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Abstract. In this paper, we investigate the Mixed-integer Linear Programming (MILP) modelling of
the differential and linear behavior of a wide range of block ciphers. We point out that the differential
behavior of an arbitrary S-box can be exactly described by a small system of linear inequalities.

Based on this observation and MILP technique, we propose an automatic method for finding high
probability (related-key) differential or linear characteristics of block ciphers. Compared with Sun et
al.’s heuristic method presented in Asiacrypt 2014, the new method is exact for most ciphers in the
sense that every feasible 0-1 solution of the MILP model generated by the new method corresponds
to a valid characteristic, and therefore there is no need to repeatedly add valid cutting-off inequalities
into the MILP model as is done in Sun et al.’s method; the new method is more powerful which allows
us to get the exact lower bounds of the number of differentially or linearly active S-boxes; and the new
method is more efficient which allows to obtain characteristic with higher probability or covering more
rounds of a cipher (sometimes with less computational effort).

Further, by encoding the probability information of the differentials of an S-boxes into its differential
patterns, we present a novel MILP modelling technique which can be used to search for the character-
istics with the maximal probability, rather than the characteristics with the smallest number of active
S-boxes. With this technique, we are able to get tighter security bounds and find better characteristics.

Moreover, by employing a type of specially constructed linear inequalities which can remove exactly
one feasible 0-1 solution from the feasible region of an MILP problem, we propose a method for automatic
enumeration of all (related-key) differential or linear characteristics with some predefined properties,
e.g., characteristics with given input or/and output difference/mask, or with a limited number of active
S-boxes. Such a method is very useful in the automatic (related-key) differential analysis, truncated
(related-key) differential analysis, linear hull analysis, and the automatic construction of (related-key)
boomerang/rectangle distinguishers.

The methods presented in this paper are very simple and straightforward, based on which we
implement a Python framework for automatic cryptanalysis, and extensive experiments are performed
using this framework. To demonstrate the usefulness of these methods, we apply them to SIMON,
PRESENT, Serpent, LBlock, DESL, and we obtain some improved cryptanalytic results.

Keywords: Automatic cryptanalysis, Related-key differential cryptanalysis, Linear cryptanalysis, Mixed-
integer Linear Programming, Convex hull, Enumeration

1 Introduction

Differential cryptanalysis [1] and linear cryptanalysis [2] are two of the most powerful attacks on modern
symmetric-key ciphers. Based on differential and linear cryptanalysis, lots of techniques have been developed
for analyzing the security of block ciphers, such as the related-key differential attack [3–5], truncated differ-
ential attack [6], statistical saturation attack [7] (it has been shown in [8] that a statistical saturation attack
is the same as a truncated differential attack), (probabilistic) higher order differential attack [6, 9], impossi-
ble differential attack [10, 11], boomerang attack [12], multiple differential attack [13–16], differential-linear
cryptanalysis [17], multiple linear attack [18–22] and so on so forth. To a large extent, providing a security
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evaluation with respect to the differential and linear attacks has become a basic requirement for a newly
designed block cipher to be accepted by the cryptographic community.

Matsui’s branch and bound search algorithm [23] is one of the most powerful and classic methods for
obtaining a security bound with respect to differential and linear attack. However, in some cases this method
is impractical. Calculating the minimum number of active S-boxes is another way to evaluate the resistance
of a block cipher against the differential and linear attack [24–29]. Searching for differential and linear char-
acteristics is not only performed in basic differential and linear attacks, but also is indispensable in some new
cryptanalytic techniques such as the rebound attack [30] and the sieve-in-the-middle technique [31]. Moreover,
some new technique for cryptanalysis (e.g., the biclique attack [32]) and some symmetric-key cryptographic
schemes which can be designed based on block ciphers (e.g., the authenticated encryption schemes) make
the related-key model more important and highly relevant to the design and cryptanalysis of symmetric-key
primitives. Therefore, methods which can be used to evaluate the security of a block cipher with respect to the
(related-key) differential and linear attacks, and search for (related-key) differential or linear characteristics
are of great importance. In fact, this direction of research has got much attention from many cryptanalysts
[23, 33–38].

Mouha et al. [39] and Wu et al. [40] translated the problem of counting the minimum number of differential-
ly active S-boxes, into an MILP problem which can be solved automatically with open source or commercially
available MILP solvers. This method has been applied in evaluating the security against (related-key) dif-
ferential attacks of many word-oriented symmetric schemes, as well as in searching for linear or differential
characteristics with specific patterns [41, 42]. By introducing bit-level representations, Winnen et al. [43] and
Sun et al. [44] extended Mouha et al.’s framework, and presented methods for counting the minimum number
of differentially active S-boxes of bit-oriented block ciphers both in the single-key and related-key models.
We notice that such MILP based methods are also mentioned or used in the recent analysis and design of
several authenticated encryption schemes [25, 42, 45–50].

In Asiacrypt 2014, two systematic methods for generating linear inequalities describing the differential
properties of an arbitrary S-box were given in [51]. With these inequalities, the authors of [51] were able to
construct an MILP model whose feasible region is a more accurate description of the differential behavior of
a given cipher. Based on such MILP models, the authors of [51] proposed a heuristic algorithm for finding
(related-key) differential characteristics, which is applicable to a wide range of block ciphers. However, some
important problems have not been solved yet in [51]. For example, is it possible to construct an MILP model
whose feasible region of all 0-1 solutions is exactly the set of all possible (related-key) differential or linear
characteristics? Is it possible to find the characteristics with the maximal probability instead of characteristics
with the minimal number of active S-boxes by an MILP technique? Can we extract all characteristics with
some predefined properties (e.g., characteristics with given input or/and output difference/mask, or with a
limited number of active S-boxes)? In this work, we make a first step towards solving these problems.

Our contribution. In this work, we investigate the MILP modelling of the differential and linear behavior
of a wide range of block ciphers. We point out that the convex hull description presented in Sun et al.’s work
[51] is exact for any set P ⊆ {0, 1}n ⊆ Rn (which can be seen as the set of all differential or linear patterns of
an operation) according to a fact which have been known since at least 1972 [52]: for any x ∈ {0, 1}n, x is in
the convex hull of P if and only if x ∈ P . This fact has some important implications. Firstly, we now know
that there is no need to use the inequalities generated by the method based on logical condition modelling
presented in [51] since the inequalities generated by the method based on convex hull computation are already
enough. Secondly, Sun et al.’s heuristic method for finding (related-key) differential (or linear) characteristics
can be transformed into an exact algorithm (for most ciphers) by adding all the linear inequalities in the
H-representation of the convex hull, since by doing this, the feasible region of the MILP problem is exactly
the set of all possible (related-key) differential (or linear) characteristics.1

However, as already pointed in [51], there are so many inequalities in the H-representation of the convex
hull and adding all of them to the MILP problem will make it insolvable in practical time. To overcome this
obstacle, we select only a small number of inequalities from the convex hull such that the feasible region of the

1 Here by heuristic we mean that the solution extracted from the feasible region (all 0-1 solutions) of the underlying
MILP model may be an invalid (related-key) differential or linear characteristic, and by exact we mean that every
0-1 solution of the underlying MILP model is a valid characteristic. While for most ciphers our method is exact,
SIMON is an exceptional case in the sense that the models generated for SIMON by our method contain invalid
characteristics due to the special differential properties of SIMON. However, we can easily filter out these invalid
characteristics by the method presented in [53].
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resulting MILP problem is still the set of all possible (related-key) differential or linear characteristics, and
this is accomplished by a minor modification of Sun et al.’s greedy algorithm [51] for selecting inequalities
from the convex hull. Eventually, we are able to build an exact and practical algorithm for finding (related-key)
differential and linear characteristics.

Further, by encoding the probability information of an 4×4 S-box into its differential patterns, we present
an MILP based method which can be used to find the differential characteristic with the maximal probability
instead of minimal active S-boxes for block ciphers with 4× 4 S-boxes.

Moreover, based on a type of specially constructed inequalities which can remove exactly one 0-1 solution
from the feasible region of an MILP problem, we present a method for enumerating all the (related-key)
differential and linear characteristics with some predefined properties, which is very useful differential- and
linear-type cryptanalysis, such as the analysis of differential and linear hull effect.

Based on the methods presented in this paper, we develop a Python [54] based framework for automatic
(related-key) differential and linear (hull) analysis, automatic truncated (related-key) differential analysis, and
automatic construction of boomerang distinguishers. Using this framework, we obtain the following results:

1. We get the exact lower bounds of the number of differentially active S-boxes for some round-reduced
versions of LBlock, and we prove that the probability of any related-key differential characteristic for the
full LBlock is upper bounded by 2−68, which is the tightest security bound so far for the cipher LBlock.
Moreover, the computational cost used to derive this bound is significantly reduced than that of [51].

2. We automatically prove that there is no single-key differential characteristic for Serpent [55] (one of the
AES finalist) with probability higher than 2−128 in no more than 73 minutes on a PC. Note that obtaining
this bound is a very difficult task at the time of the AES selection process. We also show that this bound
can be further improved by using the MILP technique for finding the characteristic with the maximal
probability presented in Sect. 5.

3. For the 8-round DESL, we find a related-key differential characteristic with probability 2−33.45 on a
PC in no more than 4 minutes. Note that the best previously published related-key characteristic (whose
probability is 2−34.78) for the 8-round DESL was found on a PC using roughly 10 minutes. In addition, we
automatically find a truncated related-key differential with probability 2−34.06 for the 9-round DESL on a
PC using no more than 28 minutes. Moreover, we find a 4-round differential characteristic with probability
2−40 covering 4 rounds (using S-boxes: S5, S6, S7, S0) of Serpent. While the best characteristic covering
this 4 rounds of Serpent published previously is given in [56], whose probability is 2−47.

4. We find a 16-round standard (non truncated) related-key differential with probability 2−55.64, which is
even better than the best truncated related-key differential published previously for the 16-round LBlock
whose probability is about 2−59 [57]. To the best of our knowledge, this is the best (related-key) differential
for LBlock published so far, and this is the first concrete result demonstrating the related-key differential
effect.

5. We present a single-key differential covering 16 rounds of SIMON48 whose probability is at least 2−44.65,
and a single-key differential covering 22 rounds of SIMON64 whose probability is at least 2−62.21. To the
best of our knowledge, there are no published single-key differentials covering more than 15 rounds of
SIMON48 and 21 rounds of SIMON64. These differentials can be used to produce the best known attacks
on SIMON48 and SIMON64 with the technique presented in [58].

6. We present a linear characteristic for the 55-round SIMON128 which covering more rounds and with
higher bias than the 52-round linear characteristic given in [59]. We also present a 16-round linear hull
with potential 2−44.92 for SIMON48 leading to an attack on 23-round SIMON48. To the best of our
knowledge, this is so far the best attack on SIMON48.

7. We improve the currently best known related-key boomerang distinguishers for the 14-round PRESENT-
128 and the 16-round LBlock.

We would like to emphasis that the specific result is not the focus of this paper, and we believe that there
always exists a dedicated method for a specific cipher which can produce better results than ours. Instead, the
focus is the methodology, which is simple, straight-forward and automatic. Moreover, the results presented
in this paper probably can be further improved by taking more computational effort. We have set up a web
site at http://siweisun.github.io/ where we present some MILP models such that anyone can solve them
and try to produce better results. Besides, this method has some limitations which will be discussed in Sect.
7, and if we have any progress on dealing with the limitations, we will present the new findings to the web
site as soon as possible. This site also contains some other applications of the method. For example, based on
Zhao et. al.’s work [60], in [61] our tool produces the currently best single-key differential attack on the block
cipher PRIDE [62], and more new results concerning the linear analysis of SIMON are presented in [63].



