
Bounded Pre-Image Awareness and the Security of Hash-Tree
Keyless Signatures

Ahto Buldas1,2,, Risto Laanoja1,2, Peeter Laud3, and Ahto Truu1 ?

1 GuardTime AS, Tammsaare tee 60, 11316 Tallinn, Estonia.
2 Tallinn University of Technology, Raja 15, 12618 Tallinn, Estonia.

3 Cybernetica AS, Mäealuse 2/1, 12618 Tallinn, Estonia.

Abstract. We present a new tighter security proof for unbounded hash tree keyless signature (time-
stamping) schemes that use Merkle-Damg̊ard (MD) hash functions with Preimage Aware (PrA) com-
pression functions. It is known that the PrA assumption alone is insufficient for proving the security of
unbounded hash tree schemes against back-dating attacks. We show that many known PrA construc-
tions satisfy a stronger Bounded Pre-Image Awareness (BPrA) condition that assumes the existence
of an extractor E that is bounded in the sense that for any efficiently computable query string α, the
number of outputs y for which E(y, α) succeeds does not exceed the number of queries in α. We show
that blockcipher based MD-hash functions with rate-1 compression functions (such as Davies-Meyer
and Miyaguchi-Preneel) of both type I and type II are BPrA. We also show that the compression
function of Shrimpton-Stam that uses non-compressing components is BPrA. The security proof for
unbounded hash-tree schemes is very tight under the BPrA assumption. In order to have 2s-security
against back-dating, the hash function must have n = 2s+ 4 output bits, assuming that the security of
the hash function is close to the birthday barrier, i.e. that there are no structural weaknesses in the hash
function itself. Note that the previous proofs that assume PrA gave the estimation n = 2s+2 log2 C+2,
where C is the maximum allowed size of the hash tree. For example, if s = 100 (2100-security) and
C = 250, the previous proofs require n = 302 output bits, while the new proof requires n = 204 output
bits.

1 Introduction

Keyless time-stamping [10] was proposed by Haber et al in order to avoid key-based cryptography
and trusted third parties so that time stamps become irrefutable proofs of time. A collection of C
documents is hashed down to a single digest of few dozen bytes that is then published in widely
available media such as newspapers. Merkle hash trees [12] enable to create compact “keyless
signatures” of size O(logC) for each of the C documents. Every such signature consists of all
sibling hash values in the path from a document (a leaf of the tree) to the root of the tree. After
the root hash value is published, it will be impossible for anyone to back-date a new document in
terms of creating a hash chain from a new document to the already published hash value. In [1], a
global-scale hash-tree scheme was drafted where at every unit of time a large hash tree is created
co-operatively by numerous servers all over the globe and the root value is published in newspapers.

The security of hash-tree schemes against back-dating can be reduced to collision-resistance of
the hash function. The first correct security proof was published in 2004 [6] but this proof assumes
that the size C of the global hash tree (the capacity of the scheme) is limited and the number n of
the output bits of the hash function needed for 2s-security was n = 4s+ 2 log2C+ 2, i.e. n depends
on C (Tab. 1). This means that if the maximum hash tree size is 260, then for 2100-security against

? This work has been supported by Estonian Research Council through grant IUT27-1 and by Eestonian Research
and Development Foundation (ERDF) through the Centre of Excellence in Computer Science (EXCS).

back-dating one has to use 522-bit hash functions. The practical hash functions in such schemes
might be 256-bit and twice larger output size will double the amount of data in the system.

The tightest possible proof of security [5] against back-dating under the collision-resistance
assumption requires the output size n = 3s+ log2C + 8, which in case C = 260 and s = 100 gives
n = 368 (Tab. 1), which is still too large if one desires to use 256-bit hash functions in a global
hash tree scheme. The proof in [5] has been shown to be asymptotically optimally tight if the
collision-resistance property is used as the security assumption. So, the only way to obtain tighter
security proofs is to use stronger (or incomparable) security assumptions for hash functions.

In [4], a tighter security proof was presented that instead of the traditional collision-resistance
assumption used a stronger assumption called Pre-Image Awareness (PrA) (first proposed in [9]).
The PrA condition makes sense if the hash function uses ideal components (ideal ciphers, random
permutations, etc.). The proof under PrA required hash size n = 2s+ 2 log2C + 2. This might be
valuable for high security requirements, but for the case of C = 260 and s = 100 gives n = 322,
which is still too large for using 256-bit hash functions, for example.

Therefore, in [4], a new non-standard and seemingly just slightly stronger than PrA security
assumption—Strong Pre-Image Awareness (SPrA)—was used to obtain a tighter security proof
with required hash size n = 2s + 2 log2 log2C + 2, which in case C = 260 and s = 100 gives
n = 214. However, the SPrA is a new assumption and not sufficiently studied. In contrast to the
PrA condition, which is known to hold for many cryptographic constructions of hash functions [9],
there are no similar proofs of SPrA. Considering the formal definition of SPrA, such proofs might
be hard to construct, mostly because the SPrA condition involves arbitrary “parsing” functions.

In this work, we define another strenghtening of the PrA condition, the so-called Bounded Pre-
Image Awareness (BPrA) that assumes the existence of an extractor E that is bounded in the
sense that for any efficiently computable query string α, the number of outputs y for which E(y, α)
succeeds does not exceed the number of queries in α. We show that many known PrA constructions
actually are BPrA. For example, we show that blockcipher based MD-hash functions with rate-1
compression functions (such as Davies-Meyer and Miyaguchi-Preneel) of both type I and type II
are BPrA. We also show that some compression functions with uncompressing components (such
as Shrimpton-Stam) are BPrA. Therefore, the BPrA assumption is (at least for now) more justified
in practice than the SPrA assumption.

The security proof for unbounded hash-tree schemes is very tight under the BPrA assumption,
even tighter than under the SPrA assumption. In order to have 2s-security against back-dating, the
hash function must have n = 2s + 4 output bits (Tab. 1), assuming that the security of the hash
function is close to the birthday barrier, i.e. that there are no structural weaknesses in the hash
function itself. In the case of s = 100 this gives n = 204.

