
Proof of Proximity of Knowledge

Serge Vaudenay

EPFL
CH-1015 Lausanne, Switzerland

http://lasec.epfl.ch

Abstract. Public-key distance bounding schemes are needed to defeat relay attacks in payment systems. So
far, only two such schemes exist, but fail to fully protect against malicious provers. In this paper, we solve
this problem. We provide a full formalism to define the proof of proximity of knowledge (PoPoK). Protocols
should succeed if and only if a prover holding a secret is within the proximity of the verifier. Like proofs
of knowledge, these protocols must satisfy completeness, soundness (protection for the honest verifier), and
security (protection for the honest prover). We construct ProProx, the very first fully secure PoPoK.

1 Introduction

Following the chess grandmaster problem, a dummy chess player can challenge two grandmasters in
parallel (without letting them know) if they take different colors. This works by letting the dummy
player relay the move of a grandmaster on one chess board to the other chess board against the other
grandmaster and vice versa. In real life, relay attacks can be a serious threat against applications such
as NFC-based payment: for small payments, there is typically no action required on the creditcard or
smartphone (beyond approaching to the terminal) such as typing a PIN code. So, a man-in-the-middle
adversary could just relay communications between the payment device of the victim and the terminal
to make payments on the behalf of the holder. The limit of the speed of communication was proposed
to solve this problem [4]. Brands and Chaum [12] introduced the notion of distance-bounding protocol
to prove that a prover is close enough to a verifier. This relies on information being local and unable
to travel faster than the speed of light. So, an RFID reader can identify when participants are close
enough because the round-trip communication time in challenge/response rounds have been small
enough. Although challenging from an engineering viewpoint, it is actually feasible to implement
these protocols, as shown in [25,26,27]. Actually, some commercial NFC cards by NXP1 are already
supposed to implement “proximity checks against relay attacks” by “a precise time measurement of
challenge-response pairs”, although no public analysis is available so far.

The literature considers several threat models.

– Relay attack: an adversary relay messages between a far-away honest prover and a verifier, trying
to make the verifier accept. This is extended by Mafia fraud [16] where the adversary can also
modify messages. This is further extended by Man-in-the-Middle attack [6,8] where the attack
follows a learning phase where the prover could be close-by. In Impersonation fraud [2], the
prover is absent and the adversary tries to impersonate the prover to the verifier.

– Distance fraud [12]: a far-away malicious prover tries to pass the protocol.
– Terrorist fraud [16]: a far-away malicious prover, with the help of an adversary, tries to make

the verifier accept the adversary’s rounds on his behalf, but without giving the adversary any
advantage to later pass the protocol alone. This is extended by Collusion fraud [6,8] where the
goal of the adversary is now to run a man-in-the-middle attack. Terrorist fraud is also related to

1 See Mifare Plus X on http://www.nxp.com

the notion of soundness [28]: whenever the verifier accepts, there must be an extractor who can
reconstruct the secret of the prover based on the view of all close-by participants, even after many
iterations. An hybrid model between distance fraud and terrorist fraud is the one of Distance
hijacking [15]: A far-away prover takes advantage of some honest, active provers to make the
verifier accept.

One of the first model to capture these notions was proposed by Avoine et al. [1]. However, is was not
formal enough. Then, two parallel models were developed: the BMV model by Boureanu et al. [6,8]
and the DFKO model by Dürholz et al. [17]. There exist many (symmetric) distance-bounding pro-
tocols but so far only the SKI protocol [5,6,7] (based on the BMV model), the Fischlin-Onete proto-
col [19] (based on the DFKO model), and DB1 and DB2 [9,10] (combining both protocols in the BMV
model) provide an all-encompassing proven security, i.e., they protect against man-in-the-middle, dis-
tance fraud, and collusion fraud with a formal proof of security. (See [5, Section 2].)

As discussed herein, resistance to malicious provers (i.e., distance fraud, distance hijacking, ter-
rorist fraud, collusion fraud, and non-soundness) is important, specially for non-repudiation. This is
needed for contactless payment applications: If a customer can deny a payment by proving he was
somewhere else, there is a liability issue. Making the scheme such that this type of fraud is impossible
would certainly be an asset. It would strengthen trust and acceptance of this technology. So, there is a
need for distance-bounding protocols protecting against all the above types of fraud.

Public-key distance bounding. In interactive proofs, the prover does not share a secret key with the
verifier. The verifier only knows a public key. However, so far, only the following distance-bounding
protocols are in the public key model: the Brands-Chaum protocol [12] (Fig. 4), the Bussard-Bagga
protocol [13], and the Hermans-Peeters-Onete (HPO) protocol [23] (Fig. 5).2 The Bussard-Bagga pro-
tocol was broken by Bay et al. [3] and none of the others protect against terrorist fraud. Additionally,
the protocol VSSDB was presented at the BalkanCryptSec’14 conference by Gambs et al.. It is based
on the random oracle model, but the security proofs are still questionable, as discussed in Appendix C.
So, the problem of making a fully secure public-key distance-bounding protocol is still open.

Sometimes, secret key protocols are sufficient for practical applications. Indeed, to unlock a car
or to open a door in a building with an RFID token, it may be reasonable (especially if symmetric
distance-bounding protocols are more efficient) to assume that the RFID token shares his secret with
the car or the door. However, when considering wireless payment systems, it is unreasonable to assume
that the secret of the prover can be shared with all verifiers. When paying with an NFC credit card at
the grocery shop, the cashier may sometimes be offline with the bank and not willing to stop business.
To protect against relay attacks, we need the cashier to run a distance-bounding protocol from the
public key of the payer only. So, there is a need for public-key distance bounding.

Contribution. In clear, our contributions in this paper are as follows.

– We take the “Fundamental Lemma” in its version of [9,10] and provide a detailed proof of it in
the BMV model. (The previous version of this lemma was proven in [6].)

– We adapt the framework of [9,10] in the BMV model to provide a full formalization of public-key
distance-bounding. We specify our new primitive: the proof of proximity of knowledge (PoPoK). It
is based on a prover holding a secret x authenticating to a verifier knowing his public key y. Under
honest execution, the verifier should accept if the prover is at a distance up to a bound B. Under
adversarial environment, he should only accept if we can extract x from the view of all participants
within a distance lower than B.

2 A variant of the HPO protocol offers anonymous authentication [20].

2

– We change the definition of soundness from [9,10] and [28] to make it more natural and closer to
the one of interactive proofs. So, our model is pretty natural and nicely connects recent work on
distance bounding (such as the BMV model [6,8]) and interactive proofs.

– Observing that none of the existing protocol is provably sound, we construct ProProx, the very first
secure and sound PoPoK. It is based on the quadratic residuosity problem, using the Goldwasser-
Micali encryption [21,22] as a perfectly binding commitment and the Fiat-Shamir protocol [18].

– We provide a technique to prove security and soundness. Essentially, we construct an extrac-
tor based on the “Fundamental Lemma” and prove that the protocol is zero-knowledge. Then,
the extractor is used with malicious provers to show that the protocol is sound and the extractor
with non-concurrent honest provers is transformed into a key recovery algorithm by using zero-
knowledge.

– By closely looking at our security proofs, we provide some concrete parameters to provide con-
crete security and soundness. Our best parameters require the encryption of 80 bits, the ZK proof
that 80 residues are quadratic, and 80 rounds of fast challenge/response exchanges. This provides
an 80-bit equivalent offline security and an online security which guaranties that the probability
of success of online attacks is between 2−11 and 2−22. We further conjecture that 80 rounds is
optimal for protocols with a single-session extractor.

Organization. In Section 2 we provide a full formal model for public-key distance bounding, mostly
based on the BMV model, and define the PoPoK. We relate this to the state of the art and to the
notion of interactive proofs. Some case studies illustrating the difficulty of constructing a PoPoK are
put in Section 3. In Section 4 we propose ProProx, the very first fully secure PoPoK, and analyze it.
In addition to man-in-the-middle and collusion frauds, we specifically cover distance frauds. We also
discuss on concrete parameters and implementation.

2 Model and Definitions

We refine the security definitions and other tools from the BMV model [6,8,28]. Throughout this
paper, we use the asymptotic complexity approach for security. Constructions depend on some security
parameter λ which is omitted for more readability. A constant does not depend on λ, while parameters
defining cryptographic constructions do. Algorithms will often run in probabilistic polynomial-time
(PPT) in terms of λ. A real function f (λ) is negligible if for any d, we have f (λ) = O(λ−d), as
λ→+∞. In this case we denote f (λ) = negl(λ). We also use the following notation:

Tail(n,τ,ρ) =
n

∑
i=τ

(n
i

)
ρi(1−ρ)n−i

2.1 Computational, Communication, and Adversarial Models

In our settings, participants are interactive Turing machines running PPT algorithms.
We follow the BMV communication model and adversarial model [6,8]: we assume that partici-

pants have a location which is an element of a metric space S , with a distance function d. If a partici-
pant π1 at a location loc1 executes a special command send(π2,m) at time t to send a message m to a
participant π2 at location loc2, the message m is received by π2 at time t +d(loc1, loc2). Furthermore,
any malicious participant π3 at some location loc3 could see this message m at time t +d(loc1, loc3).
We assume no authentication: π2 does not know if the message comes from π1.

