
Extending Oblivious Transfer Efficiently
or - How to get active security with constant

cryptographic overhead

Enrique Larraia

Dept. Computer Science, University of Bristol, United Kingdom
cseldv@bristol.ac.uk

Abstract. On top of the passively secure extension protocol of
[IKNP03] we build a new construction secure against active adversaries.
We can replace the invocation of the hash function that is used to check
the receiver is well-behaved with the XOR of bit strings. This is pos-
sible by applying a cut-and-choose technique on the length of the bit
strings that the receiver sends in the reversed OT. We also improve on
the number of seeds required for the extension, both asymptotically and
practically. Moreover, the protocol used to test receiver’s behaviour en-
joys unconditional security.

1 Introduction

Oblivious Transfer (OT), concurrently introduced by Rabin [Rab81] and Wiesner
[Wie83] (the latter under the name of multiplexing) is a two-party protocol
between a sender Alice and a receiver Bob. In its most useful version the sender
has two secret bit strings, and the receiver wants to obtain one of the secrets at
his choosing. After the interaction the receiver has not learnt anything about the
secret string he has not chosen, and the sender has not learnt anything about
the receiver’s choice. Several flavours have been considered and they turn out to
be equivalent [EGL85,BCR86a,BCR86b,Cré87].

In the Universally Composable Framework [Can01], OT has been rigorously
formalized and proved secure [CLOS02] under the assumption of trapdoor per-
mutations (static adversaries) and non-committing encryption (adaptive adver-
saries). It was further realized [PVW08] under several hard assumptions (DDH,
QR or worst-case lattice problems).

OT is a powerful cryptographic primitive that may be used
to implement a wide range of other cryptographic primitives
[Kil88,IPS08,Yao82,GMW86,GV87,EGL85]. Unfortunately, the results of
Impagliazzo and Rudich [IR89] make it very unlikely that one can base OT on
one-way functions (as a black-box).

As a second best solution, Beaver showed in its seminal paper [Bea96] that
one can implement a large number of oblivious transfers assuming that only a
small number of OTs are available. This problem is known as Extended Obliv-
ious Transfer. The OTs that one starts with are sometimes called the seeds of

the extension. Beaver showed that if one starts with say n seeds, it is possi-
ble to obtain any polynomial number (in n) of extended OTs. His solution is
very elegant and concerns feasibility, but it is inherently non-efficient. Later,
Ishai et. al. [IKNP03] showed a very efficient reduction for semi-honest adver-
saries. Since then other works have focused on extensions with active adversaries
[IKNP03,HIKN08,IPS08,NNOB12]. This paper continues this line of research.

State of the Art. The approach initiated in [IKNP03] runs at his core a
reversed OT to implement the extension. As already noted in [IKNP03], proving
security against a cheating receiver Bob∗ is not trivial, as nothing refrains him
from inputting whatever he likes in the reversed OT, allowing him to recover
both secrets on Alice’s side.

In terms of efficiency, the passive version of [IKNP03] needs O(s) OT seeds,
where s is a security parameter, with cut-and-choose techniques and the com-
biner of [CK88] active security comes at the cost of using Ω(s) seed OTs 1. In
[HIKN08] active security is achieved at no extra cost in terms of seed expansion
(and communication), they apply OT-combiners worsening the computational
cost. In [NNOB12] the expansion factor is 8

3 ≈ 2.66, which is already quite
good. Recently, it has been shown [LZ13] that meaningful extensions only exist
if one starts with ω(log s) seeds, (for log s seeds one would have to construct
an OT protocol from the scratch). The constructions of [Bea96,IKNP03] can be
instantiated with superlogarithmic seeds, so are optimal in this respect.

The communication cost is not really an issue, due to known almost-free
reductions of OT npoly(n) to OT nn, using a pseudo random generator, and running
the small OT on the seeds. The computational cost of [IKNP03] is extremely
efficient (passive version), it needs O(s) work, i.e. constant work per extended
OT (precisely it needs three invocations of the cryptographic primitive). All
active extensions need at least amortized Ω(s) work.

Our Contributions. A technique that has proven to be quite useful [Nie07] is
to split the extension protocol in two: an outer protocol ρ, and an inner protocol
π. The former implements the actual extended transfers, whereas the latter wraps
the reversed OT, ensuring at the same time that the receiver Bob is well-behaved
in some sense. We follow the same idea, the novelty of our construction being in
how the inner protocol π is realized. More concretely, for a fixed security level
s we give a family of protocols πm,n,t, where n is the number of seeds, m is the
number of extended transfers, and t ∈ [1

n , 1). Values of t close to 1
n render less

OT seeds, and values close to 1 less computational and communication cost. We
obtain

– The overall construction has amortized constant cost in terms of crypto-
graphic computation. Active security is obtained at the cost of XORing
O((1 − t)n2) bits. The construction has similar communication complexity.
The previous best [NNOB12] need to hash O(n) bits per extended transfer.

1 The hidden constant is quite big

– The seed expansion factor of the reduction, with respect to the passive ver-
sion of [IKNP03] is asymptotically close to 2, and this convergence is quite
fast, for example for security level s = 128 one needs about n = 323 seeds to
produce about 1, 00, 000 extended OTs. This means that our construction
essentially suffers an overhead factor of 2 in the security parameter, with
respect to the passive protocol of [IKNP03].

– The reduction of π to the inner OT is information-theoretic.
Other constructions either required computational assumptions e.g.
[IKNP03,HIKN08,IPS08], or were in the random oracle [Nie07,NNOB12].
The outer protocol ρ is the standard protocol of [IKNP03], thus it uses a
correlation robust function.

Our proof technique is, to some extent, similar to those of [Nie07,NNOB12] in
the sense that it is combinatorial. Instead of working with permutations, we are
able to connect security with set partitions. In [NNOB12] adversarial behaviour
was quantified through what the authors called leakage functions. We take a
different approach, and measure adversarial behaviour with the thickness of a
partition. Details are in Section 4.3.

Paper Organization. Notation and basic background is introduced in Section
2. Section 3 discusses the approach of [IKNP03] and fits it in our context. In
Section 4 we present the inner protocol π and prove it secure. In Section 5 the
final construction is concluded, we discuss complexity and further directions.

2 Preliminaries

2.1 Notation.

We denote with [n] the set of natural number less or equal than n. Let F2 be
the field of two elements, binary vectors x are written in bold lowercase and
binary matrices M in bold uppercase. When M is understood from the context,
its rows will be denoted with subindices mi, and its columns with superindices
mj . The entry at position (i, j) is denoted with mj

i . Accordingly, the jth bit of
a row vector r ∈ Fn2 will be denoted with rj , and the ith bit of a column vector
c ∈ Fm2 with ci. For any two matrices M, N, of dimension m× n, we let [M,N]
be the m × 2n matrix whose first n columns are mj and last n columns are
nj . The symbol a|J stands for the vector obtained by restricting a at positions
indexed by J .