Tab. 1 summarizes the efficiency of the existing security reductions, in which a t-time backdating
adversary with success probability δ is converted to a t′-time collision-finding adversary with success
probability δ′. An n-bit hash function is assumed to be 2n/2-secure, i.e. near to the birthday barrier.
The third column of Tab. 1 presents a formula for the required output size n of the hash function for
the time-stamping scheme to be 2s-secure. The last column presents the output size in a particular
case, where s = 100, C = 260 and T = 232. In addition to the new security proof under the BPrA
assumption, we also show in this work that in the RO model bounded schemes are secure beyond
the birthday barrier.

The paper is organized as follows. In Sec. 2, we provide readers with necessary preliminary
concepts and the state of the art in the security proofs of hash tree schemes. In Sec. 3, we study the

2

Table 1. Efficiency of security proofs, where n is the required output size of the hash function, assuming that the
scheme is 2s-secure, uses hash trees of size C and is intended for a time period of T units. The results of this work
are presented in bold.

Assumption Formula Required Output Size n n(260, 232, 100)

CR [6] t′

δ′ ≈ 2C
(
t
δ

)2
n = 2 log2 C + 4s+ 2 522

CR [5] t′

δ′ ≈ 14
√
C
(
t
δ

)1.5
n = log2 C + 3s+ 8 368

PrA [4] t′

δ′ ≈ 2C t
δ

n = 2(log2 C + s+ 1) 322

SPrA [4] t′

δ′ ≈ 4 log2 C
t
δ

n = 2(log2 log2 C + s+ 2) 216

BPrA t′

δ′ ≈ 4 t
δ

n = 2s+ 4 204

RO (bounded) t
δ
≥ 2n−1

CT
n = s+ log2 C + log2 T + 1 193

RO (unbounded) [4] t
δ
≥ 2

n−1
2 n = 2s+ 1 201

security proofs in the random oracle model and present the motivation behind the new BPrA secu-
rity condition. In Sec. 4, we show that many of the block cipher based hash function constructions
(and also some constructions with non-compressing ideal components, e.g. Shrimpton-Stam [14])
that have been proved to be PrA are actually BPrA and hence these hash functions are probably
much more secure for hash-tree time-stamping than the previously known security proofs might
suggest.

2 Preliminaries

2.1 Tightness of Security Proofs

The security of cryptographic schemes is measured by the amount of resources needed for an
adversary to break the primitive. A scheme is said to be S-secure, if it can be broken by no
adversaries with less than S units of resources available. Considering that the running time t and
the success probability δ of the known practical attacks against the scheme may vary, Luby [11]
proposed the time-success ratio t

δ as a measure for attacking resources. A scheme is said to be
S-secure, if the success probability of any t-time adversary does not exceed t

S .

In a typical security proof for a scheme P built from a primitive Q, it is shown that if Q

is Sq-secure, then P is Sp-secure. Bellare and Rogaway [2, 3] first emphasized the importance of
the tightness Sp/Sq of security proofs in practical applications. Informally, tightness shows how
much security of the primitive is retained by the scheme. Security proofs are mostly reductions: an
adversary for P with running time t and success probability δ is transformed to an adversary for Q

with running time t′ and success probability δ′. This means that for having t
δ -secure P, we have to

use a t′

δ′ -secure Q.

2.2 Security Properties of Hash Functions

In this paper, we study the security properties of hash functions HP that use some kind of ideal
functionality P (random permutations, random functions, ideal ciphers, etc.) as an oracle. For
example, in case of the Merkle-Damg̊ard hash functions, the compression function and the output
transform are often assumed to be ideal objects. In this section, we describe some of the properties
of hash functions, starting from the strongest ones.

3

Random Oracles. By a random oracle R, we mean a function that is chosen randomly from the
set of all functions of type {0, 1}m → {0, 1}n. By the random oracle heuristic we mean a security
argument when an application of a hash function (e.g. a time-stamping scheme, a signature scheme)
is proved to be secure in the so-called random oracle model, where the hash function is replaced
with a random oracle. The random oracle heuristic was first introduced by Bellare and Rogaway
[2]. Although it was proved later by Canetti et al [7] that the random oracle heuristic fails in
certain theoretical cases, proofs in the random oracle model are still considered valuable security
arguments, especially if no better security proofs are known.

Pre-Image Awareness. Pre-Image Awareness (PrA) of a (hash) function H means, that if we
first commit an output y and later come up with an input x, such that y = H(x), then it is safe
to conclude that we knew x before committing y. This notion was first formalized by Dodis et al.
[9] for hash functions HP that are built using an ideal primitive P as a black box. For HP being
PrA, there has to be an efficient deterministic extractor E which when given y and the list α of all
previously made P -calls, outputs an input x, such that HP (x) = y, or ⊥ if E was unable to find
such an x. The adversary tries to find x and y so that x 6= E(α, y) and y = HP (x). A weaker form
of PrA (so-called WPrA) allows E output a set L of inputs x, and the adversary tries to find x,
such that the query L← E(α, y) was made, y = HP (x), but x 6∈ L. Obviously, WPrA becomes PrA
if the number of elements in L is limited to one, i.e. |L | ≤ 1. To define pre-image awareness of HP

Exppra
H,P,E,B :

x← BP,Ex

y ← HP (x)
If Q[y] = 1 and V[y] 6= x return 1,
else return 0

oracle P(m):
c← P (m)
α← α||(m, c)
return c

oracle Ex(y):
Q[y]← 1
V[y]← E(y, α)
return V[y]

Fig. 1. Preimage awareness experiment with the oracles P and Ex.

in a precise way, we set up an experiment Exp (see Fig. 1), specified as a game which an attacker
B is trying to win. B is constrained to oracle access to P , via a wrapper oracle P, which records all
P -calls made by B as an advise string α. Likely, the extractor E is also accessible through another
wrapper oracle Ex, which uses global arrays Q (initially ⊥ everywhere) and V (initially blank). Q
is used to record all input parameters to E; V is used to store all successfully extracted values
corresponding to E’s inputs. The adversary B tries to output a value x such that HP (x) = y,
Q[y] = 1 and V[y] 6= x, i.e. E tried to invert y, but was unsuccessful. As P- and Ex-calls are unit
cost, the running time of B does not depend on the running time of E. Note that PrA implies
collision-resistance [9], but WPrA does not.