There is an exception preventing m from being delivered to π2: if π2 is honest and some (mali-
cious) participant π3 at some location loc3 has sent a special signal corrupt(π1,π2) at time t ′, m is not

3

delivered to π2 if t +d(loc1, loc2)≥ t ′+d(loc3, loc2). This condition is a consequence of the informa-
tion traveling with a speed limit: whenever a malicious participant π3 corrupts a π1→ π2 channel, π2
will only receive the messages until his corruption signal emitted from π3 reaches π2.

Note that once the π1 → π2 channel is corrupted, π3 can still see the message m sent by π1 and
decide to send any m′ to π2, either depending on m if he waits to receive m, or not. The crux is that
either m′ is independent of m, or it is delivered at a different time, depending on the locations.

The BMV model is only used to prove the following lemma which is taken from [9,10].

Lemma 1 (Fundamental Lemma). Assume a multiparty protocol execution with a distinguished
participant V , the set Far of all participants within a distance to V larger than B, and the set Close
of all other participants. At some time t in the execution, V broadcasts a message c and waits for
a response r. We let Acc denote the event that r was received by V no later than time t + 2B. For
each participant U, we denote by ViewU his partial view just before time t +d(V ,U), the time when
U could see c. We say that a message from U is independent3 (from c) if it is sent before time t +
d(V ,U): if it is the result of applying the algorithm U on ViewU , or on an earlier partial view.
There exists an algorithm Algo such that if Acc occurs and r was sent by some U ∈ Close, then
r = Algo(ViewClose,c,Other), where ViewClose is the list of all ViewC, C ∈ Close, and Other is the list
of all messages from any F ∈ Far which are independent from c (i.e., sent before time t + d(V ,F)),
that at least one member C ∈ Close could see (either because he was the recipient, or because he is
malicious), and not already in any ViewC (i.e., sent after time t +d(V ,C)−d(C,F)). Furthermore, if
Acc occurs and r was sent by some U ∈ Far, then r is independent from c.

In clear: r cannot depend on messages from a far away U which has been sent after U received c.
We provide here a detailed proof of this lemma in the BMV model.

Proof. The case where r comes from U ∈ Far is easy: if r is computed at time t ′, we must have
t ′ ≤ t +2B−d(V ,U). Since d(V ,U)> B, we have t ′ < t +d(V ,U), so r is independent form c.

For the other case, we let Algo simulate each participant C ∈ Close between time t +d(V ,C) (to
continue after ViewC) and time t + 2B− d(V ,C) (after which it is too late to send a message to V).
The simulation of all participants is done in parallel, chronologically. The output of Algo is the first
message r for V to arrive to V .

We show by induction that the simulation cannot block: when Algo must simulate the computation
of a message by some C ∈ Close at time t ′ ≤ t +2B−d(V ,C), the input to C are messages m which
are either part of the input to Algo or which have been computed by Algo before. To prove this, we
distinguish three cases. First, if m comes from a participant in Far, due to the distance constraint, it
must be independent from c, so be part of Other which is input to Algo. In the second case, m comes
from V . Since it is assumed that V does not send messages after c before r is received, m is either
part of ViewC or the message c itself, so part of the inputs of Algo in both cases. In the third case,
m comes from C′ ∈ Close. It is either computable from ViewC′ or computed by C′ after ViewC′ was
closed but early enough to arrive at C at time t ′, so between time t +d(V ,C′) and t ′−d(C,C′). Since
t ′ ≤ t+2B−d(V ,C), we have t ′−d(C,C′)≤ t+2B−d(V ,C)−d(C,C′)≤ t+2B−d(V ,C′), so this
message must have been computed in the simulation by Algo.

Finally, we observe that Algo returns r. Indeed, the message r to V must be among those which
are computed by the simulation, due to the distance constraints. ⊓⊔

Participants can move, in a way which can depend on their view, but not faster than communi-
cation. I.e., the location at time t + 1 can only be at a distance up to 1 to the location at time t. For

3 We stress that this notion of independence is not related to statistical independence. Our notion of independence means
that the message is computed with data available before c has reached the location where the computation is done.

4

simplicity, we assume that far-away participants (as defined in Def. 3) remain far away during the
entire execution.

We sometimes consider that when an honest participant receives a message from another honest
participant, it may be subject to noise. As for malicious participants, we could assume that they use a
better equipment which eliminates noise. Also: whenever the honest-to-honest communication is not
time-sensitive, we may also assume that they use error correction means so that the communication is
noiseless. Protocols shall thus make clear which messages may be subject to noise.

2.2 PoPoK: Proofs of Proximity of Knowledge

Definition 2 (Proof of proximity of knowledge). A proof of proximity of knowledge (PoPoK) is a
tuple (K ,Kgen,P,V,B), consisting of: a key space K depending on a security parameter λ, with
elements of polynomially-bounded size in terms of λ; a PPT algorithm Kgen; a two-party PPT proto-
col (P(x),V (y)), where P(x) is the proving algorithm and V (y) is the verifying algorithm; a distance
bound B. The algorithm Kgen maps the secret x ∈ K to a public key y.4 y is given as input to all
participants. At the end of the protocol, V (y) sends a final message OutV . He accepts (OutV = 1) or
rejects (OutV = 0).

The protocol must be such that when running P(x) and V (y) at locations within a distance up to
B, in a noiseless environment, the verifier always accepts. This property is called completeness.

If the protocol specifies a list of time-critical challenge/response exchanges, we say that it is com-
plete with noise probability pnoise if, in an environment in which all challenge/response rounds are
independently corrupted with probability pnoise and other exchanges are not subject to noise, the
probability that the verifier accepts is 1−negl(λ).

The last part of this definition applies to protocols which identify well the challenge/response rounds.
We implicitly assume that (x,y) keys of honest provers are correctly registered using Kgen.
In practice, if we want to have B = 10m, assuming that an adversary can do computation in

negligible time, the timer for receiving a response r to a challenge c in Lemma 1 should be limited to
67ns. So, an honest prover at a zero distance must respond within less than 67ns. This clearly excludes
any cryptographic computation. This even excludes waiting for receiving several bits in a sequence
since the typical time between two bits is of 1µs in wireless technologies. To be realistic, a PoPoK can
only consider boolean (or very small) challenges and responses when it comes to use Lemma 1.

2.3 Cryptographic Properties of PoPoK in a Multiparty Setting

We adopt the multiparty setting from [9,10] and only adapt it to accommodate public-key distance
bounding.

As it is discussed in Example 7, we don’t assume that instances reliably know their locations.
We consider a setting with participants which are called either provers, verifiers, or other actors.

We assume only one verifier V , without loss of generality. Indeed, we can take other verifiers as other
actors. Similarly, we assume that provers correspond to the same identity so share the same secret x,
without loss of generality. (Provers with other secrets are considered as other actors.) Other actors are
malicious without loss of generality. The difference between malicious provers and malicious actors
is in the input: malicious provers receive x while malicious actors only receive y.

4 This is without loss of generality: an algorithm Gen(ρ) = (Kp,Ks) making a public key Kp and a secret key Ks using
coins ρ defines such Kgen(x) = y by letting x = ρ and y = Kp.

5

We assume that participants run their algorithm only once. Since different participants may corre-
spond to the same identity at different time and locations, multiple executions are modeled by multiple
participants. Since honest provers correspond to the same person at different time and locations, we
assume that honest provers never run concurrently. A malicious prover may however clone himself at
different locations and run algorithms concurrently.

Definition 3 (Experiment). An experiment exp for a PoPoK (K ,Kgen,P,V,B) is defined by several
participants who are a verifier V , provers from an ordered set P, and other actors from a set A. Par-
ticipants which are within a distance of at most B to V are called close-by participants. Participants
which are within a distance larger than B to V are called far-away participants. We say that the prover
is always far-away if all participants in P are far away.

We adopt a static adversarial model: either the prover is honest and all participants in P run the
P(x) algorithm, or the prover is malicious, and they could run any PPT algorithm.

If the prover is honest, the participants in P are assumed to be non-concurrent: at each time,
there is only one participant of P which is activated. When the active participant terminates, another
participant of P is activated, following a sequence. This sequence is defined by the ordering of P.

