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Abstract. By replacing the brute-force list search in sieving algorithms with angular locality-
sensitive hashing, we get both theoretical and practical speed-ups for finding shortest vectors
in lattices. Optimizing for time, we obtain a heuristic time and space complexity for solving
SVP of 20-3366n+0(") Preliminary experiments show that the proposed HashSieve algorithm
already outperforms the GaussSieve in low dimensions, and that the practical increase in
the space complexity is much smaller than the asymptotic bounds suggest. Using probing
we show how we can further reduce the space complexity at the cost of slightly increasing
the time complexity.
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1 Introduction

Lattice-based cryptography. Recently lattice-based cryptography has attracted wide atten-
tion from the cryptographic community, due to e.g. its presumed resistance against quan-
tum attacks |7], the existence of lattice-based fully homomorphic encryption schemes [16],
efficient ring-based cryptographic primitives like NTRU [18,[29], and various worst-case
to average-case hardness reductions [2}/15]. An important problem related to lattice-based
cryptography is to estimate the hardness of the underlying hard lattice problems, such
as finding short vectors; understanding their hardness is crucial for accurately choosing
parameters for lattice-based cryptography [13}27,39].

Finding short vectors. Finding a shortest non-zero lattice vector or approximating it up
to a constant factor is well-known to be NP-hard [3,22], but various methods to quickly
find reasonably short vectors are known, with the most well-known ones being the basis
reduction algorithms LLL [25] and its blockwise generalization BKZ [45,46]. The latter
algorithm has a block-size parameter S which can be tuned to obtain a trade-off between
the time complexity and the quality of the output; the higher the block-size 5, the more
time the algorithm takes and the shorter the vectors in the basis that the algorithm
outputs. BKZ uses an algorithm for the exact shortest vector problem (SVP) in lattices
of dimension 5 as a subroutine, and the runtime of BKZ largely depends on the runtime
of this subroutine.

Finding shortest vectors. In the original description of BKZ, enumeration was used as the
SVP subroutine [11}21,38,/46]. This method has a low space complexity, but its runtime
is superexponential in the dimension n, which is known to be suboptimal: both sieving [4]
and the Voronoi cell algorithm [32] run in single exponential time. The main drawbacks
of the latter methods are that their space complexities are exponential in n as well, and
that the hidden constants in the time complexities are so big that enumeration is faster
than both these methods in any practical dimension n. Especially after the recent extreme
pruning improvement to enumeration [14], it seems that these other methods still have a
long way to go to beat enumeration.
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Sieving in arbitrary lattices. On the other hand, both sieving and the Voronoi cell algo-
rithm are relatively new and less explored than enumeration, and recent improvements
have shown that at least sieving might be able to compete with enumeration in the future.
Whereas the original work of Ajtai et al. [4] showed only that sieving can solve SVP in
time and space 29(%) (with large hidden constants), it was later shown that one can prov-
ably solve SVP in arbitrary lattices in time 2247" and space 224" [17,/35//40/41]. Heuristic
analyses of various sieving algorithms further suggest that one may actually be able to
solve SVP in time 204%™ and space 20208 16,33,/35], or optimizing for time, in time 20.378n
and space 292937 [6]48||49]. Various papers have also shown how to speed up sieving in
practice [12}20,3031,134},42,43], and sieving has recently made its way to the top 20 of
the SVP challenge hall of fame [44].

Sieving in ideal lattices. Besides various attempts to make sieving practical for arbitrary
lattices, some papers have also investigated how sieving can be made even faster and more
space-efficient for ideal lattices [20,[33}|43]. Since lattice-based cryptographic primitives
are commonly based on ideal lattices for efficiency, this class of lattices may be the most
relevant for lattice-based cryptanalysis. It is not known whether there exist exponential
speed-ups for sieving in ideal lattices, but several polynomial speed-ups are known which
drastically improve the time and space complexities as well. Ishiguro et al. [20] used sieving
to obtain the highest record in the ideal lattice challenge hall of fame [36], solving SVP
in dimension 128. This is already higher than the current highest dimension for which
enumeration was used to find a record in the SVP or ideal lattice challenge hall of fame.

Contributions. In this work we show how to obtain exponential speed-ups for sieving
using angular locality-sensitive hashing [8,/19]. For each stored list vector w in sieving
we store low-dimensional, lossy sketches (hashes) of these vectors, such that vectors that
are nearby have a higher probability of having the same sketch than vectors which are
far away. To search the list for nearby vectors we then do not go through the entire
list, but only consider vectors with the same hash values. Choosing certain parameters
appropriately, we can guarantee that the number of candidate vectors to consider decreases
by an exponential factor, while the probability that nearby vectors are missed is small.
Optimizing for time this leads to an algorithm with heuristic time and space complexities
bounded by 2°33™ By tuning the parameters differently, we get a continuous heuristic
trade-off between the space and time complexities, as illustrated (and compared with
previous heuristic results) in Figure|l| Practical experiments with our proposed algorithm
seem to confirm our analysis, and show that (i) already in low dimensions, our algorithm
seems to be faster than the GaussSieve algorithm of Micciancio and Voulgaris [33]; and
(ii) as expected, the practical increase in the space complexity is significantly smaller than
one might have guessed from only looking at the exponent of the space complexity. We
also show how the space complexity can be further reduced at almost no cost by probing
several hash buckets in each table and reducing the number of hash tables by a factor

poly(n).

Main ideas. While locality-sensitive hashing was briefly considered in the context of sieving
by Nguyen and Vidick [35, Section 4.2.2], there are two main differences between their
application and our techniques that explain the improvements in this paper.

— Nguyen and Vidick considered Ly-hashing based on the Euclidean norm [5}/10], while
we will argue that it seems more natural to use hashing based on angular distances [§].

— Nguyen and Vidick focused on the worst-case difference between ‘reducing’ and ‘non-
reducing’ vectors, while we will focus on the average-case difference.
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Fig. 1. The heuristic space-time trade-off of various heuristic sieving algorithms from the literature (the
red points), the space-time trade-off of |6, Figure 3] (the red curve), and the heuristic trade-off between
the space and time complexities obtained with our algorithm (the blue curve). The dashed, gray line shows
the estimate for the space-time trade-off of our algorithm obtained by assuming that all reduced vectors
are orthogonal (cf. Proposition .

To illustrate the second point: the worst-case angle between pairwise reduced vectors may
be only slightly bigger than 60° (i.e. hardly any bigger than angles of non-reduced vectors),
while in high dimensions the average angle of two non-reducing vectors is close to 90°.