Definition 1 (Pre-Image Awareness). A function HP is S-secure pre-image aware (PrA) if
there is an efficient extractor E, so that for every t-time B:

Advpra
H,P,E(B) = Pr

[
1← Exppra

H,P,E,B

]
≤ t

S
. (1)

In [4], a stronger notion of Strong Pre-Image Awareness (SPrA) was presented in which the Ex-
oracle is allowed to use the “oldest” possible α. For example, if we obtain x ← Ext(y) (where
x = x1x2 and x1, x2 ∈ {0, 1}n) for which the oracle uses α, and later we call Ext(x1), the same α

4

is used for extraction, because the oracle remembers that x1 was created by just “parsing” x and
it is thereby as old as x and the use of α is justified. This new notion allows one to establish more
tight security proofs for hash-tree time-stamping than the PrA would allow.

Collision Resistance. Informally, the collision resistance of a hash function HP means that it
is infeasible for adversaries to find two different inputs x and x′ that have the same hash value,
i.e. HP (x) = HP (x′). This definition makes sense only if the ideal primitive P contains some
randomness, as the collisions of fixed functions can always be “wired” into the adversary.

Definition 2 (Collision Resistance). A function HP is S-secure collision resistant (CR) if for
every adversary B with running time t:

Advcr
H,P (B) = Pr

[
x, x′ ← BP :x 6= x′, HP (x) = HP (x′)

]
≤ t

S
. (2)

Due to the so-called Birthday bound, functions with n-bit output can only be up to 2
n
2 -secure

collision resistant.

2.3 Merkle-Damg̊ard Hash Functions

Merkle-Damg̊ard (or iterated) hash functions use a compression function F (m, v) to iteratively
compute a hash of an arbitrary size message m divided into equal blocks m1, . . . ,m` of suitable size.
The hash h = H(m) is computed as follows: (1) h ← IV ; (2) for i ∈ {1, . . . , `} do: h ← F (mi, h);
(3) and output H(m) = h. Here, IV is a public and standard initial value. It has been proved [9]
that if F is PrA, then so is H.

2.4 Blockcipher-Based Hash Functions

Many hash functions are constructed from secure blockciphers. The most common approach for
creating a 2n→ n hash function is to use a blockcipher with n-bit block and n-bit key and make a
compression function that makes only a single call to the blockcipher. Such constructions were first
analyzed by Preneel et al. [13] and are called rate-1 schemes. The most general approach is that of
Stam [15], where the compression function is defined by the following three steps:

1. Prepare key and plaintext: (k, x)← Cpre(m, v);
2. Use the blockcipher: y ← Ek(x);
3. Output the digest: w ← Cpost(m, v, y).

There are two types of rate-1 compression functions.

Definition 3. A blockcipher-based rate-1 compression function FE is called Type-I iff: (1) Cpre is
bijective; (2) Cpost(m, v, ·) is bijective for all m, v; and (3) Caux(·) = Cpost(C

−1
pre(k, ·), y) is bijective

for all k, y.

Definition 4. A blockcipher-based rate-1 compression function FE is called Type-II iff: (1) Cpre is
bijective; (2) Cpost(m, v, ·) is bijective for all m, v; and (3) C−1pre(k, ·) (restricted to its second output
v) is bijective for all k.

Type-I functions are preimage aware [9] and thus also collision-resistant. Type-II functions become
preimage-aware (and collision-resistant) when iterated as Merkle-Damg̊ard hash functions [9].

5

2.5 Hash-Tree Schemes and their Security Against Back-Dating

Hash trees were introduced by Merkle [12]. Let h: {0, 1}2n → {0, 1}n be a hash function. By a
hash-tree we mean a tree-shaped data structure that consists of nodes labeled with n-bit hash
values. Each node is either a leaf which means it has no children, or an internal node with two
child nodes (the left and the right child). The hash value y of an internal node is computed as a
hash y = h(y0, y1), where y0 and y1 are the hash values of children. There is one root node that is
not a child of any node. By r = T(x1, . . . , xm) we mean that r is the root label of a hash tree T

with leaves labeled with hash values x1, . . . , xm.

Encoding the Leaves of a Hash Tree. Nodes of a hash tree can be named in a natural way
with finite bit-strings. The root node is named by the empty string bc. If a node is named by `,
then its left and right child nodes are named by `0 and `1, respectively. The name ` of a node is
also an “address” of the node, considering that one starts searching from the root node, and then
step by step, chooses one of the children depending on the corresponding bit in `.

Shape of a Hash Tree. Hash tree has a particular shape by which we mean the set of all names
of the leaf-nodes. For example, a balanced complete tree with four nodes (Fig. 2, left) has the shape
{00, 01, 10, 11}. If the root hash value is denoted by r (instead of rbc) and r` denotes the hash value
of a node with name `, then in this example, the relations between the nodes are the following:
r = h(r0, r1), r0 = h(r00, r01), and r1 = h(r10, r11). The shape {000, 001, 01, 1} represents a tree
with four leaves (Fig. 2, right) with the hash values being in the following relations: r = h(r0, r1),
r0 = h(r00, r01), and r00 = h(r000, r001). Note also that the shape is a prefix-free code.

Fig. 2. Trees with shape {00, 01, 10, 11} (left) and {000, 001, 01, 1} (right).

Hash Chains. In order to prove that a hash value r` (where `1`2 . . . `m is the binary code of `)
participated in the computation of the root hash r, it is sufficient to present all the sibling hashes of
the nodes on the unique path from r` to the root r. For example, in the left tree of Fig. 2, to prove
that r01 belongs to the tree, one has to present the hashes r00 and r1 that enable us to compute
r0 = h(r00, r01) and r = h(r0, r1). Hash chains are defined as follows [4]:

Definition 5 (Hash-Chain). A hash-link from x to r (where x, r ∈ {0, 1}n) is a pair (s, b), where
s ∈ {0, 1}n and b ∈ {0, 1}, such that either b = 0 and r = h(x‖s), or b = 1 and r = h(s‖x). A
hash-chain from x to r is a (possibly empty) list c = ((s1, b1), . . . , (sm, bm)), such that either c = ()
and x = r; or there is a sequence x0, x1, . . . , xm of hash values, such that x = x0, r = xm, and
(si, bi) is a hash-link from xi−1 to xi for every i ∈ {1, . . . ,m}. We denote by x

c
 r the proposition

that c is a hash chain from x to r. Note that x
()
 x for every x ∈ {0, 1}n. By the shape `(c) of c

we mean the m-bit string b1b2 . . . bm.