At the beginning of the experiment, for malicious provers, (x,y) is set arbitrarily. If the provers
are honest, x ∈ K is randomly selected and y = Kgen(x) is computed. Then, x is given as input to
participants in P, while y is given as input to all participants. V runs V (y). All participants are then
activated and run concurrently. (If the prover is honest, only the first prover from P is activated with
the other participants, other provers being activated sequentially.) The experiment terminates when
V produces its final output OutV .

We want to protect the honest prover against abuse. For that, we formalize security as follows:

Definition 4 (Security of PoPoK). A PoPoK (K ,Kgen,P,V,B) is secure if for any experiment exp
where the prover is honest and always far-away from V , we have Pr[OutV = 1] = negl(λ).

This definition clearly captures relay attacks, Mafia fraud [16], and man-in-the-middle attacks in gen-
eral. Some models (like in [6,8]) distinguish a learning phase (with provers which could be close-by)
and an attack phase (with far-away provers). This could also be described in the above framework: we
just simulate both phases in two different locations and time of the experiment and make the adversary
of the (simulated) learning phase sends what he has learnt to the adversary of the (simulated) attack
phase. (The target V would be the one from the attack phase. So, provers would still be all far away.)
With our model, we also cover more general cases in which provers are being attacked in parallel at
other locations. Our definition is thus much simpler, more natural, and more general than [6,8].

We now formalize the protection for the honest verifier. Intuitively, we want that if the proof is
accepted, it must be because the information about the secret x is in the close-by neighborhood.

Definition 5 (Soundness of PoPoK). A PoPoK (K ,Kgen,P,V,B) is sound if there exists a negligible
function pSound(λ) such that for any experiment exp in which V accepts with probability Pr[Succ]≥
pSound(λ), there exists an algorithm E called extractor, with the following property. exp defines an
oracle which simulates an execution of exp and returns the views of all participants which are close-
by (excluding V) and the transcript of the protocol seen by V . E can invoke the oracle many times.
Then, E finally outputs x′ such that Kgen(x′) = y, using an expected time complexity of Poly(λ)

Pr[Succ] .

For experiments with a close-by prover, this is trivial (as x is in the view of the prover). For experiments
with no close-by prover, close-by actors would extract the prover’s credential in the case the verifier
would accept due to the prover cheating from far away. For experiments with no close-by participant
at all, the transcript as seen by V would leak. So, a malicious prover is bound to leak.

6

Compared to the soundness of interactive proofs, our notion uses a straightline extractor: we ex-
tract the secret from close-by participants without rewinding them. This makes the treatment of mul-
tiparty settings much easier. As we will see, our extractor essentially uses Lemma 1. Interestingly,
the extractor is also used to prove security: if the protocol is zero-knowledge, the oracle extractor can
(in honest prover cases) be transformed into a stand-alone extractor which contradict some one-way
assumption in the key generation.

Clearly, our definition nicely connects the infamous terrorist-fraud resistance to the soundness of
interactive proofs. To compare with the literature, we could see that terrorist frauds in our model make
the secret leak instead of only making man-in-the-middle attack feasible as in the notion of collusion
fraud proposed in [6,8], and on which the SKI protocol is based, or only making impersonation attack
feasible as in [9,10]. Our soundness is thus stronger.

Our notion and the one of [9,10] are close to soundness as defined in [28], except that we no longer
require 1/Pr[Succ] to be polynomial. Also, compared to [9,10], we no longer need the condition on
the success of the experiment to extract and we call an oracle O many times instead of using m views.

Just like other notions of TF-resistance, soundness is incomparable with SimTF-security [17] or
GameTF-security [19] in the DFKO model. But SimTF-security has a single symmetric instance [19]
which is not competitive (see [9,10,28]) and GameTF has no instance (the MSK instance from [19] is
broken in [28]).5

What is captured by the notion of soundness? In distance bounding, the regular distance fraud is the
case where the verifier accepts, with a malicious prover, and all participants far-away. Our soundness
definition implies in such a case an extractor based on the transcript only. So, our soundness and secu-
rity definitions protect against distance fraud by warning that any attack would leak. If the malicious
prover does not care about leaking, this line of defense does not work and we have to treat distance
fraud specifically. For this reason, we specifically define resistance to distance fraud in Def. 6 below.

Similarly, distance hijacking is a more general case allowing some honest close-by participants
but not the prover holding x. We could say that a malicious prover hijacking the distance is bound to
leak his secret due to our soundness definition. Indeed, the distance hijacking scenario is less general
than the case of terrorist fraud where some adversaries may be close to the verifier.

Why do we care about soundness? In practice, it is not quite clear which application really needs
soundness. Indeed, the original motivation of distance-bounding was to protect against relay attacks,
or more generally to man-in-the-middle attacks, where the prover is assumed to be honest. These
are all covered by security following Def. 4. When we additionally want to protect against malicious
provers, one may think that distance fraud resistance it is enough and not care about soundness.

History shows that more bizarre attack scenarios happen, such as distance hijacking and collusion
fraud. As we have seen, our notion of soundness is strong enough to capture all these threat models.
Finally, protection against malicious provers in general (what soundness captures) is really needed for
applications requiring non-repudiation such as payment. A malicious prover who succeeds to make
a payment by an unknown attack can deny having made the payment with an alibi for having been
unable to do it honestly (e.g., by proving he could not be close to V at this time). Soundness could
offer more confidence in that this situation could not happen. It could be an asset.

We mention that there are other techniques to protect against malicious provers, including making
sure that provers are honest by relying on tamper resistance. But tamper resistant devices are always
subject to side-channel attacks, so this may not be so easy to achieve. Also, we think that soundness
nicely bridges to the theory of interactive proofs of knowledge where soundness is defined similarly.

5 The VSSDB case is discussed in Appendix C.

7

There is however a risk in trying to make distance bounding sound. Like in [23], some authors
argue that soundness weakens protocols. This is actually the case of [19] (as shown in [28]). Also,
sometimes, poorly analyzed protocols aimed to be sound can be badly broken, like DBPK-Log [13]
(as shown in [3]) or MSK [19] (see [28]). This requires soundness to be taken with a special care and
to make correct full security proofs.

Definition 6 (Distance-fraud security). A PoPoK (K ,Kgen,P,V,B) resists to distance fraud if for
any experiment exp where all participants are far away from V , we have that Pr[OutV = 1] = negl(λ).

3 Case Studies

We briefly discussed some natural examples which come to mind and which illustrate that making a
protocol which is both secure and sound is not trivial.

Example 7. Imagine a protocol in which the prover signs his location (with a challenge), then the
verifier checks if this location is close enough. Obviously, this protocol is not sound since a malicious
prover could claim to be anywhere. It may not be secure either in practice, since an adversary could
make the honest prover believe that he is somewhere else. He could just relay GPS, WiFi, or cellular
network signals. So, we rather consider protocols not assuming they reliably know their location.

Example 8. We consider a very simple protocol in which a verifier sends a random bitstring as a
challenge and the prover must return at once a valid signature of it. This protocol suffers from many
problems. First of all, it may not be sound, except if we could make the signature somehow extractable
(i.e., we could extract the secret from the view of any signing algorithm). Second, sending a bitstring
as a challenge must be done “at once” as we cannot afford loosing time by sending bits sequentially.
This requires to send all bits in parallel. Finally, the signature operation would take too much time on
any commercial device to make the protocol work with a B low enough. Indeed, the crucial problem
in making a PoPoK scheme is to remove all computation from the time-critical challenge-response
exchange and to split it into boolean challenge-response rounds.

Example 9. We recall the Brands-Chaum protocol [12] on Fig. 4. It is based on a commitment scheme
and a signature scheme. The Brands-Chaum protocol is not sound if the signature resists to chosen-
message attacks: a far-away malicious prover can let a close-by actor run the protocol then sign the
transcript for him.

Example 10. We recall the Hermans-Peeters-Onete protocol [23] on Fig. 5. It is based on the one-
more discrete logarithm problem and the decisional Diffie-Hellman problem over elliptic curves. We
can easily see that it is not sound. Indeed, the adversary can just relay messages between the prover
and the verifier and run the challenge phase after being given the vectors a′0 and a′1. These vectors do
not leak any sensitive information.

Example 11. We can easily construct a PoPoK based on a symmetric distance bounding protocol by
making the shared secret used in distance-bounding be the result on a public-key based key agree-
ment [11,29]. However, this construction does not provide soundness since leaking the shared secret
does not imply leaking the secret key.

