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Abstract. In the problem of anonymous authentication (Boneh et al. CCS 1999), a sender wishes
to authenticate a message to a given recipient in a way that preserves anonymity: the recipient does
not know the identity of the sender and only is assured that the sender belongs to some authorized
set. Although solutions for the problem exist (for example, by using ring signatures, e.g. Naor, Crypto
2002), they provide no security when the anonymity set is a singleton. This work is motivated by the
question of whether there is any type of anonymity possible in this scenario. It turns out that we can
still protect the identity of all senders (authorized or not) if we shift our concern from preventing
the identity information be revealed to the recipient to preventing it could be revealed to an external
entity, other than the recipient. We define a natural functionality which provides such guarantees and
we denote it by Feaa for externally anonymous authenticated channel.
We argue that any realization of Feaa must be deniable in the sense of Dodis et al. TCC 2009. To prove
the deniability of similar primitives, previous work defined ad hoc notions of deniability for each task,
and then each notion was showed equivalent to realizing the primitive in the Generalized Universal
Composability framework (GUC, Canetti et al. TCC 2007). Instead, we put forward the question of
whether deniability can be defined independently from any particular task. We answer this question in
the affirmative providing a natural extension of the definition of Dodis et al. for arbitrary multiparty
protocols. Furthermore, we show that a protocol satisfies this definition if an only if it realizes the ideal
functionality Fden in the GUC framework. This result enables us to prove that most GUC functionalities
we are aware of (and their realizations) are deniable.
We conclude by applying our results to the construction of a deniable protocol that realizes Feaa.

1 Introduction

Consider an online forum where users can post sensitive data on a server and may be concerned
about being linked to their posts – a health forum, for example. In order to organize posts by rele-
vance, the server may want to rank posts according to user reputation, which we assume is measured
by some arbitrary number. Arguably, the forum’s owners would like to implement an anonymous
authentication protocol [2], where users can be authenticated to a server while maintaining their
anonymity.

In the typical solution to the anonymous authentication problem “the authentication protocol
carried out between the user and the server does not identify the user” [2]. Instead, the server
verifies that the user belongs to some authorized group, such as the group of users with the same
reputation. But what if the reputation is sufficiently “fine grained”? On the worst case, if each
user has a different reputation level then the authorized group is of size 1. In such a case, it is
unavoidable that the server will learn the user’s identity. Even worse, any party may learn the
user’s identity since the security notion does not rule out public verification of the authentication
process. Clearly, anonymous authentication does not suffice for our goal.

Can we still provide some meaningful form of anonymity for the user? It turns out that the
answer to this question is positive if we are willing to consider a different form of anonymity.



Suppose we are no longer concerned about whether the server would identify the user but whether
an eavesdropper – or any party other than the server – can be certain that a given user indeed
participated. Moreover, we would like to preserve anonymity even in the case the server is malicious
and may use any strategy to prove to the external party that the given user indeed participated
in the protocol. We seek guarantees that no such server can succeed and call this goal externally
anonymous authentication (EAA). More precisely, an EAA protocol should satisfy the following
two requirements

Secure authentication: No user should be able to fool the server about its identity (except with
very small probability).

External anonymity: Users can not be linked to their messages by parties other than the server,
even when the server is malicious.

Yet, rigorously formalizing the above is tricky. In order to gain some intuition, it is helpful to ab-
stract the desired properties using a “functionality” such as those used in secure function evaluation
definitions [29]. A good starting point is the functionality for ideally authenticated channels Fauth [4],
which allows a sender S to transmit an authenticated message to a receiver R. The functionality
is essentially Fauth(m) = (m,m), where the input is given by S, the first output is R’s output, and
the second output is the adversary’s output. In our multiparty setting, with users P1, P2, . . . , Pn
and server S, it becomes Fauth(m1,m2, . . . ,mn) = ((m1,m2, . . . ,mn), (m1,m2, . . . ,mn)). Certainly,
Fauth provides secure authentication but no anonymity. In order to provide anonymity, we must hide
the parties identities. We do so by setting the adversary’s output to the lexicographically sorted
list Sort(m1,m2, . . . ,mn). Consequently, the semantics of the EAA primitive can be captured by

Feaa(m1,m2, . . . ,mn)
def
= ((m1, . . . ,mn), Sort(m1, . . . ,mn)) .

The fact that the server’s output contains a message m in the i-th position is not a proof of the
participation of the i-th user since the server’s output can be produced without the participation of
i-th user.

This last property of Feaa is captured by the concept of deniability (originally put forward by
Dwork et al. [16] and refined by Dodis et al. [11, 13]). Roughly speaking, a protocol is deniable if
the server nor any other participant can prove that a particular party participated in the protocol.

Can we realize Feaa with some protocol π while preserving deniability? Here the cryptographic
framework where security is proven becomes crucial. Indeed, it has been shown that a proper
framework needs to be used in order to preserve deniability [6, 11, 14, 22]. In fact, the Generalized
Universal Composability (GUC) framework from Canetti et al. [6] was specifically proposed to
preserve deniability, although this work does not formalize a “general” notion for this concept.

So far, it has been shown that the GUC framework captures deniability only for specific tasks,
via the following approach: Given a task T , define a deniability experiment for T and then show
that a protocol satisfies this experiment if and only it realizes the ideal functionality for T in the
GUC framework. This approach have been successfully done for authentication and key exchange
by Dodis et al. [11], and for zero-knowledge by Dodis et al. [13].

Defining Deniability for Arbitrary Multiparty protocols: Instead of repeating the pre-
vious approach for external anonymous authentication, we put forward the question of whether
deniability can be defined independently from any particular task. We answer this question in the
affirmative by providing a natural extension of the definition of Dodis et al. for arbitrary multiparty
protocols.

2



To gain some intuition on our definition, we recall (a simplified version of) the deniable zero-
knowledge definition of Dodis et al. [13]. There, a prover P proves a true statement x to a verifier
V in a setting where both of them are part of a network environment which includes some trusted
parties or setup (for example, PKI). Now, let π be a protocol that implements a deniable zero-
knowledge proof from P to V . The protocol is required to be complete, sound, and zero-knowledge.
According to Dodis et al. a protocol π is an online deniable zero-knowledge protocol if, when x ∈ L,
it can be simulated only with access to the statement x and the public information of trusted parties,
but without participation of P nor V .

