chaining variable h�. This is similar to the second-preimage
attack on dithered hash functions by Andreeva et al. [3].

We first give in Section 4.1 a detailed explanation concerning the construction
of this structure with 2(n+d)/2 computations, and we later describe in Section 4.2
how to use it inside a second-preimage attack for the full Streebog-512.

4.1 The diamond structure

As depicted in Figure 8, a 2d-diamond construction refers to a complete binary
tree of depth d, i.e., the distance from the leaves to the root is d. There are
exactly 2d−l nodes at level l, for 0 ≤ l ≤ d, where l = 0 refers to the leaf level
and l = d to the root level. All nodes except the leaves have two children from
lower level. In [22], Kelsey and Kohno introduced this structure to launch herding
attacks. In this diamond, a node refers to a chaining value, and an edge represents
a message connecting one chaining value to another.

h�

h0
1

m0
1

h1
1

m1
1

22s−1

F2s−2F2s−3◦···◦F1F0

Figure 8: The diamond structure of depth 2s − 1 used in our second-preimage attack.

Given the leaves, i.e., 2d chaining values at level 0, one can construct the
diamond in 2(n+d)/2 compression function evaluations. The construction algorithm
was initially proposed by Kelsey and Kohno [22] and later refined by Kortelainen
and Kortelainen [24] and verified in [18]. The algorithm works level by level
recursively and independently. Below in Algorithm 1, we show how the next level
of 2d−1 chaining values are computed given the current level of 2d nodes and
compression function f = F0 as input. The output Lout of the current level is



then fed into the algorithm as input Lin for next level, until root is reached. The
overall complexity has been estimated as 2(n+d)/2 in [24].

Algorithm 1 Construction of one level of a diamond

Input: input chaining value list Lin of size 2d

Input: compression function f
Output: next layer chaining values list Lout of size 2d−1

1: initialize an empty hash table T , a message list LM .
2: while Lin is not empty do
3: pick random message block M , add to LM .
4: for all hin ∈ Lin do
5: evaluate hout = f(hin,M)
6: if T [hout] is not empty then
7: fetch the pair (h′in,M

′) in entry T [hout]
8: add hout to Lout, along with (hin,M), (h′in,M

′) as the connecting edges.
9: remove f(hin,m) and f(h′in,m) from T for all m ∈ LM .

10: remove hin and h′in from Lin.
11: else
12: add (hin,M) to T [hout].

4.2 Details of the attack

At this point, we are able to build a diamond structure, and we would like
to use it for a second-preimage attack. An overview of our attack is given in
Figure 9, where one can see that we use d = 2s − 1 in order to fully control the
effect of the counter. The diamond structure is constructed with the function
F2s−1 ◦ · · ·F1 ◦ F0. Then, as in the original second-preimage attack using the
diamond structure, we use a single message block m↘� to connect the root chaining
value h� to the known message we are attacking. The connection is done after the
next F function, but before the addition of the counter, i.e. we match of set of
values {F (h�,m) |m← $}, and {hi ⊕ i | i ≡ 0 mod 2s}. If the original message
m consists of t 2s-bit blocks, we have l =

⌊
t
2s

⌋
possible connecting points, meaning

that we expect to pick about 2n/l random message blocks m↘� before hitting a
known point h′�.

This point of connection gives the value l′ × 2s − 1 of the counter N used in
Streebog at that position. Once we have found the 1-block connecting message
m↘� at the end of the diamond structure, we need to connect one of the 2d leaves
of the diamond structure to the IV of the hash function.

Before finding a valid second-preimage, there are two additional points that we
need to consider. First, the second-preimage needs to have the exact same length
|M | as the first message since Streebog processes the length of the message at
the end of the hashing process. Second, the additive checksum computed over
the new blocks of the second-preimage needs to match the targeted one Σ of the
original message.
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Figure 9: Overview of the second-preimage attack.

In order to overcome both of these two points, we first construct a 2512-
multicollision (with a technique similar to the one from Joux [21]) over the first
2 × 512 = 1024 message blocks so as to handle the checksum issue. This step
can be performed efficiently with 512× 2n/2 computations using the technique
described in [15]. The idea is that, at each step i of the multicollision search, we
compute two sets of 2-block messages: {(Ai)||(−Ai)}, for 2n/2 random choices
of Ai, and {(Bi + 2i)||(−Bi)}, for 2n/2 random choices of Bi, in order to find a
collision between the two sets.

Then, starting from the IV , we reach a chaining value h̃, such that we can
find a 1024-block message that verifies any given additive checksum value σ.
Indeed, the binary decomposition of σ gives precisely the path to follow (and
incidentally the message blocks to use) in the multicollision graph we just built
in order to reach σ.