8

4 ProProx: a PoPoK Scheme

4.1 Building Blocks

Perfectly binding bit commitment. Depending on the security parameter λ, we use a (multiplicative)
group structure with two Abelian groups L and G and an element θ such that G is generated by L and θ,
θ ̸∈ L, and L is the set of all squares of G. We further assume that it is easy to do group operations and
comparisons in G and to sample elements in G uniformly.6 Finally, we assume it is computationally
hard to distinguish elements from L and from G.

We define Com(b;ρ) = θbρ2 for a bit b and a random ρ ∈ G, like in the Goldwasser-Micali cryp-
tosystem [21,22]. So, Com is computationally hiding as defined by Def. 19. We will not require any
secret key to extract b, although there exists a function Com−1 such that Com−1(Com(b;ρ)) = b for
all b∈ {0,1} and ρ∈G. We will rather use the homomorphic properties of the commitment and prove
the correct commitment in a zero-knowledge way. Def. 19 in appendix formally defines Com.

For instance, we can take a Blum integer N, i.e., N = PQ for two distinct primes P and Q which
are congruent to 3 modulo 4. We set L to the set of quadratic residues modulo N and θ a residue
modulo N such that

(θ
P

)
=
(

θ
Q

)
=−1. E.g., θ =−1. The algorithm Com is given N and θ. We sample

r ∈G by r = θbρ2 mod N, for b∈Z2 and ρ∈Z∗N . Distinguishing G from L is the quadratic residuosity
problem, which is supposed to be hard. In this case, N is assumed to come from a Common Reference
String (CRS).

A zero-knowledge proof for z being a square. We use the Fiat-Shamir protocol [18]. Namely, we show
that z is a commitment to zero with a witness ζ (i.e., z = ζ2) with the protocol from Fig. 3, based on
a perfectly hiding trapdoor commitment. Concretely, we use Def. 20 and Def. 21 in appendix with an
N P language L. This is the set of all squares. If z = ζ2, we say that z is a member of L with witness ζ.

The protocol of Fig. 3 in appendix is 1
2 -sound and zero-knowledge. It must be run k times in

parallel to achieve a soundness level κ = 2−k. We denote it by ZKPκ(z : ζ).
By using parallel composition, we extend the protocol to prove that z1, . . . ,zk are some commit-

ments to zero with witness ζ1, . . . ,ζk respectively, and denote it by ZKPκ(z1, . . . ,zk : ζ1, . . . ,ζk). I.e.,
it succeeds with probability up to κ if there exists i such that zi ̸∈ L.

(Perfectly binding) deterministic commitment. Given a hash function H making coins for Com, we
define a deterministic commitment by ComH(x) = (Com(x1;H(x,1)), . . . ,Com(xs;H(x,s))) for x ∈
Zs

2. We assume that ComH is a one-way function. Def. 22 in appendix formally defines ComH .
When H is a random oracle, we can easily show that ComH satisfies Def. 22. In other cases, we

must assume that Com composed with H is one-way. Constructions without using a random oracle
are left to future work.

4.2 The ProProx Protocol

We define the ProProx protocol, as depicted on Fig. 1. We consider s (the size of the secret), n (the
number of rounds per iteration), τ (the minimal number of correct rounds per iteration for acceptance)
as functions in terms of the security parameter λ. We assume s and n are asymptotically linear. We
also use a vector b ∈ Zs

2. We consider the vector b as fixed in the protocol. For now on, b is not
important. It will only appear in Lemma 17 to treat distance fraud. There, we will only require b to
have a Hamming weight of

⌊ n
2

⌋
.

6 So, we can sample an element of L uniformly by taking r2 with r uniformly selected in G.

9

Verifier Prover
public: y y = ComH(x) secret: x

initialization phase
for j = 1 to s in parallel

pick ai, j ∈ Z2, ρi, j , i = 1, . . . ,n
A1, j ,...,An, j←−−−−−−−−−−−−−−−−−−− Ai, j = Com(ai, j;ρi, j)

challenge phase
for i = 1 to n and j = 1 to s

pick ci, j ∈ Z2

start timeri, j
ci, j

===================⇒ receive c′i, j

receive ri, j , stop timeri, j
r′i, j⇐=================== r′i, j = ai, j + c′i, jbi + c′i, jx j

verification phase
check #I j = τ, timeri, j ≤ 2B for i ∈ I j , j = 1, . . . ,s

agree on I1 ,...,Is←−−−−−−−−−−−−−−−−−−→

zi, j = Ai, j
(
θbi y j

)ci, j θ−ri, j
ZKPκ(zi, j :ζi, j ;i∈I j , j=1,...,s)

←−−−−−−−−−−−−−−−−−−→ ζi, j = ρi, jH(x, j)c′i, j

OutV−−−−−−−−−−−−−−−−−−−→

Fig. 1. ProProx: a Sound and Secure PoPoK.

The prover holds a secret x ∈ Zs
2 and the public key is y = ComH(x). We iterate s times and in

parallel a protocol which we call an iteration and which corresponds to an index j. First, the prover
selects n bits a1, j, . . . ,an, j ∈Z2 and commits to them using some fresh coins ρ1, j, . . . ,ρn, j, respectively.
So, Ai, j = Com(ai, j;ρi, j), i = 1, . . . ,n. The Ai, j’s are sent to the verifier.

In the challenge phase, we have n time-critical rounds (in each iteration). These rounds may be
subject to noise. For i = 1, . . . ,n, the verifier picks a challenge ci, j ∈ Z2 at random and sends it to
the prover. The prover receives c′i, j (which may be different, due to noise). He computes his response
r′i, j = ai, j +c′i, jbi+c′i, jx j and sends it back to the verifier at once. The verifier receives ri, j. The verifier
measures the elapsed time timeri, j taken to receive ri, j after ci, j was sent. Below, pnoise is the prob-
ability that some noise corrupts a challenge/response round. We assume that the noise corrupts each
round independently.

The c′i, j 7→ r′i, j function maps one bit to one bit. Its table could be precomputed to save time.
Furthermore, these c′i, j 7→ r′i, j rounds could be run by analog circuits to avoid communication delays.

In the verification phase, the prover and the verifier determine a set I j of τ round indices which
they believe are correct. The way this agreement is done is not important (as long as the prover does
not leak). Then, the verifier checks whether I j has cardinality τ and the corresponding timers are small
enough. If this fails, the verifier rejects. As a concrete instance for I j agreement, we suggest that the
prover sends (through the lazy noiseless channel) the c′i, j and r′i, j to the verifier. The verifier then takes
the first τ rounds for which ci, j = c′i, j, ri, j = r′i, j, and timeri, j ≤ 2B to define I j and sends I j to the
prover. If there are not enough correct rounds, the protocol aborts.

Next, the prover and the verifier run the interactive proof ZKPκ to show that the responses ri, j’s
are consistent with the Ai, j’s and y j’s. Namely, for all j and i ∈ I j, they compute

zi, j = Ai, j

(
θbiy j

)ci, j
θ−ri, j , ζi, j = ρi, jH(x, j)c′i, j

10

Since Ai, j = θai, j ρ2
i, j and y j = θx j H(x, j)2, it is easy to verify that ri, j = ai, j +ci, jbi+ci, jx j is equivalent

to the existence of ζi, j such that zi, j = ζ2
i, j. That is, zi, j ∈ L. If this fails, the protocol aborts. When the

protocol aborts, the verifier sends OutV = 0. Otherwise, he sends OutV = 1.

4.3 Analysis

Theorem 12. Let ε > 0 be a constant. We assume that n is linear in λ and that τ
n < 1− pnoise− ε or

that pnoise = 0. Under the assumption that Com is a homomorphic bit commitment [Def. 19] and that
ZKPκ is complete [Def. 20], the ProProx protocol is a PoPoK when the challenge/response rounds
are subject to a noise level of pnoise [Def. 2].

We further assume that τ≥ n−(1
2−2ε)⌈n

2⌉. Under the assumption that Com is a perfectly binding,
computationally hiding, and homomorphic bit commitment [Def. 19], that ComH is one-way [Def. 22],
and that ZKPκ is a κ-sound [Def. 20] computationally zero-knowledge [Def. 21] proof of membership
for κ = negl(λ), the ProProx protocol is a sound [Def. 5] and secure [Def. 4] PoPoK.

Proof. Completeness for pnoise = 0 is trivial. Proving completeness when τ
n < 1− pnoise−ε is straight-

forward: we have less than τ noiseless rounds with probability 1−Tail(n,τ,1− pnoise)< e−2ε2n due to
the Chernoff-Hoeffding bound (see Appendix A), which is negligible. Then, the completeness failure
is bounded by

pComp = 1−Tail(n,τ,1− pnoise)
s (1)

which is also negligible. We prove in Lemma 14 that ProProx is sound and we prove in Lemma 16
that ProProx is secure. ⊓⊔

We state an important result which will be used to prove soundness and security. Indeed, we
construct an extractor using a single session of the experiment. Any time the experiment makes V
accept, the extractor gives an output which is close to the secret, except with some probability that we
can bound.