4

Organization. We start with a brief introduction of Sun et al.’s method [44, 51] for automatic differential
cryptanalysis of bit-oriented block ciphers in Sect. 2. Then, in Sect. 3, we investigate the problem of de-
scribing an arbitrary subset of {0, 1}n ⊆ Rn with linear inequalities, and present some theorems which are
of fundamental importance for the remaining work of this paper. In Sect. 4, a method for constructing an
MILP model whose feasible region is exactly the set of all (related-key) differential or linear characteristics is
proposed with its application in obtaining exact lower bound of the number of active S-boxes, and searching
for (related-key) differential or linear characteristics. We show how to search for the best characteristic of
ciphers with 4 × 4 S-boxes in Sect. 5. Based on the work of Sect. 4 and a type of specially constructed in-
equality, we present a method for automatic enumeration of (related-key) differential or linear characteristics
with some predefined properties in Sect. 6, which is applicable in the automatic (related-key) differential and
linear (hull) analysis, automatic truncated (related-key) differential analysis, and the automatic construction
of boomerang/rectangle distinguishers. In Sect.7, we discuss the limitations of our methods. Sect. 8 is the
conclusion.

2 Automatic (Related-key) Differential and Linear Analysis of Bit-oriented
Block Ciphers

In this section, we give a brief introduction of Sun et al.’s method which can be used to search for (related-key)
differential characteristics and obtain security bounds of a cipher with respect to the (related-key) differential
attack automatically. We refer the reader to [44, 51] for more information. In addition, the same method can
be used in automatic linear analysis, and we present it in Appendix A.

Sun et al.’s method [51] is an extension of Mouha et al.’s technique [39] which describes the differential
behavior of a cipher by an MILP problem, and it is applicable to block ciphers involving bitwise XOR,
bitwise permutation L which permutes the bit positions of a n dimensional vector in Fn2 , and S-box operation
S : Fω2 → Fν2 .

Theoretically, Sun et al.’s method is also applicable to ciphers containing general linear transformation
T : Fn2 → Fm2 , since T can be converted into some XOR summations of different bits. However, such operation
will introduce a large number of variables and constraints into the MILP problem and make it very difficult
to be solved in practical time.

For every input and output bit-level differences, introduce a new 0-1 variable xi to denote whether this
bit has a nonzero difference or not:

xi =

{
1, for nonzero difference at this bit,
0, otherwise.

Also, for every S-box in the schematic diagram of the cipher under consideration, including the encryption
process and the key schedule algorithm, introduce a new 0-1 variable Aj such that

Aj =

{
1, if the input word of the Sbox is nonzero,
0, otherwise.

Here we say that Aj indicates the activity of an S-box, or an S-box is marked by Aj .
Now, we are ready to describe Sun et al.’s method by clarifying the objective function and constraints in

the MILP model. Note that we assume that all variables involved are 0-1 variables.

Objective Function. The objective function is to minimize the sum of all variables indicating the activities
of the S-boxes appearing in the schematic description of the encryption and key schedule algorithm of a
cipher:

∑
j Aj .

Constraints. Firstly, for every XOR operation with bit-level input differences a, b and bit-level output
difference c, include the following constraintsd⊕ ≥ a, d⊕ ≥ b, d⊕ ≥ c

a+ b+ c ≥ 2d⊕
a+ b+ c ≤ 2

(1)

where d⊕ is a dummy variable.
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Assuming (xi0 , · · · , xiω−1) and (yi0 , · · · , yiν−1) are the input and output differences of an ω × ν S-box
marked by At, we have 

At − xik ≥ 0, k ∈ {0, . . . , ω − 1}

−At +
ω−1∑
j=0

xij ≥ 0
(2)

which ensures that nonzero input difference must activate the S-box. Moreover, the Hamming weight of the
(ω+ν)-bit word xi0 · · ·xiω−1

yj0 · · · yjν−1
must be greater than or equal to the branch number BS of the S-box

for nonzero input difference xi0 · · ·xiω−1
:
ω−1∑
k=0

xik +
ν−1∑
k=0

yjk ≥ BSdS
dS ≥ xik , 0 ≤ k ≤ ω − 1
dS ≥ yjk , 0 ≤ k ≤ ν − 1

(3)

where dS is a dummy variable, and the branch number BS of an S-box S, is defined as mina 6=b{wt((a ⊕
b)||(S(a)⊕ S(b)) : a, b ∈ Fω2 } and wt(·) is the standard Hamming weight of a (ω + ν)-bit word.

For an bijective S-box we have 
ω
ν−1∑
k=0

yjk −
ω−1∑
k=0

xik ≥ 0

ν
ω−1∑
k=0

xik −
ν−1∑
k=0

yjk ≥ 0

(4)

since nonzero input difference must result in nonzero output difference and vice versa. Note that for an S-box
with branch number BS = 2, the constraints presented in (3) are redundant [51].

To describe the differential properties of an S-box more accurately, Sun et al. proposed two systematic
ways for generating valid cutting-off inequalities [51] which are used to remove some impossible differential
patterns of the S-box from the feasible region of the MILP problem:

Logical Condition Modelling. Borrowing the idea from general MILP modelling technique for logical
conditions, Sun et al. showed that some conditional differential properties of an S-box can be described by
linear inequalities. For example, the least significant bit of the output difference of the PRESENT S-box is
always 0 if the input difference is 1001. This conditional differential property is equivalent to the following
constraint

−x0 + x1 + x2 − x3 − y3 + 2 ≥ 0

where xi, yi ∈ {0, 1} ⊆ R, and (x0, · · · , x3) and (y0, · · · , y3) are the input and output difference respectively.
This fact can be easily verified by enumerating all possible 0-1 assignments of the variables xi and yi.

Convex Hull Computation. A convex hull of a finite set P of points is the smallest convex set that
contains P . Sun et al. treat every possible input-output differential pattern (x0, · · · , xω−1)→ (y0, · · · , yν−1)
of an ω × ν S-box as an (ω + ν)-dimensional vector (x0, · · · , xω−1, y0, · · · , yν−1) ∈ {0, 1}ω+ν ⊆ Rω+ν . By
computing the H-Representation of the convex hull of all possible input-output differential patterns of an
S-box, many linear inequalities which can be used to remove some impossible differential patterns of the
S-box are obtained. Moreover, a greedy algorithm is developed for selecting a small number of inequalities
from the H-representation of the convex hull.

Finally, we note that Sun et al.’s method [51] is also applicable in automatic linear cryptanalysis, and the
MILP modelling process is given in Appendix A.

3 Describing Subsets of {0, 1}n ⊆ Rn with Linear Inequalities

In this section, we start by thoroughly investigating the problem of describing an arbitrary set P ⊆ {0, 1}n ⊆
Rn with linear inequalities, which eventually leads us to the construction of MILP models whose feasible
regions are exactly the sets of all (related-key) differential (or linear) characteristics for a wide range of
ciphers.

Firstly, we introduce some notations for the convenience of discussion. Let L = {l0, . . . , lm−1} be a system

of linear inequalities of the form li :
∑n−1
j=0 λijxj + βi ≥ 0, 0 ≤ i ≤ m− 1. Then, we use Sol(L) to denote the

set of all solutions of L in Rn. In addition, Sol(L)∩A is represented by SolA(L), where A is a subset of Rn.
Under these notations, SolBn(L) = Sol(L) ∩ Bn is the set of all 0-1 solutions of L, where B = {0, 1} ⊆ R.
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Moreover, we use CutBn(li) = CutBn(
∑n−1
j=0 λijxj + βi ≥ 0) to denote the set of all 0-1 vectors in Rn

which are not satisfied by li. That is, CutBn(li) = Bn − SolBn({li}). Also, we use CutBn(L) to represent the
set ∪li∈LCutBn(li). According to this notation, we have CutBn(L) = Bn − SolBn(L).

Definition 1. A set C ⊆ Rn is said to be convex if, for all x, y ∈ C and all t ∈ [0, 1], the point (1− t)x+ ty
also belongs to C.

Definition 2. The smallest convex set that contains P ⊆ Rn is said to be the convex hull of P , and is
denoted by conv(P ).

Lemma 1. The set of all solutions of the following system of (in)equalities
λ0,0x0 + · · ·+ λ0,n−1xn−1 + λ0,n ≥ 0

· · ·
γ0,0x0 + · · ·+ γ0,n−1xn−1 + γ0,n = 0

· · ·

(5)

is convex, where λi,j and γi,j are fixed real numbers. For any subset X ⊆ Rn with finitely many discrete points,
there exists a system Hconv(X) of linear inequalities of the form of (5), such that Sol(Hconv(X)) = conv(X),
and we call Hconv(X) the H-representation of conv(X).

The above definitions and lemma are well known in computational geometry, and for a given set P ⊆ Rn
of finitely many points, there are algorithms which can compute the H-representation of conv(P ) [64–67].

Lemma 2. For a given 0-1 vector δ = (δ0, δ1, · · · , δn−1) ∈ {0, 1}n ⊆ Rn, CutBn(
∑n−1
i=0 [δi + (−1)δixi] ≥ 1) =

{(δ0, δ1, · · · , δn−1)}.

Proof. Without loss of generality, we assume

δ = (δ0, · · · , δn−1) = (δ0, · · · , δs−1; δs, · · · , δn−1) = (1, · · · , 1; 0, 0, · · · , 0).

For other 0-1 pattern, it can be permuted into such a form and this will not affect our proof.
Firstly, substituting xi by δi, we have

n−1∑
i=0

[δi + (−1)δixi] =

s1−1∑
i=0

δi +

s1−1∑
i=0

(−1)δiδi = 0 < 1.

That is, δ is not satisfied by
∑n−1
i=0 [δi + (−1)δixi] ≥ 1.

Secondly, for δ
′

= (δ
′

0, . . . , δ
′

n−1) 6= δ, substituting xi by δ
′

i, we have

n−1∑
i=0

[δi + (−1)δixi] =

s1−1∑
i=0

δi +

n−1∑
i=0

(−1)δiδ
′

i ≥ s1 − s1 + 1 = 1.

That is, all vectors other than δ are satisfied by
∑n−1
i=0 [δi + (−1)δixi] ≥ 1.

The proof is completed.

Below, we use l(δ0,δ1,··· ,δn−1) or l(δ) to denote the linear inequality
∑n−1
i=0 [δi + (−1)δixi] ≥ 1. Therefore,

we have CutBn(l(δ)) = CutBn(l(δ0,··· ,δn−1)) = {δ} = {(δ0, · · · , δn−1)}.
That is, l(δ) can be used to remove exactly one 0-1 vector. This kind of inequalities plays a significant

role in our algorithm for enumerating (related-key) differential (or linear) characteristics, and is useful for
proving the following theorem. Recently, some researchers inform us that the following theorem has already
been proved by Egon Balas et al. [52] in 1972 (Although they are different in appearance, they are the same
in essential). Hence, this theorem should be attributed to Egon Balas et al. Still, we would like to provide our
proof for the sake of completeness.

Theorem 1. Assume x ∈ {0, 1}n and let conv(X) be the convex hull of X ⊆ {0, 1}n ⊆ Rn. Then x ∈ conv(X)
if and only if x ∈ X.
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Proof. Since conv(X) is the convex hull of X which is the smallest convex set containing X, we have
x ∈ conv(X) for every x ∈ X.

Then, we prove that y ∈ X for every 0-1 vector y ∈ conv(X) by contradiction. If this is not the case,
then there exists a 0-1 vector y∗ ∈ conv(X), such that y∗ /∈ X. Consider the set of linear inequalities
L = Hconv(X) ∪ {l(y

∗)}, where Hconv(X) is the H-representation of conv(X).

