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Abstract

Publicly Verifiable Outsourced Computation (PVC) allows devices with restricted re-
sources to delegate expensive computations to more powerful external servers, and to verify
the correctness of results. Whilst this is highly beneficial in many situations, it also increases
the visibility and availability of potentially sensitive data, and thus we may wish to limit the
set of entities with access to input data and results. Additionally, within an organization it
is extremely unlikely that every user would have uncontrolled access to all functionality. It
is also not always reasonable to publish the results of a sensitive computation. Thus there
is a need to apply access control mechanisms in PVC environments.

In this work, we define a new framework for Publicly Verifiable Outsourced Computation
with Access Control (PVC-AC) that applies cryptographic enforcement mechanisms to ad-
dress these concerns, and we provide a provably secure instantiation using Key Assignment
Schemes. We also discuss example policies of interest in this setting.

1 Introduction

Increasingly mobile devices are being used as general computing devices. There is also a trend
towards cloud computing and enormous volumes of data (“big data”) meaning that computa-
tions may require considerable resources. In short, there is increasingly a discrepancy between
computing resources of end-user devices and the resources required to perform complex com-
putations on large datasets. This discrepancy, coupled with the rise of software-as-a-service,
means there is a need for a client device to be able to delegate a computation to a server.

Consider, for example, a company that operates a “bring your own device” policy, allowing
employees to use smartphones and tablets for work. Due to resource limitations, these devices
may be unable to perform complex computations locally. Instead, a computation is outsourced
over a network to a more powerful server (possibly outside the company, offering software-as-a-
service, and untrusted) and the result of the computation is returned to the delegator. Another
example arises in the context of battlefield communications where a squadron of soldiers is
deployed with a reasonably light-weight computing device to gather data from their surroundings
and send it to regional servers for analysis before receiving tactical commands based on results.
Those servers may not be fully trusted e.g. if the soldiers are part of a coalition network. Thus a
soldier must have an assurance that the command has been computed correctly. A final example
could consider sensor networks where lightweight sensors transmit readings to a more powerful
base station to compute statistics that can be verified by an experimenter.
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Verifiable Outsourced Computation (VC), has recently attracted a lot of attention [13, 16, 8].
Alderman et al. [2] recently introduced Revocable Publicly Verifiable Outsourced Computation
(RPVC) which includes a trusted Key Distribution Center (KDC) that is an authority on
entities and performs expensive setup operations and key management duties. This leads to a
more decentralised system architecture comprising a pool of delegators and a pool of servers,
with the delegator not necessarily knowing the server chosen to perform a computation. Any
delegator can submit a request for work (or job) to the server pool and some system-dependent
mechanism allocates it to an available server (based on availability, suitability or on some bidding
process if operating on a price per computation basis). This contrasts with prior models where
the delegator chose a single server with whom to set up a VC system, and hence the server
could be authenticated beforehand. Comparatively, then, delegators now have less control over
the servers that may access their data or computation results. The RPVC model introduces
Blind Verification such that anyone can verify correctness of a result, but only those holding
an additional key may learn the value. This naturally lends itself to considering restrictions on
who has access to this key and hence the output. A final consideration is to imagine a system
(in the Manager model of [2]) that offers subscriptions to a computing platform, and the price
paid corresponds to the set of available functions, time periods etc. The manager must ensure
that only legitimate customers may access these tiers of service.

The contribution of this paper therefore is to define an access control framework providing
greater control over the clients that may delegate a computation, the servers that may evaluate
it, and the set of verifiers that may learn the output. This is motivated by the observation
that within an organization it is extremely unlikely that all users have uncontrolled access to
all functionality. In other words, some form of access control policy is required. In the context
of PVC with Access Control (PVC-AC), this amounts to restricting those delegators that can
outsource the computation of a function F to those that are authorized internally to compute
F (if they had sufficient resources available). Practically, this means limiting those delegators
that can prepare an input for delegation by insisting that the input is encrypted with a key
appropriate to the function. Moreover, the server must be in possession of an appropriate key
to decrypt the input and perform the computation. Thus we are controlling write access on the
delegators and read access on the servers. In addition, we may wish to specify an access control
policy for the output of a computation to restrict the set of clients that can verify correctness or
read (learn the value of) the output. We can achieve this by encrypting the verification tokens
with appropriate keys.

We define a new notion, PVC-AC, that extends the Attribute-based encryption RPVC
scheme of Alderman et al. [2] to enforce graph-based access control policies. We provide a
provably secure construction using Key Assignment Schemes (KASs). This provides a pragmatic
blend of symmetric and asymmetric primitives where the symmetric KAS enables the efficient
derivation of keys, each associated to a security label. Policies are specified in terms of these
labels. As an authority on entities, the KDC sets up the KAS and issues keys to each entity
corresponding to the highest security label for which they are authorised, and they may derive
any lower keys required. These keys may cryptographically protect input values and verification
keys such that only entities satisfying the specified policies may operate on them. Unauthorised
servers or eavesdropper will not even learn the input values, thus exposure of data is limited to
explicitly authorised (trusted) entities. Moreover, this restriction enforces access control policies
on the part of the delegator device. To encrypt the inputs with a symmetric key associated with
the policy, the delegator must be able to derive this key in the first place. Thus, the delegator’s
security clearance must be at least the classification of the function in order to derive this key
from that issued by the KDC. Hence delegators may only outsource the evaluation of problems
that they could (resources permitted) compute themselves.

2



KDCS1 S2 S3

PublicC1 C2

EKF,S1 EKF,S2

EKG,S3

σx1 σy1

σx2 σy2

σx3

σy3

V KF,x1

V KF,x2

V KG,x3

Revoke PKF , PKG

Verify

Verify

(a) The operation of RPVC

CKDC AKDCS

PublicC1 C2

EKF,S

PPACσx σy

V KF,x

Revoke
SKC2

SKS

SKC1

V KF,x

PKF

PPV C

ROut BVerify

τσy

(b) The operation of PVC-AC

Figure 1: The operation of RPVC and PVC-AC

We begin by briefly reviewing related work before giving a formal definition for PVC-AC,
discussing relevant access control policies, introducing new notions of security that arise in this
setting and finally giving an overview of our construction. The paper is self-contained: full
details of the background, security games, instantiation and full security proofs can be found in
the appendices.
We use the following notation.We write y ← A(·) for the action of running a probabilistic
algorithm A on given inputs and assigning the result to an output y. We use PPT to denote
probabilistic polynomial-time and say that negl(·) is a negligible function of its input. AO is
used to denote the adversary A being provided with oracle access.

2 Background

2.1 Revocable Publicly Verifiable Outsourced Computation

A RPVC scheme comprises the algorithms RPVC.Setup, RPVC.FnInit, RPVC.Register, RPVC.Certify,
RPVC.ProbGen, RPVC.Compute, RPVC.BlindVerify, RPVC.RetrieveOutput and RPVC.Revoke which
correspond to the following steps, and as in Figure 1a:

• The KDC generates public parameters, issues personalised secret keys, and evaluation
keys to servers and publishes function delegation information.

• To outsource the evaluation of F (x), a delegator C, sends an encoded input σx to a server
S, and publishes verification tokens for the computation.

• S uses σx and an evaluation key for F to produce an encoded output (sent to C, the
manager, or published depending on the system architecture).

• Any entity can use the verification token to blind verify correctness of the output. The
verifier may not learn the value of F (x) if not in possession of the retrieval key. If S
cheated they may report S to the KDC for revocation.

• If blind verification was successful, a party possessing the retrieval key RKF,x can recover
F (x).

• The KDC may revoke a cheating server to prevent it computing F in the future (and
hence from receiving any reward for future work).
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2.2 Key Assignment Schemes

A partially ordered set (poset) is a set L equipped with a reflexive, anti-symmetric and transitive
binary relation 6. Let U be a set of entities, O be a set of resources to be protected, and (L,6)
be a poset of security labels. Let λ : U ∪O → L be a labelling function assigning a security label
to each entity and object. The tuple (L,6, U,O, λ) then denotes an information flow policy.
The policy requires that an entity u ∈ U may read an object o ∈ O if and only if λ(u) > λ(o).

A Key Assignment Scheme (KAS) [1] provides a generic, cryptographic enforcement mech-
anism for such policies in which a unique cryptographic key is associated to each node (repre-
senting a security label) in (L,6). A KAS eases the problem of key distribution by allowing
a trusted center to distribute a single key to each entity, who may combine this with public
information to derive additional keys. A well-known KAS construction (known as an iterative
key encrypting (IKE) KAS [12]) publishes encrypted keys. In particular, for each y < x, such
that no z exists with y < z < x, Encryptκx(κy) is published. Then for any x > y, the key for
each node on a path from x to y can be derived (in an iterative fashion) by an entity that knows
κx. For more detail, see Appendix A.1.

3 Definition of PVC-AC

Here we define the PVC-AC notion to enforce graph-based access control policies over delegators,
servers and verifiers. Generally, we wish to impose restrictions on three activities. First, we wish
to specify a (write) policy that determines the functions a client is authorised to delegate – this
means restricting the inputs a client may correctly encrypt. Second, we specify a (read) policy
that determines the functions a server may compute – that is, ciphertexts he may correctly
decrypt. Lastly, we specify a (read) policy dictating the function outputs a verifier may read –
again corresponding to decrypting. We use symmetric cryptographic primitives to provide the
enforcement mechanism.

More specifically, for the first two cases, we associate each delegator C and server S with a
set of functions λ(C) and λ(S) respectively. C is authorized to delegate the computation of F (x)
if F ∈ λ(C); similarly, S may compute F (x) if F ∈ λ(S). We associate each function F with a
singleton set λ(F ) = {F} and a key κF , and ensure that C can derive κF for all F ∈ λ(C) (and
similarly for S). This correctness criterion allows an authorized entity to encrypt or decrypt
using λ(F ). The security criterion requires that a set of unauthorized entities cannot collude,
and can be realised by a KAS. Verification policies work similarly with a set of functions λ(V ).
We denote computation policies over delegators and servers by λC(·), and verification policies
over delegators and verifiers by λV (·). When clear from the context, we simply use λ. Finally,
PC and PV denote the poset encoding the computation and verification policy respectively.