Outline. The paper is organized as follows. In Section [2| we describe the technique of
locality-sensitive hashing for finding near(est) neighbors, and we describe a family of angu-
lar hash functions. Section [3]describes how to apply these techniques to e.g. the GaussSieve
algorithm of Micciancio and Voulgaris to obtain the faster HashSieve algorithm. In Sec-
tion 4| (and Appendix [A]) we show that under certain natural heuristics, sieving with
locality-sensitive hashing provably solves SVP in time and space 20-3366n+0(n) and we
show how we can choose the parameters differently to obtain a continuous trade-off be-
tween the time and space complexities (as illustrated in Figure . Section [5| describes
preliminary experimental results using the HashSieve algorithm, aimed at verifying our
heuristic analysis. Section [6] describes a useful technique to reduce the space complexity
by a factor poly(n) at almost no additional cost. In Section We conclude with some open
problems and possible applications of (angular) locality-sensitive hashing to other lattice
algorithms, such as the Voronoi cell algorithm [32].
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2 Locality-sensitive hashing

2.1 Introduction

The near(est) neighbor problem is the following [19]: Given a list of n-dimensional vectors
L ={w;,ws,...,wy} C R" preprocess L in such a way that when given a target vector
v ¢ L, one can efficiently find an element w € L which is close(st) to v. While for
small dimensions n there may be ways to answer these queries in time sub-linear or even
logarithmic in the list size N, for large dimensions n it generally seems hard to answer
queries faster than with a naive brute-force list search of time O(/V). This inability to
efficiently store and query lists of high-dimensional objects is sometimes referred to as the
“curse of dimensionality” [19].

Fortunately, if we know that the list of objects L has a certain structure, or if we know
that there is a significant gap between what is meant by “nearby” and “far away,” then
there are ways to preprocess L such that queries can be answered in time sub-linear in
N. For instance, for the Euclidean norm, if it is known that the closest point w* € L
lies at distance d(v,w*) = r; from v, and all other points w € L are at distance at least
d(v,w) > re = (1 + &)ry from v, then it is possible to preprocess L using time and space
O(N'*7), and answer queries in time O(N®), where p = (1+¢)72 < 1 [5]. For small ¢ > 0,
this means that with a space complexity almost quadratic in N, one can answer queries
in time sub-linear in N.

2.2 Hash families

The method of [5] described above, as well as the method we will use later, relies on using
locality-sensitive hash functions [19]. These are functions h which map an n-dimensional
vector v to a low-dimensional sketch of v, such that vectors which are nearby in R™ have
a high probability of having the same sketch, while vectors which are far away have a
low probability of having the same image under h. Formalizing this property leads to
the following definition of a locality-sensitive hash family H. Here, for a certain similarity
measureﬂ D we define B(v,r) = {w € R" : D(v,w) < r}, and the set U below may be
thought of as (a subset of) the natural numbers N.

Definition 1. [19] A family H = {h : R" — U} is called (ry1,r2,p1, p2)-sensitive for a
similarity measure D if for any v,w € R"™ we have

— If w € B(v,r1) then Ppeylh(v) = h(w)] > p1.
— Ifw ¢ B(v,r2) then Prey[h(v) = h(w)] < po.

Note that if there exists a locality-sensitive hash family H which is (r1,r2,p1,p2)-
sensitive with p; > po, then we can use H to distinguish between vectors which are at
most r; away from v, and vectors which are at least ro away from v with non-negligible
probability.

2.3 Amplification

Before turning to how such hash families may actually be constructed for a similarity
measure D, or how to use these to find nearest neighbors quickly, we first note that in
general it is unknown whether efficiently computable (71, r2, p1, p2)-sensitive hash families

! A similarity measure D may informally be thought of as a “slightly relaxed” distance metric, which may
not satisfy all properties associated to distance metrics.
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even exist for the ideal setting of r; =~ ro and p; = 1 and ps = 0. Instead, one commonly
first constructs an (r1,72,p1,p2)-sensitive hash family H with p; &~ po, and then uses
several AND- and OR-compositions to turn it into an (71,72, p}, ph)-sensitive hash family
H' with p} > p1 and p) < po, thereby amplifying the gap between p; and po.

AND-composition. Given an (ri, 72, p1, p2)-sensitive hash family H, we can construct an
(rqy, rg,p’f, plg)-sensitive hash family H’ by taking k different, pairwise independent func-
tions hi,...,h; € H and a one-to-one mapping f : U¥ — U, and defining h € H' as
h(v) = f(h1(v),..., hg(v)). Clearly h(v) = h(w) iff hj(v) = h;(w) for all i € [k], so if
P[hi(v) = hi(w)] = p; for all 4, then P[h(v) = h(w)] = pg? for j =1,2.

OR-composition. Given an (ri, 79, p1, p2)-sensitive hash family H, we can construct an
(r1,72,1 — (1 — p1)t, 1 — (1 — po)t)-sensitive hash family H’ by taking ¢ different, pairwise
independent functions hi,...,h; € H, and defining h € H' by the relation h(v) = h(w) iff
hi(v) = hi(w) for some i € [k]. Clearly h(v) # h(w) iff h;i(v) # h;(w) for all i € [k], so if
P[hi(v) # hi(w)] = 1 — p; for all 4, then P[h(v) # h(w)] = (1 — p;)* for j = 1,2.
Combining a k-wise AND-composition with a t-wise OR-composition, we can turn an
(1,72, p1, p2)-sensitive hash family  into an (r1, 72, 1—(1—p)t, 1—(1—pk)*)-sensitive hash
family H'. Aslong as p; > po, we can always find values k and ¢ such that pj 21-(1—- p’f )t

is close to 1 and ps = 1 — (1 — pk)! is very close to 0.

2.4 Finding nearest neighbors

To use these hash families to find nearest neighbors, we can use the following method
first described in [19]. First, we choose t - k random hash functions h;; € H, and we use
the AND-composition to combine k of them at a time to build ¢ different hash functions
hi,...,ht. Then, given the list L, we build ¢ different hash tables T1,...,T;, where for
each hash table T; we insert w into the bucket labeled h;(w). Finally, given the vector v,
we compute its ¢ images h;(v), gather all the candidate vectors that collide with v in at
least one of these hash tables, and search this list of candidates for the nearest neighbor.

Clearly, the quality of this algorithm for finding nearest neighbors depends on the
quality of the underlying hash family and on the parameters k and . Larger values of k
and t amplify the gap between the probabilities of finding ‘good’ and ‘bad’ vectors, but
larger parameters come at the cost of having to compute many hashes, both during the
preprocessing phase and during the querying phase. The following lemma shows how to
balance k£ and ¢ such that the overall time complexity is minimized.

Lemma 1. [19]/ Suppose there ezists a (r1, T2, p1, p2)-sensitive hash family H, and suppose
that {w € L :r; < D(v,w) < ro} = 0. Then, taking
S los(Up) oY)

log(1/p2)’ log(1/p2)’

with high probability we can find (if it exists) an element w* € L with D(v,w*) < ry, with
the following costs:

t = O(N?), (1)

(1) Time for preprocessing the list: O(N*P logy /p, N).
(2) Space complexity of the preprocessed data: O(N'TP).
(8) Time for answering a query v: O(NP).
(8a) Hash evaluations of the query vector v: O(NP).
(8b) List vectors to compare to the query vector v: O(NP).
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Proof. Let us start with ‘good’ vectors, i.e., vectors w € L at distance at most r; from
v. Taking k-way ANDs, we obtain a collision probability of pf = (plf/ PYp = N~=P. Thus,
taking a t-way OR-composition, the overall collision probability is pf = 1 — (1 — pk)t =
1— (1= N9 = O(1). So the probability that good vectors are found is constant,
where the constant depends only on the constant hidden inside t = O(N®).