On the one hand, We have CutBn(L) = CutBn(Hconv(X)) ∪ {y∗} according to the definition of l(y
∗) and

Lemma 2. Hence, SolBn(L) = Bn − CutBn(L) = Bn − CutBn(Hconv(X)) − {y∗} = SolBn(Hconv(X)) − {y∗} =
conv(X) ∩ Bn − {y∗}, from which we can deduce that SolBn(L) $ conv(X) ∩ Bn.

On the other hand, conv(X) ⊆ Sol(L) since Sol(L) is a convex set containing X and conv(X) is the
smallest convex set containing X. Consequently, conv(X) ∩ Bn ⊆ SolBn(L), which is a contradiction. The
proof is completed.

4 MILP Models with Feasible Regions Equal to the Sets of All (Related-key)
Differential (or Linear) Characteristics and Its Applications

4.1 Model Construction

The key idea behind Sun et al.’s work [44] on automatic differential cryptanalysis for bit-oriented block
ciphers is to construct an MILP model whose feasible region contains the set of all differential characteristics
of the cipher under consideration. Such a model is constructed in [44] by introducing 0-1 variables for every
bit-level input and output differences of every operation involved in the cipher, and modelling the constraints
on differential propagation imposed by every operation as a system of linear inequalities. For block ciphers
involving XOR, bit permutation, and S-boxes, the modelling technique presented in [44] leads to MILP models
whose feasible region are much larger than the sets of all valid (related-key) differential characteristics of the
cipher under consideration, since the linear inequalities used in these MILP models are far from being perfect
to rule out all invalid (related-key) differential characteristics of a cipher.

Subsequently, Sun et al. [51] introduce the concept of valid cutting-off inequalities which can be used to
remove some impossible differential patterns from the feasible region, and they design a heuristic algorithm
for finding (related-key) differential characteristics. This algorithm tries to extract a differential characteristic
with a small number of active S-boxes from the feasible region of the MILP model which may contain invalid
characteristics, and the extracted solution is not guaranteed to be a valid characteristic. Therefore, the
algorithm needs to repeatedly add valid cutting-off inequalities to the MILP model to make the feasible
region more restrictive until the extracted solution pass the check that it is indeed a valid characteristic.

In the following, we show that we can construct MILP models whose feasible region are exactly the sets
of all valid (related-key) differential characteristics for a wide range of block ciphers by using the convex hull
computation approach.

For linear analysis, by using a similar method, we can construct MILP models whose feasible regions are
exactly the set of all linear characteristics, and the method is presented in Appendix A.

Definition 3. Let L be a set of linear inequalities and X ⊆ {0, 1}n ⊆ Rn. We say L is a linear-inequality
description of X if X ⊆ SolBn(L), and we say the description is exact for X if SolBn(L) = X.

In order to construct an MILP model whose feasible region is exactly the set of all (related-key) differential
characteristics of a given cipher, we must use constraints that are exact linear-inequality descriptions of the
differential behavior for all operations involved in the cipher.

For block ciphers involving bit permutations, XOR operations, and S-boxes, the S-box operations are the
most difficult parts since we already have exact descriptions for bit permutations and XOR operations (see
Sect. 2). Next, we show how to deal with the S-box parts.

Definition 4. Let S be an arbitrary ω× ν S-box such that (b0, . . . , bν−1) = S(a0, . . . , aω−1). The differential
set DS of S is defined to be the set of all differential patterns of S. That is, DS = {(x0, . . . , xω−1, y0, . . . , yν−1) ∈
Bω+ν : PrS [(x0, . . . , xω−1) → (y0, . . . , yν−1)] > 0}, where PrS [(x0, . . . , xω−1) → (y0, . . . , yν−1)] is the proba-
bility associated with the differential (x0, . . . , xω−1)→ (y0, . . . , yν−1) across the S-box operation.

Note that DS can be built directly from the differential distribution table of S.
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Fact 1. Let S be an arbitrary ω × ν S-box, and DS ⊆ {0, 1}ω+ν be the set of all differential patterns with
probability greater than 0. Then Hconv(DS) is an exact linear-inequality description of DS, where Hconv(DS)
is the H-representation of conv(DS).

Proof. Assuming x ∈ {0, 1}n, then x ∈ conv(DS) if and only if x ∈ DS according to Theorem 1. Therefore,
conv(DS) ∩ Bn = SolBn(Hconv(DS)) = DS . Hence, Hconv(DS) is an exact description of DS . The proof is
completed.

According to Fact 1, we can build an MILP model whose feasible region is exactly the set of all (related-
key) differential characteristics for a given cipher by following the modelling process introduced in Sect. 2
and adding all the linear inequalities in the H-representations of the convex hulls of all S-boxes involved into
the MILP model.

However, as already pointed out in [51], there are too many inequalities in the H-representation, and
MILP models with a large number of constraints are very difficult to solve. Therefore, we need to construct
MILP models with less constraints while the sets of all 0-1 solutions of these models are still the sets of all
valid (related-key) differential or linear characteristics.

Definition 5. Let L be a system of linear inequalities of the following form
λ0,0x0 + · · ·+ λ0,n−1xn−1 + λ0,n ≥ 0

· · ·
γ0,0x0 + · · ·+ γ0,n−1xn−1 + γ0,n = 0

· · ·

Then, a set L∗ ⊆ L is said to be cutting-off equivalent to L if CutBn(L∗) = CutBn(L).

In order to reduce the number of inequalities in the MILP model, we give the following algorithm which
can be used to select a subset of Hconv(DS) with less inequalities that is cutting-off equivalent to Hconv(DS).

Algorithm 1: Select a system of inequalities from Hconv(DS)

Input: Hconv(DS): the set of all inequalities in the H-representation of the convex hull of an S-box S;
Output: OS : A set of inequalities selected from Hconv(DS) which is cutting-off equivalent to Hconv(DS).

1 l∗ := None;
2 X := the set of all impossible differential patterns of an S-box;
3 X ∗ := X ;
4 H∗ := Hconv(DS);
5 OS := ∅;
6 while True do
7 l∗ := The inequality in H∗ which maximizes the number of removed impossible differential

patterns from X ∗ ;
8 X ∗ := X ∗ − CutBn({l∗});
9 H∗ := H∗ − {l∗};

10 OS := OS ∪ {l∗};
11 if X ∗ = ∅ then
12 return OS and Terminate
13 end

14 end

Algorithm 1 builds up a set OS of valid cutting-off inequalities by selecting at each step an inequality
from Hconv(DS) until there is no inequality in Hconv(DS) − OS which can remove an impossible differential
pattern of S which satisfies all inequalities already in OS .

Therefore, we have CutBn(OS) = CutBn(Hconv(DS)). That is, OS is cutting-off equivalent to Hconv(DS).
Consequently, we can include OS , instead of Hconv(DS), as the constraints imposed by the differential prop-
erties of S, and the resulting MILP model will be easier to solve if the number of inequalities in OS is much
smaller than that of Hconv(DS).

Definition 6. We call the set OS of inequalities produced by algorithm 1 for an S-box S a critical set of
Hconv(DS).

We have computed the critical sets for some typical 4× 4 S-boxes, and the results show that the number
of inequalities in OS is indeed much smaller than that of Hconv(DS) (see Table 1).
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Table 1: Numbers of inequalities in OS and Hconv(DS) for typical 4× 4 S-boxes.
S-box #OS #Hconv(DS) S-box #OS #Hconv(DS)

Klein [68] 22 311 LBlock S6 27 205

Piccolo [69] 23 202 LBlock S7 27 205

TWINE [70] 23 324 LBlock S8 28 205

PRINCE [27, 28] 26 300 LBlock S9 27 205

MIBS [71] 27 378 Serpent S0 [55] 23 327

PRESENT/LED [24, 72] 22 327 Serpent S1 24 327

LBlock S0 [73] 28 205 Serpent S2 25 325

LBlock S1 27 205 Serpent S3 31 368

LBlock S2 27 205 Serpent S4 26 321

LBlock S3 27 205 Serpent S5 25 321

LBlock S4 28 205 Serpent S6 22 327

LBlock S5 27 205 Serpent S7 30 368

4.2 Applications in Obtaining Security Bound and Searching for High Probability
Characteristics

According to the above analysis, we are now able to construct MILP models whose feasible regions are exactly
the sets of all (related-key) differential or linear characteristics, which leads to the following applications.

Obtaining Exact Lower Bounds of the Numbers of Active S-boxes. By setting the objective function
to be

∑
j Aj , where Aj ’s are the variables marking the activities of the involved S-boxes, we can obtain an

MILP model whose optimized solution corresponds to a (related-key) differential characteristic which has the
minimum number of active S-boxes, and the objective value of this solution is the exact lower bound of the
number of active S-boxes.

We apply the method to LBlock, and the results are listed in Table 2. From Table 2, we can see that there
are at least 10 differentially active S-boxes for consecutive 10 rounds of LBlock, and 12 active S-boxes for
consecutive 11 rounds of LBlock in the related-key model. Therefore, the probability of the best related-key
characteristic for the 32-round LBlock is at most (2−2)12+12+10 = 2−68. While the previously published best
result concerning the security bound of LBlock in the related-key model is given in [51] stating that the
probability of the best related-key characteristic for the 32-round LBlock is at most 2−60. Moreover, the
bound presented in this paper is obtained on a PC in no more than 6 days, while the bound presented in [51]
was obtained on a PC using more than 49 days. The main reason of the reduction of the computational effort
is that we can get better bounds without considering characteristics covering more rounds, and we refer the
reader to [51] for more information.

Table 2: The exact lower bounds of the number of differentially active S-boxes for round-reduced variants of
LBlock in the related-key model

Rounds
The number of active S-boxes Time (in seconds)
This paper [51] This paper [51]

5 1 1 3 2

6 2 2 35 12

7 4 3 70 38

8 6 5 271 128

9 8 6 11656 386

10 10 8 105475 19932

11 12 10 376235 43793

We also apply the method to Serpent (one of the AES finalists), and we automatically prove that the
probability of the best single-key differential characteristic for the 27-round Serpent is upper bounded by
2−132. The detail of the result is given in Appendix B.
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An Exact Method for Finding (Related-key) Differential and Linear Characteristics. For a given
cipher, build an MILP problem whose feasible region is exactly the set of all related-key differential or linear
characteristics of the cipher. Then solve it using any MILP optimizer, e.g., Gurobi [74] or SCIP [75]. When the
value of the objective function decreases to N , terminate the solving process and extract the current solution
whose objective value is N . This solution corresponds to a (related-key) differential or linear characteristic
with N active S-boxes.

Using this method, we find an 8-round related-key differential characteristic for DESL with probability
2−33.45 (see Table 3 and Table 4). This result is obtained on a PC in no more than 4 minutes. Compared with
the method presented in [51], which outputs an 8-round related-key characteristic with probability 2−34.78

on a PC using roughly 10 minutes, the new method presented in this paper produces a better characteristic
with less computational effort.

Table 3: An 8-round related-key differential characteristic for DESL (characteristic in the encryption process)
Rounds Left Right

0 00010000000000000000000000000010 00000000000000000000010000000000
1 00000000000000000000010000000000 00000000000000000000000000000010
2 00000000000000000000000000000010 00000000000000000000110000000000
3 00000000000000000000110000000000 00000000000000000000000000001010
4 00000000000000000000000000001010 00000000000000000000010000000000
5 00000000000000000000010000000000 00000000000000000000000000001010
6 00000000000000000000000000001010 00000000000000000000110000000000
7 00000000000000000000110000000000 00000000000000000000000000000010
8 00000000000000000000000000000010 00000000001000100010010000101000

Table 4: An 8-round related-key differential characteristic for DESL (characteristic in the key schedule algo-
rithm)

Rounds Differences in the Key Register

1 000000000000000000000000000000100000000000000000
2 000000000000000000000000000000000000000000000010
3 000000000000000000000000000001000000000000000000
4 000000000000000000000000000000000000000001000000
5 000000000000000000000000000000001000000000000000
6 000000000000000000000000000000000000010000000000
7 000000000000000000000000000010000000000000000000
8 000000000000000000000000000000000100000000000000

We also use this method to search for linear characteristics for round-reduced versions of SIMON128,
and the results are given in Appendix C. Very recently, Alizadeh et al. [59] presented a 52-round linear
characteristic for SIMON128 with bias 2−128, while the characteristic we find covers 55 rounds and the
bias of this characteristic is 2−109. Moreover, the method of this section is a basic tool used to search for
(related-key) differential characteristics in the following sections.