We now give the definition of PVC-AC. We extend the functionality of the KDC from [2]
to grant access control credentials to delegators, servers and verifiers. We may split the re-
sponsibilities between two KDCs: a computation KDC (CKDC) that generates function keys,
and an authorization KDC (AKDC) that manages access control policies. The AKDC could
be a trusted institution with details of entities such that it can grant relevant permissions and
capabilities.

Definition 1. A Publicly Verifiable Outsourced Computation Scheme with Access Control
(PVC-AC) comprises the following algorithms:

• Setup(1λ)→ (PP,MK): Comprises two subalgorithms:

– SetupVC(1λ) → (PPV C ,MKV C): Run by CKDC to establish public parameters
PPV C and a master secret key MKV C for PVC functionality.
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– SetupAC(1λ,PC ,PV ) → (PPAC ,MKAC): Run by AKDC to establish public param-
eters and a master secret to enforce access control policies.

• FnInit(PPV C ,MKV C , F )→ (PKF , LF ): Run by the CKDC to generate a delegation key,
PKF , for a function F as well as a list LF of available servers for evaluating F , which is
initially empty.

• Register(PPV C ,MKV C ,MKAC , ID, λ(ID))→ SKID: Run by the AKDC to generate a per-
sonalised key SKID for an entity with identifierID1. It outputs a secret key granting rights
for the label λ(ID) according to the computation or verification policy.

• Certify(PPV C ,MKV C , F, LF , S)→ (EKF,S , LF ): CKDC generates an evaluation key EKF,S

for a function F and server S, and S is added to LF .

• ProbGen(x, SKC , PKF , λ
C(C), λC(F ), λV (C), λV (F ),PPV C ,PPAC)→

(σx, V KF,x, RKF,x): Run by a delegator C to outsource the computation of F (x) to a
server S. C may do so only if it satisfies the computation policy – that is λC(C) > λC(F ).
It outputs an encoded input σx, a public verification key V KF,x to verify correctness, and
an output retrieval key RKF,x which verifiers satisfying λV (V ) > λV (F ) may use to read
F (x).

• Compute(σx, EKF,S , SKS , λ
C(S), λC(F ), PPAC) → σy: Run by a server S holding an

evaluation key EKF,S , SKS and an encoded input σx to evaluate F (x) and output an
encoding, σy, of the result. This succeeds if and only if λC(S) > λC(F ), that is S satisfies
the computation policy for this evaluation.

• Verify(σy, SKV , V KF,x, LF , λ
V (V ), λV (F ),PPV C ,PPAC) → (ỹ, τσy): Verification consists

of two steps:

– VC.BlindVerify(PPV C , σy, V KF,x, LF ) → (µ, τσy): Run by any verifier to produce
an intermediate output µ and a token τσy = (accept, S) for a correct result, or
τσy = (reject, S) to signify a cheating server S.

– VC.RetrieveOutput(SKV , µ, τσy , V KF,x, RKF,x, λ
V (V ), λV (F ))→ ỹ: Run by verifiers

V in possession of the output retrieval key RKF,x and the output µ from BlindVerify.
If λV (V ) > λV (F ) then V should be able to read the actual result ỹ = F (x) or ⊥.

• Revoke(MKV C , τσy , F, LF ) → ({EKF,S′}, LF ) or ⊥: Run by the CKDC if a verifier re-
ports a misbehaving server i.e. that Verify returned τσy = (reject, S) (if τσy = (accept, S)
then this algorithm should output ⊥). It revokes the evaluation key EKF,S of the server
S thereby preventing any further evaluations of F . This is achieved by removing S from
LF (the list of servers for F ) and issuing updated evaluation keys EKF,S′ to all servers
S′ 6= S.

We say that a PVC-AC scheme is correct if for all functions F ∈ F , inputs x, honestly
generated parameters, and honestly registered entities C, S and V (delegator, certified server
and verifier respectively)such that λC(C), λC(S) > λC(F ) and λV (C), λV (V ) > λV (F ), if S
honestly runs Compute for F on an encoding of x generated by C, then V running Verify on the
output from S will almost certainly output accept and F (x). That is, if all algorithms are run
honestly by authorised parties then the verifier should almost certainly accept. More formally
we can write

1In future algorithms this will be S, C or V to denote a server, delegator or verifier respectively.
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Definition 2 (Correctness). A Publicly Verifiable Outsourced Computation Scheme with Access
Control (PVC-AC) is correct for a family of functions F if for all functions F ∈ F and inputs
x, where negl(·) is a negligible function of its input:

Pr[Setup(1λ)→ (PP = (PPV C ,PPAC),MK = (MKV C ,MKAC)),

FnInit(PPV C ,MKV C , F )→ (PKF , LF ),

Register(PPV C ,MKV C ,MKAC ,C, λ(C))→ SKC,

Register(PPV C ,MKV C ,MKAC , S, λ(S))→ SKS,

Register(PPV C ,MKV C ,MKAC ,V, λ(V))→ SKV,

Certify(PPV C ,MKV C , F, LF , S)→ (EKF,S , LF ),

ProbGen(x, SKC , PKF , λ
C(C), λC(F ),PPV C ,PPAC)→ (σx, V KF,x, RKF,x),

Verify(Compute(σx, EKF,S , SKS , λ
C(S), λC(F ), PPAC),

SKV , V KF,x, LF , λ
V (V ), λV (F ),PPV C ,PPAC)→ (F (x), (accept, S))]

= 1− negl(λ),

where λC(C) > λC(F ), λV (C) > λV (F ), λC(S) > λC(F ) and λV (V ) > λV (F ) holds.

4 Policies

In this section we discuss the type of access control policies that may be of interest in an
outsourced computation environment. We begin by examining simple policies over the choice
of functions, before considering more fine-grained policies over sets of input values and other
security posets. We also discuss policies to protect function outputs in the second part of this
section. For ease of notation, we use λ to denote λC or λV if it is clear from the context.
The policies we consider are graph-based policies, where “objects” to be protected are not data
files, as in traditional access control policies, but function evaluations to be outsourced. The
“user” population comprises the sets of delegators, C, and computational servers, S. We define
a security function λ : C ∪S ∪F → L where F is the family of functions that may be outsourced
and (L,6) is a poset of security labels. This function assigns a label from L to each delegator,
server and function in the PVC-AC system, which represents the security classification of these
entities and functions. Each delegator, C, is issued with a symmetric key corresponding to
λ(C) by the AKDC. Each server, S, is issued with two keys: one is the symmetric key issued by
the AKDC and associated with λ(S), enabling the server to derive further symmetric keys and
decrypt delegated inputs; the second is a private key for a particular function, issued by the
CKDC, which it uses to perform a computation. We restrict our focus to graph-based policies,
as these have been shown to encompass many notions of access control that are desirable in
practice including information flow policies, role-based access control and attribute-based access
control [10].

4.1 Policies Over Functions

First note that in a RPVC scheme, the KDC implicitly provides some access control in that it
certifies servers to perform specific functions by generating evaluation keys. However, there is
no access control applied to delegators – any entity can outsource an evaluation of any func-
tion for which the KDC has published delegation information (essentially because asymmetric
cryptographic primitives are used). In particular, a delegator may request a computation that
the delegator itself is not authorised to perform.
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A simple access control policy we may enforce is to define the set of security labels L to be
2F (the power set of functions to be outsourced). Then, λ(C) ⊆ F defines the set of functions
that a delegator C may outsource the evaluation of, λ(S) ⊆ F denotes the set of functions that
a server S may compute, and λ(F ) = {F} denotes the label of the function F ∈ F . Then, for
any x, y ∈ L we define an order relation < such that x < y if and only if x ∈ F , y ⊆ F and
x ∈ y. The corresponding Hasse diagram with F = {F,G,H} is shown in Figure 2a2.

To outsource the computation of F (x), C encrypts the encoding of x using the key κF . C can
derive κF for this purpose if and only if λ(C) > λ(F ) i.e. if and only if F ∈ λ(C). To compute
F (x), S decrypts the encrypted input value using the corresponding key κF . As before, S may
do this if and only if F ∈ λ(S). Note that as the input values are encrypted using a symmetric
key chosen in accordance with the access control policy, only authorized servers may learn the
input data. Any unauthorised server may not derive κF , and by the (IND-CPA) security of
the encryption scheme, will learn nothing about the data.

4.1.1 Policies over Function Inputs.

In addition to limiting the set of functions that may be delegated and computed, we may wish to
implement a more fine-grained access control policy determined by input values to functions. To
do so, we redefine the security function such that “objects” are now considered to be pairs (F, x)
where F ∈ F and x ∈ Dom(F ). For ease of exposition we assume that for all F ∈ F , the domain
of F is Dom(F ) = {0, 1}n for a positive, non-zero integer n.3 Then, λ : C∪S∪(F×{0, 1}n)→ L.

We could, for example, let L be 2F × {0, 1}n. We assume a co-ordinatewise ordering on
{0, 1}n: that is (x1, . . . , xn) 6 (y1, . . . , yn) if and only if xi 6 yi for all i. Then for two labels
(G, x) and (G′, x′) in 2F × {0, 1}n, (G, x) 6 (G′, x′) if and only if G = {F} for some F ∈ F ,
F ∈ G′ and x 6 x′. This poset could be used to ensure delegators and servers operate over a
limited range of data values. Specifically, for a delegator or server z, we define λ(z) = (G, x),
where G ⊆ F and x ∈ {0, 1}n, and λ(F ) = ({F}, 0n). Then C is authorized to outsource the
computation of G(y) for all G ∈ G and all y 6 x. The Hasse diagram for this poset with
F = {F,G} and n = 2 is shown in Figure 2b.