2.2 Set Partitions

Given a finite set X of n objects, for any p ≤ n, a partition P of X is a collection
of p pairwise disjoint subsets {Pk}pk=1 of X whose union is X. Each Pk is a part
of X. We say that part Pk is maximal if its size is the largest one. Let ER(X)
denote the set of all possible equivalence relations in X. There is a one-to-one

correspondence between partitions of X and equivalence relations in X, given by
the mapping P 7→ R, where xRy iff x ∈ Pk and y ∈ Pk. We write PX to denote
the set of all partitions of X. In this work we will be concerned with partitions
of the set [n], where n is the number of OT seeds.

2.3 Universally Composable Framework.

Due to lack of space we assume the reader is familiar with the UC Framework
[Can01], especially with the notions of environment, ideal and real adversaries,
indistinguishability, protocol emulation, and the composition theorem. Function-
alities will be denoted with calligraphic F . As an example OT mn denotes the OT
functionality, in which the sender inputs m pairs of secret strings (li, ri)i∈[m],
each string of length n. The receiver inputs vector σ ∈ Fm2 , and as a result
obtains the ith left secret li if σi = 0, or the ith right secret ri if σi = 1. We
will also make use of a correlation robust function. We name the output of the
CRF as the hash of the input. Some times we will write H instead of CRF. The
definition can be found in [IKNP03].

3 The IKNP Approach

In 2003, in their breakthrough, Ishai, Kilian, Nissim and Petrank [IKNP03]
opened the door for practical OT extensions. They provided two protocols for
this task. Throughout this paper we will sometimes refer to the passive version
as the IKNP extension. We consider the standard OT functionality [CLOS02] in
its multi session version, the only difference is that the adversary is allowed to
abort the execution. This is necessary because of how we deal with a cheating
sender (see Figure 3).

3.1 IKNP in a Nutshell

For any m = poly(n), the ideal functionality OT mn is realized making a single
call to OT nm, where the security parameter of the reduction depends on n. This
in turn implies a reduction to OT nn using a pseudorandom generator. It works
as follows: Let σ ∈ Fm2 be the input of Bob to OT mn , he chooses a m × 2n
binary matrix [L,R] for which it holds lj ⊕ rj = σ, j ∈ [n], but is otherwise
random, and inputs it to an inner OT nm primitive. Alice inputs a random vector
a ∈ Fn2 . As a result of the call Alice obtains (row) vectors {qi}i∈[m], for which
hold qi = li ⊕ σi · a. Now, if Alice wants to obliviously transfer one of her
two ith secrets (x(0)

i ,x(1)
i), she XORs them with p(0)

i = qi and p(1)
i = qi ⊕ a

respectively, and sends masks y(0)
i , y(1)

i to Bob, who can obtain x(bi)
i from y(bi)

i

and li. This can be used to implement one transfer out of the m that Bob wishes
to receive, but can not cope with more: the OTP used for the ith transfer, with
pads (p(0)

i ,p(1)
i), prohibits to use (p(0)

j ,p(1)
j) in the jth transfer, because they

are correlated (the same a is implicit in both pairs 2). To move from a situation
with correlated pads to a situation with uncorrelated ones, IKNP uses a CRF;
i.e. Alice masks x(c)

i with the hash of p(c)
i . The construction is perfectly secure

against a malicious sender Alice∗, and statistically secure against a semi-honest
receiver Bob∗.

Intuitively, each input bit, σi, of Bob is protected by using n independent
additive sharings as inputs to the inner OT nm. As for Alice’s privacy, the crucial
point being that as long as a is not known to Bob, then x(1+bi) remains hidden
from him; in that situation, one of the pads in each pair is independent of Bob’s
view. Unfortunately, the above crucially relies on Bob following the protocol
specifications. In fact, it is shown in [IKNP03] how Bob∗ can break privacy if he
chooses carefully what he gives to the inner OT nm.

3.2 Modularizing the Extension

We define an ideal functionality that acts as a wrapper of the inner call to the
OT primitive. 3 It behaves as follows: (1) On an honest input B = [L,R] from
Bob (i.e. B defines n sharings of some vector σ), the functionality gives to Alice
a pair (a,Q) that she will use to implement the extended transfers. The secret
a is randomly distributed in Bob’s view. (2) An ideal adversary S can guess d
bits of a, in this case the functionality takes the guesses with probability 2−d.
The secret a has n− d bits randomly distributed in Bob’s view.

The functionality is denoted with cPADm,n to emphasize that it gives m
correlated pairs of pads, under the same a to Alice (of length n). See Figure 1
for a formal description. We emphasize that cPAD without the malicious be-
haviour was implicit in [IKNP03], and with the malicious behaviour in [Nie07].
We have just made the probability of aborting more explicit. The novelty of our
approaches lies in how is realized.

For completeness, we have included the IKNP extension protocol, see Figure 2
for details. The only difference is that the pads (p(0)

i ,p(1)
i)i∈[m] that Alice uses to

generate uncorrelated ones via the CRF are assumed to be given by cPADm,n.

3.3 The Reduction

The proof is on the same lines of the reduction of [IKNP03]. For the case the
receiver is actively corrupted, with cPADm.n at play, Bob∗ is forced to take a
guess before the actual extended transfers are executed. He is not caught with
probability 2−d, in which case n − d bits of a are completely unknown to him.
This correspondence between adversarial advantage and uncertainty (observed
in [Nie07]) is the key to argue security in the active case. What we observe
2 Bob would learn e.g. the distance of two non-transmitted secrets. It is trivial to check

that if two correlated pairs are used by Alice, then x
(1+bi)
i ⊕ x

(1+bj)

j = y
(1+bi)
i ⊕

y
(1+bj)

j ⊕ li ⊕ lj .
3 The purpose of the otherwise seemingly artificial functionality is to give a neat

security analysis, both inwardly and outwardly.

Functionality cPADm,n
cPAD runs with a pad’s receiver Alice, a pad’s creator Bob, and an adversary S. It is

parametrized with the numbers of transfers m, and the length of the bit strings n.

- Upon receiving input (receiver, sid) from Alice and (creator, sid, [L,R]) from Bob, where
[L,R] ∈ Mm×2n defines n sharings of the same vector σ, sample at random a ∈ Fn2 .
Then record the tuple (a, [L,R]), send (sid) to S and halt.

- Upon receiving message (deliver, sid) from S, compute matrix Q ∈ Mm×n as

qi = li ⊕ (l
1
i ⊕ r

1
i) · a.

Output (delivered, sid, a,Q) to Alice, (delivered, sid) to Bob and S, and halt.

- Upon receiving (corruptAlice, sid, ã) from S, where ã ∈ Fn2 , give Q̃ = [lj ⊕ ãj(lj ⊕ rj]j∈[n]
to S. If additionally S sends (corruptAlice, sid,⊥), output (abort, sid) to Alice and Bob and
halt.

- Upon receiving message (corruptBob, sid, [L̃, R̃], ã, G) from S, where G ⊆ [n] is of size d,

and ã ∈ Fd2 , do:

- with probability p = 1− 2−d, output (corruptBob, sid) to Alice and S and halt. Else,
- replace a|G with ã, and compute matrix Q subject to

qi = l̃i ⊕ (̃li ⊕ r̃i) ∗ a.