5 Towards Finding the Best Characteristic with MILP Technique

Finding the best characteristic of a cipher is generally an extremely difficult task. Matsui’s approach [23] and
its variants and improvements [33, 76–78] are the most important and effective methods used to search for the
best characteristics. However, Matsui’s approach has some important limitations making it not practically
applicable in many cases. Moreover, some speeding up techniques employed by Matsui’s approach is intimately
related to the special properties and structure of the cipher under consideration, which makes it very difficult
to implement. In this section, we provide another method for finding the best characteristic for block ciphers
using 4 × 4 S-boxes based on MILP technique. Compared with the method presented in Sect. 4, the main
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differences of the new technique involve the modeling of the differential patterns of the S-boxes, and the
selection of the objective function. However, we think the contribution of this new method is in fact very
limited since preliminary experiments show that the MILP model generated by this method is very difficult
to solve, which is one of the reasons that we only apply our method to block ciphers with 4× 4 S-boxes.

One main drawback of the method presented in Sect. 4 is that it only focuses on finding characteristics
with minimal (or very small) number of active S-boxes. However, it is well possible that the characteristics
with the maximal probability do not have the minimal number of active S-boxes. Therefore, we may miss some
better characteristics by using the method presented in Sect. 4 even we are given unlimited computational
power, which makes us very uncomfortable. In the following, we show how to model the differential behavior
of an 4× 4 S-box without losing its information of differential probability.

Take the PRESENT S-box S for example. For every possible differential pattern (x0, x1, x2, x3) →
(y0, y1, y2, y3), we can construct a corresponding differential pattern with probability information (x0, x1, x2,
x3, y0, y1, y2, y3; p0, p1) ∈ B8+2 where the two extra bits (p0, p1) are used to encode the differential probability
PrS [(x0, . . . , xω−1)→ (y0, . . . , yν−1)] as follows (p0, p1) = (0, 0) ∈ B2, if PrS [(x0, . . . , xω−1)→ (y0, . . . , yν−1)] = 2−0 = 1;

(p0, p1) = (0, 1) ∈ B2, if PrS [(x0, . . . , xω−1)→ (y0, . . . , yν−1)] = 2−2;
(p0, p1) = (1, 1) ∈ B2, if PrS [(x0, . . . , xω−1)→ (y0, . . . , yν−1)] = 2−3.

(6)

Note that there are only 3 different entries in the differential distribution table of the PRESENT S-box,
and (p0, p1) is exactly the binary encoding of − log2 2−x. Hence, the probability of the differential pattern
(x0, x1, x2, x3)→ (y0, y1, y2, y3) is 2−(p0+2p1). In the new technique, the constraints for S-boxes is the critical
sets of all differential patterns with probability information instead of ordinary differential patterns, and the
objective function is chosen to be minimizing

∑
(p0 + 2p1). Now, the optimized solution of the MILP model

generated by this technique corresponds to a characteristic with the maximal probability, that is, the best
characteristic.

We implement the above technique in our Python framework for automatic cryptanalysis, and apply it to
Serpent on a PC. We find a single-key differential characteristic covering rounds 5, 6, 7, and 8 of Serpent with
Probability 2−40 (see Table 5), whereas the previously published best characteristic covering these rounds of
Serpent is given in [56] with probability 2−47.

This method is not only useful in finding improved characteristics, but also enable us to obtain the exact
upper bound of the probability of the characteristics for round-reduced versions of a block cipher, which may
lead to a tighter security bound for the full cipher. For example, using the method presented in this section,
we can prove that the probability of the best characteristic covering rounds 0, 1, 2 of Serpent (using S-boxes
S0, S1 and S2) is 2−19, which is better than the result presented in Appendix B stating that the probability
is upper bounded by (2−2)8 = 2−16 (see Table 17 in Appendix B).

Table 5: A 4-round differential characteristic of Serpent
Rounds Input difference of the S-box layer Output difference of the S-box layer

5 (S5)

00100100000000000011001001000000 00000000000000000010000000000000
00100100000000000011000001000000 00000100000000000001001000000000
00100100000000000001001001000000 00000000000000000000001001000000
00000100000000000011000001000000 00100000000000000001001000000000

6 (S6)

10000000000000000000000000000000 00000000000000000000000000000000
00000000000000000000000000000000 00000000000000000000000000000100
10000000000000000000000000000100 10000000000000000000000000000000
00000000000000000000000000000000 00000000000000000000000000000100

7 (S7)

00000000000000000000000000000000 00000000000000000000000000000000
00000000000000000000000000000000 00000000000000000000000000000000
00000001000000000000000000000000 00000001000000000000000000000000
00000000000000000000000000000000 00000001000000000000000000000000

8 (S0)

00000000000000000000000010010010 10010000000000100000000000000100
00010000000000000000000000000000 00010001001000000000000010010010
00000001001000100000000000000000 10010000000000100000000010010110
10000000000000000000000000000100 10010001001000100000000010010110
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Although the new method produces better results for a specific cipher, experimental results show that
the model generated by the new technique is more difficult to solve than that generated by the method
presented in Sect. 4. For example, we also apply the method to PRESENT. For 4-round PRESENT, we
find its best single-key differential characteristic whose probability is 2−12 in 5 seconds, and for 8-round
PRESENT, we find its best single-key differential characteristic with probability 2−32 in 358675 seconds, and
the corresponding characteristics are listed in Table 6 and Table 7. Compared with the models generated
by the method presented in Sect. 4, the models generated by this technique involve more variables and
constraints, which makes it more difficult to solve.

In practice, we can also use the new technique to find good (instead of the best) characteristic by extracting
a solution from the optimizer as soon as the objective value is low enough. Although we can not make sure that
the extracted solution is one of the best characteristics, this approach will reduce the time of computation
significantly. Take the 8-round PRESENT as an example, the Gurobi optimizer can discover an 8-round
characteristic with probability 2−32 in no more than 35008 seconds, and an 8-round characteristic with
probability 2−34 in no more than 18962 seconds. Note that before the Gurobi complete its computation (cost
358675 seconds in total), we can not make sure that the probability of the best characteristic is 2−32 though
a characteristic with this probability has already been found in just 35008 seconds.

Table 6: A 4-round single-key differential characteristic for PRESENT with the maximal possible probability
The input and output differences of the S-box layer

Rounds In Out

1 0000000000000000000000000000000000000000000000000111000000001111 0000000000000000000000000000000000000000000000000001000000000001
2 0000000000000000000000000000000000000000000000000000000000001001 0000000000000000000000000000000000000000000000000000000000000100
3 0000000000000000000000000000000100000000000000000000000000000000 0000000000000000000000000000100100000000000000000000000000000000
4 0000000100000000000000000000000000000000000000000000000100000000 0000001100000000000000000000000000000000000000000000100100000000

Table 7: An 8-round single-key differential characteristic for PRESENT with the maximal possible probability
The input and output differences of the S-box layer

Rounds In Out

1 0000000000000000000000000000000000000000000000000000000000001111 0000000000000000000000000000000000000000000000000000000000000001
2 0000000000000000000000000000000000000000000000000000000000000001 0000000000000000000000000000000000000000000000000000000000001001
3 0000000000000001000000000000000000000000000000000000000000000001 0000000000001001000000000000000000000000000000000000000000001001
4 0001000000000001000000000000000000000000000000000001000000000001 1001000000001001000000000000000000000000000000001001000000001001
5 1001000000001001000000000000000000000000000000001001000000001001 0100000000000100000000000000000000000000000000000100000000000100
6 0000000000000000100100000000100100000000000000000000000000000000 0000000000000000010000000000010000000000000000000000000000000000
7 0000000000000000000010010000000000000000000000000000000000000000 0000000000000000000001000000000000000000000000000000000000000000
8 0000000000000000000001000000000000000000000000000000000000000000 0000000000000000000001010000000000000000000000000000000000000000

6 Automatic Enumeration of (Related-key) Differential and Linear
Characteristics with Predefined Properties

By now, we are able to search for (related-key) differential or linear characteristics for a wide range of ciphers.
However, just being able to obtain a characteristic with a small number of active S-boxes is not enough. Several
works [79–81] have demonstrated that the differential attack based on one characteristic can be strengthened
with multiple characteristics with the same input and output differences (the so called differential), and
therefore we want to find all high probability characteristics with the same input and output differences. In the
linear hull analysis, we need to find all linear characteristics with the same input and output linear masks. In
the (related-key) boomerang/rectangle attack, two short differentials α→ β and γ → δ are used to construct
a boomerang distinguisher. By allowing β and γ to change, the probability of the constructed distinguisher
can be improved. Hence, we want to find all high probability differential characteristics with a fixed input (or
output) difference. In the structure attack [79], a form of differential cryptanalysis exploiting differentials with
multiple input differences and a single output difference, we also need to search for characteristics sharing a
same output difference. To summarize, we need to find all characteristics of some given properties according
to the context, and the procedure for enumerating all characteristics covering round 1 to round r of a cipher
with some given properties is listed as follows.

Step 1. Construct an MILP modelM describing the differential (or linear) behavior of the cipher (round
1 to round r) according to Sect. 4 (or Appendix A).
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Step 2. Add the constraints imposed by the given properties (concrete examples will be given in the
following sections).

Step 3. Solve the model using an MILP optimizer. If a feasible solution x is found, save x to a file and
update the model by adding the linear inequality l(x) to remove x from the feasible region of M; if the
updated model M is infeasible, go to Step 4. Otherwise, repeat Step 3.

Step 4. Terminate the procedure and extract all the characteristics with the given properties from the
saved solutions.

In the following subsections, we show concrete applications of the above method.

6.1 Automatic (Related-key) Differential and Linear Hull Analysis

The clustering of multiple differential characteristics satisfying the same (fixed) input and output difference is
referred to as the differential effect. By considering the differential effect, the computed expected differential
probability (EDP) may become significantly higher than that of any differential characteristic in the differ-
ential. Therefore, the probability of the differential serves to be a more accurate indication of the security of
a block cipher with respect to the differential attack.

Currently available methods for searching for high probability single-key differential characteristics include
the branch-and-bound approach [82], variants of Matsui’s algorithm [53, 83], and those rather dedicated
methods [79, 81]. In what follows we will propose a generic and automatic method for searching for differential
characteristics in a given differential in both the single-key and related-key model. The new method is not
only conceptually simpler, but also easier to implement compared to existing methods.

Given an r-round differential characteristic (α0, α1, . . . , αr−1, αr), we can find all r-round differential
characteristics with the following properties: (1) the input difference is α0 and the output difference is αr,
(2) the characteristic activates at most NA S-boxes. This can be done by the following procedure.

Step 1. Construct an MILP model M describing the differential behavior of the cipher (from round 1 to
round r) according to Sect. 4.

Step 2. Add the constraints describing that the input difference must be α0 and the output difference
must be αr (these constraints are simple equations fixing the input and output bit-level differences), and add
the constraint

∑
j Sj ≤ NA, where the Sj ’s are variables marking the activities of the S-boxes involved.