Interestingly, even if one abstracts out the properties which are specific to the zero-knowledge
task (completeness, soundness, and zero-knowledge), we still get a meaningful security property.
Namely: “A protocol π is deniable if and only if it can be simulated given only its inputs and public
information, but without participation of any honest party. ”

Note that neither correctness nor privacy are required from a protocol with this property, and
therefore, a protocol achieving it might be trivial to construct. But, in that case, the protocol will
probably not realize any interesting task. Deniable protocols become interesting when they also
realize some non-trivial functionality.

We formalize online deniability by proposing an experiment – similar to the one by Dodis
et al. [11,14] – which, contrarily to those works, does not require privacy nor correctness. We show
that an arbitrary multiparty protocol satisfies our deniability definition if an only if it realizes a
fixed ideal functionality Fden in the GUC framework. Since a functionality is a special case of a
protocol, this result also enables us to prove that most GUC functionalities we are aware of (and
their realizations) are deniable. Yet, not all the functionalities are deniable, as we discuss below.

We gain further confidence in our definition by noting that a similar characterization of Bi-deni-
ability in the LUC framework [9] can be captured with the LUC equivalent of Fden. In the process,
we take the opportunity to correct a small mistake in their notion, as we explain in next section.

The Non-Triviality of Our Definition of Deniability: It is easy to see that there are
protocols that cannot be deniable. Consider one that uses a UF-CMA public-key signature scheme
[18] where a signature for an honest user and her verification key are public, cannot be deniable
– any simulation from the inputs only will contradict the UF-CMA property. On the other hand,
the protocols proposed in [11, 13] can be shown deniable under our definition. This provides some
support to our characterization. If we consider functionalities, on the other hand, the landscape
is not so clear. One functionality that appears to be not deniable is Fkeia [11]. Whether we can
characterize the class of meaningful non-deniable functionalities is an interesting open problem.

An external anonymous authentication protocol: We conclude applying the definitional
tools to our motivating problem. Concretely, we formulate a (not simplified) functionality for ex-
ternally anonymous authenticated channel Feaa, and we show that there is a simple yet effective
construction. Our construction combines an anonymous channel and the deniable authentication
protocol secure against static adversaries of Dodis et al. [11] with some modifications. We prove
that our construction is secure under the Decisional Diffie-Hellman (DDH) assumption. A technical
byproduct of this proof is an improved bound on the reduction from the so-called Multi Decisional
Diffie Hellman (Multi-DDH) to DDH. This result may be of independent interest.
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1.1 Related Work

Deniability, Offline and Online: Deniable authentication was first defined by Dwork et al.
in their seminal work on Concurrent Zero-Knowledge [16]. Later, Dodis et al. refined the notion,
introducing the concept of online deniability. They define and study the concept in the context of
authentication, identification, and Key Exchange [11], and Zero Knowledge [14]. They showed that,
for each of these tasks, deniability is equivalent to GUC-realizing the corresponding ideal function-
alities. As consequence, their definition implies security under general concurrent composition.

Several protocols that achieve deniability exist for different tasks: deniable authentication and
identification (e.g. [11, 15–17, 21, 23, 24]), deniable key exchange (e.g. [25, 28]), and deniable zero
knowledge [14, 22]. All of them, however, fall in one of the two categories: (offline) deniable and
online-deniable. Most of the protocols proposed before [11, 14] are offline deniable (with the sole
exception of HMQV [24] as noted by Dodis et al. [11]). In our work, we focus on the strictly stronger
requirement of online deniability.

Online Deniable Authentication: Dodis et al. presented an online-deniable authentication
with respect to static adversaries [11]. They also showed the impossibility of the same task with
respect to adaptive adversaries. Our paper builds on these results, first by using a modified version
of their protocol as the underlying authentication procedure in our anonymous authentication
protocol, and second, by restricting our adversarial model to static adversaries.

Anonymous Authentication: Most work on the anonymous authentication literature relies on
ring signatures in order to make the user identify anonymously as member of an authorized group
[2, 12, 20]. Unfortunately, ring signatures cannot provide meaningful anonymity guarantees when
the ring size is one. Naor also proposed the notion of deniable ring signatures which combines
deniability and ring signatures [21]. However, as noted by Dodis et al., Naor’s protocol cannot be
online deniable as long as verifiers do not register public keys [11]. We also note that, in our setting,
deniable ring signature do not necessarily provide anonymity among users of different rings (in our
example users with different reputations).

Bi-Deniability and Deniable Encryption: Canetti and Vald [9, 10] introduced the notion of
Bi-Deniability with many similarities to the definition of deniability of Dodis et al. [11] as well as
to the one of our work. Their definition is motivated by a different problem (capturing collusion-
freeness and game-theoretic solution concepts) in a UC variant called Local Universal Composability
(LUC). They showed that a two-party protocol is Bi-Deniable if and only if it LUC-realizes Fauth,
the LUC authentication functionality (defined in [9, 10]).

Unfortunately, there is a minor technical issue in their result that we discovered when comparing
their notion with ours. Functionality Fauth requires a specific correctness property : if the sender
provides m to the protocol, the receiver receives the same m. This is not the case in other deniable
protocols (zero-knowledge for example) so the their proposed characterization is incorrect. We
conclude that the right characterization is not Fauth but Fden, the LUC version of our Fden. A more
detailed description of the problem and a way to patch this issue is discussed in the full version of
this work.

Another meaning for deniability is that of deniable encryption (e.g. [7]). A deniable encryption
scheme must allow the receiver (or the sender) to deny that the content of a ciphertext is a given
plaintext. In contrast, in our definition an encryption scheme E is essentially deniable if a party
executing E can deny at all that the execution is taking place.
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Simplifying Constructions: Ishai et al. [19] introduced an anonymity functionality Anon (which
provides sender and receiver anonymity) in order to construct secure channels from anonymous
channels. Interestingly, our ideal functionality for anonymous authenticated channels Feaa can be
used to significantly simplify their construction. Due to space restrictions, we defer this discussion
to the full version of this work.