Lemma 13 (Extractor). Under the assumption that Com is a perfectly binding homomorphic bit
commitment, and that ZKPκ is a κ-sound proof of membership, for any experiment, there is a PPT
algorithm Extract which takes the views of all close-by participants and the transcript of the protocol
seen by V and which aborts if V rejects, otherwise produces a vector x′ ∈ {0,1}s. For any w, the
probability that V accepts and the Hamming distance between x and x′ is at least w is bounded by
Tail(⌈n

2⌉,τ−⌊
n
2⌋,

1
2)

w +κ.

Proof. We assume that we have an experiment making V accept with probability p. We define pB =
Tail(⌈n

2⌉,τ−⌊
n
2⌋,

1
2).

We take the viewpoint of V . Since we have a perfectly binding commitment, the value y j uniquely
defines x j = Com−1(y j), and the value of Ai, j uniquely defines ai, j = Com−1(Ai, j). (We stress that we
need not compute these values, we just mathematically define them given the view of the verifier.)
The purpose of the proof is to show that we can extract a good approximation of x, except with some
negligible cases.

Let p = Pr[V accepts]. Let S be the event that for all j and all i ∈ I j, we have ri, j = ai, j + ci, jbi +
ci, jx j (where the values are those seen by V).

In the case where the statement proven by ZKPκ is true, for all j and i ∈ I j, zi, j is clearly a
commitment to zero. Due to the homomorphic property of Com, we know that zi, j is the commitment
to ai, j +ci, jbi+ci, jx j−ri, j. So, we deduce that S occurs. By using the κ-soundness of ZKPκ (Def. 20),
we deduce Pr[V accepts|¬S]≤ κ. So, Pr[¬S,V accepts]≤ κ.

11

Thanks to Lemma 1, when ri, j comes from a close-by participant, we can write

ri, j = Algo(Viewi, j,ci, j,Otheri, j)

with Viewi, j the partial view (before being able to see ci, j) of close-by participants and messages
Otheri, j independent (in the sense of Lemma 1) from ci, j coming to these participants from far-away.
Note that both Viewi, j and Otheri, j can be computed from the final views of the close-by participants.
So, thanks to Lemma 1, we can compute in this case both resp(0) = Algo(Viewi, j,0,Otheri, j) and
resp(1) = Algo(Viewi, j,1,Otheri, j) without rewinding (i.e., from the final view only). So, we can
compute the guess ξi, j = resp(1)− resp(0)−bi for x j.

Note that if the answer ri, j comes to V from far-away, we can still apply Lemma 1 and deduce
that the answer is the same for ci, j = 0 and ci, j = 1: resp(0) = resp(1). Although we may be unable
to compute the responses, we can still compute ξi, j = −bi. In all cases, we can always compute the
vectors ξ j = (ξ1, j, . . . ,ξn, j).

The extractor is taking Algo to compute ξ j and to deduce x′j =majority(ξ j).
Given c, if ai, j + cbi + cx j = resp(c), we say that the answer to ci, j = c is correct. Let R j =

(R1, j, . . . ,Rn, j) where Ri, j is the number of challenge values c ∈ {0,1} for which the answer is correct
for ci, j = c. If Ri, j = 2, i.e. if we have two correct answers for ci, j = 0 and for ci, j = 1, then we have
ξi, j = x j. If Ri, j = 1, we have ξi, j ̸= x j. Let R be the set of all R = (R1, . . . ,Rn) ∈ {0,1,2}n such that
the number of i’s with Ri = 2 is at least ⌊n

2⌋+ 1. For R j ∈ R , we have a majority of i’s for which
ξi, j = x j. So, we have x′j = x j.

We let R = (R1, . . . ,Rs) be a random variable defining the R j vectors. Since V is selecting the
challenges at random, once Ri, j is determined, we can compute the probability that the answer to ci, j

is correct: if Ri, j = 2 then this probability is 1. Otherwise, it is at most 1
2 . If W is the random variable

giving the number of j such that R j ̸∈R , we have Pr[S|W =w]≤ pw
B . So, Pr[W =w,S]≤ pw

B Pr[W =w]
and then Pr[W ≥ w,S]≤ pw

B . Finally, by splitting with the S and ¬S events, we have

Pr[W ≥ w,A accepts]≤ Pr[¬S,A accepts]+Pr[W ≥ w,S]≤ µ+ pw
B

We note that each index j such that x′j ̸= x j must corresponds to R j ̸∈ R . So, having that A accepts
and the extractor gives at least w errors occurs with probability bounded by µ+ pw

B . ⊓⊔

Lemma 14 (Soundness). We assume that n is linear in λ and that τ ≥ n− (1
2 − 2ε)⌈n

2⌉ for some
constant ε and some parameter ⌈n

2⌉. Under the assumption that Com is a perfectly binding homomor-
phic bit commitment, and that ZKPκ is a κ-sound proof of membership for κ = negl(λ), the ProProx
protocol is a sound proof of proximity.

Proof. We define pB = Tail(⌈n
2⌉,τ−⌊

n
2⌋,

1
2). We assume p≥ pSound where

pSound = 2(pw
B +κ) (2)

for w > 0 constant. Actually, to use (2) with concrete parameters, w is chosen as the maximal value
such that we want to protect against an adversary who can afford an exhaustive search of sw steps.
Since τ−n+⌈ n

2 ⌉
⌈ n

2 ⌉
≥ 1

2 +2ε, we have pB ≤ e−8ε2n due to the Chernoff-Hoeffding bound (see Appendix A),
which is negligible. So, pSound is negligible.

We can use the extractor of Lemma 13 on views taken from an experiment run. If V rejects, the
extraction produces nothing. We iterate this extraction O(1

p) times until one experiment succeeds. So,
we obtain for sure a guess x′ for x (with possible errors). The probability that at least w errors occurs

12

in the extracted pairs is bounded by pw
B+κ
p ≤ 1

2 . When there are less errors, we can correct them by
exhaustive search in time O(sw) (which is polynomial). If this fails (i.e., if it gives no preimage of y
by ComH), as some extracted pairs may have too many errors, we can just iterate. With a constant
number of iterations, we finally extract x. The overall expected complexity is Poly(λ)/p. ⊓⊔

Our technique to prove security relies on Lemma 13 and zero-knowledge. We state this latter
property.

Lemma 15 (Zero-knowledge). Under the assumption that Com is a computationally hiding bit com-
mitment and that ZKPκ is a computationally zero-knowledge proof of membership, The ProProx pro-
tocol is zero-knowledge following Def. 21.

Proof. We have to prove that, given two participants P(x) and V ∗(y,aux), there exists a simulator
S(y,aux) such that V ∗(y,aux)↔ P(x) produces a view of V ∗(y,aux) which is computationally indis-
tinguishable from the output of S(y,aux). We will actually construct a sequence of simulations. We
define an interactive V ′(y,aux) to replace V ∗(y,aux), and some interactive P′(x) and P′′ to replace
P(x).

We denote z̄ the vector of all zi, j for j = 1, . . . ,s and i ∈ I j, and ζ̄ the vector of all ζi, j. We split
V ∗(y,aux) into two protocols V1(y,aux) and V2(z̄,aux′), where V1 mimics V ∗ until the ZKPκ(z̄ : ζ̄)
protocol must start. Actually, V2 executes only ZKPκ(z̄ : ζ̄) where aux′ is the final view of V1(y,aux).
The final view of V2(z̄,aux′) is of form v = (z̄,aux′, t). We write g(v) = (aux′, t), which is the final
view of V ∗(y,aux). Similarly, we split P(x) into P1(x) and P2(x,u) where (x,u) is the view of P1(x).
Clearly, running either V ∗(y,aux)↔ P(x) and taking the final view of V ∗, or V1(y,aux)↔ P1(x),
V2(z̄,aux′)↔ P2(x,u), then taking g(v) is the same. This simulation is illustrated on the left-hand side
of Fig. 2.

V ∗(y,aux)

V1(y,aux)

?aux
′

V2(z̄,aux′)

?
(aux′, t)

-�

-�

P(x)

P1(x)

?
P2(x,u)

V ′(y,aux)

V1(y,aux)

?aux
′

S′(z̄,aux′)

?
g(v′)

-� P1(x)

?6
ai, j Ai, j

Com(ai, j;ρi, j)

S(y,aux)

V1(y,aux)

?aux
′

S′(z̄,aux′)

?
g(v′)

-� P′′

Fig. 2. Applying a ZK Reduction.