For ‘bad’ vectors w at distance at least ro from v, the k-way AND-composition gives
us a collision probability of pé = N—!. Taking a t-way OR, we get an overall probability
of a collision of p5 = 1 — (1 —p)t =1 — (1 — N"HOW") = O(NP~1). Since the total
length of the list is N, we expect that roughly N - O(N*~!) = O(N®) bad vectors w € L
collide with v in at least one of the hash tables. Using e.g. the Chernoff bound, with
overwhelming probability the exact number of ‘bad’ colliding vectors will be relatively
close to this average.

Summarizing, (1) the costs of preprocessing the data are computing N -t -k =
O(N*r logy /p, V) hashes; (2) the space complexity of the preprocessed data (¢ hash ta-
bles with N vectors) is O(N -t) = O(N'*?); (3a) the costs of obtaining a list of candidate
nearest vectors for v are computing t = O(N?) hashes of v and performing as many table
look-ups; and (3b) the cost of searching the resulting list of candidates for the right vector
is equal to the length of this list, which is at most O(/N?). This algorithm succeeds with
constant probability, and by changing the constant for ¢ the probability of failure can be
made arbitrarily small. O

Although Lemma[I]only shows how to choose k and ¢ to minimize the time complexity,
we can also tune k and ¢ so that we use more time and less space. In a sense this algorithm
can be seen as a generalization of the naive brute-force search method, as k =0and t =1
corresponds to checking the whole list in linear time with linear space.

2.5 Angular hashing

Let us now consider actual hash families for the similarity measure D that we are interested
in. As we will argue in the next section, what actually seems to be a more natural choice
for D than the Euclidean distance is the angular distance, defined on R” as

vTw
D(v,w) = 0(v,w) = arccos (”UHHU’H) . (2)

With this similarity measure, two vectors are ‘nearby’ one another if their common angle
is small, and vectors are ‘far apart’ if their angle is large. In a sense, this is similar to the
Lo-norm: if two vectors have similar Euclidean norms, then their Lo-distance is large if
and only if their angular distance is large. For this similarity measure the following hash
family H was first described in [§]:

H ={hg:acR" |a| =1}, (3)

1 if aTw > 0;
ha(v) £ = 4
a(v) {0 if aTv < 0. )

Intuitively, the random unit vector a defines a hyperplane (for which a is a normal vector),
and hg maps the two regions separated by this hyperplane to different bits.

To see why this is a non-trivial locality-sensitive hash family for the angular distance,
consider two vectors v, w € R". These two vectors lie on a 2-dimensional plane passing
through the origin, and with probability 1 a random vector a does not lie on this plane



Sieving for shortest vectors in lattices using angular locality-sensitive hashing 7

Fig. 2. A sketch of the angular hash family . Each line ¢; corresponds to a different vector a; and a
different locality-sensitive hash function h; € H. Here hs(v) # h3(w) because 3 separates v and w, while
hi(v) = h1(w) and ha(v) = ha(w).

(for n > 2). This means that the hyperplane defined by a intersects this plane in some
line ¢, where the direction of ¢ is orthogonal to the projection of a onto the plane. Since a
is taken uniformly at random from the hypersphere of radius 1, the line £ has a uniformly
random ‘direction’ in the plane, and it maps v and w to different hash values if and only
if ¢ separates v and w in the plane. Figure [2| sketches the 2-dimensional plane, possible
points v and w, and possible lines ¢; in this plane arising from different vectors a;. It
is not hard to see that the probability that such a line ¢ separates v and w is directly
proportional to their common angle f(v, w) as follows [8]:

O(v,w)

PhaeH [ha(v) = ha(w)] =1- T (5)

Thus, for any two angles #; < 6, the family H is (61,02,1 — %1, 1 — %)-gensitive. In

K3
particular, it is (§, 7, %, %)—sensitive.

3 From GaussSieve to HashSieve

Let us now describe how locality-sensitive hashing can be used to speed up sieving algo-
rithms, and in particular how we can speed up the GaussSieve of Micciancio and Voul-
garis [33]. We have chosen this algorithm as our main focus since it seems to be the most
practical sieving algorithm to this date, which is further motivated by the extensive at-
tention it has received in the past few years [12}20,/30,131}34,42,43] and by the fact that
the highest sieving record in the SVP challenge database was obtained using (a modifica-
tion of) the GaussSieve [24]. We note however that the same ideas can also be applied to
other sieving algorithms, and in particular to the heuristic sieve algorithm of Nguyen and
Vidick [35] (see Appendix [B]) which has provable heuristic bounds on the time complexity.

3.1 GaussSieve

A simplified version of the GaussSieve algorithm of Micciancio and Voulgaris is described
in Algorithm [I} The algorithm iteratively builds a longer and longer list of vectors, occa-
sionally reducing the lengths of list vectors in the process, until at some point L contains
a shortest vector. Vectors are sampled from a discrete Gaussian over the lattice, using
e.g. the sampling algorithm of Klein [23,33]. If list vectors are modified or newly sampled
vectors are reduced, they are pushed to a stack. This stack is then first emptied before
new vectors are sampled.
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Algorithm 1 The GaussSieve algorithm
1: Initialize an empty list L and an empty stack S

2: repeat

3: Get a vector v from the stack (or sample a new one)
4: for each w € L do

5: Reduce v with w

6: Reduce w with v

T if w has changed then

8: Remove w from the list L
9: Add w to the stack S

10: if v has changed then

11: Add v to the stack S

12: else

13: Add v to the list L

14: until v is a shortest vector

In the GaussSieve algorithm, the reductions in Lines [5] and [f] follow the following rule:
Reduce u; with wg @ if ||ug £ we|| < ||u1| then wy < w1 £ uo. (6)

Throughout the execution of the algorithm, the list L always satisfies the property that any
two vectors wi, wy € L are pairwise reduced, i.e., ||lw; + wa| > max{||w:||, |[w2] }. This
implies that two list vectors wy,ws € L always have an angle of at least 60°; otherwise
one of them would have reduced the other before being added to the list. Since all angles
between list vectors are always at least 60°, the size of L is bounded by the kissing constant
in n dimensions: the maximum number of vectors in R™ one can find such that any two
vectors have an angle of at least 60°. Bounds and conjectures on the kissing constant in
high dimensions lead us to believe that the size of the list L will not exceed (4/3)"/2°(") =
20.2075n+o(n) [9]

While the space complexity of the GaussSieve is reasonably well understood, there are
no heuristic bounds on the time complexity of this algorithm. One might estimate that
the time complexity is determined by the double loop over L: at any time each pair of
vectors w1, wy € L was compared at least once to see if one could reduce the other. Thus
the time complexity is at least quadratic in |L|. The algorithm further seems to show a
similar asymptotic behavior as the sieve algorithm of Nguyen and Vidick [35], for which the
asymptotic time complexity is heuristically known to be quadratic in |L|, i.e., of the order

20415n+0(n) Thys one might conjecture that the GaussSieve also has a time complexity of
90.415n+o0(n)

3.2 (GaussSieve with angular reductions

Since the heuristic bounds on the space and time complexities are only based on the fact
that each pair of vectors wi,ws € L has an angle of at least 60°, we might expect the
same heuristics to apply to any reduction method that guarantees that angles in L are at
least 60°. In particular, if we only reduce vectors when their angle is less than 60°, using
the following rule:

Reduce u; with ug @ if O(u1, £u2) < 60° and |lu;| > ||uz|| then u; < u; £ ug, (7)

then we expect the same heuristic bounds on the time and space complexities to apply.
More precisely, the list size would again be bounded by 20-208n+0(n) and the time complex-
ity may be estimated at 20-4157t0(") Basic experiments indicate that although with this
weaker notion of reduction the list size increases by a certain factor, this factor appears
to be sub-exponential in n.
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Algorithm 2 The HashSieve algorithm

1: Initialize an empty list L and an empty stack S
2: Initialize ¢ empty hash tables T;

3: Sample k -t random hash vectors a;,;

4: repeat

5: Get a vector v from the stack (or sample a new one)
t t

6: Obtain the set of candidates C' = (U Tilhi(v)]U U T [hi(—v)])

7 for each w € C do = =

8: Reduce v with w

9: Reduce w with v

10: if w has changed then

11: Remove w from the list L

12: Remove w from all ¢ hash tables T;

13: Add w to the stack S

14: if v has changed then

15: Add v to the stack S

16: else

17: Add v to the list L

18: Add v to all ¢ hash tables T;

19: until v is a shortest vector

3.3 HashSieve with angular reductions

Replacing the stronger notion of reduction of @ by the weaker one of @, we can clearly
see the connection with angular hashing. Considering the GaussSieve with angular reduc-
tions, we are repeatedly sampling new target vectors v (with each time almost the same
list L), and each time we are looking for vectors w € L whose angle with v is at most
60°. Replacing the brute-force list search in the original algorithm with the technique of
angular locality-sensitive hashing, we obtain Algorithm [2] Note that the setup costs of
locality-sensitive hashing are spread out over the various iterations; at each iteration we
only update the parts of the hash tables that were affected by updating L.

3.4 HashSieve

Finally, note that there seems to be no point to skipping potential reductions. So while
for our intuition and for the theoretical motivation we may consider the case where the
reductions are based on , in practice we will again reduce vectors (in Lines |§| of
Algorithm [2) based on @

4 Theoretical analysis of HashSieve

For analyzing the time complexity of HashSieve, we will assume that the GaussSieve has a
time complexity which is quadratic in the list size, i.e. a time complexity of 20-4157+0(n) We
will then show that using locality-sensitive hashing, we can reduce the time complexity to
90-33Tn+0(n) Note that in reality it is not known whether the time complexity of GaussSieve
is provably quadratic in |L| (up to sub-exponential factors), so this might not guarantee a
heuristic time complexity of the order 20-3377+0(n) In Appendix [B| we therefore illustrate
how the same ideas may be applied to the sieve algorithm of Nguyen and Vidick [35], for
which the heuristic time complexity is known to be at most 20-415n+0(n) Thig then implies
that indeed, with sieving we can heuristically solve the shortest vector problem in time
and space 20-337t0(") Tn the main text we will focus on the GaussSieve due to its better
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practical performance, even though theoretically one might rather apply this analysis to
the algorithm of Nguyen and Vidick due to their heuristic bounds on the time complexity.

So for now, let us assume that the GaussSieve has a time complexity quadratic in |L|,
and that |L] < 20-208n+0(n) due to conjectured bounds on the kissing constant. To get an
estimate of the time and space complexities of the HashSieve, note that in high dimensions,
angles close to 90° are much more likely to occur between random vectors than smaller
angles. So one might guess that for two list vectors wy,wy € L (which necessarily have
an angle larger than 60°), with high probability their angle is close to 90°. On the other
hand, vectors that can reduce one another (with respect to angular reductions) always
have an angle less than 60°, and by similar arguments we expect this angle to always be
close to 60°. Under the extreme assumption that all ‘reduced angles’ are ezactly 90° (and
non-reduced angles are at most 60°), we obtain the following estimate for the optimized
time and space complexities of HashSieve.

Proposition 1. Assuming reduced vectors are always pairwise orthogonal, sieving with
locality-sensitive hashing with parameters k = 0.2075n + o(n) and t = 20-1214n+0(n) oy pis-
tically solves SVP in time and space 20-3289n+0(n) - YWith the same assumption, we further-
more obtain the trade-off between the space and time complexities indicated by the dashed
line in Figure[d]

Proof. 1f all reduced angles are 90°, then we can simply let 6; = § and 62 = 5 and use the
hash family described in Section with p; = % and ps = % Applying Lemma |1} we can
solve a single search for a reducing vector in time N? = 20-1214n+0(n) yging ¢ = 20-1214n+o(n)
hash tables. Since the time complexity of the algorithm is determined by performing such

searches N times, the overall time complexity is of the order N1+r = 20-3289n+o0(n) a

Of course, in practice not all reduced angles are actually 90°, and one should carefully
analyze what is the real probability that a vector w whose angle with v is more than 60°,
is found as a candidate due to a collision in one of the hash tables. The following central
theorem follows from this analysis and shows how to choose the parameters asymptotically
to optimize the time complexity. A proof of Theorem [I] can be found in Appendix [A]

Theorem 1. Sieving with locality-sensitive hashing with parameters k = 0.2206n + o(n)
and t = 20-1290n+0(0) peyristically solves SVP in time and space 20-3366n+0(n) e further-
more obtain the trade-off between the space and time complexities indicated by the solid
blue line in Figure 1]

Note that the optimized values in Theorem [1| and Proposition [I} and the associated
curves in Figure [I] are not very different. Thus the simple estimate based on the intuition
that in high dimensions “everything is orthogonal” is not far off.

5 Practical performance of HashSieve

To experimentally verify our analysis, we implemented both the GaussSieve and the Hash-
Sieve to try to compare the asymptotic behaviors of these algorithms. For implementing
the HashSieve, we note that we can use various tweaks to further speed up the algorithm.
These include:

(a) With the HashSieve, the whole purpose of L is lost, and we can remove L in its entirety
from the algorithm.
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(b) Instead of making a big list of candidates first, we go through the hash tables one by
one, checking if collisions in this table lead to reductions. If a reducing vector is already
found in one of the earlier tables T}, this may save up to ¢ - k hash computations for v.

(c) Since h;j(—v) = —h;(v) and we always want to get either both or neither of the two
buckets (to compare v + w to v), we merge each pair of hash buckets labeled h;(v)
and h;(—v) into one hash bucket labeled h;(f£wv). This reduces the number of buckets
per hash table and the number of hashes to compute by a factor 2.

(d) For choosing vectors a; ; to use for the hash functions h;, there is no reason to assume
that drawing a from a specific, sufficiently large random subset of {z € R" : ||z| = 1}
would lead to substantially different results. In particular, we can use sparse vectors
a;; to make hash computations significantly cheaper, while retaining the same per-
formance [1,126]. Our experiments in dimensions 35 up to 70 indicate that even if all
vectors a; ; have only two non-zero entries (which are the same), the algorithm still
finds the shortest vector in roughly the same number of iterations.