1.2 Our Contribution

In this work, we define the concept of online deniability independently of any specific task. We also
provide an alternative characterization by showing that a protocol is online deniable if and only if it
GUC realizes a given ideal functionality Fden. We note that this result also applies to Bi-deniability
in the LUC framework [9, 10].

We extend the characterization of deniable protocols (and functionalities) by showing that
most ideal functionalities are deniable. Our result implies all previous results on deniability we are
aware of: deniability for GUC-secure Zero Knowledge protocols [13, Thm.8], deniability for GUC-
secure authentication [11, Prop.1], and deniability of GUC-secure key exchange and identification
from [11].

Finally, we apply our results on deniability to realize the functionality that motivated this work,
which combines anonymous and authenticated channels. To prove the security of the protocol,
we use the fact that the Multi-Decisional Diffie-Hellman (Multi-DDH) assumption follows from the
Decisional Diffie-Hellman (DDH) assumption [3]. In the process, we give an improved bound on the
Multi-DDH vs. DDH relation: the tightness of our reduction is linear compared to quadratic from
the best known result [3].

1.3 Organization

We briefly review UC and GUC frameworks in Section 2. We then define deniability, provide a
characterization of deniable protocols on Section 3. Finally, in Section 4, we conclude by defining
an ideal functionality for externally anonymous authenticated channel Feaa, designing a protocol
for it, and formally proving it GUC realizes Feaa in the Ḡkrk-hybrid model.

2 Preliminaries

Model: We define and prove the security guarantees of our protocol in the Generalized Universal
Composability (GUC) framework as described in [6]. We also use GUC to provide an alternative
characterization of deniability. Since GUC is a generalization of the Universal Composability (UC)
framework [5], we briefly and informally outline both of them here. A more detailed exposition can
be found in [4, 5] for UC and [6,26] for GUC.

The Universal Composability framework (UC): In the UC framework, the desired proper-
ties of cryptographic protocols are defined in terms of tasks or functionalities. A functionality is a
“trusted third party” that obtains inputs directly from the parties, performs certain instructions on
these inputs, and provides the appropriate outputs back to the parties. A protocol securely imple-
ments a given cryptographic task if running the protocol against a realistic (i.e. real-life) adversary
“emulates” the execution of an ideal process. In the ideal process, the task is computed by the
trusted party directly interacting with the parties against a very limited adversary called the ideal
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adversary. The notion of “emulation” involves a distinguisher Z which not only provides the inputs
to the parties and sees their outputs but also interacts with the adversary, with the goal of telling
whether it is interacting with a real protocol and the real-life adversary, or with the functionality
and the ideal-adversary. Good emulation means no such environment is successful. See details and
proofs in [5]. We denote EXECZ,A,π(k) the distribution of the output of environment Z when exe-
cuted with adversary A, protocol π, and security parameter k. If the protocol assumes the presence
of some functionalities F1, . . . ,Fm, the output of the environment is denoted by EXECF1,...,Fm

Z,A,π (k)

or simply EXECF1,...,Fm
Z,A,π , when considering the associated family of distributions. Similarly, in the

ideal world, the output of Z executed with S and the ideal protocol with functionality F is denoted
EXECFZ,S,IDEALF

.

The main advantage of UC security is that it composes, that is, the security of any protocol is
maintained even when the protocol is being executed concurrently with other, possibly adversarially
chosen, protocols. But there is a restriction, the protocol must be subroutine respecting. This
means that the protocol itself and all its subroutines do not provide any input or output to any other
protocol. In other words, the protocol and the subroutines called by the protocol are independent
of all other protocols and cannot share state with other protocols.

The Generalized UC framework (GUC): A UC-secure protocol must be subroutine respecting,
otherwise the UC-theorem may not be true. Furthermore, a subroutine respecting protocol is
unrealistic when setup assumptions are required (which is the case of more interesting functionalities
[8]), as noted by Canetti et al. [6].

In the GUC framework [6], subroutine respecting protocols are extended so they can be Ḡ-
subroutine respecting : protocols can be subroutine respecting except that are allowed to call the
shared functionality Ḡ. The GUC framework models Ḡ-subroutine respecting protocols by allowing
the environment to impersonate dummy parties connected to the shared functionality. This small
change lets the environment simulate protocols that share state with the analyzed protocol.

The definitions of execution and emulation in GUC are almost identical to those of UC but
notation changes. From now on, we denote by EXEC both the UC-execution as well as the GUC-
execution, and by UC-emulation we also refer to GUC-emulation. Analogously to UC, it is possible
to prove a composition theorem for Ḡ-subroutine respecting protocols.

3 Online Deniability

In this section, we generalize the notions of deniability for specific tasks available in the literature,
namely online authentication deniability, online deniable key-exchange [11], and online deniable
zero-knowledge [13], to any task. We call our definition simply online deniability. Our definition
follows that in [11,13] but it does not require correctness nor privacy.

The lack of correctness implies that, from a definitional standpoint, we do not commit to any
specific correctness property. In contrast, in deniable authentication an honest receiver is required
to output the same message sent by an honest sender. Similarly, in deniable zero-knowledge, both
completeness and soundness are required. The lack of privacy implies that we do not guarantee any
privacy property in a deniable protocol, in contrast to deniable zero-knowledge where the witness
remains hidden to any other party than the prover.

The Players: We consider a judge J , an informant I, misinformant M, and a global setup
functionality Ḡ. Also, we assume there are parties P1, . . . , Pn running an arbitrary distributed
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protocol π.1 All parties can communicate with a shared functionality Ḡ (which may model, for
example, availability of a PKI) or with I. The entities J , I and M have also access to the public
interface of Ḡ, and also to the secret interface but only in the case of corrupted parties.