Step 3. Solve the model using an MILP optimizer. If a feasible solution x is found, save x to a file and
update the model by adding the linear inequality l(x) to remove x from the feasible region of M; if the
updated model M is infeasible, go to Step 4. Otherwise, repeat Step 3.

Step 4. Terminate the procedure and extract all the differential characteristics in the differential with at
most NA active S-boxes from the saved solutions.

Differential Analysis of SIMON and LBlock. SIMON [84] is a family of lightweight block ciphers
designed by the U.S. National Security Agency (NSA). The design of SIMONnb/nK is a Feistel scheme with
a block size of nb bits and key size of nK bits. The bitwise AND operation is the only nonlinear operation
of SIMONnb/nK . For a detailed description of SIMON and existing attacks on it, we refer the reader to [53,
58, 59, 82, 84–87].

By treating the AND (F2 × F2 → F2) operation as a 2× 1 S-box, we apply our method to SIMON in the
single-key model. In our MILP models we treat the input bits of the AND operation as independent input bits,
and the dependencies of the input bits to the AND operation are not considered. Therefore, the characteristic
obtained by our method is not guaranteed to be valid for SIMON (other ciphers do not have this problem).
Hence, every time after the Gurobi optimizer outputs a good solution (characteristic), we check its validity
and compute its probability by the method presented in [53].

We find a 16-round single-key differential characteristic for SIMON48 with probability 2−50 (see Table
8). Then we compute the probability of the differential with its input and output differences fixed to the
values given in Table 8 with the method presented in this section. To be more specific, we search for all
characteristics with probability p such that 2−60 ≤ p ≤ 2−50 in this differential, and the distribution of these
characteristics is given in Table 9, from which we can deduce that the probability of this differential is greater
than 2−44.65. To the best of our knowledge, this is the first published single-key differential covering more
than 15 rounds of SIMON48.

In addition, using the method presented in Sect. 4, we find a 21-round single-key differential characteristic
for SIMON64 with probability 2−70 which is given in Table 10. Note that the probability of the best previously
published single-key differential characteristic for the 21-round SIMON64 is 2−72 [53].
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Table 8: A single-key differential characteristic of 16-round SIMON48 with probability 2−50.
Rounds The input differences

0 (Input) 100000000000000000000000 001000100000000010000010
1 001000100000000000000000 100000000000000000000000
2 000010000000000000000000 001000100000000000000000
3 000000100000000000000000 000010000000000000000000
4 000000000000000000000000 000000100000000000000000
5 000000100000000000000000 000000000000000000000000
6 000010000000000000000010 000000100000000000000000
7 001000100000001000000000 000010000000000000000010
8 100000100000100000100000 001000100000001000000000
9 001000100000001000000000 100000100000100000100000
10 000010000000000000000010 001000100000001000000000
11 000000100000000000000000 000010000000000000000010
12 000000000000000000000000 000000100000000000000000
13 000000100000000000000000 000000000000000000000000
14 000010000000000000000000 000000100000000000000000
15 001000100000000000000000 000010000000000000000000
16 (Output) 100000000000000000000000 001000100000000000000000

Table 9: The distribution of the characteristics of SIMON48 in the differential specified by the input and
output differences given in Table 8. The invalid characteristics is due to the special property of the dependent
inputs of the AND operations in SIMON, and we refer the reader to [51, 53] for more information.

Probability 2−50 2−51 2−52 2−53 2−54 2−55 2−56 2−57 2−58 2−59 2−60 Invalid

#Characteristics 1 6 15 46 100 114 379 685 953 913 724 3568

Table 10: A single-key differential characteristic of the 21-round SIMON64 with probability 2−70.
Rounds The input differences

0 (Input) 00000000000010000000000000000000 00000000001000100010000000000000
1 00000000000000100010000000000000 00000000000010000000000000000000
2 00000000000000001000000000000000 00000000000000100010000000000000
3 00000000000000000010000000000000 00000000000000001000000000000000
4 00000000000000000000000000000000 00000000000000000010000000000000
5 00000000000000000010000000000000 00000000000000000000000000000000
6 00000000000000001000000000000000 00000000000000000010000000000000
7 00000000000000100010000000000000 00000000000000001000000000000000
8 00000000000010000000000000000000 00000000000000100010000000000000
9 00000000001000100010000000000000 00000000000010000000000000000000
10 00000000100000001000000000000000 00000000001000100010000000000000
11 00000010001000000010000000000000 00000000100000001000000000000000
12 00001000011000000000000000000000 00000010001000000010000000000000
13 00000011001000000010000000000000 00001000011000000000000000000000
14 00000000100000001000000000000000 00000011001000000010000000000000
15 00000000001000100010000000000000 00000000100000001000000000000000
16 00000000000010000000000000000000 00000000001000100010000000000000
17 00000000000000100010000000000000 00000000000010000000000000000000
18 00000000000000001000000000000000 00000000000000100010000000000000
19 00000000000000000010000000000000 00000000000000001000000000000000
20 00000000000000000000000000000000 00000000000000000010000000000000
21 (Output) 00000000000000000010000000000000 00000000000000000000000000000000

Table 11: The distribution of the characteristics of SIMON64 in the differential specified by the input and
output differences given in Table 10.

Probability 2−70 2−71 2−72 2−73 2−74 2−75 2−76 2−77 2−78 2−79 Invalid

#Characteristics 2 14 74 306 1105 3502 10213 25553 48016 50827 19942
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By adding the constraints that the input and output differences are fixed to be the values suggested in
Table 10, we search for all characteristics in this differential with probability p such that 2−79 ≤ p ≤ 2−70. We
obtain 159554 characteristics (including 19942 invalid ones) in total with varying probability. The details of
the distribution of these characteristics are given in Table 11, from which we can deduce that the probability
of the differential for the 21-round SIMON64 is greater than 2−60.21. Note that the probability of the best
previously published 21-round differential for SIMON64 is 2−60.53. By extending one more round of this
differential, we obtain a 22-round single-key differential characteristic for SIMON64 with probability at least
2−62.21, which is the first published single-key differential characteristic covering more than 21 rounds of
SIMON64. Note that the 21-round characteristic presented in [53] can not be simply extended to obtain a
22-round characteristic with probability less than 2−64, since the Hamming weight of its output is higher and
extending one more round will decrease the probability significantly. The differentials presented in this paper
for SIMON can be used to produce the best differential attacks on SIMON48 and SIMON64 with Wang et
al.’s technique [58].

We also apply the method to LBlock, and we find a 16-round standard (non truncated) related-key
differential with probability 2−55.64, which is even better than the previously published best truncated related-
key differential for the 16-round LBlock whose probability is about 2−59 [57]. The results are given in Appendix
D.

Linear (Hull) Analysis of SIMON48. For the sake of completeness, we also present an example on
SIMON48 demonstrating that our method is also applicable in linear hull analysis, and this part can be safely
skipped by the readers since there is no essential difference between the two methods for differential and linear
hull analysis. A linear hull, first announced by Nyberg et al. in [88], is a collection of linear characteristics with
a certain (fixed) input and output masks. It is the counterpart to differentials in differential cryptanalysis,
and there are a lot of works (e.g. [89–95]) studying the linear hull effect.

Using the MILP technique, we find a 16-round linear characteristic with bias 2−26 (see Table 12). By
considering multiple linear approximations with the same input and output masks specified in Table 12, we
obtain 394271 linear characteristics where 16767 characteristics are valid, which lead to a linear hull with
potential 2−44.92. Using Matsui’s Algorithm 2 [96], we can attack 23-round SIMON48/96 by adding 3 rounds
at the top and 4 rounds at the bottom of the linear hull (see Fig. 1 in Appendix E). Note that the subkey
bits without underscore are secret bits to be guessed in the attack. To the best of our knowledge, there is no
published linear attack on SIMON48/96 which can cover 23 rounds of SIMON48/96.

Table 12: A 16-round linear characteristic for SIMON48
Round Left Right

0 001000000000000000100010 100000000000000000000000
1 100000000000000000000000 000000000000000000100010
2 000000000000000000100010 000000000000000000001000
3 000000000000000000001000 000000000000000000100000
4 000000000000000000100000 000000000000000000000000
5 000000000000000000000000 000000000000000000100000
6 000000000000000000100000 001000000000000000001000
7 001000000000000000001000 000000000010000000100010
8 000000000010000000100010 100000100000100000100000
9 100000100000100000100000 000000000010000000100010
10 000000000010000000100010 001000000000000000001000
11 001000000000000000001000 000000000000000000100000
12 000000000000000000100000 000000000000000000000000
13 000000000000000000000000 000000000000000000100000
14 000000000000000000100000 000000000000000000001000
15 000000000000000000001000 000000000000000000100010
16 000000000000000000100010 100000000000000000000000
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6.2 Automatic Truncated (Related-key) Differential Analysis

In basic truncated differential analysis, the fixed output difference β of a differential α → β is truncated to
be a bit string with some specific bits allowed to be any valued in {0, 1}. With this relaxation, the probability
of the truncated differential can be increased. Truncated differential is a very useful tool in cryptanalysis and
several ciphers which are secure against standard differential attack are vulnerable to truncated differential
attack.

We now present an automatic method for enumerating all high probability (related-key) differential char-
acteristics in a given truncated (related-key) differential.

Step 1. Construct an MILP model M describing the differential behavior of the cipher (from round 1 to
round r) according to Sect. 4.

Step 2. For a given truncated differential α0 → αr where αr = (αr,0, . . . , αr,n−1) and
αj0 = 0, · · · , αjsr = 0
αjsr+1

= 1, · · · , αjst = 1
αjst+1 = ∗, · · · , αjn−1 = ∗,

(7)

add the system of equations {
αj0 = 0, · · · , αjsr = 0
αjsr+1

= 1, · · · , αjst = 1
(8)

and the constraint
∑
j Sj ≤ NA into the modelM, where the Sj ’s are the variables marking the activities of

the S-boxes involved.
Step 3. Solve the model using an MILP optimizer. If a feasible solution x is found, save x to a file and

update the model by adding the linear inequality l(x) to remove x from the feasible region of M; if the
updated model M is infeasible, go to Step 4. Otherwise, repeat Step 3.

Step 4. Terminate the procedure and extract all the differential characteristics in the given truncated
differential with at most NA active S-boxes from the saved solutions.

We apply the above method to DESL. Firstly, we find a related-key differential characteristic for the
9-round DESL, and the results are given in Table 13 and Table 14.

Table 13: A 9-round related-key differential characteristic for DESL (characteristic in the encryption process)
Rounds Left Right

0 00000000000000010000000000000000 00000000010000000000000000000000
1 00000000010000000000000000000000 00000000000000000000000000000000
2 00000000000000000000000000000000 00000000010000000000000000000000
3 00000000010000000000000000000000 00000100000000000000000000000000
4 00000100000000000000000000000000 00000000010000000100000000000000
5 00000000010000000100000000000000 00100000000000000000000110000000
6 00100000000000000000000110000000 00000010110000000100000000000000
7 00000010110000000100000000000000 00000000000001000000000000000000
8 00000000000001000000000000000000 00000010100000000100000000000000
9 00000010100000000100000000000000 00100100000010000000000000000000

Then, we truncate the output difference (the input difference of the 10th round) to be

00000010100000000100000000000000 0**00*0*0000**0*0*00000**00*0*00

and we try to find all related-key differential characteristic with at most 21 active S-boxes in this truncated
related-key differential. Finally, we find 14700 characteristics in total leading to a 9-round truncated related-
key differential for DESL with probability 2−34.06.