Output (delivered, sid, a,Q) to Alice, (delivered, sid) to Bob and S, and halt.

Fig. 1. Modeling Creation of Correlated Pads

Protocol ρ
The protocol is parametrized with the number of extended transfers m, and the length of the

transmitted vectors n.

Primitive: A cPADm,n functionality.
Inputs: Alice inputs (sender, (xi,0,xi,1)i∈[m], sid), where xi,c ∈ Fn2 , and Bob inputs

(receiver,σ, sid) with σ ∈ Fm2 .
Protocol:

1. Bob samples n independent sharings of σ. Denote this sharings as [L,R] (i.e. lj ⊕ rj =
σ).

2. The parties call cPAD. Bob inputs (creator, sid, [L,R]), and Alice inputs (receiver, sid),
as a result Alice gets (a,Q) where Q is a m× n binary matrix, and a ∈ Fn2 .

3. Let p
(0)
i = qi and p

(1)
i = qi ⊕ a. Alice computes y

(c)
i = x

(c)
i ⊕H

(c)
i (p

(c)
i) for c = 0, 1,

and sends pairs (y
(0)
i ,y

(1)
i)i∈[m] to Bob.

Outputs: Bob computes hi = H
(σi)
i (li) and outputs x

′
i = y

(σi)
i ⊕ hi. Alice outputs nothing.

Fig. 2. IKNP Extension

is that within the set F that indexes the n − d unknown bits, either a or the
flipped vector a⊕1 has at least (n−d)/2 bits set to one. Consequently, the same
number of bits of one of the pads that Alice uses remains unknown to Bob∗. Using
bounding techniques borrowed from [Nie07] it is not difficult to simulate ρ with
security essentially half the security of the IKNP extension.

Claim (Restatement of [IKNP03, Lemma 1] for Active Adversaries). In the
cPADm,n-hybrid model, in the presence of static active adversaries, with ac-
cess to at most 2o(n) queries of a CRF, the output of protocol ρ, and the output
of the ideal process involving OT mn , are 2−n/2+o(n)+2-close.

For completeness it follows a proof sketch that combines the proofs
of [IKNP03,Nie07]. Later, in Section 4.4 we will elaborate on an alternative
idea for the simulation.

We focus on the case Bob∗ is corrupted, simulating a malicious Alice∗ is easy,
and we refer the reader to [IKNP03] for details. To simulate a real execution of ρ,
an ideal adversary S starts setting an internal copy of the real adversary A, and
runs the protocol between A and dummy parties ρA and ρB. The communication
with the environment E is delegated to A. Recall t hat S is also interacting
with the (augmented with aborts) ideal functionality OT mn (see Figure 3). A
description of S for a malicious Bob∗ is in Figure 4.

Functionality OTmn
The functionality is parametrized by the number of transfers m, and the length of bit strings

n. It runs between a sender Alice, a receiver Bob and an adversary S.

1. Upon receiving (sender, sid, (x
(0)
i ,x

(1)
i)i∈[m]) from Alice, where x

(c)
i ∈ Fn2 , record tuple

(x
(0)
i ,x

(1)
i)i∈[m]. (The length n and number of transfers t is fixed and known to all parties)

2. Upon receiving (receiver, sid,σ) from Bob, where σ ∈ Fm2 , send (sid) to S, record σ and
halt.

3. Upon receiving (deliver, sid) from S, send (delivered, sid, (x
(σi)
i)i∈[m]) to Bob and

(delivered, sid) to Alice and halt.
4. Upon receiving (abort, sid) from S, and only if (deliver, sid) was not previously received,

send (fail, sid) to Alice and Bob and halt.

Fig. 3. The Functionality of [CLOS02] Augmented with Aborts

– S internally runs steps 1 and 2 of ρ. If A sends (deliver, sid) to cPAD, then S sets r
def
= σ∗,

where σ∗ is what A specified as input to cPAD.
Otherwise, S internally gets message (corruptBob, sid, [L̃, R̃], ã, G) from A, then cPAD ei-
ther rejects, in which case S externally sends (abort, sid) to OTmn , outputs what ρB outputs
and halts.
If cPAD, does not abort, let F = [n]\G, then (for each i ∈ [m]) split it in two disjoint

subsets, F1, F0 such that the bits of l̃i ⊕ r̃i indexed with Fci are equal to bit ci. Say Fri

is the largest set. S sets r
def
= (r1, . . . , rm).

– Next, S externally calls OTmn on input r getting output (zi)i∈[m]. It then fills the input

tape of ρA with x
(ri)
i = zs and x

(ri+1)
i = 0n, executes step 3 of ρ, outputs what ρB outputs

and halts.

Fig. 4. The Ideal Adversary For Actively Corrupted Receivers

Let Dist be the event that E distinguishes between the ideal process and the
real process, we examine the simulation conditioned on three disjoint events: SH
is the event defined as “A sends (deliver, sid) to cPAD”, Active is the event “A
sends (corruptBob, sid) and cPAD does not abort”, and Abort is the event “A
sends (corruptBob, sid) and cPAD aborts”. It is clear that conditioned on Abort
the simulation is perfect (with unbounded environments), because no transfers

are actually done. Now, say that |G| = d, then cPADm,n does not abort with
probability 2−d, so we write

Pr[Dist] ≤ Pr[Dist|SH] + Pr[Dist|Active] · 2−d (1)

Conditioning on Active. In this case, the only difference between the ideal and
the real process is that S fills with garbage the secret x(ri+1)

i of ρA, thus, the
transcripts are indistinguishable provided E (or A) does not submit Q = p(ri+1)

i

to the CRF (in that case, E sees the zero vector in the ideal process, and the
actual input of Alice in the real process). It is enough to see that this happens
with negligible probability: First, pad p(ri+1)

i restricted at positions indexed with
Fri can be expressed as

p(ri+1)
i|Fri

= qi|Fri ⊕ (ri ⊕ 1) · a|Fri = (̃li ⊕ (̃li ⊕ r̃i) ∗ a)|Fri)⊕ (ri ⊕ 1) · a|Fri
= l̃i|Fri ⊕ ri · a|Fri ⊕ (ri ⊕ 1) · a|Fri
= l̃i|Fri ⊕ a|Fri .

Second, the size of Fri is at least (n − d)/2, because F = F0 ∨ F1 and Fri is
maximal. Third, cPADm,n generates a|Fri using his own random bits. It follows

that p(ri+1)
i has (n− d)/2 bits randomly distributed in E ’s view.