The Real World: In the real world, the first entity activated is the judge J . It then activates
I while providing I with the input of each party participating in π. Upon activation, party I
forwards (possibly different) inputs to the actual parties, witnesses (monitors) the execution of
protocol π, and interact with J (possibly sending evidence that an execution of π is taking place).
The informant I can adaptively corrupt parties if instructed by J . When it does so, the entire
internal state of the corrupted party is revealed to I, who takes control of the corrupted party.
Finally, at some point of the execution J is activated, outputs a single bit and halts. Given an
integer k, the security parameter, we denote by RealDenḠJ ,I,π(k) the output of J executed in the

real world with informant I, shared functionality Ḡ, and protocol π.

The Simulated World: In the simulated world, J is the first party activated. Then it activates
M with the inputs of each party. Contrarily to the real world, in the simulated world honest parties
cannot be activated by M, and thus actual parties never executes the protocol π. Nonetheless, M
is also able to adaptively corrupt parties. Corruption works exactly as in the real world. Finally, at
some point of the execution J is activated, outputs a single bit and halts. Given an integer k, the
security parameter, we denote by SimDenḠJ ,M(k) the output of a judge J executed in the simulated

world with misinformant M, and setup functionality Ḡ.

Definition 1. Let π be an arbitrary Ḡ-subroutine respecting multiparty protocol. We say that pro-
tocol π is online deniable if for all judge J and all informant I there exists a misinformant M
such that RealDenḠJ ,I,π ≈ SimDenḠJ ,M.

3.1 Online deniability in GUC

We now show that deniability in the real world can be seen as a syntactic transformation of the
GUC real world experiment – any environment and adversary can be simulated with a judge and
an informant, and vice versa. The proof is in Appendix A.1.

Lemma 1. For each judge J and for each informant I there exists an environment ZJ and an ad-
versary AI such that for all protocol π executed in the Ḡ-hybrid model RealDenḠJ ,I,π ≡ EXECḠZJ ,AI ,π.

Conversely, for all environment Z and for all adversary A there exists a judge J Z and an informant
IA such that EXECḠZ,A,π ≡ RealDenḠJZ ,IA,π

The functionality Fden, defined in figure 1, provides all the necessary information to run a
misinformant, and thus a simulator can perfectly simulate the misinformant. We now show a result
equivalent to the one in [11].

Theorem 1. A Ḡ-subroutine respecting protocol π is online deniable if and only if it GUC-realizes
the ideal functionality Fden in the Ḡ-hybrid model.

1 Also, we allow algorithm J to take an auxiliary input z ∈ {0, 1}∗ and to run in polynomial time with respect
to |z| and k. Similarly, due to some technicalities, we require the informant and misinformant to be probabilistic
polynomial time in the sense of UC adversaries [4, version 2013].

7



The ideal functionality Fden running with parties P̃1, . . . , P̃n proceeds as follows:

1. When xi is received from party P̃i, send (Input, P̃i, x) to the adversary S.
2. When (Output, P̃i, y) is received from the adversary S, send y to P̃i.

Fig. 1. The ideal functionality Fden

Proof. We first prove the first implication, namely: if π is online deniable then π GUC-emulates
Fden. Let Z be an environment and A be an adversary. By lemma 1, there exists a judge J Z that
simulates Z such that RealDenḠJZ ,IA,π ≡ EXECḠZ,A,π. By deniability of π, there exists a misinformant

M such that
∣∣∣Pr

[
RealDenḠJZ ,IA,π = 1

]
− Pr

[
SimDenḠJZ ,M = 1

]∣∣∣ = ε, where ε is negligible in the

security parameter.

The ideal adversary SM with access to the ideal functionality Fden proceeds as follows:

1. Simulate M.
2. When (Input, P̃i, x) is received from Fden, send (P̃i, x) to M.
3. When M sends (P̃i, y), send (Output, P̃i, y) to Fden.
4. When M corrupts party Pi, party P̃i is corrupted and the internal state of P̃i is revealed to M.
5. When x is received from Z, send x to M.
6. When x is received from M, send x to Z.

Fig. 2. The ideal adversary SM

Consider now the ideal adversary SM, with (oracle) access toM, as defined in figure 2. Note that

in both, SimDenḠJZ ,M and EXECḠ,Fden

Z,SM,IDEALFden
, Z is “hardwired” with M. The only difference is

that in EXECḠ,Fden

Z,SM,IDEALFden
the inputs are directly given by Z to the parties, but in SimDenḠJZ ,M the

inputs are forwarded from J Z to the parties byM. In both cases the input given to each party is the

same, and consequently the view of Z is the same. Therefore SimDenḠJZ ,M ≡ EXECḠ,Fden

Z,SM,IDEALFden
,

which implies that
∣∣∣Pr

[
EXECḠZ,A,π = 1

]
− Pr

[
EXECḠ,Fden

Z,SM = 1
]∣∣∣ = ε. Therefore, π GUC-emulates

Fden.
The other direction is similar. Suppose that π GUC-emulates Fden in the Ḡ-hybrid model. Let

J be a judge and I be an informant, by lemma 1 there exists an environment ZJ and an adversary
AI such that RealDenḠJ ,I,π ≡ EXECḠZJ ,AI . By hypothesis there exists a simulator S such that the

advantage of ZJ distinguishing between π and Fden is negligible. Similarly to the first implication,
a misinformant MS can simulate S for J . This is indistinguishable from I to J , and therefore π
is online deniable.

A Sufficient Condition for Online Deniability: It seems that deniability is a concern not
important per se, it becomes important when one wishes it to be added to some existent task,
say, GUC-realizing some functionality F . It appears that a large class of functionalities are indeed
deniable (Fauth and Fzk are examples). Indeed, this is simply a consequence of the fact that most
ideal functionalities are subroutine respecting.
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Corollary 1. Let π be a subroutine respecting protocol, then π is online deniable. Furthermore, if
ρ is Ḡ-subroutine respecting but only have access to the public interface of Ḡ (that is the interface
that is accessible by the adversary), then ρ is also online deniable.