(e) We should not store the actual vectors in each hash table T}, but only pointers to list
vectors (which are all stored in a central list of vectors). This means that the space
complexity increases from O(N - n) for the GaussSieve, to O(N - n + N - t) for the
HashSieve (instead of O(N -n-t)). Asymptotically the space complexity thus increases
by a factor L (instead of ¢).

With these tweaks, we performed several experiments of finding shortest vectors using the
lattices of the SVP challenge website [44]. We generated lattice bases for different seeds and
different dimensions using the SVP challenge generator, then used NTL [47] to preprocess
the basis (LLL reduction), and then used our implementations of the GaussSieve and the
HashSieve to obtain these results. For the HashSieve we chose the parameters k and ¢ by
rounding the theoretical estimates of Theorem [1| to the nearest integer, i.e., k = |0.2206n |
and t = 2912907 We performed experiments in dimensions 35 up to 70, and various
statistics of these experiments are discussed below and illustrated in Figure

Note that clearly there are various ways to further speed up both the GaussSieve
and the HashSieve, using e.g. better preprocessing (BKZ with higher block sizes), vector-
ized code, parallel implementations, optimized samplers, specialized hardware etc. Fur-
thermore, for the HashSieve our choice of the parameters k and ¢ might be suboptimal;
choosing k and t slightly differently may further increase the performance. The point of
our experiments is only to try to give a somewhat fair comparison of the two algorithms
and to try to estimate and compare the asymptotic behaviors of these algorithms. Further
optimizing the practical performance of these algorithms is left for future work.

5.1 Computations of the HashSieve

Various characteristics of the HashSieve may be of interest, such as how often the algorithm
computes hashes of a vector v, and how often the algorithm compares a target vector v
with a list vector w to see if a reduction is possible. Note that computing a hash consists
of computing k inner products between v and a; 1, ...,a;, while a comparison consists
of computing only one inner product between v and w. To compare these numbers, we
therefore compare the total number of inner products computed for both cases, even
though hash-based inner products may be significantly cheaper than comparison-based
inner products.

Theoretically we have chosen k and ¢ so that the total time for each of these operations
is roughly balanced, and Figure confirms that this indeed seems to be the case. The
total number of inner products for hashing seems to be a constant factor higher than the
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Fig. 3. Experimental data obtained from applying the GaussSieve and the HashSieve to LLL-reduced
random lattice bases in dimensions 35 to 70. Markers indicate experimental data, and lines are least-
squares fits for the data. For each algorithm and dimension we performed at least 10 experiments. Note
that the step-wise behavior of some curves can be explained by the fact that the parameter k of the
HashSieve is small but integral, and increases by 1 only once every few dimensions.

Figure[3a]shows the time spent on hashing and on comparing vectors in the HashSieve algorithm, expressed
in terms of inner products. As expected, with our choice of parameters these computations are more or less
balanced. Figure [3b] confirms our intuition that if we miss a small fraction of the reducing pairs of vectors,
the list size also increases by a small factor. Figure [3c] compares the time complexities of both algorithms
in our experimental setting, and seems to confirm our heuristic estimate of a speed-up of roughly 2°-°™
compared to the GaussSieve, even if the actual times are higher than the heuristics indicate. Figure
illustrates the space requirements for both schemes, showing that the increase in the space complexity is
significantly smaller than the heuristically estimated asymptotic factor 213",

The technique of probing, leading to a better space complexity and a slightly worse time complexity than
the HashSieve, is explained in Section [f]
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total number of inner products computed for comparing vectors. This is also desirable, as
hashing is significantly cheaper than comparing vectors. Tuning the parameters differently
may change this ratio a bit, and may lead to a different overall time and space complexity.

5.2 List sizes

To heuristically prove that the algorithm succeeds using a certain amount of time and
space, we assumed that if reductions are missed with a constant probability (which is the
case with our choice of parameters), then the list size also increases by a constant factor.
Figure seems to support these heuristic assumptions, as indeed the list size in the
HashSieve algorithm seems to be a (small) constant factor larger than in the GaussSieve.

5.3 Time complexities

Clearly one of the main parameters of interest is the time complexity, and Figure
compares the run times of our implementations of GaussSieve and HashSieve on a single
core of a Dell Optiplex 780, which has a processor speed of 2.66 GHz and 4 GB of RAM.
Our heuristics show that for large n we expect to achieve a speed-up of roughly 20-078" for
each list search, and in practice we see that the asymptotic speed-up is close to 2007 The
experiments further indicate that the overhead of using hash tables (extra table look-ups,
using more memory) is reasonably small, since the constant in the time exponent only
increases by about 2. Note that the actual coefficients in the exponents are higher than
heuristics suggest, which is consistent with various previous experiments [12}20}30,31},33,
42].

5.4 Space complexities

Finally, let us consider the memory requirements of both algorithms. For the GaussSieve
algorithm, the total space complexity is clearly dominated by the memory required to
store all list vectors. In our experiments we stored each vector coordinate in a register of
4 bytes, and since each vector has n entries, this leads to a total space complexity for the
GaussSieve of roughly 4nN bytes. For the HashSieve the asymptotic space complexity is
significantly higher, but recall that in our hash tables we only store pointers to vectors,
which may also be only 4 bytes each. For the HashSieve, we estimate the total space
complexity as 4nN + 4tN ~ 4tN bytes, i.e., roughly a factor % ~ 201290n /ny higher
than the space complexity of the GaussSieve. Figure [3d] illustrates the experimental space
complexities of both algorithms for various dimensions. As expected, for large n the factor
t dominates, but the polynomial factor n is not insignificant either. Even in dimension 70,
we have t ~ 523 and n = 70, so that % ~ 7.5 is significantly smaller than the estimated
increase of a factor ¢t ~ 523 based only on looking at the exponents.

6 Reducing the space complexity with probing

Using locality-sensitive hashing, we showed how to obtain an exponential speed-up at the
cost of exponentially more storage. To amplify the gap between the collision probabilities
p1 and pg, we used many independent hash tables t to see if a vector w collides with v in
at least one of these tables. Since t grows exponentially with n, and each table contains
all list vectors, for large parameters the space complexity is dominated by the term ¢ - N.

In 2006, Panigraphy [37] proposed that instead of using many different hash tables
and checking only one bucket in each table for candidates, one could also go through
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several hash buckets in each hash table and use fewer hash tables to get a similar quality
for the list of candidates. So instead of selecting a new bucket by moving to a new and
independent hash table, we select a new bucket by moving to a different bucket in the
same hash table.

Construction. To illustrate how this method might work, consider the following modifica-
tion to the HashSieve algorithm. In each hash table ¢, instead of only checking the bucket
labeled h;(£v) € {0,1}* for candidates, we also check buckets labeled h;(+v) @ e; for
all j € [k], where e; is the jth unit vector in k dimensions and @ represents addition in
Zo (bitwise XOR). In other words, we now consider a vector w € L a candidate iff it is
separated from v by at most one of the random hyperplanes defined by the hash vectors
a; ;. This means that in each table we now check k + 1 hash buckets, instead of only one
bucket.