He may still guess such bits searching through the query space and using the
CRF to compare. We next bound the probability of this happening. If E (or A)
guess correctly such bits, they would have handed to the CRF query Q = p(ri+1)

i .
As (n − d)/2 bits are unknown, the CRF returns random answers on E ’s view,
the probability of hitting all the bits in p(ri+1)

i is bounded by pi ≤ hri+12(d−n)/2

where hri+1 is the number of queries made to H(ri+1)
i . By the union bound, given

h denoting the total number of queries, E and A jointly hit query Q = p(ri+1)
i

for some i ∈ [m], with probability

Pr[Dist|Active] ≤ 2(
∑
i∈[m]

hri+12(d−n)/2) ≤ h2d/2+1−n/2. (2)

Conditioning on SH. This case corresponds to semi-honest adversaries. We refer
the reader to the proof of [IKNP03] for details. The only difference is that now
also A can submit arbitrary queries to the CRF, hitting the offending one with
the same probability than the environment would, thus

Pr[Dist|SH] ≤ h2−n+1. (3)

Plugging inequalities 2 and 3 into 1, we obtain that the simulation fails with
probability

Pr[Dist] ≤ h2−n+1 + h2d/2+1−n/2 · 2−d ≤ h2−n/2+2.

The Claim follows setting h = 2o(n). ut

4 Generating Correlated Pads

The result of Section 3.3 (and previous works) shows that the IKNP extension
can be upgraded to active security assuming that any adversarial strategy, on
the receiver’s side, amounts to guessing some of the bits of the sender’s secret a
before the extended transfers are executed. In this section we realize the cPAD
functionality in a way where the only computational cost involved, beyond the
underlying OT primitive on which it builds, is XORing bit strings.

4.1 Warming Up: Committing Bob to his Input

The inner OT nm of the IKNP extension can be seen, in a way, as a commitment
for Bob’s input σ to the outer OT mn . The idea resembles the commitment
scheme of [Cré89] generalized to m-bit strings. We split the protocol in two
phases: A “commit” phase and a “prove” phase. To commit to σ, Bob chooses
n independent sharings B = [L,R] (i.e. lj ⊕ rj = σ for j ∈ [n]) and offers them
to an OT nm primitive. For the jth sharing, Alice obliviously retrieves one of the
shares using her secret bit aj . She obtains a “witness” matrix Q = [qj]j∈[n]. To
prove his input Bob reveals (σ, B̃), and Alice checks she got the right share in
the first place, (i.e. she checks qj ?= l̃j ⊕ aj · (̃lj ⊕ r̃j)), and that B̃ is consistent
with σ (i.e. l̃j ⊕ r̃j ?= σ).

Witnessing. The above protocol is of no use in our context, as for Bob to
show he behaved correctly, he would have to reveal his input σ to the outer
OT mn . Nevertheless, we retain the concept of Alice obtaining a “witness” of
what Bob∗ gave to the inner OT . Such object is a pair W = (a,Q) obtained
as the output of an OT nm primitive. Two witnesses W , W ′ are consistent if
a = a′. Similarly, a “proof for witness W” is a pair (σ, B̃) such that B̃ defines n
sharings of σ. We say the proof is valid if it is consistent with W , in the sense
Alice would accept in the above protocol, when she is presented the proof and
uses W to check it.

We emphasize that with this terminology, the output of cPADm,n is precisely
a witness (see Figure 1).

4.2 The Protocol

Suppose Alice has obtained a witness W0 and she wants to use it to implement
the extended transfers (as in protocol ρ). She is not sure if in order to give her the
witness Bob used a good matrix B0 = [L0,R0] or a bad one (loosely speaking a
good matrix defines almost n sharings of a fixed vector σ, whereas a bad matrix
has many (left,right) pairs adding up to distinct vectors.). Now, say that Alice
has not one but two witnesses W0, W1. If they are consistent it is not difficult
to see that she also knows a witness for B+ = B0 ⊕B1. So what Alice can do is
to ask Bob to “decommit” to B+ as explained in Section 4.1. Intuitively Bob∗

is able to “decommit” if B+ is not a bad matrix. It is also intuitive that B+ is

Protocol πm,n,t
The protocol is parametrized with the length of the input m, the number of OT seeds n, and a

parameter t ∈ [1
n , 1).

Primitive: An OT nm(r+1) functionality with r = d 1−t2 ne.
Inputs: Bob inputs [L0,R0] ∈ Mm×2n defining n sharings of some vector σ0 ∈ Fm2 (i.e. lj0⊕rj0 =

σ0 for j ∈ [n]). Alice inputs nothing.
Commit Phase:

1. Alice samples a ∈ Fn2 at random, and Bob randomly samples r matrices [Li,Ri] in
Mm×2n (i.e. i ∈ [r]). Each defining n sharings of (say) vectors σ1, . . . ,σr.

2. The parties call the OT nr(m+1) functionality. Alice inputs a, and Bob offers matrix

[[L0, . . . ,Lr], [R0, . . . ,Rr]] as his matrix of n (left,right) secrets of length r(m + 1)
(towering up the Li’s together, idem with the Ri’s). As a result Alice obtains output
matrix [Q0, . . . ,Qr] ∈ Mr(m+1)×n.

Prove Phase: Alice challenges Bob to make sure he used a good enough input matrix.
3. Alice sends to Bob a random challenge vector e ∈ Fr2.

4. For i ∈ [r], Bob computes σ̃i = σi ⊕ ei ·σ0, L̃i = Li ⊕ ei ·L0, and R̃i = Ri ⊕ ei ·R0.

It sends the r proofs (σ̃i, [L̃i, R̃i])i∈[r] to Alice.

5. For each i ∈ [r], and j ∈ [n] Alice prepares witnesses W̃i = (a, Q̃i = Qi ⊕ ei ·Q0), and

checks whether q̃ji
?
= l̃ji + aj · (̃lji ⊕ r̃ji), and σ̃i

?
= l̃ji ⊕ r̃ji If not, she outputs corruptBob

and halts.
Outputs: If Alice did not abort, she outputs (a,Q0) and Bob outputs nothing.

Fig. 5. Realizing cPADm,n

not a bad matrix provided B0 and B1 are both good, or both bad. To rule out
the latter possibility, Alice flips a coin and asks Bob to either “decommit” to B1

or to B+ accordingly. The process is repeated r times to achieve real soundness.
Observe that a malicious Alice∗ can not tell anything from σ, as an honest Bob
always sends either σ1 or masked σ0 ⊕ σ1 when he is “decommitting”.

Generating r consistent witnesses with W0 can be done very efficiently 4

using an OT nr(m+1) primitive. The details of the protocol are in Figure 5.

Correctness. If the parties follow the protocol it is not difficult to see
that πm,n,t outputs exactly the same as cPADm,n. By the homomorphic
property, Alice does not reject on honest inputs. Output correctness is due to
the fundamental relation exploited in the IKNP extension.

4.3 Security Analysis

The rest of the section is dedicated to prove that the output of πm,n,t and the
output of cPADm,n are statistically close. The road-map is as follows: we first
explain why we can work with partitions of [n], then we state some useful results,
and lastly we use them to show indistinguishability.