Proof. The view of a subroutine respecting protocol is completely determined by its inputs and
randomness, thus π can be perfectly simulated only with access to the inputs returned by Fden.
Thus π GUC-emulates Fden and, by Theorem 1, π must be deniable. Clearly, this simulation can
easily be extended to the case the protocol requires access to the shared functionality Ḡ so the
adversary only sees the public interface.

By the transitivity of the GUC-emulation relation, we remark that a proof that a protocol GUC-
realizes some deniable ideal functionality also implies that the protocol is deniable.

4 Externally Anonymous Authenticated Channels

4.1 The Feaa ideal functionality

An “anonymous authenticated channel” should allow parties to send authenticated messages to
any other party without revealing their identities to anyone except the receiver. Since the receiver
knows the sender identity, we call this variant external anonymity. We formally define an externally-
anonymous authenticated channel via an ideal functionality called Feaa (fig. 3) which requires the
shared functionality Ḡkrk (fig. 5). Note that the functionality Feaa reveals just the value of each
sent message to the adversary but not the identities related to those messages. This holds while
the receiver of the message is not corrupt – but even in that situation the information revealed by
Feaa is completely simulatable by any one. This holds because functionality Feaa is indeed online
deniable, guaranteed by corollary 2.

Functionality Feaa parameterized by an integer κ, running with shared functionality Ḡkrk, parties P1, . . . , Pn, and
adversary S, proceeds as follows.

Initialization: Initialize multisets Mj ← ∅ for each j ∈ {1, . . . , n} and M ← ∅.
Message reception: Suppose (Send,m, j) is received from P̃i, do:

1. If P̃i or P̃j are not registered in Ḡkrk or i = j, then send ⊥ to P̃i.
2. Else, send (Sent, P̃i) to S and (Sent,m, j) to P̃i, and let Mj ←Mj ] {(m, i)} and M ←M ] {m} honest.

Message delivery: Once that |M | = κ, for each j ∈ {1, . . . , n} send (Messages,Mj) to P̃j , and send (Messages,M)
to S.

Fig. 3. The ideal functionality Feaa

The integer κ statically fixes the number of exchanged messages per session. We include this
parameter in order to define a condition that triggers the delivery of messages. In order to realize
Feaa, we will require that the underlying anonymity functionality also fixes the number of exchanged
messages per session to κ.

Note that Feaa requires that senders and receivers have been registered on Ḡkrk. This condition
means that registration on Ḡkrk is required but not provided by Feaa.

Corollary 2. The functionality Feaa is online deniable.
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Proof. Note that Feaa is Ḡkrk-subroutine respecting, but all information needed from Ḡkrk is whether
or not a party is registered. Certainly, this information is public and thus Feaa is online deniable
as consequence of Corollary 1.

4.2 Primitives and setup assumptions

In order realize Feaa, we require an anonymous channel functionality Fanon and a global PKI
modeled by the shared functionality Ḡkrk.

Anonymous Channels: Anonymous channels allow users to exchange messages without revealing
their identities. We define an anonymous channel functionality Fanon in fig. 4. We note that Fanon

can be realized, for example, using the universal composable mixnet proposed by Wikström [27].

The Ideal functionality Fanon, parameterized by an integer κ, running parties P1, . . . , Pn, and ideal adversary S

1. Initialize a list L← ∅.
2. When (Send,m) is received from Pi, append m to the list L. Then, hand (Pi, Sent) to S.
3. Once that |L| = κ, sort the list L lexicographically to form a list L′, and hand (Output, L′) to S and to Pi, for

i = 1 to k.

Fig. 4. The functionality Fanon.

The Key Registration with Knowledge Functionality: In this section, we recall the Φ-Key
Registration with Knowledge Functionality [11]. We require that honest parties retrieve secrets keys
only using our protocol SIGMIX, defined in Sect. 4.4. In other words, Φ = {SIGMIX}.

Parameterized by a security parameter λ, a protocol (or, more generally, a list of protocols) Φ, and a (deterministic)
key generation function Gen, shared functionality Ḡkrk proceeds as follows when running with parties P1, . . . , Pn:

Registration: When receiving a message (Register) from an honest party Pi that has not previously registered,

sample r
R← {0, 1}λ then compute (PKi, SKi)← Genλ(r) and record the tuple (Pi, PKi, SKi).

Corrupt Registration: When receiving a message (Register, r) from a corrupt party Pi that has not previously
registered, compute (PKi, SKi)← Genλ(r) and record the tuple (Pi, PKi, SKi).

Public Key Retrieval: When receiving a message (Retrieve, Pi) from any party Pj (where i = j is allowed), if
there is a previously recorded tuple of the form (Pi, PKi, SKi), then return (Pi, PKi) to Pj . Otherwise return
(Pi,⊥) to Pj .

Secret Key Retrieval: When receiving a message (RetrieveSecret, Pi) from a party Pi that is either corrupt or
honestly running the protocol code for Φ, if there is a previously recorded tuple of the form (Pi, PKi, SKi) then
return (Pi, PKi, SKi) to Pi. In all other cases, return (Pi,⊥).

Fig. 5. The Φ-Key Registration with Knowledge shared functionality [11].

4.3 Realizing Feaa

A first attempt to realize Feaa is to combine Fanon with the GUC-secure authentication protocol
with respect to static adversaries of Dodis et al. [11]. In their protocol, Pi sends an authenticated
message m to Pj by attaching a MAC σ = MACki,j (m). The symmetric shared secret key ki,j = kj,i
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can be non interactively computed by Pi using Pj ’s public key and Pi’s secret key (both keys
registered in Ḡkrk), and it can be also computed by Pj with Pi’s public key and Pj ’s secret key.
Note that a corrupted receiver Pj may not convince a third party about the identity of the sender
of (m,σ). Indeed, given that the key ki,j used to produce σ can also be produced by Pj , (m,σ) can
be obtained without participation of Pi when Pj is corrupted.