We would like now to match the correct message length |M |. For that task,
we first evaluate the number of blocks already fixed by the attack. The diamond
uses d = 2s − 1 blocks, the multicollision uses 1024 blocks, and we use one block
for m↗� to connect to h′� in the original message chain. After the collision on
h′�, we use the same values as in the original message, such that we want to use
exactly l′ × 2s blocks between the IV and h′�. We use an additional message

block m↗� to connect to one leaf of the diamond, so that in total there are
L = l′ × 2s − 1024− 1− 2s − 1 blocks left between h̃ and h̃′. We pick random
values for all those blocks, obtain the value of h̃′, and then pick about 2n−d

random blocks m↗� to hit one of the 2d leaves of the diamond.

Finally, we compute the reduced checksum value σ of all the message blocks
except the 1024 first ones, and we choose the correct 1024 message blocks in the
graph so as to match the local checksum Σ − σ. At this point, the attack is over:
all the message blocks are fixed, and the second-preimage is constructed.

Overall, the total complexity of this attack requires 2(n+d)/2 computations to
construct the diamond, 2n/l computations to connect the root of the diamond
to the original message chain, and 512 × 2n/2 computations for the Joux’s



multicollision. The time complexity

512× 2n/2 + 2n−d + 2(n+d)/2 + 2n−log2(l)

can be minimized by fixing d = n/3 and l ≥ 2n/3, which reaches an overall
time complexity of about 22n/3 computations for the second-preimage attack.
With the parameters of Streebog-512, n = 512 gives the integer value s = 8
and d = n/3, and a total time complexity equivalent to about 2342 compression
function evaluations. We note that our attack imposes a certain length on the
original message as n− log2(l) ≤ 341 imposes l ≥ 2171, which constraints M to
have at least 2171+8 = 2179 message blocks.

For shorter messages with 2x blocks and x < 179, the complexity is mainly
dominated by the complexity of linking IV to one leaf node of the diamond
structure, which is 2n−d, and the complexity of linking h� to h′�, which is
2n−x+dlog2(d)e. Let x = d, and we get the complexity is upper bounded by
2x ·2n−x. Thus the complexity increases linearly with the decrease of the message
block length (ignoring logarithmic factors).

5 Second-preimage attack on full Streebog with an
expandable message

The equivalent description of Streebog given in the previous sections can also be
used to mount a variant of the attack of Kelsey and Schneier using an expandable
message [23]. This gives a second-preimage attack on the full Streebog-512 hash
function with time complexity equivalent to 2266 compression function calls for
an original message of at least 2259 blocks.

We first give in Section 5.1 a detailed explanation concerning the construction
of this structure with n/2×2n/2 computations, and we later describe in Section 5.2
how to use it inside a second-preimage attack for the full Streebog-512.

5.1 The expandable message

In order to build an expandable message, we use the technique of [23], i.e. we
build a multicollision where the messages in each colliding pair have a different
length, as shown by Algorithm 2. If we have colliding pairs with length (1, 2k + 1),
for 0 ≤ k < t, this implicitly defines a set of 2t messages with length in the range
[t, 2t + t− 1], that all reach the same final chaining value x∗. More precisely, one
can build a message of length t+ L using the binary expression of L to select a
message in each pair.
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In a second-preimage attack, we hash random blocks starting from x∗ until we
find a link to one of the intermediate values reached when hashing the challenge
message. This gives the required length for the expandable message, and we build
the second preimage using the expandable message, the linking block, and the
end of the challenge message.

Algorithm 2 Construction of an expandable message (Merkle-Damg̊ard)

Input: Initial chaining value x
Input: Compression function f
Output: Message pairs (mi,m

′
i), final chaining value x

1: for 0 ≤ i < n/2 do
2: Initialize an empty hash table T
3: for 0 ≤ r < 2n/2 do
4: T [f(x, r)]← r

5: y ← x
6: for 0 ≤ j < 2i do
7: y ← f(y, 0)

8: repeat r ← $
9: until T [f(y, r)] not empty

10: mi ← [0]2
i

‖r
11: m′i ← T [f(y, r)]
12: x← f(y, r)

However, this does not work for a HAIFA compression function: depending
on which message is selected in the pair k (mk or m′k), the message length before
the following block will be different, and the counter will have a different value.
Therefore, the collision (mk−1,m′k−1) will only be valid in one case.

In the case, of Streebog, the weak use of the counter makes this attack still
possible thanks to the equivalent representation of Section 3. Indeed, the sequence
∆(i) has a lot of regularity and repetitions (as seen in Table 1), and with a
careful construction, we can ensure that the message pairs (mi,m

′
i) are only used

at positions with same sequences of ∆(i). More precisely, we must build pairs
with large difference first, and use differences that are powers of two, while more
general constructions can be used for plain Merkle-Damg̊ard. We must also stop
the construction a few steps before reaching a difference of 1 (as explained later,
the smallest difference is O(n)). This means that we can only use a fraction of
the intermediate states reached by the challenge message.