Alternatively, we may let L be the power set 2F×{0,1}
n
. This enables each function to be

associated with different range of allowable inputs. Then, for two labels {(F1, x1), . . . , (Fm, xm)}
and {(F ′1, x′1), . . . , (F ′m′ , x′m′)},

{(F1, x1), . . . , (Fm, xm)} 6 {(F ′1, x′1), . . . , (F ′m′ , x′m′)}
2We have not included nodes for the empty set in these posets.
3If this is not the case then we can define n = maxF∈F |Dom(F )| and then redefine all functions F with

Dom(F ) < n to satisfy the required property by, for example, adding fixed points F (x) = x for all x ∈ {0, 1}n \
Dom(F ).
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if and only if m = 1 (the label is a single pair), F1 = F ′i for some i and x1 6 x′i.
We remark that the first choice of poset presented in this section roughly corresponds to the

idea of assigning a possible data range to each delegator and then authorizing them to outsource
a set of functions on that data, whilst the second is more akin to authorizing delegators to
outsource particular functions and then assigning each function a set of authorized input values.
Finally, we note that the choice of L = 2F×2{0,1}

n
extends this second case to a situation where

each function can be associated with arbitrary sets of input values rather than just contiguous
intervals.

4.1.2 Enforcing General Graph-based Policies.

We have seen how sets of functions and inputs can be mapped to a graph-based access con-
trol policyto restrict the functions a delegator may outsource and a server may compute. We
now briefly discuss how to incorporate additional security labels that rely on the environment
or external access control policies. We can use any poset of security labels L to classify each out-
sourced computation. For example, defineM = {Top-Secret, Secret, Classified, Unclassified}
to be the Bell-LaPadula clearance levels [6] and K to be a set of need-to-know categories. Then
we can enforce the security function λ : C ∪S ∪F → L = M × 2K where K specifies the nature,
and M specifies the sensitivity, of the function F . Then, to delegate or compute F (x), we re-
quire that the entity’s clearance level is at least the classification of the function: λ(C) > λ(F ).
Similarly L could be a set of roles for a Role-based Access Control Policy [10].

We could also add additional criteria in the mapping to security labels. For example, we
could add time intervals T as in Figure 4c by setting λ : C ∪ S ∪ (F × T )→ L. We could then
set L = 2F×T as in the previous section, or if L = M as above, then certain functions could
be classified higher during certain times of the day. In place of a temporal poset T we could
also apply a geo-spatial poset to classify function evaluations differently depending on location
data e.g. a function may be more sensitive if being outsourced from a battlefield as opposed to
within a secured building. Finally, we could extend the policies over function inputs to include
characteristics of the input data. Let Z be a set of labels describing data types that functions
may be computed over, and define L = 2F×({0,1}

n×Z) for example. This enables the same input
to the same function to be classified differently and hence to require different authorisation
from the delegator and the server. As a motivating example, consider a summation function
over the integers. The semantic meaning of the integers in question may determine the overall
classification of this computation – if the integers are populations of cities then this may not be
classified at all, but troop deployments in different regions may be much more sensitive.

4.2 Policies over Outputs

It is also useful to apply access control to the act of verifying the results of a computation and in
particular learning the output. Clearly, when considering computations over confidential data,
it is not always appropriate to publish the results. As a trivial example, the outsourcing of the
identity function could be used to “legitimately” leak confidential data in an unsecured PVC
setting.

In general it may be considered that any verifier should at least have the access rights of
the delegating or computing entity, that is λ(C), λ(S) 6 λ(V ). This encompasses the “no write
down” property of traditional access control policies. Alternatively, the AKDC may decide
that, for certain computations, the results are not as highly classified as the input data, or
indeed the act of computing it. For example, the results of a computation over classified data
may be included in a public document, despite the input data remaining classified The encoded
output from the computation may be published with the verification key such that recipients
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can verify the legitimacy of the published values. It may also be reasonable to expect that only
authorised and trusted reviewers of the document should be able to verify, or that some (lower)
form of clearance is still required to access the result. It may be the case that we require some
level of trust (demonstrated through possession of a relevant key) in the verifier. The scheme
of Alderman et al. [2] allowed for separate blind verification (to ensure accuracy) and output
retrieval (to learn results). Here, we assume that all entities are able to blind verify a result,
but the set of entities that may learn the actual output should be restricted4.

4.2.1 Published Verification Token.

In the case of publishing a verification tokens, we can use similar posets and security functions
as in Section 4. The user population is the set of delegators C and verifiers V, and objects are
encoded outputs. The security function is defined to be λV : V ∪ C ∪ F → L, where F is the
family of functions to be outsourced and (L,6) is a poset of security labels. Each verifier, V ,
is given the symmetric key κλV (V ) corresponding to λV (V ). Each delegator, C, is given κλV (C).
When encoding an input, C generates additional information RKF,x that enables output to be
retrieved given the encoded output and the verification key. C will derive the required key for
reading the output, κλV (F ) and use this to symmetrically encrypt RKF,x. Note that C must at
least have clearance to verify the result of any computation he outsources due to the use of a
symmetric enforcement mechanism. This is reasonable since the delegator must have the right
to compute any function that he outsources and hence (resources permitting) could certainly
learn the result. As before we can extend the definition of the security function and of L to
accommodate more fine-grained policies over outputs.

4.2.2 Enforcement of No Write Down Policies.

No Write Down is an important requirement of many access control policies. It means that an
entity C may not write (encrypt) an object to a classification level λ(o) < λ(C) i.e. write to a
lower security level, as this could constitute a leak of classified data. It is, of course, possible
in our setting for the writer to encrypt the object at his current clearance level and for any
readers with higher access rights to derive the lower key to decrypt and read. However, we may
want to protect a result at a higher classification level (write up) e.g. preparing a report for a
manager. We now discuss two methods to achieve this. The first is straightforward from the
prior sections. Consider a computation poset PC = (L,6) and, by inverting the order relation,
construct the verification poset PV = (L,>) i.e. x 6 y in PV if and only if y 6 x in PC .
Then if an (independent) KAS is instantiated over each poset and a delegator is provided with
corresponding keys in each, i.e. λC(C) = λV (C), then key derivation allows the derivation of
keys κi for λC(i) 6 λC(C) and λV (C) > λC(i).

An alternative solution (only applicable in some situations) requires a single poset. We
begin with the relatively strong assumption that authorised writers of classified objects are also
allowed to read objects at that level, and that there is a separation of duty between delegators
and verifiers. As a motivating example, consider a PVC-AC scheme implemented by a company
to use third-party computation servers. Then it may be the case that the access control policies
should enforce privacy from the external servers and external verifiers, but delegators within
the company may verify their colleagues’ results. It may also occur that, due to the particular
RPVC scheme employed (built on predicate encryption for example), access to the encoded
input does not leak any sensitive information. For ease of explanation, let us consider only a
totally ordered chain M of security labels such as the Bell-LaPadula chain, illustrated in Figure

4Note, we can use the same techniques to protect V KF,x to restrict blind verification.
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Figure 3: M and it’s corresponding interval based poset

3a. For each label x ∈ M , we define a new label xE to denote an “encryption label”. We then
instantiate a KAS over the triangular poset M ′ = T|M | with this set of new labels as the leaf
nodes, as shown in Figure 3b. We can then use this poset to differentiate between write policies
and read policies over M , with labels denoted xW and xR respectively. To grant write access for
a label x ∈ M , we provide the entity with κxW which enables the derivation of keys κyE for all
y > x corresponding to writing up the chain of security labels. Conversely, to grant read access
for x ∈ M , we issue κxR which only enables derivation of κyE for all y 6 x corresponding to
reading down the chain of security labels. All objects are encrypted and decrypted with the set
of encryption keys xE for x ∈M . Delegators are given only writing keys and verifiers are given
only reading keys.

5 Security Definitions

We now introduce several security models capturing requirements of PVC-AC. Notions of Pub-
lic Verifiability, Revocation and Vindictive Servers follow naturally from [2] with additional
inputs for policy declarations. However, as these do not rely on the access control proper-
ties introduced in this work, the proofs follow. Additionally, we are concerned with prevent-
ing unauthorized entities from performing restricted actions or learning restricted information.
We use o to denote an outsourced computation (including descriptors such as the function,
input and environmental factors) such that λ(o) encompasses the necessary clearance to op-
erate on this evaluation. The notation AO denotes A being given oracle access to the func-
tions FnInit(PPV C ,MKV C , ·, ·),Register(PPV C ,MKV C ,MKAC , ·, ·), Certify(PPV C ,MKV C , ·, ·, ·)
and Revoke(MKV C , ·, ·, ·). Aside from Register, each oracle simply runs the relevant algorithm.
With the exception of Authorized Verification, each of these games uses the Register oracle
specified in Oracle Query 1. Authorized Verification uses the modified Register oracle given in
Oracle Query 2 which compares to the verification policy instead of the computation policy.

5.1 Authorized Outsourcing

In Game 1 we formalize the notion that a delegator may not outsource any computation for
which he is not authorized – that is, any computation o where λC(o) 66 λC(C). Clearly,
within our framework we cannot make any guarantees about what an entity may do externally.
For instance, we cannot enforce that a client does not perform any computation using an
external server that is not subject to these controls, however we can enforce that in order to use
the provided functionality (i.e. to contract an available server registered in this system) they
must be able to prove authorisation. This seems to be a reasonable assumption, taking into
consideration organisational boundaries, and any external control should perhaps be enforced
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Game 1 ExpAutOutA
[
PVCAC, F, 1

λ
]
:

1: L = ε, o =⊥
2: (PPV C ,MKV C)← SetupVC(1λ);

3: (PPAC ,MKAC)← SetupAC(1λ,PC ,PV );

4: λC(A)← AO(PPV C ,PPAC);
5: SKA ← Register(PPV C ,MKV C ,MKAC ,A, λC(A));
6: L = L ∪ λC(A);
7: o← AO(λC(A), SKA,PPV C ,PPAC);
8: for all λC(vi) ∈ L do

9: if λC(o) 6 λC(vi) then

10: return 0

11: end if

12: end for

13: SKS ← Register(PPV C ,MKV C ,MKAC , S, λ
C(S)) s.t. λC(S) > λC(o);

14: SKV ← Register(PPV C ,MKV C ,MKAC , V, λ
V (V )) s.t. λV (V ) > λV (o);

15: (PKF , LF )← FnInit(PPV C ,MKV C , F );

16: (EKF,S , LF )← Certify(PPV C ,MKV C , F, LF , S);

17: (σx, V KF,x, RKF,x)← AO(o, λC(o), λC(A), λV (o), λV (A),PPV C ,PPAC , PKF , LF );
18: σy ← Compute(σx, EKF,S , SKS , λ

C(S), λC(o),PPAC);

19: (ỹ, τσy )← Verify(σy , SKV , V KF,x, LF , λ
V (V ), λV (o),PPV C ,PPAC);

20: If ((ỹ, τσy ) 6= (⊥, (reject,A)))
21: Return 1

22: Else Return 0

Oracle Query 1 ORegister(PPV C ,MKV C ,MKAC , ID, λ(ID)):

1: if (o 6=⊥) ∧ λ(ID) > λC(o) then
2: return ⊥
3: end if
4: L = L ∪ λ(ID);
5: return Register(PPAC ,MKAC , ID, λ(ID))

by limiting external communication channels (e.g. using a strict firewall). Similarly, we cannot
enforce that an entity does not share key content with other entities, but we do ensure that
such collusion does not enable access that either entity alone could not access. Additionally,
due to the revocation functionality, it may be undesirable for a server to share key material as
he must trust the additional server not to cheat.