6

Hash-Tree Keyless Signature Schemes. The signing (time-stamping) procedure runs as follows.
During every time unit t (e.g. one second) the server receives a list Xt = (x1, . . . , xm) of requests
(n-bit hash values) from clients, computes the root hash value r(t) = T(x1, . . . , xm) of a hash tree
T and publishes r(t) in a public repository R = (r(1), r(2), . . . , r(t)) organized as an append-only
list. Each request xi is then provided with a hash chain ci (the signature for xi) that proves the
participation of xi in the computation of the root hash value r(t). A request x ∈ Xt is said to precede
another request x′ ∈ Xt′ if t < t′. The requests of the same batch are considered simultaneous. In
order to verify the hash chain ci (the signature) of a request xi, one computes the output hash
value of ci (the last hash value xm in the sequence) and checks whether xm = r.

Bounded and Unbounded Schemes. A hash-tree keyless signature (time-stamping) scheme is
said to be C-bounded, if the shape S of the hash tree is assumed to be upper-bounded: |S | ≤ C
and while verifying a hash chain c it is checked if `(c) ∈ S. A hash-tree keyless signature scheme is
(C, T)- strongly bounded if it is C-bounded and also |R | ≤ T .

Security Against Back-Dating. Informally, we want that no efficient adversary can back-date
any request x, i.e. first publishing a hash value r, and only after that generating a new “fresh”
x (not pre-computed by the adversary), and a hash chain c, so that x

c
 r. We use the formal

security condition from [4] that involves a two-stage back-dating adversary A = (A1, A2). The first
stage A1 creates a public repository R of hash values that may be created in an arbitrary way,
not necessary by using hash trees. The second stage A2 of A presents a high-entropy x and a hash
chain x

c
 r with r ∈ R. The high entropy of x is crucial because otherwise x could have been

pre-computed or guessed by A1 before r is published and hence x could be in fact older than r
and thereby not really back-dated by A2. Therefore, only unpredictable adversaries (that produce
high-entropy x) are considered, i.e. x must be hard to guess for A2 even if the contents of R and
all the internal computations of A1 are known. There are many ways to define unpredictability. We
use the so-called strong unpredictability [4]:

Definition 6 (k-Strong Unpredictability). A back-dating adversary (A1,A2) is strongly unpre-
dictable if the conditional min-entropy H∞[x | R, a] of x (back-dated by A2) is at least k bits, i.e.
for every input of A2 and for any possible value x0 of x, the probability of x = x0 is upper bounded
by 1

2k
.

Definition 7 (Security against Back-Dating). A hash-tree scheme is S-secure against k-
strongly unpredictable back-dating adversaries (A1, A2) if for every t-time k-strongly unpredictable
adversary :

δ = Pr
[
(R, a)←A1, (x, c)←A2(R, a): x

c
 R, `(c) ∈ S

]
≤ t

S
, (3)

where by x
c
 R we mean that x

c
 r for some r ∈ R, and a is an advice string that contains

possibly useful information that A1 stores for A2.

In the rest of this paper, we will restrict our back-dating adversaries to be (n − 1)-strongly un-
predictable. This restriction is in practice justified by (i) the time-stamped values x being hashes
of much longer documents, containing significant amounts of new information, and (ii) the crypto-
graphic hash functions supposedly being good entropy extractors [4].

Existing Security Proofs and their Tightness. The tightness of the existing security proofs is
summarized in Tab. 1. The proofs of [6, 5] use the collision-resistance assumption and apply only

7

to bounded time-stamping schemes. Their tightness depends on the capacity C. Both proofs are in
the form of a reduction: a t-time backdating adversary with success probability δ is converted to
a t′-time collision-finding adversary with success probability δ′. An n-bit hash function is assumed
to be 2n/2-secure, i.e. near to the birthday barrier. The third column of Tab. 1 presents a formula
for the required output size n of the hash function for the time-stamping scheme to be 2s-secure.
The last column presents the output size in a particular case, where s = 100, C = 260 and T = 232.
Note that 232 seconds is about one hundred years. The proof under PrA assumption is from [4]. We
see that even though PrA seems to be much stronger than CR, the required output length is not
much smaller. This is because the security loss is linear in C and not in

√
C as in the case of the

CR assumption. SPrA [4] allows much more tight security reductions but has not been sufficiently
studied yet. We also see that the random oracle (RO) assumption makes proofs very tight and also
to hold for unbounded schemes. The RO proof for unbounded schemes is from [4]. The bounded
version is proved in this work.

Security Proofs for Unbounded Schemes. It is known that neither collision-resistance [6] nor
PrA [4] is insufficient for proving the security of unbounded time-stamping schemes. The only known
proof for unbounded schemes [4] uses the random oracle assumption. In order to move forward in
this direction, we first examine the main ideas of the proofs in the random oracle model and see
how to generalize them for the assumptions weaker than RO.

3 Security in the Random Oracle Model

We first show that for bounded schemes the random oracle model enables security beyond the
birthday barrier, i.e. even when using a hash function with n output bits, the security (against
back-dating) we achieve is far beyond 2n/2.

Theorem 1. If h : {0, 1}2n → {0, 1}n is a random oracle, then the corresponding (C, T)-strongly

bounded hash-tree time-stamping schemes are 2n−1

CT -secure against (n − 1)-strongly unpredictable
back-dating adversaries.

Proof. Let A = (A1, A2) be a t-time strongly unpredictable adversary (Def. 6) and with success
δ as defined in (3). Let t1, t2 be the running times of A1 and A2, respectively. Considering that
(R, a) ← A1, and r ∈ R is an arbitrary element of R, let Rr1 ⊆ {0, 1}n be the set of all x-s so that
the h-calls performed by A1 induce a proper shape hash-chain from x to an r. Let R1 = ∪r∈RRr1.
Note that R ⊆ R1, as an empty hash-chain is always induced by any set of h-calls. Note also that
|R1 | ≤ CT , because |R | ≤ T and |Rr1 | ≤ C for any r ∈ R.