6.3 Automatic Construction of (Related-key) Boomerang/Rectangle Distinguishers

The main idea behind the boomerang/rectangle attack is to exploit two short differentials with high prob-
abilities instead of one long differential with a low probability. Let E : {0, 1}n × {0, 1}k → {0, 1}n be a
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Table 14: A 9-round related-key differential characteristic for DESL (characteristic in the key schedule algo-
rithm)

Rounds The differences in the key register

1 000000000000000010000000000000000000000000000000
2 000000000000000000000000000000000000000000000000
3 000000000000100000000000000000000000000000000000
4 000000000010000000000000000000000000000000000000
5 000000000000010000000000000000000000000000000000
6 010000000000000000000000000000000000000000000000
7 000000001000000000000000000000000000000000000000
8 000000000000000000000010000000000000000000000000
9 000000000000001000000000000000000000000000000000

block cipher which can be described as E = E1 ◦ E0, such that for E0 there exists a differential α→ β with
probability p, and for E1 there exists a differential γ → δ with probability q.

In the rectangle distinguisher, the attacker constructs quartets of plaintexts of the form (P1, P2, P3, P4)
such that P1 ⊕ P2 = P3 ⊕ P4 = α. A quartet is said to be a right quartet if the following conditions are
satisfied:

1. E0(P1)⊕ E0(P2) = E0(P3)⊕ E0(P4) = β;
2. E0(P1)⊕ E0(P3) = γ (or E0(P2)⊕ E0(P4) = γ);
3. C1 ⊕ C3 = C2 ⊕ C4 = δ.

It can be shown that the probability of a quartet to be right is approximately 2−n(pq)2. The above process
can be used to distinguish E from a random permutation if (pq)2 > 2−n, since for a random permutation,
the probability of C1 ⊕ C3 = C2 ⊕ C4 = δ is 2−2n.

It is suggested in [97] that the attack can be mounted for all possible β’s and γ’s to improve the attack.
Therefore the rectangle process can be employed to distinguish E from a random permutation if (p̂q̂)2 > 2−n,
where

p̂ =

√∑
β

Pr2[α→ β] and q̂ =

√∑
γ

Pr2[γ → δ]

In some cases, this improvement reduces the complexity for the rectangle attack significantly. In practice,
p̂ is computed as follows. Firstly, the attacker finds a differential (or differential characteristic) α→ β for E0

with probability p0. Then he or she tries to find all high probability differentials with input difference α. For
example, if he or she obtain nj differential (characteristics) with probability pj , then p̂ can be approximated

by
√∑

j njpj
2. Similar situation is also encountered in the so called structure attack [79], in which the

attacker needs to find high probability differentials sharing the same output difference. We now show that
such tasks can be accomplished automatically with an MILP technique, and the procedure is presented as
follows.

Step 1. Construct an MILP model M describing the differential behavior of E0 according to Sect. 4.
Step 2. Add the constraints describing that the input difference must be α0 (these constraints are simple

equations fixing the input bit-level differences), and add the constraint
∑
j Sj ≤ NA, where the Sj ’s are

variables marking the activities of the S-boxes involved and NA is chosen by the attacker to make sure that
the probabilities of the characteristics found are not too small.

Step 3. Solve the model using an MILP optimizer. If a feasible solution x is found, save x to a file and
update the model by adding the linear inequality l(x) to remove x from the feasible region of M; if the
updated model M is infeasible, go to Step 4. Otherwise, repeat Step 3.

Step 4. Terminate the procedure and extract all the differential characteristics in the differential with at
most NA active S-boxes from the saved solutions, and compute p̂ by the above method.

Application to PRESENT-128 and LBlock. For PRESENT-128, using the method presented in Sect.
4.2, we find a related-key characteristic of E0 (E0 and E1 are specified in [98]) with 0 active S-boxes in the
key schedule and probability 2−11 (5 active S-boxes) and the characteristic is given in Table 15 and Table 16,
which is almost the same characteristic presented in [51]. Then we use the method presented in this section
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to find all characteristics with at most 9 active S-boxes whose input difference to the S-box of the first round
is

0010000000000000000000000000000000000000000000000000000000000000.

Finally, we obtain totally 1028 characteristics. There are 4 characteristics with probability 2−11, 128 char-
acteristics with probability 2−19, 256 characteristics with probability 2−20, 512 characteristics with probability
2−21, and 128 characteristics with probability 2−22. Hence the overall probability p̂ for E0 is approximately√

4× (2−11)2 + 128× (2−19)2 + 256× (2−20)2 + 512× (2−21)2 + 128× (2−22)2 ≈ 2−10.

Table 15: A 7-round related-key characteristic for PRESENT-128 (characteristic in the encryption process)
The input and output differences of the S-box layer

Rounds In Out

1 0010000000000000000000000000000000000000000000000000000000000000 0101000000000000000000000000000000000000000000000000000000000000
2 0000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000
3 0000000000000000000000000001000000000000000000000000000000000000 0000000000000000000000001101000000000000000000000000000000000000
4 0000001000000000000000000000000000000000000000000000000000000000 0000001100000000000000000000000000000000000000000000000000000000
5 0000000000000000000000000000000000000000000000000100000000000000 0000000000000000000000000000000000000000000000000101000000000000
6 0000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000
7 0000000000000000000000000000000000000001000000000000000000000000 0000000000000000000000000000000000000111000000000000000000000000

Table 16: A 7-round related-key characteristic for PRESENT-128 (characteristic in the key schedule algo-
rithm)
Rounds The differences in the key register

0 (Master Key) 00000000000000000000010000000000000000000000000000000000000000000000000000000100000000000000000000000000000001000000000000000000
1 00000000000000001000000000000000000000000000000010000000000000000000000000000000000000001000000000000000000000000000000000000000
2 00000000000000000000000000010000000000000000000000000000000000000000000000000000000100000000000000000000000000000001000000000000
3 00000000000000000000001000000000000000000000000000000010000000000000000000000000000000000000001000000000000000000000000000000000
4 00000000000000000000000000000000010000000000000000000000000000000000000000000000000000000100000000000000000000000000000001000000
5 00000000000000000000000000001000000000000000000000000000000010000000000000000000000000000000000000001000000000000000000000000000
6 00000000000000000000000000000000000000010000000000000000000000000000000000000000000000000000000100000000000000000000000000000001
7 00000000000000000000000000000000001000000000000000000000000000000010000000000000000000000000000000000000001000000000000000000000
8 00000101000000000000000000000000000000000000010000000000000000000000000000000000000000000000000000000100000000000000000000000000

Using this result and the related-key differential characteristic covering E1 (specified in [98]) with proba-
bility q̂ ≈ 2−12 presented in [98], we can produce an improved related-key rectangle attack on the 17-round
PRESENT-128 using the same method presented in [98].

Using the same method, we also obtain an improved related-key boomerang distinguisher for LBlock, and
the result is given in Appendix F.

7 Limitations of the Method

The method presented in this paper has some limitations which we are not able to overcome. Firstly, this
method is not practically applicable to evaluate the security of ARX/LRX constructions. Although we can
treat the addition mod 2n as a 2n× n S-box and compute the convex hull of all its differential patterns, this
is impractical for real ARX ciphers where n is typically at least 16. For practical tools which can be applied
to ARX/LRX constructions, we refer the reader to [83, 99–103]. For ARX/LRX constructions, we think the
approaches proposed by Mouha et al. [99], Aumasson et al. [103] and Kölbl [104] are promising.

Secondly, the method is not exact for all ciphers. In the case of SIMON, we do not know how to construct
an MILP model whose feasible region contains no invalid characteristics due to its dependent inputs. A
method which can be used to construct an exact model for SIMON will make the analysis of SIMON much
more convenient.

Finally, it seems that the technique can be applied mostly to lightweight ciphers since the solution of a
MILP model with thousands of variables and constrains is really difficult. Therefore, further investigation of
how to solve such models efficiently is of great importance.

In addition, if we have any progress on dealing with these limitations, we will present our new findings to
the website http://siweisun.github.io/ as soon as possible.
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8 Conclusion

In this work, we show that there is an exact linear-inequality description for any subset of {0, 1}n ⊆ Rn.
Thanks to this, we are now able to construct MILP models whose feasible regions are exactly the sets
of all valid (related-key) differential (or linear) characteristics for a wide range of ciphers. Based on these
MILP models, we convert Sun et al.’s heuristic algorithm for finding (related-key) differential (or linear)
characteristics into an exact one, and present a method which can be employed to find all (related-key)
differential (or linear) characteristics with some given properties. Such a method is very useful in differential
and linear-type cryptanalysis.

Moreover, the methods presented in this paper are automatic, and can be applied to a wide range of
ciphers. We have developed a Python based framework for automatic differential- and linear-type crypt-
analysis. With the help of this framework, we obtain new cryptanalytic results for Serpent, SIMON, LBlock,
PRESENT and DESL. In addition, we believe that the results presented in this paper can be further improved
by taking more computational effort.
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18. Alex Biryukov, Christophe De Canniere and Michaël Quisquater. On multiple linear approximations. In Advances
in Cryptology–CRYPTO 2004, pages 1–22. Springer, 2004.

19. Burton S. Kaliski Jr., Matthew J. B. Robshaw. Linear cryptanalysis using multiple approximations. In Advances
in Cryptology–CRYPTO 1994, pages 26–39. Springer, 1994.

20. Miia Hermelin, Kaisa Nyberg. Linear cryptanalysis using multiple linear approximations. IACR Cryptology
ePrint Archive, Report 2011/93, 2011. https://eprint.iacr.org/2011/093.

21. Miia Hermelin, Joo Yeon Cho, Kaisa Nyberg. Multidimensional linear cryptanalysis of reduced round Serpent.
In Information Security and Privacy, pages 203–215. Springer, 2008.

22. Miia Hermelin, Joo Yeon Cho and Kaisa Nyberg. Multidimensional extension of Matsuis algorithm 2. In Fast
Software Encryption – FSE 2009, pages 209–227. Springer, 2009.



20

23. Mitsuru Matsui. On correlation between the order of S-boxes and the strength of DES. In Advances in Cryptology–
EUROCRYPT 1994, pages 366–375. Springer, 1995.

24. Andrey Bogdanov, Lars R. Knudsen, Gregor Leander, Christof Paar, Axel Poschmann, Matthew J. B. Rob-
shaw, Yannick Seurin and Charlotte Vikkelsoe. PRESENT: An ultra-lightweight block cipher. In Cryptographic
Hardware and Embedded Systems – CHES 2007, pages 450–466. Springer, 2007.
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33. Alex Biryukov and Ivica Nikolić . Search for related-key differential characteristics in DES-like ciphers. In Fast
Software Encryption – FSE 2011, pages 18–34. Springer, 2011.
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98. Onur Özen, Kerem Varıcı, Cihangir Tezcan and Çelebi Kocair. Lightweight block ciphers revisited: Cryptanalysis

of reduced round PRESENT and HIGHT. In Information Security and Privacy, pages 90–107. Springer, 2009.
99. Nicky Mouha and Bart Preneel. Towards finding optimal differential characteristics for ARX: Application to

Salsa20. IACR Cryptology ePrint Archive, Report 2013/328, 2013. http://eprint.iacr.org/2013/328.
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A Constructing MILP Models for Automatic Linear Analysis

Based on Sun et al.’s methods [44, 51], we can construct an MILP model whose feasible region is exactly the
set of all valid linear characteristics for a cipher involving the following operations
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- bitwise XOR;
- bitwise permutation L which permutes the bit positions of a n dimensional vector in Fn2 ;
- three-forked branch operation (see [39]);
- S-box, S : Fω2 → Fν2 .

For every bit of the linear masks introduce a 0-1 variable xi. Also, for every S-box in the schematic
description of the cipher under consideration, introduce a new 0-1 variable Aj such that

Aj =

{
1, if the output mask of the Sbox is nonzero,
0, otherwise.