The game proceeds as follows. First the challenger runs the setup procedures for the scheme
and registers the adversary for the adversary’s choice of security label. The adversary is given
the public information, his secret key and oracle access, and outputs a choice of outsourced
computation o to attack, including the function and input, F and x. We require that no
security label that A has queried to the Register oracle may allow the derivation of a key for
λC(o) as this would be a trivial win, and we return 0 since the adversary has not managed to
find a reasonable attack target. We also require that any ID that A queries to its oracle must
previously have been queried to the Register oracle (which is in keeping with realistic operation).
C sets up keys for F and registers two entities that are authorized to perform the computation
and verification for o respectively. The adversary is then challenged, given all information that
a real attacker may learn and oracle access, to output an encoded input that the Compute and
Verify algorithms will accept – that is, an unauthorized adversary must produce an input that
is accepted and computed on by honest entities.

Definition 3. The advantage of a PPT adversary A making a polynomial number of queries
q in the Authorized Outsourcing Experiment is defined as follows:

AdvAutOut
A (PVCAC, F, 1

λ, q) = Pr[ExpAutOut
A [PVCAC, F, 1

λ] = 1]

A PVC-AC is secure against Authorized Outsourcing for a function F , if for all PPT adver-
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saries A, AdvAutOut
A (PVCAC, F , 1λ,q) 6 negl(λ).

5.2 Authorized Computation

Authorized Computation, in Game 2, proceeds similarly to Authorized Outsourcing and cap-
tures the notion that a computational result should only be considered valid if generated by an
authorized party. The challenger sets up the system and registers the adversary for its choice of
security label. A then chooses a target computation that it is not authorized to compute by any
of the keys it holds. The challenger now simulates two entities: a delegator and a verifier that
are authorized for this computation and certifies A as a server for F . The challenger creates an
encoded input by running ProbGen on the adversary’s target computation and gives this to A
who must output an encoded output that is accepted by the verifier. Note that although the
adversary chooses the input to the computation, and therefore can certainly compute F (x), it
still should not be able to convince the verifier to accept.

Game 2 ExpAutCompA
[
PVCAC, F, 1

λ
]
:

1: L = ε, o =⊥
2: (PPV C ,MKV C)← SetupVC(1λ);

3: (PPAC ,MKAC)← SetupAC(1λ,PC ,PV );

4: λC(A)← AO(PPV C ,PPAC);
5: SKA ← Register(PPV C ,MKV C ,MKAC ,A, λC(A));
6: L = L ∪ λC(A);
7: o← AO(λC(A), SKA,PPV C ,PPAC);
8: for all λC(vi) ∈ L do

9: if λC(o) 6 λC(vi) then

10: return 0

11: end if

12: end for

13: SKC ← Register(PPV C ,MKV C ,MKAC , C, λ
C(C)) s.t. λC(C) > λC(o);

14: SKV ← Register(PPV C ,MKV C ,MKAC , V, λ
V (V )) s.t. λV (V ) > λV (o);

15: (PKF , LF )← FnInit(PPV C ,MKV C , F );

16: (EKF,A, LF )← Certify(PPV C ,MKV C , F, LF ,A);
17: (σx, V KF,x, RKF,x)← ProbGen(x, SKC , PKF , λ

C(C), λC(o), λV (C), λV (o),PPV C ,PPAC);

18: σy ← AO(σx, V KF,x, o, λC(o), λC(A), EKF,A, SKA,PPV C ,PPAC , PKF , LF , RKF,x);
19: (ỹ, τσy )← Verify(σy , SKV , V KF,x, LF , λ

V (V ), λV (o),PPV C ,PPAC , RKF,x);

20: If ((ỹ, τσy ) 6= (⊥, (reject,A)))
21: Return 1

22: Else Return 0

Definition 4. The advantage of a PPT adversary A making a polynomial number of queries
q in the Authorized Computation Experiment is defined as follows:

AdvAutComp
A (PVCAC, F, 1

λ, q) = Pr[ExpAutComp
A [PVCAC, F, 1

λ] = 1]

A PVC-AC is secure against Authorized Computation for a function F , if for all PPT
adversaries A,

AdvAutComp
A (PVCAC, F , 1λ,q) 6 negl(λ).

5.3 Authorized Verification

In Game 3 we capture the notion that an unauthorized verifier should not be able to learn
the output of the computation (in this section we are referring to verifiers performing the
BlindVerify step only, and in particular not in possession of the output retrieval key). The
game begins similarly to before, except here the adversary is not permitted to choose the target
computation. Clearly if the adversary chose the input values then it can win trivially. Thus
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Game 3 ExpAutV erifA
[
PVCAC, F, 1

λ
]
:

1: L = ε, o =⊥
2: (PPV C ,MKV C)← SetupVC(1λ);

3: (PPAC ,MKAC)← SetupAC(1λ,PC ,PV );

4: λV (A)← AO(PPV C ,PPAC);
5: SKA ← Register(PPV C ,MKV C ,MKAC ,A, λV (A));
6: L = L ∪ λV (A);
7: o

$← O(F ) s.t. λV (o) > λV (vi) ∀λV (vi) ∈ L;
8: SKC ← Register(PPV C ,MKV C ,MKAC , C, λ

C(C)) s.t. λC(C) > λC(o);

9: SKS ← Register(PPV C ,MKV C ,MKAC , V, λ
C(S)) s.t. λC(S) > λC(o);

10: (PKF , LF )← FnInit(PPV C ,MKV C , F );

11: (EKF,S , LF )← Certify(PPV C ,MKV C , F, LF , S);

12: (σx, V KF,x, RKF,x)← ProbGen(x, SKC , PKF , λ
C(C), λC(o), λV (C), λV (o),PPV C ,PPAC);

13: σy ← Compute(σx, EKF,S , SKS , λ
C(S), λC(o),PPAC);

14: y′ ← AO(σy , V KF,x, RKF,x, λ(o), SKA,PPV C ,PPAC , PKF , LF );
15: If y′ = F (x)

16: Return 1

17: Else Return 0

Oracle Query 2 ORegister(PPV C ,MKV C ,MKAC , ID, λ(ID)):

1: if (o 6=⊥) ∧ λ(ID) > λV (o) then
2: return ⊥
3: end if
4: L = L ∪ λ(ID);
5: return Register(PPAC ,MKAC , ID, λ(ID))

we choose a computation o uniformly at random from the set of all possible computations of

F , denoted O(F ). We use the notation o
$← O(F ) to denote this operation, and require that C

repeatedly samples until it finds an o such that λ(o) 66 λ(vi) for all λ(vi) queried to the Register
oracle. If not such o may be found then the game ends with a loss for the adversary as they
did not select a valid attack identity. The challenger simulates a delegator and a server, and
provides the encoded output from the server to the adversary who should not be able to guess
the value of F (x).

We define the advantage for this game as follows, where we subtract the adversary’s best
guess based on knowledge of F (if F is balanced then this will be 1

Ran(F )):

Definition 5. The advantage of a PPT adversary A making a polynomial number of queries
q in the Authorized Verification Experiment is defined as follows:

AdvAutVerif
A (PVCAC, F, 1

λ, q) = Pr[ExpAutVerif
A [PVCAC, F, 1

λ] = 1]
− max
y∈Ran(F )

( Pr
x∈Dom(F )

[F (x) = y]) .

A PVC-AC is secure against Authorized Verification for a function F , if for all PPT ad-
versaries A,

AdvAutVerif
A (PVCAC, F , 1λ,q) 6 negl(λ).

5.4 Weak Input Privacy

Here we define a notion of weak input privacy. This is not as strong as the usual input privacy
considered in PVC settings where computational servers learn nothing about the data they are
working on. Instead, here, we consider that servers (or other entities) that are not authorized
to access (compute on) the input data may not learn x. If full input privacy is required then
the KP-ABE primitive used as a black box in the construction could be replaced by a predicate
encryption scheme for the same class of functions.
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This is captured in Game 4, which begins much like the Authorized Verification game. Again
the challenger chooses the computation to avoid a trivial win, and the (unauthorized) adversary
is provided with the encoded input and must guess x.