Heuristics. To analyze the effect of this modification on the algorithm, for now let us again
make the simplifying assumption that reducing vectors have an angle of at most 60° with
v, and non-reducing vectors have an angle of exactly 90° with v. For reducing vectors, the
probability that none of the hyperplanes separate v and w is (%)k, and the probability that
at most one of the hyperplanes separates these vectors is (2)*+k(2)F=1(3)L = (2)F [1+ &].
For non-reducing vectors, the probability that two vectors land in the exact same bucket
is (%)k, and the probability that two vectors land in buckets differing in at most one bit
is (3)* [1 + k]. Comparing the probabilities of finding given vectors with and without this

technique of probing multiple buckets, we see that with probing:

— The probability of finding a good vector increases by a factor 1 + %
— The probability of finding a bad vector increases by a factor 1 + k.

If we use probing and reduce t by a factor 1 + %, we thus expect the probability of
finding good vectors to be the same as when we do not use probing and use the original
value of ¢t. For bad vectors the probability of becoming a candidate vector in this new
setting increases by a factor 1}:,;];2 < 2. Overall we therefore expect that without further
modifications the number of comparisons between list vectors increases by a factor less
than 2 (thus also increasing the time complexity by a factor less than 2) while the space

complexity decreases by a factor 1 + % = O(n)

Results. Although what we described above is just a basic, naive technique for probing
the hash tables, we can already see significant gains in the space complexity. For instance,
in dimension 70 without probing we would have & = 15 and ¢ = 523 if we round the
values of Theorem [I] to the nearest integer, while with probing we would have £ = 15
and t =~ 62, i.e., a factor 8.5 fewer hash tables. Experimentally the maximum list size in
this setting is approximately 77000, and assuming that pointers to list vectors consume
4 bytes of memory, this leads to a space complexity of at least 161 MB to store all hash
tables without probing, and 19 MB to store all hash tables with probing. The number
of inner products computed between list vectors increases (experimentally) by less than
60%, and the overall time complexity increases by less than 40%. Note that storing the
list vectors requires slightly more than 21 MB in both cases, so with one level of probing
the space complexity of the hash tables is already less than that of the list of vectors.
Figure [3| further illustrates how the time, space, and list sizes change by using probing in
dimensions 60 up to 70.

2 While we assumed that reduced vectors always have an angle of 90° to estimate that the time complexity

increases by at most a factor 2, without this assumption (only using the fact that the angle is always
at most 90°) this factor would be even smaller.
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Extensions. This procedure of probing adjacent buckets (buckets at Hamming distance
1) can trivially be generalized to considering all hash buckets which differ from the hash
value h(£wv) € {0,1}* in at most 0 < £ < k bits. For £ = O(1) and large n, this implies a
reduction in the number of hash tables (and the space complexity) by a factor 1 + %k +
i(g) + -+ % (’Z) = O(n%) and an increase in the time complexity by less than a factor
2¢ = O(1). For instance, in dimension 100 without probing we would have k = 22 and
t = 7643, with one level of probing (¢ = 1) we would have ¢ = 637, and with two levels
of probing (¢ = 2) we would have ¢t = 110. For ¢ = 2 the space complexity of the hash
tables is thus reduced by a factor almost 70 at the cost of a factor of at most 4 in the time
complexity.

Besides using multiple levels of probing and brute-forcing all buckets at each level,
one could also consider more sophisticated ways of choosing which buckets to go through.
If agjjv ~ 0 then it makes more sense to consider the bucket labeled h;(+v) @ e; than
if azjv > 0 or ag:jv < 0. More generally, given v and any bucket b € {0,1}*, we can
heuristically compute the probability that a reducing vector is in b and only check those
buckets with the highest probabilities. For more details, see e.g. [28].

7 Locality-sensitive hashing and lattice algorithms

Let us finally mention some open problems related to applying locality-sensitive hashing
to sieving and to other lattice algorithms.

7.1 Las-based hashing

Instead of using angular hashes, one could also try using locality-sensitive hash families
designed for the Euclidean norm. If ‘good’ vectors in a list L of size N are at distance
at most R from v, and ‘bad’ vectors are at distance at least ¢ - R from v for ¢ > 1, then
one can use e.g. the method of Datar et al. [10] to find nearest neighbors in time Nl/¢ or
use the asymptotically near-optimal algorithm of Andoni and Indyk [5] to solve nearest
neighbor in time N/ ¢*+o(1) Under the assumption that reducing vectors have an angle
60° with v and non-reducing vectors are orthogonal to v, and assuming that all vectors
have the same Euclidean norms, we have that for reducing vectors w, ||[v — w| ~ ||v||
while for non-reducing vectors w, |[v — w|| ~ v/2-||v||. One might thus conjecture that we
could apply these results with ¢ ~ v/2 in the terminology of approximate nearest neighbor
search. This would imply that the method of Datar et al. does not lead to a bigger speed-up
than angular hashing, but that the method of Andoni and Indyk might find close vectors
in the list in time v/N.

Besides the question whether we can actually solve nearest neighbor in time v/N when
not all reduced vectors are actually orthogonal and have the same length, some drawbacks
of the Ls-hashing method of Andoni and Indyk are:

(i) The vectors in the list L shrink over time, and thus the target distance at which
we want to find the closest neighbor decreases over time. Note that for the angular
reductions, we are always looking for vectors with angle 60° and this conveniently does
not change as vectors get shorter.

(ii) Computing hashes with the algorithm of Andoni and Indyk is much more involved than
computing angular hashes, which only involves computing (sparse) inner products.
Therefore the hidden constants may be significantly larger than those of the angular
hash-based approach.

Regardless of these drawbacks, if the constant in the exponent can somehow heuristically
be reduced, then even if the hidden constants are big, this might be of theoretical interest.
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7.2 Other sieving algorithms

Besides the GaussSieve of Micciancio and Voulgaris (Section [3) and the sieve algorithm
of Nguyen and Vidick (Appendix , there are various other sieve algorithms for which
hashing may lead to speed-ups. One could try to apply the same techniques to the various
other heuristic sieves [6},48,/49] and provable sieves [4}33},135,40] in the literature. For
the sieve algorithms with provable bounds on the time and space complexities, note that
we used some heuristic assumptions to obtain our results, which might make obtaining
non-heuristic, provable bounds with hashing somewhat challenging.