Now let x denote the hash-value back-dated by A2. The probability that x ∈ R1 is upper-
bounded by |R1|

2n−1 because A is (n − 1)-strongly unpredictable. In case of x /∈ R1, in order to be
successful, A2 has to make additional h-calls so that a chain from x to r ∈ R is induced. A necessary
condition that A2 has to satisfy is that it has to find x′ = x′1‖x′2 so that x′1 /∈ R1 or x′2 /∈ R1 (this
means that A1 did not make h-calls with input x′), but h(x′) ∈ R1. The probability of this condition

does not exceed t2
|R1|
2n ≤ t2

CT
2n , hence, considering that |R1 | ≤ CT , and t1 ≥ 1, the overall success

probability of A is:

δ ≤ |R1 |
2n−1

+

(
1− |R1 |

2n−1

)
t2
|R1 |
2n
≤ CT

2n−1
+t2

CT

2n−1
≤ CT

2n−1
· (1 + t2) ≤ t

CT

2n−1
.

Hence, t
δ ≥

2n−1

CT . ut

8

The next theorem is from [4]. We repeat their proof in order to draw conclusions about why it
holds in the RO model but does not in the PrA-environment.

Theorem 2. If h : {0, 1}2n → {0, 1}n is a random oracle, then the corresponding unbounded hash-

tree schemes are 2
n−1
2 -secure against (n− 1)-strongly unpredictable back-dating adversaries.

Proof. Let A = (A1, A2) be a t-time strongly unpredictable adversary (Def. 6). Let t1, t2 denote
the running times of A1 and A2, respectively. Assuming that (R, a)← A1, let R1 ⊆ {0, 1}n be the

set of all values of x such that the h-calls performed by A1 induce a hash-chain x
c
 r with r ∈ R.

Note that R ⊆ R1 and we assume without loss of generality that the advice a contains R1.
Let x denote the (back-dated) hash value produced by A2. Due to the strong unpredictability

of A, we have Pr [x ∈ R1] ≤ |R1|
2n−1 . If x /∈ R1 then A2 has to make h-calls that induce a chain

x r ∈ R. For that, A2 has to find x′ = x′1‖x′2 such that x′1 /∈ R1 or x′2 /∈ R1 (i.e. A1 did not make

h-calls with x′), but h(x′) ∈ R1. This happens with probability ≤ t2 |R1|
2n . Hence, as |R1 | ≤ 2t1 and

t1, t2 ≥ 1, the success probability of A is δ ≤ |R1|
2n−1 +

(
1− |R1|

2n−1

)
t2
|R1|
2n ≤

2t1
2n−1 + t1t2

2n−1 ≤ (t1+t2)2

2n−1 = t2

2n−1 ,

and as δ2≤δ ≤ t2

2n−1 , we have t
δ ≥ 2

n−1
2 . ut

The key factor of success of this proof is the ability to define the set R1 and to estimate its size
by |R1 | ≤ 2t1. In the PrA-type environment where the hash function HP is not a random oracle,
the computable (given the query-sequence α) hash chains that lead to the hash values in R can
be constructed via the extractor E. We start applying E to the elements of R and after each try
x← E(α, y) apply E also to the right and the left halves of x, until we reach ⊥ in every branch. The
problem is that the standard PrA assumption does not guarantee that this iterative procedure will
end. The new security condition presented in the next section is motivated by the need to make
this iterative extraction-tree generation procedure to end eventually. This means that E(α, y) 6= ⊥
is allowed to hold only for a limited number of outputs y. This leads to the following new variation
of the Pre-Image Awareness security condition.

4 Bounded Pre-Image Awareness

We show that many known PrA constructions actually satisfy a new stronger security condition
called Bounded Pre-Image Awareness (BPrA) that assumes the existence of a PrA-extractor E that
is bounded in the sense that for efficiently computable query strings α, the number of outputs y
for which E(y, α) 6= ⊥ does not exceed the number of queries in α.

The security proof for unbounded hash-tree schemes turns out to be very tight under BPrA. In
order to have 2s-security against back-dating, the hash function must have k = 2s+ 4 output bits,
assuming that the security of the hash function is close to the birthday barrier, i.e. that there are
no structural weaknesses in the hash function itself. In the case of s = 100, this gives k = 204.

4.1 Formal Security Condition

The BPrA security condition can be formalized as follows. We have to consider the case where the
output size of HP is larger than the input size of P . Thus, in the extreme case where α contains
all possible P -queries, it might be the case that E is able to determine the inputs of more than |α |
of outputs. Hence, instead of requiring the condition |{y:E(y, α) 6= ⊥}| ≤ |α | unconditionally, we
require this condition to hold for efficiently computable query-strings α.

9

Definition 8. A function HP : {0, 1}2n → {0, 1}n is S-secure Bounded Pre-Image Aware (BPrA)
if it is S-secure PrA, and for any t-time adversary α ← AP that produces a P -query list α the
probability that |{y:E(y, α) 6= ⊥}| > |α | does not exceed t2

2n , where E is the extractor from the PrA
condition.

This means that efficient adversaries with oracle access to P can only produce query strings α such
that the number of outputs y for which E(y, α) 6= ⊥ is bounded by the number of P -queries in α.

The bound t2

2n may seem ad hoc, but this is actually the natural birthday bound, because in

case of output collisions that may occur with probability t2

2n , a single P -query in α may contribute
to computing several different output values.

4.2 Security Proof under BPrA

In order to establish a security proof with measurable tightness, we have to assume a concrete
BPrA-security of HP . As BPrA implies PrA and PrA implies Collision Resistance, by using the
birthday bound, no hash function with n-bit output can be more than 2n/2-secure BPrA. Therefore,
in the next proof, we assume that the security of HP lies between 2n/3 and 2n/2.

Procedure ExTreeEx(y):
If y 6∈ T and N > 0, then

T := T ∪ {y}
N := N − 1
If ⊥ 6= Ex(y) = (y0, y1) then

Define y0, y1 as children of y
ExTreeEx(y0)
ExTreeEx(y1) .

endif
endif

Procedure ExForestEx():
T := ∅
N := 2× “a time bound for A1”
For all r ∈ R do

ExTreeEx(r) .

Fig. 3. Procedures for extracting the set T from the published hash database R.