Game 4 ExpWeakIP
A

[
PVCAC, F, 1

λ
]
:

1: L = ε, o =⊥
2: (PPV C ,MKV C)← SetupVC(1λ);

3: (PPAC ,MKAC)← SetupAC(1λ,PC ,PV );

4: λC(A)← AO(PPV C ,PPAC);
5: SKA ← Register(PPV C ,MKV C ,MKAC ,A, λC(A));
6: L = L ∪ λC(A);
7: o

$← O(F ) s.t. λC(o) > λC(vi) ∀λC(vi) ∈ L;
8: SKC ← Register(PPV C ,MKV C ,MKAC , C, λ

C(C)) s.t. λC(C) > λC(o);

9: SKV ← Register(PPV C ,MKV C ,MKAC , V, λ
V (V )) s.t. λV (V ) > λV (o);

10: (PKF , LF )← FnInit(PPV C ,MKV C , F );

11: (EKF,A, LF )← Certify(PPV C ,MKV C , F, LF ,A);
12: (σx, V KF,x, RKF,x)← ProbGen(x, SKC , PKF , λ

C(C), λC(o), λV (C), λV (o),PPV C ,PPAC);

13: x′ ← AO(σx, V KF,x, λ(o), EKF,A, SKA,PPV C ,PPAC , PKF , LF );
14: If x′ = x

15: Return 1

16: Else Return 0

Definition 6. The advantage of a PPT adversary A making a polynomial number of queries
q in the Weak Input Privacy Experiment is defined as follows:

AdvWeakIP
A (PVCAC, F, 1

λ, q) = Pr[ExpWeakIP
A [PVCAC, F, 1

λ] = 1]
− max
x∈Dom(F )

( Pr
y∈Ran(F )

[F (x) = y]) .

A PVC-AC is secure against Weak Input Privacy for a function F , if for all PPT adversaries
A,

AdvWeakIP
A (PVCAC, F , 1λ,q) 6 negl(λ).

6 Construction

6.1 Informal Overview

We give a construction of PVC-AC using a Key-Indistinguishable KAS and any secure (black-
box) RPVC in Appendix 6.2. Informally:

1. PVCAC.SetupVC simply calls RPVC.Setup whilst PVCAC.SetupAC initialises two KASs, one
for the security poset corresponding to computation policies, and one corresponding to
verification policies5.

2. PVCAC.FnInit initializes a list of servers LF authorized to compute F .

3. PVCAC.Register assigns keys and secret information from the KAS corresponding to λ(ID).
If ID is a server, it also calls RPVC.Register.

4. PVCAC.Certify creates the evaluation key EKF,S that will enable S to compute F by calling
RPVC.Certify.

5. PVCAC.ProbGen runs RPVC.ProbGen to create an intermediate problem instance σ′x, an
output retrieval key RKF,x and a verification key V KF,x. It then derives the appropriate
keys for the computation and verification policy, and uses them to encrypt σ′x and RKF,x

respectively.

5Note that if the verification policies coincide with the computation policies then we may run this only once
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6. PVCAC.Compute first derives the key required by the computation policy for this compu-
tation and decrypts (reads) the encoded input σx. It then runs RPVC.Compute to obtain
an encoding σy of F (x).

7. PVCAC.BlindVerify simply calls RPVC.BlindVerify since the verification key is not protected
by an access control policy in this work. PVCAC.RetrieveOutput, on the other hand, first
derives the required KAS key, κλV (F ), according to the verification policy and uses this
to decrypt (read) the output retrieval key RKF,x. Finally it runs RPVC.BlindVerify on
RKF,x to learn F (x).

8. PVCAC.Revoke simply runs RPVC.Revoke to revoke a misbehaving server and distribute
updated evaluation keys.

6.2 Instantiation

For the construction of a publicly verifiable outsourced computation scheme we basically wrap
a key assignment scheme around a RPVC scheme (for example, the KP-ABE construction given
by Alderman et al. [2]). Note that the RPVC scheme is used in a black-box manner and thus
any concrete instantiation could be used. Additionally, a non-revocable scheme such as that
given by Parno et al. [16] could be used if desired.

Let RPVC = (RPVC.Setup, RPVC.FnInit, RPVC.Register, RPVC.Certify, RPVC.ProbGen,
RPVC.Compute, RPVC.BlindVerify, RPVC.RetrieveOutput, RPVC.Revoke) be a RPVC scheme,
as defined by Alderman et al. [2], for a class of functions F . Let SE= ( SE.KeyGen, SE.Encrypt,
SE.Decrypt) be an IND-CPA secure symmetric encryption scheme. LetKAS = (KAS.MakeKeys,
KAS.MakeSecrets, KAS.MakePublicData, KAS.GetKey) be a Key Assignment Scheme whose
keys are compatible with SE . Finally, let PC denote the poset encoding computation poli-
cies (e.g. (L,6)), and similarly let PV denote the poset encoding verification policies (e.g.
(L,>))6. Then there is a PVC-AC scheme PVCAC = (PVCAC.SetupVC, PVCAC.SetupAC,
PVCAC.FnInit, PVCAC.Register, PVCAC.Certify, PVCAC.ProbGen, PVCAC.Compute, PVCAC.Verify,
PVCAC.Revoke) for the same class of functions F which is defined as follows in Algorithms 1-10.

Algorithm 1 PVCAC.SetupVC(1λ)→ (PPV C ,MKV C)

1: Run (PPV C ,MKV C)← RPVC.Setup(1λ)

Algorithm 2 PVCAC.SetupAC(1λ,PC ,PV )→ (PPAC ,MKAC)

1: κPC
← KAS.MakeKeys(1λ,PC)

2: ωPC
← KAS.MakeSecrets(1λ,PC)

3: PubPC
← KAS.MakePublicData(1λ,PC)

4: κPV
← KAS.MakeKeys(1λ,PV )

5: ωPV
← KAS.MakeSecrets(1λ,PV )

6: PubPV
← KAS.MakePublicData(1λ,PV )

7: PPAC = (PubPC
, PubPV

)

8: MKAC = (κPC
, ωPC

, κPV
, ωPV

)

Algorithm 3 PVCAC.FnInit(PPV C ,MKV C , F )→ (PKF , LF )
1: (PKF , LF )← RPVC.FnInit(PPV C ,MKV C , F )

6We use the notation κPC to denote the set of all keys generated by the KAS for the computation poset PC
and for a label λC(ID) ∈ PC, κλC(ID) ∈ κPC is the key associated to that label in the computation policy.
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Algorithm 4 PVCAC.Register(PPV C ,MKV C ,MKAC , ID, λ(ID))→ SKID

1: if ID is a server then

2: SK′ID ← RPVC.Register(PPV C ,MKV C , ID)

3: SKID = (SK′ID, κλC(ID), ωλC(ID))

4: else

5: if ID is a delegator then

6: SKID = (κλC(ID), ωλC(ID), κλV (ID), ωλV (ID))

7: else

8: SKID = (κλV (ID), ωλV (ID))

9: end if

10: end if

Algorithm 5 PVCAC.Certify(PPV C ,MKV C , F, LF , S)→ (EKF,S , LF )
1: (EKF,S , LF )← RPVC.Certify(PPV C ,MKV C , F, LF , S)

Algorithm 6 PVCAC.ProbGen(x, SKC , PKF , λ
C(C), λC(F ), λV (C), λV (F ),PPV C ,PPAC) →

(σx, V KF,x, RKF,x)

1: (σ′x, V KF,x, RK
′
F,x)← RPVC.ProbGen(x, PKF )

2: κλC(F ) ← KAS.GetKey(λC(C), λC(F ), ωλC(C),PPAC)

3: κλV (F ) ← KAS.GetKey(λV (C), λV (F ), ωλV (C),PPAC)

4: if (κλC(F ) 6=⊥) and (κλV (F ) 6=⊥) then

5: σx = (λC(F ), SE.Encrypt(σ′x, κλC(F )))

6: RKF,x = (λV (F ), SE.Encrypt(RK′F,x, κλV (F )))

7: end if

Algorithm 7 PVCAC.Compute(σx, EKF,S , SKS , λ
C(S), λC(F ), PPAC)→ σy

1: Parse σx as (λC(F ), c)

2: κλC(F ) ← KAS.GetKey(λC(S), λC(F ), ωλC(S),PPAC)

3: if κλC(F ) =⊥ then

4: Output ⊥
5: else

6: σ′x ← SE.Decrypt(c, κλC(F ))

7: σy ← RPVC.Compute(σ′x, EKF,S , SKS)

8: end if

Algorithm 8 PVCAC.BlindVerify(PPV C , σy, V KF,x, LF )→ (µ, τσy):

1: (µ, τσy )← RPVC.BlindVerify(PPV C , σy , V KF,x, LF )

Algorithm 9 PVCAC.RetrieveOutput(µ, τσy , V KF,x, RKF,x, λ
V (V ), λV (F ))→ ỹ:

1: Parse RKF,x as (λV (F ), e)

2: κλV (F ) ← KAS.GetKey(λV (V ), λV (F ), ωλV (V ),PPAC)

3: if κλV (F ) =⊥ then

4: Output ⊥
5: else

6: RKF,x
′ ← SE.Decrypt(e, κλV (F ))

7: ỹ ← RPVC.RetrieveOutput(µ, τσy , V KF,x, RK
′
F,x)

8: end if

Algorithm 10 PVCAC.Revoke(MKV C , τσy , F, LF )→ ({EKF,S′}, LF ) or ⊥
1: ({EKF,S′}, LF ) or ⊥← RPVC.Revoke(MKV C , τσy , F, LF )

6.3 Proof of Security

We now give a theorem and proof that the construction presented above is secure against the
games presented in Section 5.

Theorem 1. Given a RPVC scheme secure in the sense of Public Verifiability, Revocation and
Vindictive Servers, a Key-Indistinguishability secure KAS and an IND-CPA secure symmet-
ric encryption scheme, let PVCAC be the PVC-AC scheme defined in Algorithms 1-10. Then
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PVCAC is secure in the sense of Public Verifiability, Revocation, Vindictive Servers, Authorized
Outsourcing, Authorized Computation, Weak Input Privacy, and Authorized Verification.

Informally, the security proofs follow from the Key-Indistinguishability of the KAS and
the security of the underlying RPVC scheme. For each, we show that if an adversary exists,
then we can break the Key-Indistinguishability of the KAS. We now present a formal proof for
Theorem 1.

6.4 Public Verifiability, Revocation and Vindictive Servers

Lemma 1. Given a secure RPVC scheme, a Key-Indistinguishability secure KAS and an IND-
CPA secure symmetric encryption scheme, let PVCAC be the PVC-AC scheme defined in Al-
gorithms 1-10. Then PVCAC is secure in the sense of Public Verifiability, Revocation and
Vindictive Servers.