We will argue that this approach fails. First, note that nothing in the security definition of
a MAC (UF-CMA) prevents the existence of an algorithm Check which, given two MACs values
σ = MACk(m) and σ′ = MACk′(m

′), returns 1 if and only if k = k′.2

Fix an execution where party P1 sends 0||σ1 = MACk1,2(0) to P2 and then P2 sends 1||σ2 =
MACk1,2(1) to P1. By anonymity, the only information leaked to the adversary should be the set of
sent messages {0, 1} and the fact that P1 sent a message and then P2 sent another message. The same
information is leaked in a similar execution with the only exception that P2 sends 1||σ2 = MACk1,3(1)
to another party P3. An adversary can distinguish these executions by executing Check(σ1, σ2); in
the first execution it should return 1 and in the second 0.

We fix this problem by attaching to the message m the evaluation of a Variable Input-Pseudo
Random Function (VI-PRF) [1] Eki,j on m. Therefore, if Pi wants to anonymously send an authen-
ticated message m to Pj , Pi simply anonymously sends m||σ where σ = Eki,j (m). Note that now
the simulator is no longer concerned about the keys used to generate σ; it can generate σ by simply
picking a fresh random value. Unfortunately, this simulation procedure will be only successful if the
same message is never sent twice to the same receiver. Indeed, if the same message is sent twice to
the same receiver, the simulator can not decide whether to attach the same random value twice or
two independently chosen random values.

We can easily get rid of this assumption requiring the senders to attach a random nonce to each
message, and requiring the receivers to never accept the same message from the same receiver. 3

Note that in a real implementation, this can be also achieved by attaching, for example, the current
time to each message.

4.4 The SIGMIX protocol

The SIGMIX protocol runs in the Fanon, Ḡkrk-hybrid model and with static adversaries. We fix the
key generation algorithm Gen of Ḡkrk with an algorithm that, using randomness r, sample a random
element x from Zq and return the pair (gx, x), where g is the generator of a cyclic group Gq of
order q. It is stressed that any other protocol using Ḡkrk might share public keys with SIGMIX. We
consider the functionality Fanon as a traditional UC ideal functionality, meaning that each instance
of Fanon is local to each calling protocol.

The SIGMIX protocol is described in figure 6.

4.5 Proof of security

Before we prove the security of SIGMIX, we bound the relation between the hardness of the Multi
Decisional Diffie-Hellman assumption and the (standard) Decisional Diffie-Hellman assumption [3].

2 Such a scheme can be easily constructed in the Random Oracle Model. Simply attach H(k) to the MAC, i.e.
MAC′k(m) = H(k)||MACk(m). The value H(k) does not help a forger to break MAC′ as long as H(k) is a random
value independent from k. Given two MACs h||σ = H(k)||MACk(m) and h′||σ′ = H(k′)||MACk′(m

′), the algorithm
Check returns 1 if and only if h = h′.

3 In the proof of security we make a stronger requirement to simplify the proof. However, using a random nonce also
allows us to get rid of this stronger assumption.
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The protocol SIGMIXκ, running with parties P1, . . . , Pn in the Fanon, Ḡkrk-hybrid model, proceeds as follows:

Sender Pi: Each sender Pi and proceeds as follows:

1. Wait for input (Send,m, j).
2. If Pi or Pj are not registered on Ḡkrk, or i = j, return ⊥. Compute ki,j ← yxij , and compute σ ← Eki,j (m), where

xi is Pi’s secret key and yj is Pj ’s public key.
3. Hand (Send,m||σ) to Fanon and return (Sent,m, j).

Receiver Pj: Each receiver Pj proceeds as follows:

1. Wait for an input (Output, L) from Fanon.
2. Retrieve y1, . . . , yn, the public keys of all parties participating in the protocol, and retrieve xj , Pj ’s secret key,

from Ḡkrk. For each i ∈ {1, . . . , n}, if yi 6=⊥ and xj 6=⊥ compute the shared secret ki,j ← y
xj
i , otherwise ki,j ←⊥.

3. Let the multiset Mj ← ∅. For each i ∈ {1, . . . , n} and each (m||σ) ∈ L, if ki,j 6=⊥ and σ = Eki,j (m), then
Mj ←Mj ] {(m, i)}. Return (Messages,Mj).

Fig. 6. The protocol SIGMIX.

Proposition 1. Let Gq be a cyclic group where the DDH assumption holds, then the Multi-DDH

assumption also holds, that is: ({gxi}ni=1, {gxixj}ni=1,j>i)
c
≈ ({gxi}ni=1, {gri,j}ni=1,j>i), where xi ∈R Gq,

ri,j ∈R Gq for all i and j. Specifically, for each adversary D attacking Multi-DDH there exists an
adversary D′ attacking DDH such that n ·AdvDDH

D′ (k) ≥ AdvMDDH
D (k).

This linear bound on the advantages is tighter than the quadratic bound given in [3] which, to
the best of our knowledge, is the best bound known for Multi-DDH. The proof is in Appendix A.2.

The security of SIGMIX is guaranteed by the following theorem which is proven in Appendix A.3.

Theorem 2. Suppose that E : {0, 1}k × {0, 1}∗ → {0, 1}t is a VI-PRF and that DDH holds in
Gq, then SIGMIX GUC-realizes the ideal functionality Feaa in the Ḡkrk-hybrid model with respect to
environments and adversaries that do not play replay attacks. Concretely, let n be the number of
participants and k the security parameter of an execution of SIGMIX. Then, for all environment Z
and for all adversary A there exist a simulator S, a DDH distinguisher DDDH, and a distinguisher
DPRF such that for all k large enough

n ·AdvDDH
DDDH

(k) + (κ+ 1)AdvPRF
E,DPRF

(k) +
κ

2t
≥

∣∣∣∣∣∣Pr
[
EXECḠkrk,Fanon

Z,A,SIGMIX(k) = 1
]
−

Pr
[
EXECḠkrk,Feaa

Z,S,IDEALFeaa
(k) = 1

]∣∣∣∣∣∣
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A Proofs

A.1 Proof of Lemma 1

Proof. Let J be a judge and I be an informant. Then we can define the environment ZJ and an
adversary AI , such that the output of ZJ is equal to the output of J .