In the following, we call an expandable message that can reach lengths between
a and b by increment of c an (a, b, c)-expandable message. Let us assume we have
built an (l, l + L, 2i)-expandable message for Streebog, with l < 2i−1 − 1. Since
l < 2i−1, we have ∆(l+x) = ∆(l+x+j ·2i), for all 0 ≤ x < 2i−l−1 and j ≥ 0. In
particular, if we append a new message pair (m,m′) with |m| = 2i−1 + 1, |m′| = 1
to the expandable message, the sequence of ∆(i) used for the messages will be
same for every choice of the (l, l+L, 2i)-expandable message. This allows to extend



the (l, l+L, 2i)-expandable message into a (l+1, l+L+1+2i−1, 2i−1)-expandable
message. If we iterate this construction, starting from a single message of length l
and a maximal increment of 2t, we can build a (l+ t− s, l+ t− s+ 2t+1− 2s, 2s)-
expandable message for Streebog, assuming that l + t− s < 2s − 1.

IV 1 3 1 7 1 3 1 15 1 3 1 7 1 3 1 . . .31

m′3

m3

m′2

m2

m′2

m2x3 x3x2 x2 x2 x2

m′3‖m′2
m′3‖m2

m3‖m′2
m3‖m2

Figure 10: Construction of a (2, 14, 4)-expandable message for Streebog. Note that
m2 and m′2 have the same ∆ indices in both positions, and the ∆ for the block after
m′3‖m′2, m′3‖m2, m3‖m′2, or m3‖m2 is the same (here, ∆ = 1).

5.2 Details of the attack

The second preimage attack on full Streebog-512 uses an initial multicollision
with 1024 blocks in order to adjust the checksum, like the attack of Section 4. Then,
we build the expandable message starting for the final value of the multicollision.
With the parameters of Streebog-512, we use l = 1024, s = 11, t = 258,
i.e. we build a (1271, 2259 − 777, 2048)-expandable message. After building the
expandable message, the attack mostly follows the procedure given by Kelsey
and Schenier. An overview of our attack is given in Figure 11.

We first use a message block m∗ to connect the final chaining value h∗ to
the known message we are attacking. More precisely, if the original message m
consists of t 2s-bit blocks, we have l =

⌊
t
2s

⌋
possible connecting points, meaning

that we expect to pick about 2n/l random message blocks m∗ before hitting a
known point h′∗. With the parameters used for Streebog-512, we use connecting
points4 with i ≡ 1272 mod 2048. This point of connection gives the value of the
counter N used in Streebog at that position, and the length L = N − 1024− 1
required for the expandable message. In order to build the second preimage, we
select the message with the correct length L in the expandable message, and we
select a message in the initial multicollision to adjust the checksum.

Overall, the attack requires about 512 × 2n/2 computations for the Joux’s
multicollision, 256× 2n/2 for the expandable message, and 2n/l computations to

4 This correspond to the set of positions such that i+1 can be reached by a (1271, 2259−
777, 2048)-expandable message
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Figure 11: Overview of the second-preimage attack.

connect the end of the expandable message to the original message chain. The
time complexity

768× 2n/2 + 2n/l

can be minimized with l > 2n/2/n, and reaches an overall time complexity in
the order of n · 2n/2 computations for the second-preimage attack. With the
parameters of Streebog-512, we have n = 512 and s = 11, and a total time
complexity equivalent to about 2266 compression function evaluations, if the
message has more than 2259 blocks (so that 2n/l ≤ 256× 2n/2).

6 Open discussion and conclusion

In this article, we have studied the security of the Russian hash function standard
Streebog. We showed that an attacker can find second-preimages much faster
than what is expected from an ideal hash function, even though Streebog uses
HAIFA as the domain extension algorithm. Our main observation is that the
counter is not very well handled in Streebog and this enables the attacker to apply
a more complex variation of the now classical generic second-preimage attacks.
As a result, Streebog is only marginally stronger than a plain Merkle-Damg̊ad
iteration.

This analysis also contradicts the remark by Kelsey and Schneier that “XOR-
ing in a monotomic counter” would be sufficient to avoid the second-preimage
attacks with long messages: there is at least one way to XOR the counter that
do not provide any extra security.

Our work is a good example why one should be careful when using a design
framework: problems might arise if bad instances in that framework exist. In
the particular case of HAIFA, it is crucial to make sure the counter is properly
handled. We have the intuition that the security property that a compression
function in HAIFA has to follow with regards to the counter input is quite strong
(even if the counter might controlled by the adversary, he must not be able to
distinguish the output). Clearly, Streebog would not meet that criteria (inserting



a difference δ in both the counter and the chaining variable input, one always get
δ on the output). It would be interesting to study what is exactly the minimal
security assumption that is required on the counter input for HAIFA in order to
ensure only secure instances.
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