7.3 The Voronoi cell algorithm

The Voronoi cell algorithm of Micciancio and Voulgaris [32] has a provable and practical
time complexity of 227+°(") for solving SVP and CVP, using 2"1°(") space to store a
representation of the Voronoi cell of the lattice. Using locality-sensitive hashing may speed
up some parts of this algorithm as well, but this does not seem to decrease the leading
constant in the time exponent, as various other parts of their algorithm cannot be sped up
with hashing. Note however that for solving the closest vector problem with preprocessing
(CVPP), these other routines are not needed anymore, and their CVPP algorithm of
complexity 22710 hasically comes down to searching the list of relevant vectors (of
which there are 2”+°(”)) at most 277°(" times sequentially. With hashing one may be able
to reduce the time complexity of one search from O(N) to O(N'~%) = O(N?6218) (where
the value of a can be found in Corollary |1|in Appendix at the cost of N16218 gpace.
This leads to the following proposition:

Proposition 2. Combining the Voronoi cell algorithm [32] with locality-sensitive hashing,
we can heuristically solve CVPP in time and space 21-6218n+o0(n),

Although this slightly improves the theoretical time complexity of the Voronoi algo-
rithm for CVPP, due to the huge space requirements and the high practical time complexity
this still does not seem to make the Voronoi algorithm competitive with enumeration or
sieving.
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A Proof of Theorem [1

To prove the claim in Theorem [1} we will show how to choose a sequence of parameters
{(kn,tn) }nen such that for large n, the following holds:

1. The average probability that a reducing vector w collides with v in at least one of the
t hash tables is at least constant in n:

pi = P(good vectors collide) > 1 — e. (e €(0,1),e #ep) (8)

2. The average probability that a non-reducing vector w collides with v in at least one
of the ¢ hash tables is exponentially small:

ps = P(bad vectors collide) < O(N~0-3782), (9)

3. The number of hash tables grows as t = N0:6218,

This would imply that for each search, the number of candidate vectors is of the order N -
N~03782 — NO.6218 ' (yerall, we heuristically expect to iterate searching the list poly(n)- N
times, so after substituting N = 20-2075n+0(n) this leads to the following asymptotic time
and space complexities:

— Time (hashing): O(t - N') = 20:337n+0(n)
— Time (searching): O(N? - p}) = 20-337n4o(n)
— Space: O(t - N) = 20:337n+o(n)

The remaining part of this section is dedicated to proving Equations and @D We first
prove that reducing vectors often collide in at least one of the hash tables, given that k
is a suitable function of ¢ (Section [A.]). We then show how pj scales as a function of k
and t (Section and how to choose k and ¢ to minimize the overall time complexity
(Section . Finally we describe how to obtain the trade-off between the space and time
complexities of Figure |1 by choosing k and t slightly differently (Section .

A.1 Reducing vectors collide with constant probability

Lemma 2. Let k = logg/y(t) —logs/s(In1/e). Then the probability that reducing vectors
collide in at least one of the hash tables is at least 1 — €.
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Proof. The probability that a reducing vector w is a candidate vector, given the angle
0 =0(v,w)c (0,5),is

E\ t
P = Eeoc(o,2) [P"(O)] = Eoc(0,1) [1 - (1 - <1 - f) ) ] ) (10)

where the angle © is a random variable with a certain distribution on (0, §). Since the
argument on the right hand side is strictly decreasing in @, we can obtain a lower bound
by substituting © = %. Using the bound 1 — 2 < e™* which holds for all x, we obtain:

In(1/e)\"
pr=>1- <1 - n(t/€)> >1—exp(—In(l/e)) =1—c¢. (11)
This completes the proof. O

A.2 Non-reducing vectors collide with low probability

The proof that non-reducing vectors do not often lead to hash collisions is somewhat more
involved. We need to average the probability of a collision over all possible angles between
v and w, given that v and w cannot reduce one another, where we thus have to take the
density of angles @ into account. Since it is not so easy to compute the exact distribution
of angles that may occur between list vectors throughout the algorithm, we will use the
following natural heuristic instead.

Heuristic 1 The angle O(v,w) between two non-reducing vectors v and w follows the
same distribution as the distribution of angles ©(v,w) obtained by firing v and drawing
w uniformly at random from (2, where

Q={weR": |w|]=1andf(v,w) € (5,5)}. (12)

To obtain a tight bound on the average probability of a “useless hash collision” we will
further use the following lemma about the surface area of hyperspheres. This formula can
be found in various literature, e.g. in [9, p. 10, Eq. (19)].

Lemma 3. The hypersurface area of the n-dimensional hypersphere of radius R, defined
as Sp(R) = {v € R": ||v|| = R}, is equal to

27‘('”/2

R (13)

The previous heuristic and lemma allow us to derive the density of angles f(6) between
non-reducing vectors explicitly as follows.

Lemma 4. Assuming Heum'stic the probability density function f(0) of angles between
non-reducing vectors satisfies

2 .
F(0) = \/ == (sin6)" 2 [L 4+ o(1)] = 2imalindmboln), (14)

Proof. Suppose without loss of generality that v = (1,0,...,0) is fixed. To derive the
density at a given angle 6, we basically need to know the fraction of points in {2 that have
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this angle with v. Note that if the angle is fixed at 6, then the first coordinate of w is
cos f and so the remaining coordinates of w must satisfy

w%+.--+wi:1—COS29:Sin20- (15)

This equation defines an (n — 1)-dimensional hypersphere with radius sin §, whose volume
follows from Lemma [3] Dividing by the total volume of (2, the density function f thus
satisfies

w/2

f(@):%An_l(sinH), M= [ Ao (16)

For the normalizing constant M, note that integrating the given expression from 0 to

5 would give us exactly half the hypersurface area of the n-dimensional hypersphere of

radius 1, and the contribution of angles less than % is negligible for large n. Writing out

the expressions for A,,_1(sinf) and M ~ A, (1), we therefore obtain

_ Ana(sing) 2 I'(5)
1O = A o)iA,) ~ ve Ty SO el )
Noting that I'(n + 1) ~ /n - I'(n) for large n, the result follows. O

We are now ready to prove the main result, showing that bad collisions occur with
exponentially small probability. We first prove a general result relating the probability of
a bad collision to the parameter ¢, and then show how to choose ¢ to balance the time and
space complexities.

Lemma 5. Let 1 = %logQ(g) ~ 0.2075, let vo = logQ(%) ~ 0.5850, and suppose N =
200" and t = 2" with ¢n, > 1. For 0 € [0, 7], let U(0) < 0 be defined as

U(6) = logy(sin®) + “ log, (1 - 0) . (18)
72 T

Then, for large n the probability of bad collisions is bounded by
ps = P(bad vectors collide) < O(N™%), (19)

where a € (0,1) is defined as

a= 1 [—ct — max U(#)| + o(1). (20)

Cp, 0e(3,5)

Proof. First, if we know the angle 6 € (%,
probability of a collision is p*(6) =1 — (
angles 6 on {2, we have

) between two non-reducing vectors, then the
(1 — £)%)t. Letting f(#) denote the density of

i
2

w/2
ps = Bees.5) (@) = | | Jow 0w (21)

Substituting p*(0) =1 — (1 — (1 — %)k)t and the expression of Lemma || for f(0), we get

vy = ﬁ /ﬂ Zz(sin 0)"2[1 + o(1)] [1 - (1 - <1 - i)kﬂ do. (22)
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Next, note that for 6 > % we have t < (1-2)=*andso (1— (1- Q)k)t ~1-t(1- g)k In

™ ™
that case, we can simplify the expression between square brackets to ¢ - (1 — g) . However,

the integration range includes % as well, so to be careful we will split the integral in two

disjoint parts, where we let § = O(n~1/2):

w/3+5 w/2
Py = / F(0)p* (0)d0 + / F(0)p* (0)do. (23)

/3 /346

Il 12

Bounding I. Using f(0) < f(§ +6) and p*(0) < p*(5), we obtain

I < poly(n) - (1 — ¢) sin™ 2 (g + u) . (24)

From a Taylor expansion around 6 = Z of sin 6 we derive that sin(% +u) ~ £v/3[1 + O(4)],
which leads to