Here we say that Aj indicates the linear activity of an S-box, or an S-box is marked by Aj .
Objective Function. The objective function is to minimize the sum of all variables indicating the linear
activities of the S-boxes appearing in the schematic description of the cipher:

∑
j Aj .

Constraints. For every XOR operation with input masks a, b and output mask c, include the following
constraints

a = b = c. (9)

For every three-forked branch with input mask a, and output mask b, c, include the following constraintsdi ≥ a, di ≥ b, di ≥ c
a+ b+ c ≥ di
a+ b+ c ≤ 2

(10)

where di is a dummy variable.
Assuming (xi0 , . . . , xiω−1) and (yi0 , . . . , yiν−1) are the input and output linear masks of an ω × ν S-box

marked by At, we have 
At − yik ≥ 0, k ∈ {0, . . . , ν − 1}

(
ν−1∑
j=0

yij )−At ≥ 0
(11)

which ensures that nonzero output linear mask must activate the S-box.
For an bijective S-box we have 

ω
ν−1∑
k=0

yjk −
ω−1∑
k=0

xik ≥ 0

ν
ω−1∑
k=0

xik −
ν−1∑
k=0

yjk ≥ 0

(12)

since nonzero input linear mask must result in nonzero output linear mask and vice versa.
For every S-box appearing in the schematic description of the cipher, compute the critical set OS of

Hconv(MS) using Algorithm 1, and add all the linear inequalities in the critical set to the MILP model, where
MS is defined as following.

Definition 7. Let S be an arbitrary ω×ν S-box such that (x0, . . . , xω−1) and (y0, . . . , yν−1) are its input and
output linear masks respectively. The linear approximation set MS of S is defined to be the set of all linear
approximation patterns of S. That is,MS = {(x0, . . . , xω−1, y0, . . . , yν−1) ∈ Bω+ν : the bias of the resulting
linear approximation is nonzero}.

B The Security Bound of Serpent with respect to Single-key Differential
Attack

We apply the method for obtaining the exact lower bound of the number of active S-boxes to Serpent,
one of the AES finalists, and the results are summarized in Table 17, from which we can deduce that the
probability of the best single-key differential characteristic for the 27-round Serpent is upper bounded by
(2−2)8+7+8+7+7+7+7+7+8 = 2−132, and the result is obtained on a PC in no more than 1.3 hours.

At the time of the AES selection process, it is very hard to obtain the security bound of Serpent with
respect to the single-key differential attack , and the designers of Serpent conjectured that the probability
of the best 28-round differential for Serpent is not higher than 2−120. In this work, our tool confirms this
conjecture automatically. Note that this is not the best published bound for Serpent (see Wang et al.’s work
[105]). However, compared with Wang et al.’s method [105] which involves tedious case by case study of the
differential propagation, our approach is much more simple and straightforward.
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Table 17: The exact lower bounds of the number of differentially active S-boxes for round-reduced variants of
Serpent in the single-key model. Note that there is no need to computed the model covering rounds 24-25-26
since it uses the same S-boxes as rounds 0-1-2.

Rounds covered S-boxes used #Active S-boxes Time (in seconds)

0-1-2 S0-S1-S2 8 897

3-4-5 S3-S4-S5 7 481

6-7-8 S6-S7-S0 8 985

9-10-11 S1-S2-S3 7 370

12-13-14 S4-S5-S6 7 288

15-16-17 S7-S0-S1 7 331

18-19-20 S2-S3-S4 7 536

21-22-23 S5-S6-S7 7 491

24-25-26 S0-S1-S2 8 No need to compute

C Linear Characteristic of SIMON128

The 55-round characteristic we find for SIMON128 with bias 2−109 is given in Table 18 and Table 19. Note
that the previously published longest linear characteristic for SIMON128 is a 52-round characteristic with
bias 2−128 [59]. Before the readers checking this characteristic, we would like to give a remark on the com-
putation of the bias of the linear characteristic for SIMON.

Lr: the left half input of the r-th round
Rr: the right half input of the r-th round
Kr: the subkey of the r-th round
X[j]: the (j mod 64)-th bit of X
X ≪ i: the left circular shift of X by i bits
∧: bitwise AND
S: the 2× 1 S-box with 2-bit input and 1-bit output, that is, S(x, y) = x ∧ y

Under the above notations, the round function can be described as follows

Lr+1 = Rr ⊕Kr ⊕ (Lr ≪ 2)⊕ (G(Lr))

Rr+1 = Lr

where G(Lr) = (Lr ≪ 1) ∧ (Lr ≪ 8).
Clearly, G(Lr)[j] = Lr[j + 1] ∧ (Lr[j + 8]) = S(Lr[j + 1], Lr[j + 8]). Let αr be the mask of Lr ≪ 1, βr

be the mask of Lr ≪ 8, and γr be the output mask of G(Lr). Let yr be the 64-bit output of G(Lr). Then

yr[j] = Lr[j + 1] ∧ Lr[j + 8] = S(Lr[j + 1], Lr[j + 8]).

The linear approximation expression of the jth AND operation in the rth round is

αr[j] · Lr[j + 1]⊕ βr[j] · Lr[j + 8] = γr[j] · yr[j], (13)

and we assume (13) holds with probability P r[j]. Let εr[j] = |P r[j]− 1/2| be the bias of (13). If γr[j] = 0,
then (αr[j], βr[j]) = (0, 0) and εr[j] = 1/2. If γr[j] 6= 0, then εr[j] = 1/4.

Typically, the inputs of the S-boxes in each round of a cipher are independent. However, this is not the
case for SIMON. Therefore, we should be careful when compute the bias of the characteristics for SIMON.
For example,

yr[1] = S(Lr[2], Lr[9])

yr[8] = S(Lr[9], Lr[16])

Suppose these two S-boxes are both active, then the two linear approximation expressions are

αr[1] · Lr[2]⊕ βr[1] · Lr[9]⊕ yr[1] = 0 (14)

αr[8] · Lr[9]⊕ βr[8] · Lr[16]⊕ yr[8] = 0 (15)

If (14) and (15) are independent, then the bias of (14) + (15) would be 2−3 = 2 · 2−2 · 2−2 according to
the piling-up lemma. However (14) and (15) are not independent here, and the bias of
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αr[1] · Lr[2]⊕ βr[1] · Lr[9]⊕ yr[1]⊕ αr[8] · Lr[9]⊕ βr[8] · Lr[16]⊕ yr[8]

=αr[1] · Lr[2]⊕ βr[1] · Lr[9]⊕ αr[8] · Lr[9]⊕ βr[8] · Lr[16]⊕ Lr[2] · Lr[9]⊕ Lr[9] · Lr[16]

=αr[1] · Lr[2]⊕ (βr[1]⊕ αr[8]) · Lr[9]⊕ βr[8] · Lr[16]⊕ (Lr[2]⊕ Lr[16]) · Lr[9]

=0

is 0 or 2−2 6= 2 · 2−2 · 2−2. Hence, when we compute the bias of the characteristic of SIMON, we should take
this phenomenon into account.

D A 16-round Related-key Differential of LBlock

We find a 16-round standard (non truncated) related-key differential with probability 2−55.64, which is even
better than the previously published best truncated related-key differential for the 16-round LBlock whose
probability is about 2−59 [57].

This related-key differential characteristic is discovered as follows. Firstly, by using the method presented
in Sect. 4.2, we find a related-key differential characteristic for the 15-round LBlock with 23 active S-boxes
and probability 2−63 (see Table 20 and Table 21).

Then, we use the method presented in Sect. 5.1 to search for all related-key differential characteristics
whose input/output differences and master-key difference are fixed to the values suggested in Table 20 and
Table 21 respectively. To further reduce the searching space, we require that any one of these characteristics
has at most 25 active S-boxes.

Finally, we find all the characteristics enjoying the above properties, and the distribution of these char-
acteristics are given in Table 22. Interestingly, all these characteristics share the same differential patterns in
the key schedule algorithm.

From Table 22, it can be computed that the probability of the 15-round related-key differential for LBlock
specified by the input, output and master-key differences given in Table 20 and Table 21 is at least 2−53.64.
Since the Hamming weight of the left part of the output difference of the 15th round is low and the subkey
difference of the 16th round is 0, by extending one more round of this related-key differential, we obtain a
related-key differential with probability at least 2−(53.64+2) = 2−55.64.
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Table 18: A 55-round linear characteristic for SIMON128 (the input masks of the left parts)
Rounds The input linear mask of the left half

0 0000000000000000000000000000000000000000001000000000000000000000
1 0000000000000000000000000000000000000000100010000000000000000000
2 0000000000000000000000000000000000000000000000100000000000000000
3 0000000000000000000000000000000000000000100010001000000000000000
4 0000000000000000000000000000000000000000001000000010000000000000
5 0000000000000000000000000000000000000000100000001000100000000000
6 0000000000000000000000000000000000000000000000001100001000000000
7 0000000000000000000000000000000000000000100000001001100000000000
8 0000000000000000000000000000000000000000001000000010000000000000
9 0000000000000000000000000000000000000000100010001000000000000000
10 0000000000000000000000000000000000000000000000100000000000000000
11 0000000000000000000000000000000000000000100010000000000000000000
12 0000000000000000000000000000000000000000001000000000000000000000
13 0000000000000000000000000000000000000000100000000000000000000000
14 0000000000000000000000000000000000000000000000000000000000000000
15 0000000000000000000000000000000000000000100000000000000000000000
16 0000000000000000000000000000000000000000001000000000000000000000
17 0000000000000000000000000000000000000000100010000000000000000000
18 0000000000000000000000000000000000000000000000100000000000000000
19 0000000000000000000000000000000000000000100010001000000000000000
20 0000000000000000000000000000000000000000001000000010000000000000
21 0000000000000000000000000000000000000000100000001000100000000000
22 0000000000000000000000000000000000000000000000001000001000000000
23 0000000000000000000000000000000000000000100000001010100000000000
24 0000000000000000000000000000000000000000001000000010100000000000
25 0000000000000000000000000000000000000000100010001000001000000000
26 0000000000000000000000000000000000000000000000100000000000000000
27 0000000000000000000000000000000000000000100010000000000000000000
28 0000000000000000000000000000000000000000001000000000000000000000
29 0000000000000000000000000000000000000000100000000000000000000000
30 0000000000000000000000000000000000000000000000000000000000000000
31 0000000000000000000000000000000000000000100000000000000000000000
32 0000000000000000000000000000000000000000001000000000000000000000
33 0000000000000000000000000000000000000000100010000000000000000000
34 0000000000000000000000000000000000000000000000100000000000000000
35 0000000000000000000000000000000000000000100010001000000000000000
36 0000000000000000000000000000000000000000001000000010000000000000
37 0000000000000000000000000000000000000000100000001000100000000000
38 0000000000000000000000000000000000000000000000001000001000000000
39 0000000000000000000000000000000000000000100000001010100000000000
40 0000000000000000000000000000000000000000001000000010100000000000
41 0000000000000000000000000000000000000000100010001000001000000000
42 0000000000000000000000000000000000000000000000100000000000000000
43 0000000000000000000000000000000000000000100010000000000000000000
44 0000000000000000000000000000000000000000001000000000000000000000
45 0000000000000000000000000000000000000000100000000000000000000000
46 0000000000000000000000000000000000000000000000000000000000000000
47 0000000000000000000000000000000000000000100000000000000000000000
48 0000000000000000000000000000000000000000001000000000000000000000
49 0000000000000000000000000000000000000000100010000000000000000000
50 0000000000000000000000000000000000000000000000100000000000000000
51 0000000000000000000000000000000000000000100010001000000000000000
52 0000000000000000000000000000000000000000001000000010000000000000
53 0000000000000000000000000000000000000000100000001000100000000000
54 0000000000000000000000000000000000000000000000000000001000000000
55 0000000000000000000000000000000000000000100000001000100010000000
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Table 19: A 55-round linear characteristic for SIMON128 (the input masks of the right parts)
Rounds The input linear mask of the right half