Taxonomy of Receiver’s Input. Here we are after a classification of Bob’s
matrix B = [L,R] ∈ Mm×2n. As an illustration consider an honest situation
where Bob gives matrix B such that it defines n additive sharings of some
4 The cost to pay is increasing the length of the input bit strings to the OT , using a

PRG one would only need to obliviously transfer the PRG seed.

vector σ of his choosing. This means that lj ⊕ rj = σ for all indices in [n].
Clearly, the relation j1Rj2 iff lj1 ⊕ rj2 = σ is the trivial equivalence relation in
[n] where all indices are related to each other. In other words, the matrix [L,R]
defines the trivial partition of [n], i.e. P = {[n]}.

Underlying Partition. For any binary matrix ∆ in Mm×n, its underlying
relation is the subset R∆ ∈ [n]× [n] defined as

R∆ = {(i, j) ∈ [n]× [n] | δi = δj}.

As usual, we write iR∆j to mean (i, j) ∈ R∆. It is not difficult to see
that R∆ is an equivalence relation 5, in particular each ∆ defines a unique
partition P∆ of [n]. Also, for any partition of [n], we say is `-thick if the
size of its maximal parts are `. Now it becomes clear that any (possibly
malicious) receiver’s input B = [L,R] implicitly defines a partition of [n], given
by matrix ∆ = [l1⊕r1, . . . , ln⊕rn]. The input is `-thick if its partition is `-thick.

Parametrizing the Thickness. One can take a parametric definition, say-
ing that P is `-thick if ` = M

n , where M is the size of a maximal part 6. In
the security analysis this notion will prove to be useful. For example, honest
inputs have (high) thickness level ` = 1. We will always adopt the parametric
perspective.

Witnessing and Thickness. Let W = (a,Q) be a witness that Alice has.
If Bob∗ used an `-thick B to give W to Alice, then W is said to be `-thick.

Rejecting Thin Inputs. Now we formalize the intuition that Bob∗ is caught
with high probability if he inputs a matrix with their columns adding up to
many distinct vectors.

The first lemma deals with rejections on a particular “proof” handed by
Bob. The second lemma upper bounds the thickness of a witness derived from
the XOR operation. The proof of the rejection lemma exploits the correctness
of the OT primitive. Both proofs make heavy use of the underlying partition
defined in Section 4.3. The reader might want to skip them in the first lecture,
and go directly to Prop. 1

Lemma 1. Let W = (a,Q) be a witness that is known to Alice. Then, Bob
knows a valid proof for W only if he knows at least n(1− `) bits of a, where ` is
the thickness of W . In particular, if Alice is honest this happens with probability
p ≤ 2−n(1−`).

Proof. Let B = [L,R] be the input of Bob to the OT from which Alice obtained
witness (a,Q), and let (σ, B̃) be the proof held by Bob. Also, let ∆ = [l1 ⊕
r1, . . . , ln ⊕ rn], and say that ∆ defines partition P = {P1, . . . , Pp} of [n].

5 The reader can check the relation is reflexive, symmetric and transitive.
6 Parameter ` lies in [1

n
, 1].

If the proof (σ, B̃) is valid, then for all j ∈ [n] we can derive the equations

(1) qj = lj ⊕ aj · (lj ⊕ rj) , (2) δj = lj ⊕ rj ,

(3) qj = l̃j ⊕ aj · (̃lj ⊕ r̃j) , (4) σ = l̃j ⊕ r̃j .

Where (1) and (2) are given by the correctness of the OT nm executed on Bob’s
input B = [L,R], and (3) and (4) follow from assuming (σ, B̃) is valid. Adding
(1) and (3), and plugging (2) and (4) in the result, we write lj⊕ l̃j = aj ·(δj⊕σ).
Assume first there exist j0 ∈ [n], such that σ = δj0 . Say wlog. that j0 ∈ P1. Now,
by definition of P, we have σ = δj iff jR∆j0. In other words, for 2 ≤ k ≤ p
and j ∈ Pk we have σ 6= δj . It follows that there exists i ∈ [m] such that
δji 6= σi, and therefore aj = lji ⊕ l̃

j
i . The RHS of the last equation is known to

Bob, so is aj . This is true for all j ∈ Pk, and all k ≥ 2, therefore Bob knows
|P2 ∨ . . . ∨ Pp| = n− |P1| ≥ n(1− `) bits of a, where the last inequality follows
because P is `-thick. On the other hand, if σ 6= δj for all j ∈ [n], then Bob
knows the entire vector a. Adding up, Bob∗ knows at least n(1− `) bits of a.

Since a is secured via the OT nm, Bob knows such bits by guessing them at
random. We conclude that Alice accepts any σ with probability p < 2n(1−`),
provided Alice samples a at random, which is indeed the case.

Lemma 2. If W = (a,Q) is `-thick and W̃ = (a, Q̃) is ˜̀-thick , then W+ =
(a,Q⊕ Q̃) is `+-thick with `+ ≤ 1− |`− ˜̀|.

Proof. Say that ε = |`− ˜̀|. and let [L,R], [L̃, R̃] be the Bob’s inputs from which
Alice obtained witnesses W and W̃ . Say that they define partitions P = P[L,R],
P̃ = P[L̃,R̃]. Similarly one defines partition P∆⊕∆̃ for witness (a,Q⊕ Q̃).

First, suppose ` ≤ ˜̀, and let P̃max a maximal part of P̃. Consider the refine-
ment P∩max = P̃max ∩ P. If j1, j2 lie in the same part of P∩max then j1R∆⊕∆̃j2

iff j1R∆j2. This follows from the fact that if j1 and j2 are both in P̃max, then
δ̃
j1 = δ̃

j2 . In particular, each part of P∩max lies in a different part of P∆⊕∆̃.
Now, look at the auxiliar partition {[n]\P̃max,P∩max}. The maximum size

we can hope for a part in P∆⊕∆̃ occurs when [n]\P̃max collapses with a single
maximal part of P∩max. Even in this case, the size of a maximal part of P∆⊕∆̃

is upper bounded by

n(1− ˜̀) + n` = n(1− (`+ ε) + `) = n(1− ε).

This follows from observing that P̃max is of size n˜̀, and P∩max have parts
upper bounded by n`. The case ˜̀ ≤ ` is analogous (using auxiliar partition
{[n]\Pmax, Pmax ∩ P̃}).

Next, we estimate the acceptance probability of πm,n,t on any possible input
of Bob. Note that the first witness obtained in the commit phase is the output
of πm,n,t.

Proposition 1. Let W = (a,Q) the first witness that Alice obtains in the com-
mit phase of πm,n,t. Then, if W has thickness ` ≤ t, Alice accepts any adversarial
proof with probability p ≤ 2−n(1−t)/2+2. In that case, Bob knows at least n(1−t)/2
bits of a.