First, V ′(y,aux) runs a simulation of V1(y,aux) interacting with P1(x). Then, V ′(y,aux) runs the
simulator S′(z̄,aux′) of the ZKPκ(z̄ : ζ̄) protocol associated to the verifier V2(z̄,aux′). Let v′ be the
output of S′(z̄,aux′). Finally, V ′(y,aux) produces g(v′) as an output. This simulation is illustrated
on the middle of Fig. 2. Due to the zero-knowledge property of ZKPκ(z̄ : ζ̄), v′ is computationally
indistinguishable from the final view of V2(z̄,aux′). So, the final view of V ′(y,aux) in V ′(y,aux)↔
P1(x) and the final view of V ∗(y,aux) in V ∗(y,aux)↔ P(x) are indistinguishable.

Note that P1(x) makes no longer extra use of the coins ρi’s (as P2(x,u) does in ZKPκ). So, the
commitment can be outsourced to a challenger playing the real-or-random hiding game for Com. We
modify P1(x) into an algorithm P′(x) who sets Ai, j to the commitment to some random bit instead of
ai, j. Thanks to the hiding property of Com, the output of V ′(y,aux)↔ P1(x) and of V ′(y,aux)↔ P′(x)
are indistinguishable.

Finally, r′i in P′(x) is now uniformly distributed and independent from all the rest, so we change
P′(x) into an algorithm P′′ which sends a random r′i instead. Note that P′′ no longer needs x. So, the

13

view of V ∗ in V ∗(y,aux)↔ P(x) and the output of V ′(y,aux)↔ P′′ are indistinguishable. This defines
a simulator S(y,aux), as illustrated on the right-hand-side of Fig. 2.

Overall, the advantage to distinguish is bounded by

pZK = pZKP+ns.pCom (3)

where pZKP is the advantage to distinguish the ZK simulation from real in the ZKP protocol and pCom
is the bound on the hiding property of Com. ⊓⊔

Lemma 16 (Security). We assume that s is linear and that τ ≥ n− (1
2 − 2ε)⌈n

2⌉ for some constant
ε. Under the assumption that Com is a perfectly binding, and computationally hiding homomorphic
bit commitment, that ComH is one-way, and that ZKPκ is a κ-sound computationally zero-knowledge
proof of membership for κ = negl(λ), the ProProx protocol is secure following Def. 4.

Proof. We consider an experiment exp with an honest always far-away prover. Let p be the probability
that V accepts. We want to show that p = negl(λ).

We define pB = Tail(⌈n
2⌉,τ−⌊

n
2⌋,

1
2) and w > 0 constant. We use the extractor of Lemma 13 to

extract the vector x′ when V accepts, with at least w errors to x with probability bounded by pw
B +κ.

Then, by a O(sw)-time exhaustive search on the errors, we correct x′ and check if we obtain a preimage
of ComH . This gives x in polynomial time and a probability of success of at least p− pw

B−κ, by playing
with some non-concurrent instances of P(x). For each of the non-concurrent instances of P(x), we use
the zero-knowledge property of P(x) to construct an algorithm inverting ComH with probability of
success of at least p− pw

B−κ− r.pZK, where r is the number of P(x) instances in one experiment. By
assumption on ComH , this must be bounded by some negligible pCom. So, we have p≤ pSec with

pSec = pw
B +κ+ r · pZK+ pCom (4)

Since τ−n+⌈ n
2 ⌉

⌈ n
2 ⌉
≥ 1

2 +2ε, we have pB ≤ e−8ε2n due to the Chernoff-Hoeffding bound (see Appendix A),
which is negligible. The values κ, pZK, and pCom are also negligible, while r is polynomial and w is
constant. So, pSec is negligible. ⊓⊔

Note that a malicious prover can run a distance fraud in each round where bi = x j, as ri, j no longer
depends on ci, j. For x = 0 (as allowed in the malicious prover model) and b = 0, this can be done in all
rounds, so we can have a distance fraud. There is no contradiction with soundness: an observer seeing
the verifier accepts can deduce that x j is likely to be zero, for all j. So, the malicious prover leaks.

To have distance fraud resistance, we adopt the following trick taken from DB2 [9,10]: we select
a vector b with Hamming weight

⌊n
2

⌋
so that half of the rounds will really use ci, j. Actually, b has a

maximal distance to the repetition code.

Lemma 17 (DF-Resistance). We assume that n is linear and that τ ≥ n− (1
2 − 2ε)⌊n

2⌋ for some
constant ε and that the vector b has a Hamming weight of

⌊n
2

⌋
. Under the assumption that Com is a

perfectly binding bit commitment and that ZKPκ is a κ-sound computationally zero-knowledge proof
of membership for κ = negl(λ), the ProProx protocol resists to distance fraud following Def. 6.

Proof. Due to the perfectly binding property, the view of V uniquely defines x j and ai, j. Thanks to
Lemma 1, ri, j is independent (in the sense of Lemma 1) from ci, j. So, for bi ̸= x j (which happens for
half of the rounds), we have that Pr[ri, j = ai, j+ci, jbi+ci, jx j] =

1
2 . So, the probability that the statement

in ZKPκ holds is bounded by Tail(⌊n
2⌋,τ−⌈

n
2⌉,

1
2)

s which is negligible for τ−n+⌊ n
2 ⌋

⌊ n
2 ⌋
≥ 1

2 +2ε, due to the
Chernoff-Hoeffding bound (see Appendix A). Due to the fact that ZKPκ is sound, the verifier accepts

14

with probability bounded by κ+Tail(⌊n
2⌋,τ−⌈

n
2⌉,

1
2)

s. Finally, the attack succeeds with probability
bounded by

pDF = κ+Tail

(⌊n
2

⌋
,τ−

⌈n
2

⌉
,
1
2

)s

(5)

which is also negligible. ⊓⊔

We could also treat distance hijacking [15] specifically. As we can see in our protocol, the prover
responds using his own random ai, j which are hidden in the commitment. So, is an honest prover with
another identity interact with V during the challenge phase, his response would match the one that V
expect from his view, and the soundness of ZKP would make the protocol fail. The full formalization
is left to future work.

4.4 A Variant for Noiseless Communications

The protocol could be simplified in noiseless environment. For this, we would take n = τ. There is
clearly no need to agree on I j which is always the full set I j = {1, . . . ,n}. The protocol is much simpler.

4.5 Concrete Parameters

To see if the proven bounds Eq. (2), Eq. (4), and Eq. (5) may tight or not, we look at the best known
attacks. They correspond to the following probabilities of success:

pDF=Tail

(⌊n
2

⌋
,τ−

⌈n
2

⌉
,
1
2

)s

, pSec=Tail

(
n,τ,

1
2

)s

, pSound=Tail

(⌈n
2

⌉
,τ−

⌊n
2

⌋
,
1
2

)s

The DF attack with success probability pDF consists of guessing ci in half of the rounds for which
bi ̸= x j. So, the proven bound Eq. (5) is pretty tight.

The MF attack with success probability pSec follows the post-ask strategy: the adversary first
guesses the answers to all challenges then play with the prover with the same challenges. Clearly,
there is a gap between pSec and the proven bound of Eq. (4).

The TF attack with success probability pTF consists of giving a table of all c′i, j 7→ r′i, j which is
corrupted in half of the rounds in each iteration, so that it gives no information about x j. There is also
a gap with the proven bound Eq. (2).

So, it may be the case that either the bounds Eq. (4) and Eq. (2) can be improved, or that there
exist better attacks. To select the parameters, we could either use the proven bounds or the equations
based on the best known attacks that we call the empirical bounds.

As concrete parameters, we could suggest s = 80 bits as the size of the secret and a modulus N
of 2048 bits. Then, we look for n and τ which minimize the total number of rounds n while keeping
pComp≈ 1−2−7 and different objectives: we propose several vectors of parameters to reach the online
security of either σ = 2−20 (high) or σ = 2−10 (low), with proven bounds or empirical bound, and with
either pnoise = 1% or the noiseless variant (pnoise = 0) from Section 4.4. In the computation of Eq. (2)
and Eq. (4), we took κ = σ

4 and w such that the exhaustive search is not more for a random s-bit string,
i.e., sw ≤ 2s. So, we took w = ⌊ s log2

logs ⌋.
The total number of rounds is ns.