Theorem 3. For unbounded time-stamping schemes with HP : {0, 1}2n →{0, 1}n to be S-secure

(S ≤ 2
n−1
2 − 2) against (n − 1)-strongly unpredictable back-dating adversaries, it is sufficient that

the hash function HP is 4S-secure BPrA.

Proof. Due to the BPrA assumption there exists an efficient bounded extractor E. Let AP =
(AP1 , A

P
2) be a strongly unpredictable back-dating adversary with running time t and success

probability δ, such that t
δ ≤ 2

n−1
2 − 2. We construct a PrA-adversary BP,Ex that first simulates

(R, a) ← AP1 so that all P -calls of are executed through the P-oracle. Let α be the query string
after such simulation.

After that, the adversary builds a hash-forest T by using the ExForest procedure described in
Fig. 3 using the bound N = 2t. Due to the boundedness, with probability 1 − t2

2n the number of
non-leaf vertices of T is bounded by |α | ≤ t1 and hence, |T | ≤ 2t1 + 1 ≤ 2t = N and hence, such
bound is never applied during the procedure, which means that for all y ∈ T, the extraction call
E(y) has indeed been performed.

10

Finally, B simulates AP2 so that all its P calls are executed through the P-oracle. With prob-

ability δ we obtain a hash value x and a hash chain c such that x
c
 r for some r ∈ R. Due to

the strong unpredictability of A, the probability that x coincides with some of the extracted hash
values r` is upper bounded by 2t

2n−1 = 4t
2n . Hence, with probability at least δ − t2

2n −
4t
2n we have

a hash value x 6∈ T and a hash chain c = {(c1, b1), (c2, b2), . . . , (cm, bm)} with output hash value
r ∈ R ⊆ T. Let x0, x1, . . . , xm be the intermediate hash values (outputs of hash links) as described
in Def. 5. Let k be the smallest index such that xk−1 6∈ T but xk ∈ T. For such k,{

HP(ck‖xk−1) = xk and Ex(xk) 6= (ck‖xk−1) if bk = 0 ;
HP(xk−1‖ck) = xk and Ex(xk) 6= (xk−1‖ck) if bk = 1 .

The output of B is (ck‖xk−1) if bk = 0 or (xk−1‖ck) if bk = 1. Hence, B with time t′ ≤ 2t has

success δ′ ≥ δ − t2

2n −
4t
2n = δ

2

(
2− 1

2n−1
t2+4t
δ

)
. Hence,

t′

δ′
≤ 4

t

δ
· 1

2− 1
2n−1

t2+4t
δ

≤ 4
t

δ
· 1

2− 1
2n−1

(
t
δ+2

)2 ≤ 4
t

δ
· 1

2− 1
2n−1

(
2
n−1
2

)2 = 4
t

δ
.

Hence, if HP is 4S-secure SPrA, then t′

δ′ ≥ 4S and t
δ ≥ S, which means that HP is S-secure against

strongly unpredictable back-dating adversaries. ut

Corollary 1. Unbounded hash-tree schemes are 2s-secure against back-dating if one uses 2s+2-
secure BPrA hash functions with 2s+ 4 output bits.

This is close to the tightness achieved in the random oracle model. In our example with s = 100,
we conclude that 204 output bits are sufficient.

5 Existing PrA Constructions are BPrA

We show that blockcipher based MD-hash functions with rate-1 compression functions (such as
Davies-Meyer and Miyaguchi-Preneel) of both type I and type II are BPrA. We also show that
some compression functions with uncompressing components (such as Shrimpton-Stam [14]) are
BPrA.

It is unknown whether a BPrA compression function is sufficient for the Merkle-Damg̊ard con-
struction to be BPrA. We define a new Unique P-query (UPQ) property for HP , which as we show,
the MD-construction preserves.

5.1 Unique P-Query Property (UPQ)

We model the compression function FP as a boolean (or arithmetic) circuit with P -gates. The
Merkle-Damg̊ard structure is modeled as a cascade of such circuits. For every input x define αx as
the set of P -queries that the cascade of FP circuits makes in case of input x.

Fox every set α of P -queries, we define Hα as a function that is computed exactly like HP , but
instead of making P -queries, the answers are taken from α. Obviously, Hα is only defined for those
inputs x, for which αx ⊆ α. We denote by Dα the set of all such inputs x. This is called the domain
of Hα. The range Rα is defined as Hα(Dα). Hence, Hα is a function of type Dα → Rα.

Definition 9. A hash function HP has the unique P-query property (UPQ), if for every set α,
there is a function ϕα:Rα → α, such that for any efficient adversary α ← AP , the function ϕα is
injective with overwhelming probability.

11

5.2 Merkle-Damg̊ard is UPQ-Preserving

We show that if the compression function used in the Merkle-Damg̊ard construction has the UPQ
property, then so does the iterated hash function.

Theorem 4. The Merkle-Damg̊ard transform is UPQ-preserving.

Proof. We use the property of the MD-transform that for every input x ∈ {0, 1}∗ and αx ⊆ α there
is an input x′ of the last compression round such that Hα(x) = Fα(x′). Hence, Rα = RHα ⊆ RFα .
As F is UPQ, there is a (computably injective) function ϕFα :RFα → α. We simply define ϕα as the
restriction of ϕFα to Rα. Obviously, ϕα is injective if ϕFα is injective. ut

5.3 UPQ and PrA imply BPrA for Honest Extractors

We show that practical PrA constructions that are UPQ are also BPrA, but for this we have to
assume that the PrA-extractor for HP is honest :

Definition 10. An extractor E for HP is said to be honest if for every y and for every query string
α, it holds that E(y, α) 6= ⊥ only if y ∈ Rα, i.e. if there is x such that Hα(x) = y. We say that a
function HP is honest preimage aware (HPrA) if it is PrA with a honest extractor.

It is easy to verify that most extractors that have been constructed in the PrA framework (like
those in [9]) are honest in this sense. This is because given the output value y and the P -query string
α, the extractors (e.g. in [9]) mostly traverse α in order to find suitable P -queries that together lead
to y, and only in that case, output the corresponding input x. The practical extractors never try to
just guess x and hope for being lucky. Note that the notion of honesty defined in [9] is somewhat
weaker than in Def. 10 and require the statement HP (x) = y instead of Hα(x) = y, but it is easy
to see that the extractors in [9] satisfy the stronger version too.