The environment ZJ simulates J with a direct link to I. This is done by appending the
prefix “Judge-Inform :” to each message sent by J to I, then the new message is sent to AI .
Symmetrically, when “Inform-Judge :m” is received from AI , m is forwarded to J as coming from
I. When (Input, Pi, x) is received from AI , it activates party Pi with input x. When party Pi
produces output y, ZJ sends (Output, Pi, y) to AI .

The adversary AI simulates I with a direct link to J symmetrically as it is made by ZJ . When
I produces input x for party Pi, AI sends (Input, Pi, x) to ZJ . When (Output, Pi, y) is received
from ZJ , I is informed that Pi outputs yi. When I corrupts party Pi, AI also corrupts Pi and
reveals the internal state of Pi to I. Clearly, the simulation of J and I is perfect, and thus the
output of ZJ follows the same distribution that follows the output of J .

The other direction is similar. Let Z be a judge and A be an adversary. The judge J Z redirects
input that Z sends to the parties to the informant. The informant IA simulates the adversary A
and starts an execution of π following the instructions of J Z . The simulation of Z and A is also
perfect, and thus the output of J Z follows the same distribution that follows the output of Z.

A.2 Proof of Proposition 1

Proof. The proof is based on an hybrid argument, where in each hybrid χ` the shared keys of
parties P1, . . . , P` are randomly chosen and other shared keys don’t. That is

χ`
def
=
(

({gxi}ni=1) ,
(
{gri,j}`,`i=1,j=i

)
,
(
{gxixj}n,ni=1,j=`+1

))
Where xi ∈R Gq and ri,j ∈R Gq for all i, j ∈ 1, . . . , n. LetD be an adversary that attacks Multi-DDH.
In figure 7 we describe an adversary that chooses a random ` ∈ {1, . . . , n} and, if D′ breaks
Multi-DDH, it distinguish between hybrids χ` and χ`+1.

Clearly, if z = xy then γ3 =
(
{gδixy}`i=1

)
and thus χ = χ`. Otherwise, if z ∈R Gq then

χ = χ`+1. Then, the advantage of D′ is given by 1
nAdvMDDH

D (k). From the above, proving the
indistinguishability between χ1 and χn is straightforward.

A.3 Proof of Theorem 2 (sketch)

Proof. The proof proceeds through the indistinguishability of 4 games: Gamereal, Gamerand keys,
Gamerand, and Gameideal.

Let Z be an environment and A an adversary. Gamereal consist of an execution of SIGMIX
with environment Z and adversary A in the real world. Gamerand keys is the same as Gamereal
except that instead of executing SIGMIX, the protocol SIGMIXrand keys is executed. SIGMIXrand keys

is almost equal to SIGMIX, except that for each pair of honest parties Pi and Pj , i 6= j, the shared
keys ki,j and kj,i are replaced with a random ri,j ∈ Gq. Gamerand is the same as Gamerand keys

except that, instead of SIGMIXrand keys, the protocol SIGMIXrand is executed. SIGMIXrand is almost
equal to SIGMIXrand keys, except that each call to E with shared key ki,j , where both Pi and Pj are
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On input (gx, gy, gz) the adversary D′ does the following:

1. `
R← {1, . . . , n}.

2. Compute public keys for parties in {P1, . . . , P`}:
(a) δ1 ← 1.

(b) δi
R← Gq for i = 2 to `.

(c) gxi ← (gx)δi for i = 1 to `.
3. Compute the public key of party P`+1, that is g

x`+1 ← gy .

4. Compute secret keys for parties not in {P1, . . . , P`}, that is xi
R← Gq for i = ` + 2 to n.

5. Let γ1 bet the set of all public keys, γ1 ← ({gxi}ni=1).
6. Compute the shared keys for parties in {P1, . . . , P`}:

(a) ri,j
R← Gq for i = 1 to ` and j = i to `.

(b) γ2 ←
(
{gri,j }`,`i=1,j=i

)
.

7. Compute the shared key between all parties in {P1, . . . , P`} and P`+1:

(a) g
ri,`+1 ← (gz)δi for i = 1 to `.

(b) γ3 ←
(
{gri,`+1}`i=1

)
.

8. Compute the shared keys for which at least one exponent is known:

(a) g
xixj ← (gx)

δixj for i = 1 to ` and j = ` + 2 to n.

(b) γ4 ←
(
{gxixj }`,n

i=1,j=`+2

)
.

(c) γ5 ←
(
{gxixj }n,n

i=`+2,j=i

)
.

9. χ← (γ1,γ2,γ3,γ4,γ5).
10. Run D(χ) and output whatever it outputs.

Fig. 7. Adversary D′ attacking DDH

honest, is replaced by a call to a completely random function F . Gameideal consist of an execution
of Feaa with environment Z and the simulator S (defined in figure 8) in the ideal world. We let the
output of each game be the output of the environment.

Is not hard to see that indistinguishability between Gamereal and Gamerand keys follows directly
from the hardness of Multi-DDH. Also, by proposition 1, there exist an adversary DDDH such that
n ·AdvDDH

DDDH
(k) ≥

∣∣Pr[Gamereal]− Pr[Gamerand keys]
∣∣ .

The indistinguishability between Gamerand keys and Gamerand is based on an hybrid argument.
For each i ∈ {0, . . . , κ}, we define the hybrid Gameirand such that the l-th shared key, l ≤ i, is
replaced by a randomly chosen key. While the l-th shared key, l > i is chosen as in Gamerand keys.
By a standard hybrid argument we get that there exist a distinguisher DPRF such that (κ + 1) ·
AdvPRF

E,DPRF
(k) ≥

∣∣Pr
[
Gamerand keys = 1

]
− Pr [Gamerand = 1]

∣∣.
Let IA ⊆ {1, . . . , n} be the set indexes of parties corrupted by A. The ideal adversary SA is

described in figure 8, and it simulates the execution of SIGMIXrand only with access to Feaa.