Proof. Recall that in the protocol r = d 1−t
2 ne, and let E = (E1, . . . , Er) be

the random variable (uniformly distributed over Fr2) that Alice uses to challenge
Bob∗. For i ∈ [r], let B∗i = (L∗i , R

∗
i) be the adversarial random variables that

Bob∗ uses to sample the r matrices in the commit phase of π. Let [Li,Ri] =
Bi ← B∗i the actual matrices. Denote with ∆i their correspondent underlying
matrices. Each ∆i defines a unique partition Pi of [n], with thickness `i ∈ [1

n , 1].
We want to upper bound the probability of Alice accepting in πm,n,t with

` ≤ t. Denote with Accept this event. Consider the r.v. E∗ = (E∗1 , . . . ,E
∗
r), given

by:

E∗i =

{
0 i if `i > t′ + `

1 if `i ≤ t′ + `

where t′ = 1−t
2 is positive if t ∈ [1

n , 1). We first look at the probability of Alice
accepting the ith proof,

P [Accepti] =
1
2

(P [Accepti | Ei → 0] + P [Accepti | Ei → 1])

≤ 1
2

(P [Accepti | Ei → 0, E∗i → 0] + (P [Accepti | Ei → 0, E∗i → 1]

+ P [Accepti | Ei → 1, E∗i → 0] + P [Accepti | Ei → 1, E∗i → 1])
= p0,0 + p0,1 + p1,0 + p1,1.

Consider the cases:

(ei, e∗i) = (0, 1). If Alice uses W̃i = Wi and `i ≤ t′ + ` (i.e. 1 − `i ≥ 1 − t′ − `),
by Lemma 1 we bound p0,1 ≤ 2−n(1−`i) ≤ 2−n(1−t′−`).

(ei, e∗i) = (1, 0). If Alice uses W̃i = W+ = Wi+W and `i ≥ t′+ ` (i.e. `i− ` ≥ t′,
with t′ ≥ 0 is equivalent to |`i− `| ≥ t′), by Lemma 2 we have `+ ≤ 1−|`i−
`| ≤ 1− t′, and Lemma 1 bounds p1,0 ≤ 2−n(1−`+) ≤ 2−n(1−(1−t′)) = 2−nt

′
.

Now, observe that by hypothesis ` ≤ t, and therefore 1−t
2 = t′ = min{1 −

t′ − `, t′}. From the above we deduce, (1) if Bob∗ does not guess Alice’s coin Ei
with his own coins E∗i then he has to guess at least n(1 − t)/2 bits of a, (2) in
that case we bound pb,b+1 ≤ 2−nt

′
= 2−n(1−t)/2.

We have to give up in bounding p0,0 and p1,1 as Bob∗ can always choose
`i appropriately to pass the test with high probability (e.g. `i = 1, `i = `
respectively). As observed, in these cases Bob∗ is guessing Alice’s coin ei with
his own coin e∗i . It is now easy to finish the proof as follows:

Let Guess be the event {e ← E} ∩ {e ← E∗}, is clear that if ¬Guess, then
exist i0 s.t. ei0 ← Ei0 and ei0 ⊕ 1← E∗i0 , we can write

P [Accept] = P [∩ri=1Accepti]
≤ P [(∩riAccepti) ∩ Guess] + P [(∩riAccepti) | ¬Guess]
≤ P [Guess] + P [Accepti0 | Ei0 → ei, E

∗
i0 → ei + 1]

≤ 2−r + 2−n
1−t
2 +1

Therefore Alice accepts and Bob∗ knows n(1− t)/2 bits of a with probability at
most 2−n(1−t)/2+2.

Remark on Prop. 1. The above result ensures two things: First, if Bob inputs
a matrix whose columns do not add to the same constant value he is forced
to take a guess on some bits of a. As we saw in Section 3.3 this is enough to
implement the extended transfers securely. Second, setting the thick parameter
t appropriately we can rule out a wide range of adversarial inputs with over-
whelming probability in n. For example, the adversarial input IIKNP = [L,R]
of the attack in the IKNP extension has all its columns adding up to distinct
elements, i.e. its underlying partition is the thinnest possible partition of [n],
PIKNP = {{1}, . . . , {n}}. Since t ≥ 1

n , this input is rejected with overwhelming
probability.

Putting the Pieces in the UC Framework. We have not yet captured the
notion of having blocks of a randomly distributed in Bob’s view, it is resolved
with a simulation argument. More concretely, we show a reduction to OT nm(r+1)

with perfect security against Alice∗, and statistical security against Bob∗.

Theorem 1. In the OT nm(r+1)-hybrid, in the presence of static active
adversaries, the output of protocol πm,n,t and the output of the ideal process in-
volving cPADm,n are 2−n(1−t)/2+2 close.

Proof. Let E denote the environment, and S be the ideal world adversary. S
starts invoking an internal copy of A and setting dummy parties πA and πB.
It then runs an internal execution of π between A, πA, πB, where every incom-
ing communication from E is forwarded to A as if it were coming from A’s
environment, and any outgoing communication from A is forwarded to E . The
description of S is in Figure 6.

We now argue indistinguishability. Let Dist be the event of having E
distinguishing between the ideal and real process. We bound the probability of
Dist occurring conditioned on corrupting at most one of the parties.

Perfect security for Bob. (EXECπ,E,A ≡ EXECφ,E,S). If Alice is ma-
licious, then what E gets to see from Bob’s ideal transcript is
(B, [Q̃0,Q1 . . . ,Qr]), (σ̃i, [L̃i, R̃i])i∈[r]), where B = [L,R] is the input,

Simulating a malicious Alice∗ S externally sends (Alice, corrupt) to cPADm,n. Next, it runs
an internal execution of π. In step 1 S does nothing (acting as πB). In step 2, S internally
gets adversarial ã as input to the inner OT . S externally sends (corruptAlice, sid, ã) to

cPADm,n, obtaining matrix Q̃0. It samples at random r vectors σi ∈ Fm2 , and for each it

sets n sharings [Li,Ri] (i.e. lji ⊕ rji = σi for j ∈ [n]). Let Qi a m × n matrix such that

qji = lji ⊕ ã
j · σi, S internally gives [Q̃0,Q1, . . . ,Qr] to A in step 2.

Let ẽ ∈ Fr2 the adversarial challenge that S internally gets from A in step 3. If ei = 0, S
prepares proof (σi, [Li,Ri]). If ei = 1, S prepares proof (σi,+, [Li,+,Ri,+]), where σi,+
is sampled at random, and [Li,+,Ri,+] defines n sharings of σi,+. Then S internally sends
the r proofs to A in step 4. If πA aborts in step 5, S externally sends to cPADm,n message
(corruptAlice, sid,⊥). Lastly, S outputs whatever πA outputs and halts.