Formally we can construct functions HP that may be PrA in the general sense but not PrA
when the extractor is required to be honest by Def. 10. For example, in constructions like HP (x) =
P (x) ⊕ P (x + 1) ⊕ P (x + 1) if (x, P (x)) ∈ α but (x + 1, P (x + 1)) 6∈ α then honest extractors on
input y = P (x) are forced to output ⊥ ← E(y, α) because y 6∈ Rα. To avoid such dummy oracle
queries, we may assume that the constructions HP have the property that once y 6∈ Rα, for every
x the probability PrP←Ω|α[HP (x) = y] is negligible, where Ω | α denotes the probability space of
all P -oracles consistent with α. This means that whenever y is not an output that can (formally)
be computed from an input x with the query string α then there are no inputs x that will lead to
y with high probability and hence cannot be guessed by dishonest extractors.

Theorem 5. If HP is UPQ and HPrA then it is BPrA.

Proof. If HP is HPrA then there is a honest PrA-extractor E. Hence, for every α that is produced
by an efficient adversary, {y:E(y, α) 6= ⊥} ⊆ Rα. Hence, by the UPQ property as Rα ↪→ α, we have
|{y:E(y, α) 6= ⊥}| ≤ |Rα | ≤ |α |. ut

Hence, to show that a Merkle-Damg̊ard hash function is BPrA, it is sufficient to show that its
compression function satisfies UPQ. In the following, we show that many hash functions that have
been proved to be PrA are actually BPrA.

12

5.4 The Type-I and Type-II Compression Functions are BPrA

We prove that the rate-1 blockcipher-based hash functions that have been proved to be PrA [9] are
UPQ, which by Thm. 5 means that they are also BPrA.

Theorem 6. The rate-1 block-cipher based Type-I and Type-II compression functions are UPQ.

Proof. Assume that HP is a rate-1 block-cipher based compression function that is either of Type-
I or Type-II. In both cases, the function Cpre is bijective and has a inverse-function C−1pre that
transforms a pair (x, k) (as input of an E-query) to the input (m, v) of the compression function
HP .

Let α be any P -query string that consists of ideal cipher calls in the form (xi, ki, yi), where
yi = Eki(xi), or equivalently xi = E−1ki (yi). We define a function ϕα as follows. For any given output

w ∈ Rα, the function ϕα(w) returns the first query (xi, ki, yi) in α, such that Cpost(C
−1
pre(xi, ki), yi) =

w. Such a query must exist because of w ∈ Rα. Therefore, ϕα is correctly defined.
If ϕα(w) = (x, k, y) = ϕα(w′) for some w,w′ ∈ Rα, then by the definition of ϕα, we have

w′ = Cpost(C
−1
pre(xi, ki), yi) = w, which means ϕα is injective. ut

Consequently, the Davies-Meyer, the Matyas-Meyer-Oseas, and the Miyaguchi-Preneel compression
functions as well as many others are UPQ. Due to the fact that these constructions are HPrA, we
conclude based on Thm. 5 that all Type-I and iterated Type-II constructions are BPrA.

5.5 Shrimpton-Stam is BPrA

The Shrimpton-Stam [14] compression function FP : {0, 1}n×{0, 1}n → {0, 1}n involves independent
random oracles f1, f2 and f3 of type {0, 1}n → {0, 1}n:

FP (c, x) = f3(f1(x)⊕ f2(c))⊕ f1(x) .

Theorem 7. The Shrimpton-Stam compression function is BPrA.

Proof. We define the mapping ϕ as follows to show that Shrimpton-Stam compression function is
UPQ. For any query string α and any input y ∈ Rα = Fα(Dα) we search from α an f3-query
(z3; y3) ∈ α for which there exists an f1-query (x1; y1) ∈ α such that y = y3 ⊕ y1 and an f2-query
(c; y2) such that y1 ⊕ y2 = z3. There must be such a query because of y ∈ Rα. We define ϕ(y)
as the first such f3-query in α. Now, if ϕ(y) = (z3; y3) = ϕ(y′), then there are f1-queries (x1; y1)
and (x′1; y

′
1) such that y = y3 ⊕ y1 and y′ = y3 ⊕ y′1, and f2-queries (c; y2) and (c′; y′2) such that

y1 ⊕ y2 = z3 and y′1 ⊕ y′2 = z3. But then

f1(x1)⊕ f2(c) = f1(x
′
1)⊕ f2(c′) , (4)

which is hard to satisfy for efficient adversaries, because this is equivalent of finding collisions for
the Dodis-Pietrzak-Punyia (DPP) compression function Hf1,f2(m, v) = f1(m) ⊕ f2(v) [8] which is
about 2n/4-secure collision-free (Appendix B). ut

Note that the DPP compression function itself is not UPQ, because knowing only five P -queries,
say y1 = f1(m1), y2 = f1(m2), y3 = f1(m3), y

′
1 = f2(v1), and y′2 = f2(v2) allows one to compute six

different outputs of Hf1,f2 . We can show in a similar way that DPP is not BPrA (Appendix A). ut

13

References

1. Bayer, D., Haber, S., Stornetta, W.-S.: Improving the efficiency and reliability of digital timestamping. In:
Sequences II: Methods in Communication, Security, and Computer Sci., pp. 329–334. Springer, Heidelberg (1993)

2. Bellare, M., Rogaway, P.: Random oracles are practical: a paradigm for designing efficient protocols. In: the 1st
ACM conference on Computer and Communications Security: CCS’93, pp. 62–73. ACM (1993)

3. Bellare, M., Rogaway, P.: The exact security of digital signatures - How to sign with RSA and Rabin. In: Maurer,
U.M. (ed.): EUROCRYPT ’96. LNCS 1070, pp. 399–416. Springer, Heidelberg (1996)

4. Buldas, A., Laanoja, R.: Security proofs for hash tree time-stamping using hash functions with small output size.
In: Boyd, C., Simpson, L. (eds.): ACISP 2013. LNCS 7959, pp. 235–250. Springer, Heidelberg (2013)

5. Buldas, A., Niitsoo, M.: Optimally tight security proofs for hash-then-publish time-stamping. In: Steinfeld, R.,
Hawkes, P. (eds.): ACISP 2010. LNCS 6168, pp. 318–335. Springer, Heidelberg (2010)

6. Buldas, A., Saarepera, M.: On provably secure time-stamping schemes. In: Lee, P.J. (ed.): ASIACRYPT 2004.
LNCS 3329, pp. 500–514. Springer, Heidelberg (2004)

7. Canetti, R., Goldreich, O., Halevi, S.: The random oracle methodology, revisited. JACM 51 (4), 557–594 (2004)
8. Dodis, Y., Pietrzak, K., Puniya, P.: A new mode of operation for blockciphers and length-preserving MACs. In:

Smart, N. (ed.): EUROCRYPT 2008. LNCS 4965, pp. 198–219, Springer (2008)
9. Dodis, Y., Ristenpart, T., Shrimpton, T.: Salvaging Merkle-Damg̊ard for practical applications. In: Joux, A.