15

security bounds pnoise ns s n w τ pComp pDF pSec pSound
high proven 1% 1360 80 17 12 14 1−2−9 2−22 2−22 2−21

high empirical 1% 720 80 9 – 7 1−2−7 2−43 2−278 2−80

low proven 1% 720 80 9 12 7 1−2−7 2−12 2−11 2−10

low empirical 1% 720 80 9 – 7 1−2−7 2−43 2−278 2−80

high proven 0 240 80 3 12 3 1 2−22 2−22 2−21

high empirical 0 160 80 2 – 2 1 2−80 2−160 2−80

low proven 0 160 80 2 12 2 1 2−12 2−11 2−10

low empirical 0 160 80 2 – 2 1 2−80 2−160 2−80

low proven 0 80 80 1 12 1 1 (2−22)∗ 2−12 2−11

high empirical 0 80 80 1 – 1 1 (2−22)∗ 2−80 2−80

Clearly, there is a big gap between proven and empirical parameters in the high security values. In the
noiseless variant, the round complexity looks large but acceptable. ProProx may be hard to implement
on NFC credit cards, but, at least all vectors in the noiseless variant and all vectors with the empirical
bounds are feasible for implementation on an NFC smartphone for payment applications.

In theory, we cannot consider n as a constant since the bounds in Eq. (2) and Eq. (4) are not
negligible in this case. However, it makes sense to consider very low n in practice if we estimate the
exact security.

As we can see, n is very low in the noiseless variant. Typically, n = 2. We cannot have n = 1 due
to the pDF bound: with n = 1, b has a single bit and for x j = b for all j, the distance fraud is possible.
However, we could tweak the protocol to obtain DF-resistance for n = 1: we could have b selected
by the verifier for each iteration at random. I.e., V selects a random vector b ∈ Zs

2 and sends it to P
during the initialization. Then, P uses ri, j = ai, j + ci, j(b j + x j) as a response function. Clearly, our
results about security and soundness do not depend on the selection of b, so they remain valid with
this variant. With this variant, we could prove pDF = κ+(3

4)
s ≈ 2−22 by standard techniques. This

selection is indicated under parenthesis in the table as it requires a change in the protocol and does not
use Eq. (5).

As we can see, the noiseless case with n = 1 and s = 80 offers pretty reasonable parameters. We
can prove the low security level and we can even hope that it provides a high one, due to the remaining
gap between proven and empirical bounds. An interesting open question is to wonder if we could have
protocols with less than s rounds. In our construction, we build an extractor using a single session of
the protocol by V . We conjecture and in such case, to extract an s-bit secret, we need to get s bits in
the challenge phase. So our protocol could be optimal among those with a single-session extractor.

5 Conclusion

We proposed ProProx, the very first PoPoK addressing soundness. It is provably secure. Conceptually,
we believe it could integrate well in an infrastructure for contactless payments. A remaining challenge
is to construct a more efficient PoPoK. Another open question would be to have a tight security proof
for ProProx.

References

1. G. Avoine, M. Bingöl, S. Kardas, C. Lauradoux, B. Martin. A Framework for Analyzing RFID Distance Bounding
Protocols. Journal of Computer Security, vol. 19(2), pp. 289–317, 2011.

2. G. Avoine, A. Tchamkerten. An Efficient Distance Bounding RFID Authentication Protocol: Balancing False-
Acceptance Rate and Memory Requirement. In Information Security ISC’09, Pisa, Italy, Lecture Notes in Computer
Science 5735, pp. 250–261, Springer-Verlag, 2009.

16

3. A. Bay, I. Boureanu, A. Mitrokotsa, I. Spulber, S. Vaudenay. The Bussard-Bagga and Other Distance-Bounding Proto-
cols under Attacks. In INSCRYPT’12, Beijing, China, Lecture Notes in Computer Science 7763, pp. 371–391, Springer-
Verlag, 2012.

4. T. Beth, Y. Desmedt. Identification Tokens or: Solving The Chess Grandmaster Problem. In Advances in Cryptology
CRYPTO’90, Santa Barbara, California, U.S.A., Lecture Notes in Computer Science 537, pp. 169–176, Springer-Verlag,
1991.

5. I. Boureanu, A. Mitrokotsa, S. Vaudenay. Secure & Lightweight Distance-Bounding. In Lightweight Cryptography for
Security and Privacy LightSec’13, Gebze, Turkey, Lecture Notes in Computer Science 8162, pp. 97–113, Springer-
Verlag, 2013.

6. I. Boureanu, A. Mitrokotsa, S. Vaudenay. Practical & Provably Secure Distance-Bounding. To appear in the Journal of
Computer Security. Available as Eprint technical report, 2013. http://eprint.iacr.org/2013/465.pdf

7. I. Boureanu, A. Mitrokotsa, S. Vaudenay. Towards Secure Distance Bounding. In Fast Software Encryption’13, Singa-
pore, Lecture Notes in Computer Science 8424, pp. 55–67, Springer-Verlag, 2013.

8. I. Boureanu, A. Mitrokotsa, S. Vaudenay. Practical & Provably Secure Distance-Bounding. To appear in the proceedings
of ISC’13.

9. I. Boureanu, S. Vaudenay. Optimal Proximity Proofs. Eprint technical report, 2014. http://eprint.iacr.org/2014/693.pdf
10. I. Boureanu, S. Vaudenay. Optimal Proximity Proofs. To appear in the Proceedings of Inscrypt’14.
11. I. Boureanu, S. Vaudenay. Challenges in Distance-Bounding. To appear in the IEEE Security & Privacy Magazine,

2015.
12. S. Brands, D. Chaum. Distance-Bounding Protocols (Extended Abstract). In Advances in Cryptology EUROCRYPT’93,

Lofthus, Norway, Lecture Notes in Computer Science 765, pp. 344–359, Springer-Verlag, 1994.
13. L. Bussard, W. Bagga. Distance-Bounding Proof of Knowledge to Avoid Real-Time Attacks. In IFIP TC11 Interna-

tional Conference on Information Security SEC’05, Chiba, Japan, pp. 223–238, Springer, 2005.
14. H. Chernoff. A Measure of Asymptotic Efficiency for Tests of a Hypothesis Based on the sum of Observations. Annals

of Mathematical Statistics, vol. 23 (4), pp. 493-507, 1952.
15. C.J. F. Cremers, K.B. Rasmussen, B. Schmidt, S. Čapkun. Distance Hijacking Attacks on Distance Bounding Protocols.

In IEEE Symposium on Security and Privacy S&P’12, San Francisco, California, USA, pp. 113–127, IEEE Computer
Society, 2012.

16. Y. Desmedt. Major Security Problems with the “Unforgeable” (Feige-)Fiat-Shamir Proofs of Identity and How to
Overcome Them. In Congress on Computer and Communication Security and Protection Securicom’88, Paris, France,
pp. 147–159, SEDEP Paris France, 1988.

17. U. Dürholz, M. Fischlin, M. Kasper, C. Onete. A Formal Approach to Distance-Bounding RFID Protocols. In Informa-
tion Security ISC’11, Xi’an, China, Lecture Notes in Computer Science 7001, pp. 47–62, Springer-Verlag, 2011.

18. A. Fiat, A. Shamir. How to Prove Yourself: Practical Solutions to Identification and Signature Problems. In Advances
in Cryptology CRYPTO’86, Santa Barbara, California, U.S.A., Lecture Notes in Computer Science 263, pp. 186–194,
Springer-Verlag, 1987.

19. M. Fischlin, C. Onete. Terrorism in Distance Bounding: Modelling Terrorist-Fraud Resistance. In Applied Cryptog-
raphy and Network Security ACNS’13, Banff AB, Canada, Lecture Notes in Computer Science 7954, pp. 414–431,
Springer-Verlag, 2013.

20. S. Gambs, C. Onete, J.-M. Robert. Prover Anonymous and Deniable Distance-Bounding Authentication. In ACM Sym-
posium on Information, Computer and Communications Security (ASIACCS’14), Kyoto, Japan, pp. 501–506, ACM
Press, 2014.

21. S. Goldwasser, S. Micali. Probabilistic Encryption and How to Play Mental Poker Keeping Secret All Partial Infor-
mation. In Proceedings of the 14th ACM Symposium on Theory of Computing, San Fransisco, California, U.S.A., pp.
365–377, ACM Press, 1982.

22. S. Goldwasser, S. Micali. Probabilistic Encryption. Journal of Computer and System Sciences, vol. 28, pp. 270–299,
1984.

23. J. Hermans, R. Peeters, C. Onete. Efficient, Secure, Private Distance Bounding without Key Updates. In ACM Confer-
ence on Security and Privacy in Wireless and Mobile Networks WISEC’13, Budapest, Hungary, pp. 195–206, ACM,
2013.

24. W. Hoeffding. Probability Inequalities for Sums of Bounded Random Variables. Journal of the American Statistical
Association, vol. 58, pp. 13–30, 1963.