Proof. The notions of Public Verifiability, Revocation and Vindictive Servers follow naturally
from the full security proofs presented in [2] with additional inputs for policy declarations.
However, as these do not rely on the access control properties introduced in this work, the
proofs follow immediately by adjusting the notation to the present PVC-AC scheme.

6.5 Authorized Outsourcing

Lemma 2. Given a secure RPVC scheme, a Key-Indistinguishability secure KAS and an IND-
CPA secure symmetric encryption scheme, let PVCAC be the PVC-AC scheme defined in Al-
gorithms 1-10. Then PVCAC is secure in the sense of Authorized Outsourcing (Game 1).

Proof. Assume that AV C is an adversary with non-negligable advantage δ in the Authorized
Outsourcing game. We show that we can use this to construct an adversary, AKI , with non-
negligable advantage in the Key-Indistinguishability game (Game 5). Let C be the challenger
for AKI and let AKI act as the challenger for AV C .

1. C begins by running
κPC ← MakeKeys(1λ,PC),

ωPC ← MakeSecrets(1λ,PC), and

PubPC ← MakePublicData(1λ,PC).

It initialises the list Q to be empty and sends PubPC to AKI .

2. AKI first sets L = ε and o =⊥. Then it runs lines 4 to 7 of Algorithm 2 and sets
MKAC = (⊥,⊥, κPV , ωPV ). It also runs Algorithm 1 as given, and sends PPV C and PPAC
to AV C .

3. Now, AV C is provided with oracle access which AKI can simulate as follows:

(a) FnInit(PPV C ,MKV C , ·, ·), Certify(PPV C ,MKV C , ·, ·, ·) and Revoke(MKV C , ·, ·, ·) can
all be run as specified in the construction as these rely on the underlying RPVC
scheme only.

(b) Register(PPV C ,MKV C ,MKAC , ·, ·): AV C will query for an identity ID and associated
security label λ(ID). AKI will follow Algorithm 4 but will make use of Corrupt oracle
queries to C whenever it requires a value of κλC(ID) or ωλC(ID). That is, AKI will issue

an oracle query OCorrupt(λC(ID),⊥), to which C will respond by adding λC(ID) to
the query list Q and returning (κλC(ID), ωλC(ID)) as well as updating L = L∪λC(ID).
Note that keys and secrets for verification policies are owned by AKI already.

17



AV C chooses a security label, λC(AV C), from the computation policy for itself and sends
it to AKI .

4. To register AV C as a delegator with this security label, AKI will make use of its Corrupt or-
acle queries in the Key Indistinguishability game – that is, it will queryOCorrupt(λC(AV C),⊥
) in Game 5. C will add λC(AV C) to the list Q and return the relevant key and secret
information (κλC(AV C), ωλC(AV C)). Finally, AKI forwards SKAVC

= (κλC(AV C), ωλC(AV C))

to AV C , as well as updating the list to L = L ∪ λC(AV C).

5. Now, AV C is again provided with oracle access which AKI can simulate as before. AV C
eventually chooses a computation o that it wishes to be challenged upon (which must be
for the function F parameterised in the game, and will specify the input data x). If the
chosen o does not satisfy the requirement that AV C is not authorised to delegate it (i.e.
that λC(o) 66 λC(AV C)) then the game ends with a loss for the adversary.

6. AKI sends C its choice of challenge security label in the Key Indistinguishability game
v? = λC(o). Notice that this choice is allowed since λC(o) is not a descendent of any
security labels given in a Corrupt oracle query (those labels added to Q). This is necessarily
so since the only Corrupt queries thus far have been for the adversary’s label λC(AV C) in
Step 4, and those labels given in a Register query by AV C . Now, by the condition in Step
5 we know λC(o) is certainly not less than or equal to λC(AV C). Also, by the restriction
on AV C ’s oracle queries, it is not allowed to query for any λC(ID) > λC(o) as this would
constitute a trivial win.

C chooses a random bit b and returns κλC(o) if b = 0 or chooses a random key from the
keyspace otherwise, and sends this key, κ?, to AKI .

7. AKI must now simulate a computational server and a verifier. It does this by first regis-
tering two such entities, S and V respectively, that are authorised to compute and verify o
respectively. It sets λC(S) = λC(o) and hence κλC(S) = κ?. Note that this is the only part
of SKS that is required, and in particular ωλC(S) is not required (as this is only needed
for deriving keys, and S will only need to use κ?).

To register S, AKI runs

SK ′S ← RPVC.Register(PPV C ,MKV C , S)

and then sets SKS = (SK ′S , κλC(S),⊥).

To register V , AKI sets SKV = (κλV (V ), ωλV (V )).

8. AKI runs
(PKF , LF )← FnInit(PPV C ,MKV C , F ) and

(EKF,S , LF )← Certify(PPV C ,MKV C , F, LF , S)

and sends (PKF , LF ) to AV C .

9. AV C again gets oracle access which AKI responds to as follows:

(a) As before FnInit(PPV C ,MKV C , ·, ·), Certify(PPV C ,MKV C , ·, ·, ·) and Revoke(MKV C , ·, ·, ·)
can all be run as given in the construction.
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(b) Register(PPV C ,MKV C ,MKAC , ·, ·): AV C queries for an identity ID and associated
security label λ(ID). AKI follows Algorithm 4 making use of Corrupt oracle queries
to C whenever it requires a value of κλC(ID) or ωλC(ID). That is, AKI will issue an

oracle query OCorrupt(λC(ID), λC(o)). C will respond by adding λC(ID) to the query
list Q and returning (κλC(ID), ωλC(ID)) if and only if λC(ID) 6> λC(o) and updating
the list L accordingly. AKI can respond with verification keys and secrets since it
already owns them.

AV C eventually outputs what it hopes to be an encoded input σx, a verification key V KF,x

and an output retrieval key RKF,x for the challenge computation o.

10. AKI attempts to compute F on the provided encoded input, and to verify the result. To
run Compute, AKI parses σx as (λC(o), c) and runs

σ′x ← SE.Decrypt(c, κ?) and

σy ← RPVC.Compute(σ′x, EKF,S , SKS).

To verify the result, AKI runs

(ỹ, τσy)← Verify(σy, SKV , V KF,x, LF , λ
V (V ), λV (F ),PPV C ,PPAC)

11. If b = 0 then κ? is a real key corresponding to λC(o) and therefore the decryption of c will
succeed (if AV C performed successfully as we have assumed). Thus, σ′x is a valid encoded
input and so Compute and Verify will execute correctly, yielding (ỹ, τσy) 6= (⊥, (reject,A))).
In this case, AKI will output a guess b′ = 0.

Otherwise, κ? is a random key and the decryption should not give a valid encoded input
that will permit a valid execution of Compute and Verify, and AKI should output a guess
b′ = 1.

We conclude that AKI at least succeeds whenever AV C succeeds i.e. with non-negligable
probability δ. However, our construction assumes that the KAS is secure in the sense of Key
Indistinguishability, and hence AV C cannot have a non-negligable success probability.

6.6 Authorized Computation

Lemma 3. Given a secure RPVC scheme, a Key-Indistinguishability secure KAS and an IND-
CPA secure symmetric encryption scheme, let PVCAC be the PVC-AC scheme defined in Al-
gorithms 1-10. Then PVCAC is secure in the sense of Authorized Computation (Game 2).

Proof. The proof is partially similar to the proof of the previous lemma. Assume that AV C
is an adversary with non-negligable advantage δ in the Authorized Computation game. We
show that we can use this to construct an adversary, AKI , with non-negligable advantage in
the Key-Indistinguishability game. Let C be the challenger for AKI and let AKI act as the
challenger for AV C .

1. C begins by running
κPC ← MakeKeys(1λ,PC),

ωPC ← MakeSecrets(1λ,PC), and

PubPC ← MakePublicData(1λ,PC).

It initialises the list Q to be empty and sends PubPC to AKI .
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2. AKI first sets L = ε and o =⊥. Then it runs lines 4 to 7 of Algorithm 2 and sets
MKAC = (⊥,⊥, κPV , ωPV ). It also runs Algorithm 1 as given, and sends PPV C and PPAC
to AV C .

3. Now, AV C is provided with oracle access which AKI can simulate as follows:

(a) FnInit(PPV C ,MKV C , ·, ·), Certify(PPV C ,MKV C , ·, ·, ·) and Revoke(MKV C , ·, ·, ·) can
all be run as specified in the construction as these rely on the underlying RPVC
scheme only.

(b) Register(PPV C ,MKV C ,MKAC , ·, ·): AV C will query for an identity ID and associated
security label λ(ID). AKI will follow Algorithm 4 but will make use of Corrupt oracle
queries to C whenever it requires a value of κλC(ID) or ωλC(ID). That is, AKI will issue

an oracle query OCorrupt(λC(ID),⊥), to which C will respond by adding λC(ID) to
the query list Q and returning (κλC(ID), ωλC(ID)) as well as updating L = L∪λC(ID).
Note that keys and secrets for verification policies are owned by AKI already.

AV C chooses a security label, λC(AV C), from the computation policy for itself and sends
it to AKI .

4. To register AV C as a server with this security label, AKI will make use of its Corrupt oracle
queries in the Key Indistinguishability game – that is, it will queryOCorrupt(λC(AV C),⊥) in
Game 5. C will add λC(AV C) to the list Q and return the relevant key and secret informa-
tion (κλC(AV C), ωλC(AV C)). Additionally, AKI runs RPVC.Register(PPV C ,MKV C ,AV C) to
create SK ′AV C . Finally, AKI sets SKAVC

= (SK ′AV C , κλC(AV C), ωλC(AV C)) as well as up-

dating the list to L = L ∪ λC(AV C).