(ed.): Eurocrypt 2009. LNCS 5479, pp. 371–388. Springer, Heidelberg (2009)
10. Haber, S., Stornetta, W.-S.: How to time-stamp a digital document. Journal of Cryptology 3(2), 99–111 (1991)
11. Luby, M.: Pseudorandomness and Cryptographic Applications. Princeton University Press, Princeton (1996)
12. Merkle, R.C.: Protocols for public-key cryptosystems. In: Proceedings of the 1980 IEEE Symposium on Security

and Privacy, pp. 122–134 (1980)
13. Preneel, B., Govaerts, R., Vandewalle, J.: Hash functions based on block ciphers: s synthetic approach. In: Stinson,

D.R. (ed.): CRYPTO’93. LNCS 773, pp. 368–378. Springer (1993)
14. Shrimpton, T., Stam, M.: Building a collision-resistant compression function from non-compressing primitives.

In: Aceto, L. et al (Eds.): ICALP 2008, Part II. LNCS 5126, pp. 643–654. Springer Heidelberg (2008)
15. Stam, M.: Blockcipher-based hashing revisited. In: Dunkelman, O. (Ed.): FSE 2009. LNCS 5665, pp. 67–83.

Springer (2009)

A The DPP Hash Function is not BPrA

As DPP is PrA [9], let E be any suitable extractor. We define two adversaries: a PrA adversary B
and a query-list adversary A.

The PrA adversary Bf1,f2,Ex:

1. Computes y1 ← f1(m1), y2 ← f1(m2), y3 ← f1(m3), y
′
1 ← f2(v1), and y′2 ← f2(v2) by using 5

queries to oracles f1, f2, after which |α | = 5, assuming that all m1,m2,m3, v1, v2 are different.

2. Checks if there are collision-pairs for Hf1,f2 among the six inputs X1 = (m1, v1), X2 = (m1, v2),
X3 = (m2, v1), X4 = (m2, v2), X5 = (m3, v1), X6 = (m3, v2).

3. Composes 6 inputs w1 = y1 ⊕ y′1, w2 = y1 ⊕ y′2, w3 = y2 ⊕ y′1, w4 = y2 ⊕ y′2, w5 = y3 ⊕ y′1,
w6 = y3 ⊕ y′2.

4. Finds the smallest i ∈ {1, . . . , 6}, such that Ex(wi) 6= Xi and outputs Xi. If there is no such i,
gives up and outputs ⊥.

The query-list adversary Af1,f2 just computes y1 ← f1(m1), y2 ← f1(m2), y3 ← f1(m3), y
′
1 ←

f2(v1), and y′2 ← f2(v2) by using 5 queries to oracles f1, f2, assuming that all m1,m2,m3, v1, v2 are
different and the same that B uses. After that, A outputs the query list α and stops.

If there is i such that Ex(wi) 6= Xi, then B will fool the extractor, and if there is no such i, we
have that |{y:E(y, α) 6= ⊥}| ≥ 6 > 5 = |α |, which means that A breaks the extractor.

14

B Collision-Freeness Bounds for DPP

Lemma 1. The function F f1,f2(x1, x2) = f1(x1)⊕f2(x2) where f1 and f2 are independent random
oracles of type {0, 1}n → {0, 1}n, is 2n/4-collision resistant.

Proof. If an adversary Af1,f2 makes t1 calls to f1 and t2 calls to f2, then it has t1t2 known values
of F , and t1t2(t1t2−1)

2 pairs of inputs (potential collisions). Each pair is a collision with probability
2−n. Hence, by the union bound, the collision probability δ is upper bounded by

δ ≤ t1t2(t1t2 − 1)

2n+1
≤ t4

2n+1
.

Hence, t
δ ≥ 2n/4 for any t-time adversary with success probability δ. ut

Lemma 2. There is a collision finder for F f1,f2(x1, x2) = f1(x1) ⊕ f2(x2) with time-success ratio
5 · 2n/4.

Proof. Let Af1,f2 be an adversary that calls both f1 and f2 exactly m = 2·2n/4 times. Let x1, . . . , xm
and x′1, . . . , x

′
m be the f1- and f2-calls respectively. Then it searches a collision among the possible

m2(m2−1)
2 pairs

(f1(xi)⊕ f2(x′i′), f1(xj)⊕ f2(x′j′))

of outputs of F f1,f2 , where either i 6= j or i′ 6= j′. Let Xi,j,i′,j′ denote a 0/1 random variable which is
1 if and only if f1(xi)⊕f2(x′i′) = f1(xj)⊕f2(x′j′). Let X =

∑
i,j,i′,j′ Xi,j,i′,j′ , where the summation is

over all indices in the range [1...m] such that either i 6= j or i′ 6= j′. Note that the random variables
Xi,j,i′,j′ are pairwise independent and their mathematical expectation is p = 1

2n . Therefore, we can
apply the Chebyshev bound:

Pr [|X − E [X] | > τ] ≤ Var(X)

τ2
,

where E [X] = m2(m2−1)
2n+1 =

16·2n/2(2n/2− 1
4
)

2n+1 > 7 and Var(X) = m2(m2−1)(1−2−n)
2n+1 ≤ 8. Hence,

Pr [X = 0] ≤ Pr [|X − E [X] | > 7] ≤ 8

49
<

1

6
,

Hence, the adversary that makes t = 4 · 2n/4 oracle calls succeeds in creating a collision with
probability δ > 5

6 . Hence, t
δ ≤

24
5 · 2

n/4 < 5 · 2n/4. ut

15