25. A. Ranganathan, N.O. Tippenhauer, B Škorić, D. Singelée, S. Čapkun. Design and Implementation of a Terrorist Fraud
Resilient Distance Bounding System. In Computer Security - ESORICS’12, Pisa, Italy, Lecture Notes in Computer
Science 7459, pp. 415–432, Springer-Verlag, 2012.

26. A. Ranganathan, B. Danev, S. Čapkun. Low-Power Distance Bounding. Available as CoRR 1404.4435 technical report,
Cornell University 2014. http://arxiv.org/abs/1404.4435

17

27. K.B. Rasmussen, S. Čapkun. Realization of RF Distance Bounding. In USENIX Security Symposium (USENIX’10),
Washington, DC, USA, pp. 389–402, USENIX, 2010.

28. S. Vaudenay. On Modeling Terrorist Frauds. In Provable Security ProvSec’13, Melaka, Malaysia, Lecture Notes in
Computer Science 8209, pp. 1–20, Springer-Verlag, 2013.

29. S. Vaudenay. Private and Secure Public-Key Distance Bounding: Application to NFC Payment. To appear in the pro-
ceedings of Financial Cryptography’15.

A Useful Bounds

We recall here some useful bound on the tail of the binomial distribution.

Lemma 18 (Chernoff-Hoeffding bound [14,24]). For any ε,n,τ,q such that τ
n < q− ε, we have

Tail(n,τ,q)> 1− e−2ε2n. For τ
n > q+ ε, we have Tail(n,τ,q)< e−2ε2n.

B Definitions

Definition 19 (Bit commitment). A bit commitment consists of a PPT algorithm Com taking as in-
put λ, a bit b ∈ Z2, and some random ρ ∈ G. It computes Com(b;ρ) ∈ G. We define the following
properties:

– homomorphic: for all b,b′ ∈ Z2 and ρ,ρ′ ∈ G, Com(b;ρ)Com(b′;ρ′) = Com(b+b′;ρρ′);
– perfectly binding: for all b,b′ ∈ Z2 and ρ,ρ′ ∈ G, Com(b;ρ) = Com(b′;ρ′) implies b = b′;
– computationally hiding: for ρ random, the distributions of Com(0;ρ) and Com(1;ρ) are compu-

tationally indistinguishable.

Definition 20 (Sound proof of membership). An interactive proof for a language L is a pair of
protocols (P(ζ),V (z)) of PPT algorithms such that

– completeness: for any z ∈ L with witness ζ, Pr [OutV = 1 : P(ζ)↔V (z)] = 1;
– κ-soundness: for any z ̸∈ L and any algorithm P∗ then Pr [OutV = 1 : P∗↔V (z)]≤ κ.

Definition 21 (Zero-knowledge protocol). A protocol (P(ζ),V (z)) for a language L is computa-
tionally zero-knowledge for P(ζ) if for any PPT interactive machine V ∗(z,aux) there exists a PPT
algorithm S(z,aux) and a negligible ε such that for any PPT distinguisher, any (z : ζ) ∈ L, and any
aux, the advantage for distinguishing the final view of V ∗(z,aux) in P(ζ)↔V ∗(z,aux) and the output
of S(z,aux) is bounded by ε.

Definition 22 (One-way function). We consider a function Com taking as input λ and a message
x ∈ Zs

2 which is computable in deterministic polynomial time. The function is one-way if for any
algorithm receiving Com(x), for x ∈ Zs

2 random, the probability that it outputs x is negligible.

C VSSDB

At BalkanCryptSec’14, Gambs et al. presented VSSDB, a new protocol based on the random oracle
model.7 The protocol also needs a PKI for the verifier, so that he can use a secret decryption key skv

and publish a public encryption key pkV . It also uses a homomorphic bit-commitment scheme. The
presented protocol offers no tolerance to noise and is not sound, but it offers resistance to terrorist
fraud as modeled by the GameTF notion [19] in the DFKO model.

7 http://www.gstl.itu.edu.tr/BalkanCryptSec/presentations/Gambs.ppt

18

Verifier Prover
public: z z = ζ2 secret: ζ

pk←−−−−−−−−−−−−− generate sk, pk= Gen(sk)

pick e ∈ Z2, pick r
Commitpk(e;r)

−−−−−−−−−−−−−→
h←−−−−−−−−−−−−− pick g ∈ G, h = g2

e,r−−−−−−−−−−−−−→ open commitment

check ze = ℓ2h−1, pk= Gen(sk)
ℓ,sk←−−−−−−−−−−−−− ℓ= gζe

OutV−−−−−−−−−−−−−→

Fig. 3. ZKP(z : ζ): a Sound and Zero-Knowledge Proof for z Being a Square based on a trapdoor commitment Commit.

Verifier Prover
public: y secret: x

initialization phase
pick a ∈ GF(q)n

A←−−−−−−−−−−−−− A = Commit(a;ρ)

challenge phase
for i = 1 to n

pick ci ∈ GF(q)
start timeri

ci=============⇒ receive c′i

receive ri, stop timeri
r′i⇐============= r′i = ai + c′i

verification phase

Verifyy(σ,transcript), verify A = Commit(a;ρ) a,ρ,σ,c′ ,r′←−−−−−−−−−−−−− σ = Signx(transcript)

check #{i;timeri ≤ 2B,ci = c′i,ri = r′i = ai + ci} ≥ τ OutV−−−−−−−−−−−−−→

Fig. 4. The Brands-Chaum Protocol [12].

19

Verifier Prover
secret key: xV secret key: xP

public key: yV = xV G public key: yP = xPG

initialization phase
pick r1,r2 ∈ Z∗ℓ

pick r3,e ∈ Z∗ℓ
R1 ,R2←−−−−−−−−−−−−− R1 = r1G, R2 = r2G

R3 = r3G
R3−−−−−−−−−−−−−→

a0∥a1 = xcoord2n(r3R1) a′0∥a′1 = xcoord2n(r1R3)

challenge phase
for i = 1 to n

ci = biti(e)
start timeri

ci−−−−−−−−−−−−−→

stop timeri
fi←−−−−−−−−−−−−− fi = a′ci,i

verification phase
check timeri ≤ 2B e−−−−−−−−−−−−−→ check biti(e) = ci

check fi = aci,i
s←−−−−−−−−−−−−− s = xP + er1 + r2 +xcoord(r2yV)

validate yP = (s−xcoord(xV R2))G− eR1−R2
OutV−−−−−−−−−−−−−→

private output: yP

Fig. 5. The Hermans-Peeters-Onete Protocol [23].

The security proof of VSSDB is not available at the time of writing. However, we can see that it
is hard to create a NIZK proof for that cP being well formed, since it depends on outputs from the
random oracle H which must remain hidden. Namely, we cannot have any proof that H(νi−1) = νi

without disclosing νi−1 and letting the verifier access H to retrieve νi.

20

Verifier Prover
secret key: skV secret key: x,skP
public key: pkV public key: Com,pkP

Comi = Commit(xi;H i(x)), i = 1, . . . ,m

initialization phase
(in the next two messages, if a participant receives a first bit set to 1, the protocol escapes as in [19])

pick NV
0∥NV−−−−−−−−−−−−−→ for i = 1, . . . ,m:

pick ki, ℓi ∈ {0,1}, ui, vi
ei = ki⊕ ℓi⊕ xi

wi = H i(x)u−1
i v−1

i
ai = Commit(ki;ui)
bi = Commit(ℓi;vi)
di = Commit(ei;wi)
mP = (ai,bi,di)i=1,...,m∥NV
cP = EncpkV (mP∥SignskP

(mP))

m′∥N∗V ∥σ∗ =DecskV (cP)
0∥cP ,π←−−−−−−−−−−−−− π: proof that cP is well formed and consistent with Com

verify π, σ∗, NV = N∗V
pick M ∈ {0,1}m M−−−−−−−−−−−−−→ receive M̂

challenge phase
for i = 1 to n

pick ci ∈ {0,1}, start timeri
ci−−−−−−−−−−−−−→ receive r̂i

f (0,0) = ei γ(0,0) = wi
f (0,1) = ki⊕ ℓi γ(0,1) = (ki,ui, ℓi,vi)
f (1,0) = ki γ(1,0) = ui
f (1,1) = ei⊕ ℓi γ(1,1) = (ei,wi, ℓi,vi)

stop timeri
ri←−−−−−−−−−−−−− ri = f (M̂i, ĉi), γi = γ(M̂i, ĉi)

verification phase
verify σ γ,σ−−−−−−−−−−−−−→ σ = SignskP

(M∥c∥r∥NV)

for i = 1, . . . ,m:

check timeri ≤ 2B, ai,bi,di,Comi consistent with ri,γi
OutV−−−−−−−−−−−−−→

Fig. 6. VSSDB.

21