Simulating a malicious Bob∗ S externally sends (Bob, corrupt) to cPADm,n and as a response
obtains input BE = [LE ,RE]. It then sets πB’s input to BE , and runs an internal execu-
tion of π up to step 5 (πB is controlled by A). In step 2, A specifies an m(r + 1) × 2n
matrix [[L0, . . .Lr], [R0, . . .Rr]] as input to OT nm(r+1), and in step 4 A specifies r proofs

(σ̃i, [L̃i, R̃i])i∈[r].
Next, S runs step 5 of its internal copy of πm,n,t, it sets flag Rabort to true iff it resulted
in abort, but it does not tell A whether or not she passed. If Rabort is true S externally
sends (corruptBob, sid,⊥) to cPADm,n, outputs what πB outputs and halts. Otherwise, it
computes the r + 1 associated m × n matrices ∆i of the (adversarial) input a given to

OT nm(r+1). For each i ∈ [r], S finds the indices j ∈ [n] such that σ̃i 6= δji ⊕ ei · δ
j
0 (if

any). Denote this subset of [n] as G. Now, for those j ∈ G, S finds the first k ∈ [m] such

that σ̃i,k 6= δji,k, then it sets ãj = lji,k ⊕ l̃
j
i,k. Lastly, if G is empty, S externally sends

(deliver, sid) to cPADm,n. Otherwise it sends (corruptBob, sid, [L0,R0], ã, G) to cPADm,n.
S tells to abort to A iff cPADm,n says so, outputs what πB outputs and halts.

Simulating an honest execution S gets (sid) from cPADm,n, runs an internal execution of
π and halts.

a Recall how they are defined, i.e. ∆i has columns δj
i = lji ⊕ rj

i for i ∈ [r] ∪ {0},
j ∈ [n].

Fig. 6. The Ideal Adversary for cPAD

i.e. n sharings of, say, σ0. Matrix Q̃0 is consistent with B and with adver-
sarial choice ã (see Figure 1), hence by definition of S and the robustness of
OT nm(r+1), matrix [Q̃0,Q1, . . . ,Qr] is exactly distributed as in the real process.
Furthermore, if ẽi = 1, then σ̃i = σi,+ is randomly sampled, whereas in the
real process σ̃i = σ0⊕σi, with σi being in the private part of Bob’s transcript.
Therefore the proofs of the ideal and real process are identically distributed.
We conclude that real and ideal transcripts are identically distributed, and
therefore Pr[Dist|corruptAlice] = 0.

Statistical security for Alice. (EXECπ,E,A
s
≈ EXECφ,E,S). For the case Bob

is corrupted, we first note that up to step 5, both processes are identically
distributed because S runs an internal copy of πm,n,t using input [LE ,RE]
specified by E . Next, say [L0,R0] is `-thick. Then, if ` ≤ t, by Prop. 1, the size
of G is at least n(1− t)/2 with overwhelming probability (in n), thus cPADm,n
does not abort with probability p ≤ 2−n(1−t)/2. By Prop. 1 again the ideal and
the real processes abort on thin inputs except with probability p ≤ 2−n(1−t)/2+2

(i.e. we do not care if E distinguishes in this case). On the other hand, if ` > t
and the internal copy of πm,n,t did not abort (if aborts, so does cPADm,n by
definition of S), then we claim that the output of both processes are identically
distributed. This follows from (1) the output matrix [L0,R0] is extracted by S,

and looking closely at the proof of Lemma 1, we deduce (2) if j ∈ G, then for
some i ∈ [r], Bob∗ “decommits” to σ̃i 6= δji ⊕ ei · δ

j
0, the real bit aj is exactly as

the one extracted by S; (3) if j /∈ G, then j is such that for each i ∈ [r], Bob∗ is
decommitting to σ̃i = δji ⊕ ei · δ

j
0. In this case, the system of equations given in

the proof of Lemma 1 collapses to lj = l̃j ; rj = r̃j . One sees that if E could tell
anything from a|[n]\G, he could equally tell the same before the prove phase,
contradicting the security of the underlying OT nm(r+1).

We have argued Pr[Dist|corruptBob] ≤ 2−n(1−t)/2+2.

Completeness. For the case none of the parties are corrupted, indistin-
guishability follows from the security of the underlying OT nm(r+1).

Adding up, E distinguishes with probability Pr[Dist] ≤ 2−n(1−t)/2+2. This
concludes the proof.

4.4 Another Look at the Outer Reduction

Here we take a different perspective for the IKNP reduction that fits better with
our partition point of view (as defined in Section 4.3). We aim to give some
intuition of the underlying ideas, and the reader should by no means take the
following discussion as formal arguments.

For an illustrative example let us first look at the attack of the protocol in
the IKNP extension. A malicious Bob∗ was giving input matrix B with all the
columns adding up to distinct elements. Consequently its underlying partition is
PIKNP = {{1}, . . . , {n}}. This structure on B is such that all but one of the bits
of both pads are known to Bob∗. One can see this as splitting the query space
Fn2 as n copies of F2, namely Q =

⊕n
i=1 F2. To search for the secret vector a, one

just have to brute-force each summand separately and use the CRF to compare.
After n · |F2| = 2n calls the query space is exhausted, i.e. even computationally
bounded environments would distinguish between the ideal and the real process.

We want to assign to each possible matrix input B = [L,R]] a unique struc-
ture of the query space that the environment is forced to use towards distin-
guishing. In other words, we want to establish a correspondence between the
partition implicitly defined in B, and the possible ways to split the query space
Q = Fn2 .

Let P be any partition of [n], express it as P =
{P1,1, . . . , Pq1,1, . . . , P1,n, . . . , Pqn,n} where for i ∈ [n], j ∈ [qi], part Pj,i is
either empty or is of size i (i.e. there are qi parts of size i in P). The type of
P is the vector q = (q1, . . . , qn) ∈ {[n] ∪ {0}}n. The q-type query space, is the
vectorial space Qq =

⊕n
i=1Qq,i, where Qq,i is the ith block of Qq, and stands

for qi copies of an F2-vectorial space of dimension i.
Thus, the type of PIKNP corresponds to vector q = n·e1, and the query space

the environment was using to brute-force Alice’s secret a is precisely Qn·e1 . On
the other hand, honest inputs always define the trivial partition PH = {[n]} with
type q = en, the reduction against a semi-honest receiver in [IKNP03], based

security arguing that the environment would have to brute-force Fn2 , which is
the query space Qen .

Now, the map f : B 7→ Qq, where PB is q-type, is well defined. To see this,
just observe that the relation in P [n] defined as P ∼ P ′ iff “both partitions are
of same type” is an equivalence relation, and look at the chain

Mm×n
g1−→ P [n] g2−→ (P [n]/ ∼)

g3−→ V
∆ 7→ P∆ 7→ [P∆]∼ = q 7→ Qq

We see that f = g3 ◦ g2 ◦ g1 is well defined.
From this one can imagine how the reduction would work. cPAD could check

the thickness of the adversarial B, and reject if is less than a fixed parameter t.
This ensures that the structure of the query space contains at least one block of
size big enough, wasting the chances of the environment to search through it in
reasonable time. Unfortunately, with this reduction the composition of the inner
and outer protocols renders worst choices of parameters.

5 Concluding the Construction

In this section we prove the main result of the paper. For a given security pa-
rameter n recall that t is a parameter lying in interval [1

n , 1), and r = d 1−t
2 ne.

Observe that the results of Section 4 break down for t = 1. This corresponds
to a superfluous πm,n,1 (no checks at all). In other words, a malicious Bob∗ can
input any possible bad-formed matrix B to the IKNP extension, in which case
there is no security.