5. Now, AV C is again provided with oracle access which AKI can simulate as before. AV C
eventually chooses a computation o that it wishes to be challenged upon (which must be
for the function F parameterised in the game, and will specify the input data x). If the
chosen o does not satisfy the requirement that AV C is not authorised to delegate it (i.e.
that λC(o) 66 λC(AV C)) then the game ends with a loss for the adversary.

6. AKI sends C its choice of challenge security label in the Key Indistinguishability game
v? = λC(o). Notice that this choice is allowed since λC(o) is not a descendent of any
security labels given in a Corrupt oracle query (those labels added to Q). This is necessarily
so since the only Corrupt queries thus far have been for the adversary’s label λC(AV C)
in Step 4, and those labels given in a Register query by AV C . Now, by the condition in
Step 5 we know λC(o) is a descendant of λC(AV C). Also, by the restriction on AV C ’s
oracle queries, it is not allowed to query for any λC(ID) > λC(o) as this would constitute
a trivial win.

C chooses a random bit b and returns κλC(o) if b = 0 or chooses a random key from the
keyspace otherwise, and sends this key, κ?, to AKI .

7. AKI must now simulate a delegator and a verifier. It does this by first registering two such
entities, C and V respectively, that are authorised to compute and verify o respectively.
It sets λC(C) = λC(o) and hence κλC(C) = κ?. Note that this is the only part of SKC that
is required, and in particular ωλC(C) is not required (as this is only needed for deriving
keys, and S will only need to use κ?).

To register C, AKI sets SKC = (κ?,⊥, κλV (C), ωλV (C)). Furthermore, to register V , AKI
sets SKV = (κλV (V ), ωλV (V )).
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8. AKI runs
(PKF , LF )← FnInit(PPV C ,MKV C , F ) and

(EKF,AV C , LF )← Certify(PPV C ,MKV C , F, LF ,AV C)

and sends (PKF , LFF and EKF,AV C to AV C .

9. AKI runs
(σ′x, V KF,x, RK

′
F,x)← RPVC.ProbGen(x, PKF )

and prepares the encoded input being σx = (λC(o), SE.Encrypt(σ′x, κ
?)) which it sends to

AV C . Furthermore AKI prepares RKF,x = (λV (o), SE.Encrypt(RK ′F,x, κλV (o))) which it
also sends to AV C .

10. AV C again gets oracle access which AKI responds to as follows:

(a) As before FnInit(PPV C ,MKV C , ·, ·), Certify(PPV C ,MKV C , ·, ·, ·) and Revoke(MKV C , ·, ·, ·)
can all be run as given in the construction.

(b) Register(PPV C ,MKV C ,MKAC , ·, ·): AV C queries for an identity ID and associated
security label λ(ID). AKI follows Algorithm 4 making use of Corrupt oracle queries
to C whenever it requires a value of κλC(ID) or ωλC(ID). That is, AKI will issue an

oracle query OCorrupt(λC(ID), λC(o)). C will respond by adding λC(ID) to the query
list Q and returning (κλC(ID), ωλC(ID)) if and only if λC(ID) 6> λC(o). AKI can
update the list L accordingly and respond with verification keys and secrets since it
already owns them.

AV C eventually outputs what it hopes to be an encoded output σy for the challenge
computation o.

11. AKI attempts to verify the result on the provided encoded output. It runs

(ỹ, τσy)← Verify(σy, SKV , V KF,x, LF , λ
V (V ), λV (F ),PPV C ,PPAC , RKF,x).

12. If b = 0 then κ? is a real key corresponding to λC(o) and if ProbGen was executed correctly
then AV C should decrypt successfully. Thus, σy is a valid encoded output and so Verify
will execute correctly, yielding (ỹ, τσy) 6= (⊥, (reject,A))). In this case, AKI will output a
guess b′ = 0.

Otherwise, κ? is a random key and the decryption should not be successful and should
not give a valid encoded output that will permit a valid execution Verify, and AKI should
output a guess b′ = 1.

We conclude that AKI at least succeeds whenever AV C succeeds i.e. with non-negligable
probability δ. However, our construction assumes that the KAS is secure in the sense of Key
Indistinguishability, and hence AV C cannot have a non-negligable success probability.

6.7 Weak Input Privacy

Lemma 4. Given a secure RPVC scheme, a Key-Indistinguishability secure KAS and an IND-
CPA secure symmetric encryption scheme, let PVCAC be the PVC-AC scheme defined in Al-
gorithms 1-10. Then PVCAC is secure in the sense of Weak Input Privacy (Game 4).
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Proof. Assume that AV C is an adversary with non-negligable advantage δ in the Authorized
Computation game. We show that we can use this to construct an adversary, AKI , with non-
negligable advantage in the Key-Indistinguishability game. Let C be the challenger for AKI and
let AKI act as the challenger for AV C .

1. C begins by running
κPC ← MakeKeys(1λ,PC),

ωPC ← MakeSecrets(1λ,PC), and

PubPC ← MakePublicData(1λ,PC).

It initialises the list Q to be empty and sends PubPC to AKI .

2. AKI first sets L = ε and o =⊥. Then it runs lines 4 to 7 of Algorithm 2 and sets
MKAC = (⊥,⊥, κPV , ωPV ). It also runs Algorithm 1 as given, and sends PPV C and PPAC
to AV C .

3. Now, AV C is provided with oracle access which AKI can simulate as follows:

(a) FnInit(PPV C ,MKV C , ·, ·), Certify(PPV C ,MKV C , ·, ·, ·) and Revoke(MKV C , ·, ·, ·) can
all be run as specified in the construction as these rely on the underlying RPVC
scheme only.

(b) Register(PPV C ,MKV C ,MKAC , ·, ·): AV C will query for an identity ID and associated
security label λ(ID). AKI will follow Algorithm 4 but will make use of Corrupt oracle
queries to C whenever it requires a value of κλC(ID) or ωλC(ID). That is, AKI will issue

an oracle query OCorrupt(λC(ID),⊥), to which C will respond by adding λC(ID) to
the query list Q and returning (κλC(ID), ωλV (ID)) as well as updating L = L∪λC(ID).
Note that keys and secrets for verification policies are owned by AKI already.

AV C will eventually output a choice of computational label λC(AV C).

4. To register AV C as a server with this security label, AKI will make use of its Corrupt oracle
queries in the Key Indistinguishability game – that is, it will query OCorrupt(λC(AV C),⊥)
in Game 5. C will add λC(AV C) to the list Q and return the relevant key and secret in-
formation (κλC(AV C), ωλC(AV C)). Additionally, AKI updates the list to L = L∪λC(AV C),
runs RPVC.Register(PPV C ,MKV C ,AV C) and outputs SK ′AV C . Finally, AKI forwards
SKAVC

= (SK ′AV C , κλC(AV C), ωλC(AV C)) to AV C .

5. C now chooses a computation o uniformly at random from the space of all possible com-
putations of F that the adversary is not authorised to compute i.e. we require λC(o) 66
λC(AV C). Note that the choice of o will dictate the input data x. If not such o may
be found then the game ends with a loss for the adversary as they did not select a valid
attack identity.

6. AKI sends C its choice of challenge security label in the Key Indistinguishability game
v? = λC(o). Notice that this choice is allowed since λC(o) is not a descendent of any
security labels given in a Corrupt oracle query (those labels added to Q). This is necessarily
so since the only Corrupt queries thus far have been for the adversary’s label λC(A) in
Step 4, and those labels given in a Register query by AV C . Now, by the condition in Step
5 we know λC(o) is certainly not less than or equal to λC(A). Also, by the restriction on
AV C ’s oracle queries, it is not allowed to query for any λC(ID) > λC(o) as this would
constitute a trivial win.

22



C chooses a random bit b and returns κλC(o) if b = 0 or chooses a random key from the
keyspace otherwise, and sends this key, κ?, to AKI .

7. AKI must now simulate a client and a verifier. It does this by first registering two such
entities, C and V respectively, that are authorised to compute and verify o respectively.
It sets λC(C) = λC(o) and hence κλC(C) = κ?. Note that this is the only part of SKC that
is required, and in particular ωλC(C) is not required (as this is only needed for deriving
keys, and S will only need to use κ?).

To register C, AKI sets SKC = (κ?,⊥, κλV (C), ωλV (C)). Furthermore, to register V , AKI
sets SKV = (κλV (V ), ωλV (V )).

8. AKI runs
(PKF , LF )← RPVC.FnInit(PPV C ,MKV C , F ),

(EKF,S , LF )← RPVC.Certify(PPV C ,MKV C , F, LF , S),

(σ′x, V KF,x, RK
′
F,x)← RPVC.ProbGen(x, PKF ) for x specified in o,

σx = (λC(o),SE.Encrypt(σ′x, κ
?))

RKF,x = (λV (o),SE.Encrypt(RK ′F,x, κλV (o)))

AKI sends (σy, V KF,x, λ(o), SKA, PKF , LF ) to AV C .

9. AV C again gets oracle access which AKI responds to as follows:

(a) As before FnInit(PPV C ,MKV C , ·, ·), Certify(PPV C ,MKV C , ·, ·, ·) and Revoke(MKV C , ·, ·, ·)
can all be run as given in the construction.

(b) Register(PPV C ,MKV C ,MKAC , ·, ·): AV C queries for an identity ID and associated
security label λ(ID). AKI follows Algorithm 4 making use of Corrupt oracle queries
to C whenever it requires a value of κλC(ID) or ωλC(ID). That is, AKI will issue an

oracle query OCorrupt(λC(ID), λC(o)). C will respond by adding λC(ID) to the query
list Q and returning (κλC(ID), ωλC(ID)) if and only if λC(ID) 6> λC(o) and updating
the list L accordingly. AKI can respond with verification policy keys and secrets
since it already owns them.

AV C eventually outputs a guess, x′, for x.

10. By the IND-CPA property of the symmetric encryption scheme we hide the attributes
attached to the intermediate encodings in ProbGen. If b = 0 then κ? is a real key corre-
sponding to λC(o) and therefore the encryption of σ′x will be performed using a valid key
and will look correct to AV C . Therefore, to AV C the system looks consistent and correct,
and hence he will have non-negligible advantage δ to guess x correctly, as we assumed. If
x′ = x, AKI will output a guess b′ = 0.