Since the values of messages sent by honest senders remains unknown to SA until all messages
have been sent, when Feaa informs that a party P̃j (honest) sent some message, SA cheats the
simulated A making Fanon tells A that some message have been sent by P̃j . When the set of
messages M is revealed to SA, it silently instruct the simulated parties to send the messages to
Fanon. We will show that this seems indistinguishable from a real execution to A.

Note that the view of A consist of the lexicographically ordered list L, the responses from Fanon,
and the responses from Ḡkrk. Also note that the responses from Fanon and the responses from Ḡkrk
are the same and in the same order in both Gameideal and Gamerand. Therefore, the only possible
difference might be in L.

Let Lsim be the list in Gameideal and Lreal be the list in Gamerand. We distinguish five type of ele-
ments in both lists , (corrupt, corrupt), (corrupt, honest), (honest, corrupt), (honest, honest),
and malformed. Where (t1, t2) ∈ {corrupt, honest}2, means that the sender is of type t1 and the
receiver is of type t2, and malformed means that the element is not of the form m||Eki,j (m), for
some shared key between Pi and Pj , and i ∈ IA or j ∈ IA. Note that malformed and (corrupt, t)
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Ideal adversary S, running with parties P̃1, . . . , P̃n and executed in the Feaa, Ḡkrk-hybrid model, proceeds as follows:

Initialization: Initially do the following:
1. Corrupt party P̃i, for each i ∈ IA.
2. Start a simulated execution of Gamerand with a dummy environment Z′ and a dummy functionality Fanon.
3. Initialize multisets M′

j ← ∅, for each j ∈ IA, and L← ∅.
Simulation of links (Z′,A) and (Pi, Ḡkrk), i ∈ IA:

1. If m is received from Z, then instruct Z′ to send m to A.
2. If m is sent from A to Z′, then send m to Z.
3. If Pj is instructed by A to send (Register, r) to Ḡkrk and P̃j has not previously registered, instruct P̃j to send (Register, r) to Ḡkrk and

record the tuple (xi, yi)← (r, gr).
Simulation of corrupt parties: When Pi, i ∈ IA, sends m||σ to Fanon do:

1. Let L← L ] {m||σ} and instruct Fanon to send (Pj , Sent) to A.

2. If σ = E
y
x
i′
j

(m) for some registered public key yj , j ∈ {1, . . . , n}, and some registered secret key xi′ , i
′ ∈ IA, then send (Send,m, i′, j)

to P̃i′ . If j ∈ IA, then M′
j ← M′

j ] {(m, i
′)}.

Simulation of honest parties: If (P̃i, Sent), i /∈ IA, is received from Feaa, then instruct Fanon to send (Pi, Sent) to A.

End of simulation: Once that (Messages,M) is received from Feaa and for each j ∈ IA (Messages,Mj) is sent to P̃j , do:

1. Let M′ ← M \
(⊎

j∈IA
⊎

(m,l)∈Mj
{m}

)
.

2. For each m ∈ M′, let σ
R← {0, 1}t and L← L ] {m||σ}.

3. For each (m, i) ∈ Mj \M′
j , let ki,j ← y

xj
i and L← L ] {m||Eki,j (m)}.

4. Sort L lexicographically and proceed with Fanon as if L were the final list of received messages.

Fig. 8. The ideal adversary S

are both in Lsim and Lreal, given that such elements only comes from corrupted parties. Therefore,
they must be added to Lsim in line 1 of the “Simulation of corrupt parties” stage. A message of
the type (honest, corrupt) is added to Lreal if an only if the corresponding message appears on
Mj \M ′j , for some j ∈ IA. Therefore, it must be added to Lsim in line 3 of the “End of simulation”
stage. Note that, given that the sender is honest, the message is exactly the same message added
in Lreal. Finally a message of the type (honest, honest) is added to Lreal if and only if the corre-
spondent message can be found in M ′. Therefore, it must be added to Lsim in line 2 of the “End
of simulation” stage. Note that, given that both the sender and the receiver are honest, the subset
of messages of type (honest, honest) in Lreal must be of the form {m1||F (m1), . . . ,ms||F (ms)},
where s ∈ N and F is a completely random function. The assumption of environments that do
not send the same message twice implies that, if i 6= j, then mi 6= mj and thus F (mi) and F (mj)
are independent randomly chosen strings. Therefore, the messages added to Lreal in line 2 follows
exactly the same distribution of correspondent messages in Lsim. We conclude that the view of A
in Gamerand is exactly the same as in Gameideal.

The only possible difference on the view of Z is due to a difference in the output of an honest
party. Specifically, this difference is possible because, in the “Simulation of corrupted parties”
stage, some messages m||σ could not have been sent to Feaa in line 2 of the “Simulation of corrupt
parties” stage. This set of dropped messages may contain forgery, i.e. messages created by A that
are accepted by an honest Pj as coming from an honest Pi.

Therefore, if A does not forges, then the the output of Z in Gamerand must be the same in
Gameideal. Let “A forges” be the event where an honest party accepts a message sent byA as coming
from another honest party. Then Pr

[
Gamerand = 1|A forges

]
= Pr

[
Gameideal = 1|A forges

]
. By

the fundamental lemma of game playing we get that |Pr [Gamerand = 1]− Pr [Gameideal = 1]| ≤
Pr [A forges].

In the event “A forges” there is at least one m||σ such an honest Pj accept m as coming from an
honest Pi, which means that σ = F (m). By the assumption of adversaries that do not play replay
attacks, m||σ should be different of any m′||σ′ previously seen by A. Moreover, it must be that
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m 6= m′ for all previously m′||σ′ seen by A, otherwise it must be that σ 6= σ′ = F (m′) = F (m),
because m′||σ′ was honestly sent, and thus m||σ can not be accepted by an honest party.

Given that m 6= m′, for all previously m||σ seen by A, it must be that A have never seen F (m).
Therefore, F (m) is randomly chosen independently from σ and thus Pr [F (m) = σ] = 1/2t. Given
that A can send a most κ messages, it must hold that Pr [A forges] ≤ κ · 2−t.

Combining the results, we get that SIGMIX GUC-emulates Feaa.
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