Corollary 1. In the OT nm(r+1)-hybrid, for any t ∈ [1
n , 1) protocol

ρπm,n,t/cPADm,n UC-realizes OT mn in the presence of static active adversaries, pro-
vided the environment is given access to at most 2o(n) queries to a CRF.

Proof. The result follows applying the Composition Theorem of [Can01]. By
Claim 3.3 the error simulation for ρ is eρ = 2−n/2+o(n)+2, and by Theorem 1
the error simulation for πm,n,t is eπ = 2−n(1−t)/2+2. Using that (1− t)/2 < 1/2
if t > 0, and the transitivity of the composition operation, the error simulation
for ρπm,n,t/cPADm,n is e = eρ + eπ ≤ 2−n(1−t)/2+o(n)+3 .

5.1 Complexity and Choice of Parameters

For the computational overhead, we emphasize that a cryptographic primitive is
still needed to implement the actual extended transfers (we are using the IKNP
extension). To implement m = poly(n) transfers, in the test Alice and Bob have
to XOR rm(2n+1) bits. Thus, per extended OT each participant needs to XOR
O((1 − t)n2) bits. The communication complexity (number of bits transferred
per OT) turns out to be equivalent. The test adds a constant number of rounds
to the overall construction, concretely 2 extra rounds.

In terms of the seed expansion we can do it better. For a security level of s
bits in the reduction, one need roughly n ≈ 2

1−t (s + o(n) + 3) OT seeds. One
can measure the quality of the reduction looking at the seed expansion factor
exp(t) = 2

1−t . It is clear that exp(t) tends to 2, when t→ 1
n and n→∞. One only

need to halve the security parameter of the IKNP reduction (asymptotically).
Practical choice of parameters are also very efficient. For example, to imple-

ment about 1, 000, 000 transfers, with security of s = 64 bits, setting t = 1
16 , one

needs roughly n ≈ 186 OT seeds. For security level s = 128, one would need
roughly 323 OT seeds.

5.2 Open Problems

In the reductions for ρ and π the security parameter suffers an expansion factor
of 2. We ask whether one can remove this overhead whilst still maintaining
security against computational unbounded receivers in the inner protocol.

In the area of secure function evaluation, recently OT has been used to
boost the efficiency of two-party protocols [NNOB12] and their counterparts in
the multiparty case [LOS14]. A key part on the design of such protocols was
the generation of authenticated bits, which in turn borrows techniques from the
IKNP extension. It would be interesting to see whether (a suitable modification
of) our protocol π can be used to generate such authenticated bits. This would
immediately give unconditional security (currently both constructions need a
random oracle), in terms of efficiency we do not know if this replacement would
bring any improvement at all.

6 Acknowledgments

This work has been supported in part by EPSRC via grant EP/I03126X.

References

BCR86a. Gilles Brassard, Claude Crépeau, and Jean-Marc Robert. All-or-nothing
disclosure of secrets. In CRYPTO, pages 234–238, 1986.

BCR86b. Gilles Brassard, Claude Crépeau, and Jean-Marc Robert. Information theo-
retic reductions among disclosure problems. In FOCS, pages 168–173, 1986.

Bea96. Donald Beaver. Correlated pseudorandomness and the complexity of private
computations. In STOC, pages 479–488, 1996.

Can01. Ran Canetti. Universally composable security: A new paradigm for crypto-
graphic protocols. In FOCS, pages 136–145, 2001.

CK88. Claude Crépeau and Joe Kilian. Weakening security assumptions and obliv-
ious transfer (abstract). In CRYPTO, pages 2–7, 1988.

CLOS02. Ran Canetti, Yehuda Lindell, Rafail Ostrovsky, and Amit Sahai. Universally
composable two-party and multi-party secure computation. In STOC, pages
494–503, 2002.

Cré87. Claude Crépeau. Equivalence between two flavours of oblivious transfers.
In CRYPTO, pages 350–354, 1987.

Cré89. Claude Crépeau. Verifiable disclosure of secrets and applications (abstract).
In EUROCRYPT, pages 150–154, 1989.

EGL85. Shimon Even, Oded Goldreich, and Abraham Lempel. A randomized pro-
tocol for signing contracts. Commun. ACM, 28(6):637–647, 1985.

GMW86. Oded Goldreich, Silvio Micali, and Avi Wigderson. Proofs that yield noth-
ing but their validity and a methodology of cryptographic protocol design
(extended abstract). In FOCS, pages 174–187, 1986.

GV87. Oded Goldreich and Ronen Vainish. How to solve any protocol problem -
an efficiency improvement. In CRYPTO, pages 73–86, 1987.

HIKN08. Danny Harnik, Yuval Ishai, Eyal Kushilevitz, and Jesper Buus Nielsen. Ot-
combiners via secure computation. In TCC, pages 393–411, 2008.

IKNP03. Yuval Ishai, Joe Kilian, Kobbi Nissim, and Erez Petrank. Extending obliv-
ious transfers efficiently. In CRYPTO, pages 145–161, 2003.

IPS08. Yuval Ishai, Manoj Prabhakaran, and Amit Sahai. Founding cryptography
on oblivious transfer - efficiently. In CRYPTO, pages 572–591, 2008.

IR89. Russell Impagliazzo and Steven Rudich. Limits on the provable conse-
quences of one-way permutations. In STOC, pages 44–61, 1989.

Kil88. Joe Kilian. Founding cryptography on oblivious transfer. In STOC, pages
20–31, 1988.

LOS14. Enrique Larraia, Emmanuela Orsini, and Nigel P. Smart. Dishonest major-
ity multi-party computation for binary circuits. In Advances in Cryptology -
CRYPTO 2014 - 34th Annual Cryptology Conference, Santa Barbara, CA,
USA, August 17-21, 2014, Proceedings, Part II, pages 495–512, 2014.

LZ13. Yehuda Lindell and Hila Zarosim. On the feasibility of extending oblivious
transfer. In TCC, pages 519–538, 2013.

Nie07. Jesper Buus Nielsen. Extending oblivious transfers efficiently - how to get
robustness almost for free. IACR Cryptology ePrint Archive, 2007:215, 2007.

NNOB12. Jesper Buus Nielsen, Peter Sebastian Nordholt, Claudio Orlandi, and
Sai Sheshank Burra. A new approach to practical active-secure two-party
computation. In CRYPTO, pages 681–700, 2012.

PVW08. Chris Peikert, Vinod Vaikuntanathan, and Brent Waters. A framework for
efficient and composable oblivious transfer. In CRYPTO, pages 554–571,
2008.

Rab81. Michael O. Rabin. How to exchange secrets with oblivious transfer. IACR
Cryptology ePrint Archive, page 187, 1981.

Wie83. Stephen Wiesner. Conjugate coding. SIGACT News, 15:78–88, 1983.
Yao82. Andrew Chi-Chih Yao. Protocols for secure computations (extended ab-

stract). In FOCS, pages 160–164, 1982.

	Extending Oblivious Transfer Efficiently or - How to get active security with constant cryptographic overhead