0 0000000000000000000000000000000000000000100010000000000000000000
1 0000000000000000000000000000000000000000000000100000000000000000
2 0000000000000000000000000000000000000000100010001000000000000000
3 0000000000000000000000000000000000000000001000000010000000000000
4 0000000000000000000000000000000000000000100000001000100000000000
5 0000000000000000000000000000000000000000000000001100001000000000
6 0000000000000000000000000000000000000000100000001001100000000000
7 0000000000000000000000000000000000000000001000000010000000000000
8 0000000000000000000000000000000000000000100010001000000000000000
9 0000000000000000000000000000000000000000000000100000000000000000
10 0000000000000000000000000000000000000000100010000000000000000000
11 0000000000000000000000000000000000000000001000000000000000000000
12 0000000000000000000000000000000000000000100000000000000000000000
13 0000000000000000000000000000000000000000000000000000000000000000
14 0000000000000000000000000000000000000000100000000000000000000000
15 0000000000000000000000000000000000000000001000000000000000000000
16 0000000000000000000000000000000000000000100010000000000000000000
17 0000000000000000000000000000000000000000000000100000000000000000
18 0000000000000000000000000000000000000000100010001000000000000000
19 0000000000000000000000000000000000000000001000000010000000000000
20 0000000000000000000000000000000000000000100000001000100000000000
21 0000000000000000000000000000000000000000000000001000001000000000
22 0000000000000000000000000000000000000000100000001010100000000000
23 0000000000000000000000000000000000000000001000000010100000000000
24 0000000000000000000000000000000000000000100010001000001000000000
25 0000000000000000000000000000000000000000000000100000000000000000
26 0000000000000000000000000000000000000000100010000000000000000000
27 0000000000000000000000000000000000000000001000000000000000000000
28 0000000000000000000000000000000000000000100000000000000000000000
29 0000000000000000000000000000000000000000000000000000000000000000
30 0000000000000000000000000000000000000000100000000000000000000000
31 0000000000000000000000000000000000000000001000000000000000000000
32 0000000000000000000000000000000000000000100010000000000000000000
33 0000000000000000000000000000000000000000000000100000000000000000
34 0000000000000000000000000000000000000000100010001000000000000000
35 0000000000000000000000000000000000000000001000000010000000000000
36 0000000000000000000000000000000000000000100000001000100000000000
37 0000000000000000000000000000000000000000000000001000001000000000
38 0000000000000000000000000000000000000000100000001010100000000000
39 0000000000000000000000000000000000000000001000000010100000000000
40 0000000000000000000000000000000000000000100010001000001000000000
41 0000000000000000000000000000000000000000000000100000000000000000
42 0000000000000000000000000000000000000000100010000000000000000000
43 0000000000000000000000000000000000000000001000000000000000000000
44 0000000000000000000000000000000000000000100000000000000000000000
45 0000000000000000000000000000000000000000000000000000000000000000
46 0000000000000000000000000000000000000000100000000000000000000000
47 0000000000000000000000000000000000000000001000000000000000000000
48 0000000000000000000000000000000000000000100010000000000000000000
49 0000000000000000000000000000000000000000000000100000000000000000
50 0000000000000000000000000000000000000000100010001000000000000000
51 0000000000000000000000000000000000000000001000000010000000000000
52 0000000000000000000000000000000000000000100000001000100000000000
53 0000000000000000000000000000000000000000000000000000001000000000
54 0000000000000000000000000000000000000000100000001000100010000000
55 0000000000000000000000000000000000000000001000000010000000100000
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Table 20: A 15-round related-key differential characteristic for LBlock with probability 2−63 (characteristic
in the encryption process).

Rounds The differences

0 (Input) 0000000000000000000011000000000000000000101000000000000000111111
1 1010000000000000000011110000000000000000000000000000110000000000
2 0000000000011100110100000000000010100000000000000000111100000000
3 0000000000001111000000000000000000000000000111001101000000000000
4 0001000011010000000000000000000000000000000011110000000000000000
5 0000111110111010000000000000000000010000110100000000000000000000
6 0000000100001000000000000001000000001111101110100000000000000000
7 0000000000000000000000000000000000000001000010000000000000010000
8 0000100000000000000100000000000000000000000000000000000000000000
9 0011000000000000000000001101000000001000000000000001000000000000
10 0000000000000000000000000000000000110000000000000000000011010000
11 0000000000000000000000000000000000000000000000000000000000000000
12 0000000000000000000000000000000000000000000000000000000000000000
13 0000000000000000000000000000000000000000000000000000000000000000
14 0000100000000000000000000000000000000000000000000000000000000000
15 (Output) 0001000000000000000000000000000000001000000000000000000000000000

Table 21: A 15-round related-key differential characteristic for LBlock with probability 2−63 (characteristic
in the key schedule algorithm).

Rounds The differences of the master key and subkeys

Master Key 00000000000000000000000000000000000000000000000000000000000000000000011100000000
Subkey 1 00000000000000000000000000000000
Subkey 2 00000000000000000000000000000000
Subkey 3 00000000000111000000000000000000
Subkey 4 00000000000000000000000000000000
Subkey 5 00000000000000000000000000000000
Subkey 6 00001100000000000000000000000000
Subkey 7 00000000000000000000000000000000
Subkey 8 00000000000000000000000000110000
Subkey 9 00000000000000000000000000000000
Subkey 10 00000000000000000000000000000000
Subkey 11 00000000000000000001100000000000
Subkey 12 00000000000000000000000000000000
Subkey 13 00000000000000000000000000000000
Subkey 14 00000000000011000000000000000000
Subkey 15 00000000000000000000000000000000
Subkey 16 00000000000000000000000000000000

Table 22: The distribution of the related-key differential characteristics of LBlock in the differential specified
by the input and output differences given in Table 20.

Probability 2−60 2−61 2−62 2−63 2−64 2−65 2−66 2−67 2−68 2−69 2−70 2−71

#Characteristics 2 18 25 71 164 375 499 583 797 772 561 142
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E Linear Hull Analysis of 23-round SIMON48/96

The 16-round linear hull presented in Sect. 6.1 Table 12 can be extended to a linear attack on 23-round
SIMON48/96.
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Fig. 1: Linear hull cryptanalysis of SIMON48/96

Considering the linear approximation corresponding to the 16-round linear hull:

L3[2]⊕ L3[18]⊕ L3[22]⊕R3[0]⊕ L19[18]⊕ L19[22]⊕R19[0] (16)

each bit in the approximation can be expressed by some bits of plaintext, ciphertext and subkeys. For example,
L3[i] = K2[i]⊕K0[i]⊕R0[i]⊕L0[i+ 2]⊕L0[i+ 1]∧L0[i+ 8]⊕K1[i+ 2]⊕L0[i+ 2]⊕K0[i+ 4]⊕R0[i+ 4]⊕
L0[i+6]⊕L0[i+5]∧L0[i+12]⊕ (K0[i+3]⊕R0[i+3]⊕L0[i+5]⊕L0[i+4]∧L0[i+11])∧ (K0[i+10]⊕R0[i+
10]⊕L0[i+ 12]⊕L0[i+ 11]∧L0[i+ 18])⊕{K1[i+ 1]⊕L0[i+ 1]⊕K0[i+ 3]⊕R0[i+ 3]⊕L0[i+ 5] +L0[i+ 4]∧
L0[i+11]⊕ (K0[i+2]⊕R0[i+2]⊕L0[i+4]⊕L0[i+3]∧L0[i+10])∧ (K0[i+9]⊕R0[i+9]⊕L0[i+11]⊕L0[i+
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10]∧L0[i+17])}∧{K1[i+8]⊕L0[i+8]⊕K0[i+10]⊕R0[i+10]⊕L0[i+12]⊕L0[i+11]∧L0[i+18]⊕ (K0[i+
9]⊕R0[i+9]⊕L0[i+11]⊕L0[i+10]∧L0[i+17])∧(K0[i+16]⊕R0[i+16]⊕L0[i+18]⊕L0[i+17]∧L0[i+24])}.
Not that all additions are modulo 24.

From the above equation, L3[i] can be computed from some bits of plaintext and subkeys: K0[i],K0[i+
4],K1[i+2],K0[i+2],K0[i+3],K0[i+9],K0[i+10],K0[i+16],K1[i+1],K1[i+8],K2[i]. Since K0[i],K0[i+
4],K2[i],K1[i + 2] are in linear form, thus they have no effect on the absolute value of the bias of the
approximation presented in equation (16). Therefore, we do not need to guess such bits in the attack which
are labeled with underscores in Fig. 1, from which we can see that 45 bits need to bo be guessed.

By choosing N = 8 · 2−44.92 = 247.92 pairs of plaintext and ciphertext, the probability of success will
achieve 97% with 8-bit advantage [106], and the time complexity is N · 245 = 292.92.
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F Improved Related-key Boomerang Distinguisher For LBlock

Using the method presented in Sect. 4.2, we find a related-key differential characteristic for the 8-round
LBlock with 6 active S-boxes in total (zero active S-box in its key schedule algorithm), and the results are
given in Table 20 and Table 21.

Table 23: An 8-round related-key differential characteristic with 6 active S-boxes for LBlock (characteristic
in the key schedule algorithm).

Rounds The differences of the master key and subkeys

Master Key 00000000000000000000000000000000000000000000000000000000110000000000000000000000
Subkey 1 00000000000000000000000000000000
Subkey 2 00000000000000000000000000011000
Subkey 3 00000000000000000000000000000000
Subkey 4 00000000000000000000000000000000
Subkey 5 00000000000000000000110000000000
Subkey 6 00000000000000000000000000000000
Subkey 7 00000000000000000000000000000000
Subkey 8 00000000000001100000000000000000

Table 24: An 8-round related-key differential characteristic with 6 active S-boxes for LBlock (characteristic
in the encryption process).

Rounds The differences

0 (Input) 00000011000000000000000000000000 00001000000100000000000000000000
1 00000000000000000000000000001000 00000011000000000000000000000000
2 00000000000000000000000000001100 00000000000000000000000000001000
3 00000000000000000000000000000000 00000000000000000000000000001100
4 00000000000000000000110000000000 00000000000000000000000000000000
5 00000000000000000000000000000000 00000000000000000000110000000000
6 00000000000011000000000000000000 00000000000000000000000000000000
7 00001001000000000000000000000000 00000000000011000000000000000000
8 (Output) 11001110000000000000000000000000 00001001000000000000000000000000

Then we use the method presented in Sect. 5 to find all the related-key differential characteristics with
input difference

0000001100000000000000000000000000001000000100000000000000000000

and master-key difference

00000000000000000000000000000000000000000000000000000000110000000000000000000000,

each of which has at most 6 active S-boxes. We obtain 300 such characteristics in no more than 10 seconds
on a PC. And there are 28 characteristics with probability 2−15, 128 characteristics with probability 2−16,
and 144 characteristics with probability 2−17. Hence, the overall probability p̂ for E0 is approximately√

28× (2−15)2 + 128× (2−16)2 + 144× (2−17)2 ≈ 2−12.

Using this result and the related-key differential characteristic covering E1 with probability q̂ ≈ 2−16

presented in [57], a 16-round related-key boomerang distinguisher with probability (2−12 × 2−16)2 = 2−56

can be constructed. Note that the probability of the best previously published boomerang distinguisher for
the 16-round LBlock is 2−60 [57].