I < 27mnton) (1 4 O(6))" = 27 mntoln), (25)

Bounding Is. For I, this choice of § is sufficient to make the approximation (1— (1 — Q) k)t ~

1—t¢ (1 — %)k work. Thus, for Iy we obtain the simplified expression

w/2 0 k
I, < poly(n) -t/ (sin §)" 2 (1 — ) do (26)
w/3+u Q
/2
</ 2nlogQ(sin6)+klogQ(I—%)—&-ctn—&-o(n)de‘ (27)
w/3

Note that the integrand is exponential in n (assuming k is at most linear n) and the
exponent is a continuous, differentiable function of . So the asymptotic behavior of the
integral is the same as the asymptotic behavior of its maximum value:

logy, Io < ¢ + en(lax : {nlogQ(sin 0) + klog, <1 - 9) } + o(n). (28)
(5,5 T

32

Bounding p5 = I + I;. Combining the results from and , we have

l *k
062P3 <max< —71, ¢+ max U(f) p +o(1). (29)
n TER:

In the end, we would like to prove that p5; < N™%, or equivalently %logQ p5 < —acy. To
complete the proof, it therefore suffices to prove the following two inequalities:

—y1 < —ac, +o(1). (30)
¢t + max U(0) < —ac, + o(1). (31)
(3.3

The first inequality is automatically satisfied if @ < 1 and N = 27"+ For the second
inequality, we isolate « to obtain

o<t [ct ~ max U(8)] + (1), (32)

Cn 0e(%,%

Since we want a to be as large as possible, we set « equal to its lower bound, leading to
the result. O
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A.3 Balancing the parameters

To return to actual consequences for the complexity of the scheme, recall that the overall
time and space complexities are heuristically given by:

— Time (hashing): O(t - N)) = 2(entet)nto(n),

— Time (searching): O(N? - py) = 9(ent(1-a)en)nto(n)
— Time (overall): 2(cntmax{cs,(1—a)enhhnto(n)

— Space: O(t- N) = 9(entet)nto(n)

Writing the overall time complexity as 2¢imento(®) and the asymptotic space complexity
as 2¢tmento(n) this means

Ctime = Cn + maX{Cta (1 - Od)Cn}, (33)
Cspace = Cn 1 Ct. (34)

Also recall that from bounds on the kissing constant in high dimensions, we expect that
N = 2020751 op ¢ = ~1. To balance the asymptotic time complexities for hashing and
searching, so that the time and space complexities are the same and the time complexity
is minimized, we solve (1 — a)y; = ¢; numerically for c,E] to obtain the following corollary.

Corollary 1. Taking c¢; =~ 0.129043 leads to:

0" ~ 0.458921, a ~ 0.378163, (35)
Ctime = 0.336562, Copace ~ 0.336562. (36)

In other words, using t ~ 20-129043% pash tables and a hash length of k ~ 0.220600n, the
heuristic time and space complezities of the algorithm are balanced at 20-336562n-+o(n)

A.4 Trade-offs between space and time

Finally, note that ¢; = 0 leads to the original GaussSieve algorithm, while ¢; =~ 0.129043
minimizes the heuristic time complexity at the cost of more space. One can also obtain a
continuous time-memory trade-off between the GaussSieve and the HashSieve algorithm
by considering values ¢; € (0,0.129043). Numerically evaluating the resulting time and
space complexities for this range of values of ¢; leads to the graph shown in Figure

B Locality-sensitive hashing applied to Nguyen and Vidick’s sieve

Although in the main text we focused applying locality-sensitive hashing to the GaussSieve
algorithm of Micciancio and Voulgaris, the same ideas can be applied to other sieve al-
gorithms such as the one of Nguyen and Vidick [35, Algorithms 4 and 5]. Since for the
GaussSieve there are no heuristic bounds on the time complexity, and since such bounds do
exist for the sieve algorithm of Nguyen and Vidick, we highlight how the same techniques
can be applied to their algorithm to obtain similar speedups with “provable heuristic
bounds.”

First, we recall that the sieve algorithm of Nguyen and Vidick [35] starts with a long
list Lg of reasonably long, randomly sampled lattice vectors v, and then repeatedly applies
a sieve to it to split each list L, into a list Cj, 1 of centers and a new list L, 1 of vectors
whose norms are at least a geometric factor v < 1 smaller than the maximum norm of the
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Algorithm 3 Nguyen and Vidick’s lattice sieve

1: Compute the maximum norm R = maxyer,, |||

2: Initialize an empty list Ly,+1 and an empty list of centers Chpy1
3: for each v € L., do

4 if ||v|| < ¥R then

5 Add v to the list Ly+1

6: Continue the loop

7 for each w € C,,,+1 do

8 Reduce v with w

9: if v has changed then
10: Add v to the list L,,+1
11: Continue the outermost loop

12: Add v to the centers Cr,+1

vectors in L,,. After repeatedly applying this sieve, we eventually hope to be left with a
short list of very short vectors, which contains the shortest vector.

At the core of Nguyen and Vidick’s algorithm lies the sieve that maps L,, onto two sets
Lpy11 and Cyy 1. This algorithm is described in a somewhat simplified form in Algorithm
The reduction step in Line [§is implemented as:

Reduce uy with ug @ if ||ug £ ug|| < yR then ug + u; + uo. (37)

To obtain the heuristic estimate 20-4157+0(n) for the time complexity (and 20-208n+0(n)
for the space complexity), Nguyen and Vidick let v approach 1 in their analysis. This
means that all vectors with a length significantly shorter than R are automatically added
to Li+1, and the bottleneck on the time complexity comes from those vectors v with
YR < ||v]| < R, i.e., the vectors v in a thin spherical shell of thickness (1 — ) R. For those
vectors v we have YR =~ ||v|| = R, and so the reduction method described in is almost
equivalent to the reduction step of the GaussSieve in @ Note that in the limiting case
of ¥ — 1, the sieve of Nguyen and Vidick searches exactlyﬁ for vectors w € Cy, 1 whose
angle with v is less than 60°, and we can apply the same techniques to this algorithm
to obtain Algorithm [4, achieving the asymptotic speed-ups described in Theorem [I] and

Figure [I}

3 Note that « is implicitly a function of ¢; as well.
* For the extreme case of 4 = 1, one would have ||v|| = ||w|| = R = vR and thus the condition ||v — w| <
YR is exactly equivalent to (v, w) < 60°.
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Algorithm 4 Nguyen and Vidick’s lattice sieve with hashing

1: Compute the maximum norm R = maxvecr,, [|v||

2: Initialize an empty list L,,+1 and an empty list of centers Cj,+1
3: Initialize & empty hash tables T}

4: Sample k -t random hash vectors a;,;

5: for each v € L., do

6
7
8.

9:

10:
11:
12:
13:
14:
15:
16:

if ||v|| < vR then
Add v to the list Ly+1
Continue the loop
t
Obtain the set of candidates C' = |J T;i[hi(£v)]
i=1

=

for each w € C do
Reduce v with w
if v has changed then
Add v to the list L,,41
Continue the outermost loop
Add v to the centers Crq1
Add v to all k£ hash tables T}
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