Otherwise, κ? is a random key and the encryption of the intermediate encoded input σ′x
will not be correct, so AV C may not possess the assumed advantage and AKI should
output a guess b′ = 1.

We conclude that AKI at least succeeds whenever AV C succeeds i.e. with non-negligable
probability δ. However, our construction assumes that the KAS is secure in the sense of Key
Indistinguishability, and hence AV C cannot have a non-negligable success probability.
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6.8 Authorized Verification

Lemma 5. Given a secure RPVC scheme, a Key-Indistinguishability secure KAS and an IND-
CPA secure symmetric encryption scheme, let PVCAC be the PVC-AC scheme defined in Al-
gorithms 1-10. Then PVCAC is secure in the sense of Authorized Verification (Game 3).

Proof. Assume that AV C is an adversary with non-negligable advantage δ in the Authorized
Verification game. We show that we can use this to construct an adversary, AKI , with non-
negligable advantage in the Key-Indistinguishability game (Game 5). Let C be the challenger
for AKI and let AKI act as the challenger for AV C .

1. C begins by running
κPV ← MakeKeys(1λ,PV ),

ωPV ← MakeSecrets(1λ,PV ), and

PubPV ← MakePublicData(1λ,PV ).

It initialises the list Q to be empty and sends PubPV to AKI .

2. AKI first sets L = ε and o =⊥. Then it runs lines 1 to 3 of Algorithm 2 and sets
MKAC = (κPC , ωPC ,⊥,⊥). It also runs Algorithm 1 as given, and sends PPV C and PPAC
to AV C .

3. Now, AV C is provided with oracle access which AKI can simulate as follows:

(a) FnInit(PPV C ,MKV C , ·, ·), Certify(PPV C ,MKV C , ·, ·, ·) and Revoke(MKV C , ·, ·, ·) can
all be run as specified in the construction as these rely on the underlying RPVC
scheme only.

(b) Register(PPV C ,MKV C ,MKAC , ·, ·): AV C will query for an identity ID and associated
security label λ(ID). AKI will follow Algorithm 4 but will make use of Corrupt oracle
queries to C whenever it requires a value of κλV (ID) or ωλV (ID). That is, AKI will issue

an oracle query OCorrupt(λV (ID),⊥), to which C will respond by adding λV (ID) to
the query list Q and returning (κλV (ID), ωλV (ID)) as well as updating L = L∪λV (ID).
Note that keys and secrets for computation policies are owned by AKI already.

AV C chooses a security label, λV (A), from the verification policy for itself and sends it to
AKI .

4. To registerAV C as a verifier with this security label, AKI will make use of its Corrupt oracle
queries in the Key Indistinguishability game – that is, it will query OCorrupt(λV (A),⊥) in
Game 5. C will add λV (A) to the list Q and return the relevant key and secret information
(κλV (A), ωλV (A)). Finally, AKI updates the list L = L ∪ λV (A).

5. C now chooses a computation o uniformly at random from the space of all possible compu-
tations of F that the adversary is not authorised to verify i.e. we require λV (o) 66 λV (AV C).
Note that the choice of o will dictate the input data x. If not such o may be found then
the game ends with a loss for the adversary as they did not select a valid attack identity.

6. AKI sends C its choice of challenge security label in the Key Indistinguishability game
v? = λV (o). Notice that this choice is allowed since λV (o) is not a descendent of any
security labels given in a Corrupt oracle query (those labels added to Q). This is necessarily
so since the only Corrupt queries thus far have been for the adversary’s label λV (A) in
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Step 4, and those labels given in a Register query by AV C . Now, by the condition in Step
5 we know λV (o) is not less than or equal to λV (A). Also, by the restriction on AV C ’s
oracle queries, it is not allowed to query for any λV (ID) > λV (o) as this would constitute
a trivial win.

C chooses a random bit b and returns κλV (o) if b = 0 or chooses a random key from the
keyspace otherwise, and sends this key, κ?, to AKI .

7. AKI must now simulate a delegator and a computational server. It does this by first
registering two such entities, C and S respectively, that are authorised to compute and
verify o respectively. It sets λV (C) = λV (o) and hence κλV (C) = κ?. It sets

SKC = (κλC(C), ωλC(C), κ
?,⊥).

Note that ωλV (C) is not required (as this is only needed for deriving keys, and C will only
need to use κ?).

To register S, AKI runs

SK ′S ← RPVC.Register(PPV C ,MKV C , S)

and then sets SKS = (SK ′S , κλC(S), ωλC(S)).

8. AKI runs
(PKF , LF )← RPVC.FnInit(PPV C ,MKV C , F ),

(EKF,S , LF )← RPVC.Certify(PPV C ,MKV C , F, LF , S),

(σ′x, V KF,x, RK
′
F,x)← RPVC.ProbGen(x, PKF ) for x specified in o,

σx = (λC(o), SE.Encrypt(σ′x, κλC(o)))

RKF,x = (λV (o), SE.Encrypt(RK ′F,x, κ
?)), and

σy ← RPVC.Compute(σ′x, EKF,S , SKS).

AKI sends (σy, V KF,x, RKF,x, λ(o), SKA, PKF , LF ) to AV C .

9. AV C again gets oracle access which AKI responds to as follows:

(a) As before FnInit(PPV C ,MKV C , ·, ·), Certify(PPV C ,MKV C , ·, ·, ·) and Revoke(MKV C , ·, ·, ·)
can all be run as given in the construction.

(b) Register(PPV C ,MKV C ,MKAC , ·, ·): AV C queries for an identity ID and associated
security label λ(ID). AKI follows Algorithm 4 making use of Corrupt oracle queries
to C whenever it requires a value of κλV (ID) or ωλV (ID). That is, AKI will issue an

oracle query OCorrupt(λV (ID), λV (o)). C will respond by adding λV (ID) to the query
list Q and returning (κλV (ID), ωλV (ID)) if and only if λV (ID) 6> λV (o) and updating
the list L accordingly. AKI can respond with computational policy keys and secrets
since it already owns them.

AV C eventually outputs a guess, y′, for F (x).
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10. If b = 0 then κ? is a real key corresponding to λV (o) and therefore the encryption of RK ′F,x
will be performed using a valid key and will look correct to AV C . Therefore, to AV C the
system looks consistent and correct, and hence he will have non-negligible advantage δ to
guess F (x) correctly, as we assumed. If y′ = F (x), AKI will output a guess b′ = 0.

Otherwise, κ? is a random key and the encryption of the output retrieval key will not be
correct, so AV C may not possess the assumed advantage and AKI should output a guess
b′ = 1.

We conclude that AKI at least succeeds whenever AV C succeeds i.e. with non-negligable
probability δ. However, our construction assumes that the KAS is secure in the sense of Key
Indistinguishability, and hence AV C cannot have a non-negligable success probability.

7 Conclusion

In conclusion, we have motivated the study of access control policies in the setting of outsourced
computation, and we have shown how to apply and enforce graph-based access control policies
over such computations using a symmetric enforcement primitive. We provided a formal defi-
nitional framework, a provably secure construction and discussed example policies of interest.
Future work will consider alternative policy forms and enforcement mechanisms, such as using
authentication protocols that enforce authorisation policies [3].
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Figure 4: Example Hasse diagrams

A Background and Related Work

A.1 Key Assignment Schemes

Partially Ordered Set

A partially ordered set, or poset, is a set L equipped with a binary relation 6 such that for all
x, y, z ∈ L the following conditions hold: x 6 x (reflexivity); if x 6 y and y 6 x then x = y
(anti-symmetry); and if x 6 y and y 6 z, then x 6 z (transitivity).

We may write x < y if x 6 y and x 6= y, and write y > x if x 6 y. We say that x covers y,
written ylx, if y < x and no z exists in L such that y < z < x. The Hasse Diagram of a poset
(L,6) is the directed acyclic graph H = (L,l) wherein vertices are labelled by the elements of
L and an edge connects vertex v to w if and only if wl v, as in Figure 4. Figure 4 shows Hasse
diagrams for the total order C4, the powerset 2{1,2} and the temporal poset T4.

Let U be a set of entities, O be a set of resources to be protected, and (L,6) be a poset
of security labels. Let λ : U ∪ O → L be a labelling function assigning a security label to
each entity and object. The tuple (L,6, U,O, λ) then denotes an information flow policy which
can be represented by the H. Henceforth we shall refer to such policies as graph-based access
control policies. The policy requires that information flow from objects to entities preserves the
partial ordering relation; for instance an entity u ∈ U may read an object o ∈ O if and only if
λ(u) > λ(o). Equivalently, there must exist a directed path from λ(u) to λ(o) in H. Note that
this statement is the simple security property of the Bell-LaPadula security model [6]. Thus
an entity assigned clearance label x is prevented from accessing objects classified with label y
if y > x. Posets of the form shown in Figure 4 have been used extensively as the basis for
graph-based access control policies, notably in the Bell-LaPadula model [6] and in temporal
access control [11].

Key Assignment Schemes

A Key Assignment Scheme (KAS) provides a generic, cryptographic enforcement mechanism
for graph-based access control policies in which a unique cryptographic key is associated to each
node (representing a security label) in H. Akl and Taylor [1] introduced KASs to manage the
problem of key distribution by allowing a trusted center to distribute a single cryptographic
key to each entity, who may then combine knowledge of this secret key with publicly available
information in order to derive additional keys. More formally, a Key Assignment Scheme for
an information flow policy (L,6) is defined by the following four algorithms [12]:

• MakeKeys(1λ, (L,6)) → κL : returns a labelled set of encryption keys {κx : x ∈ L},
denoted κL.
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Game 5 ExpKeyIndistinguishabilityA
[
1λ, (L,6)

]
:

1: κL ← MakeKeys(1λ, (L,6))
2: ωL ← MakeSecrets(1λ, (L,6))
3: Pub(L,6) ← MakePublicData(1λ, (L,6))
4: Q = ε
5: v? ← AOCorrupt(·,⊥)(Pub(L,6))
6: for all vi ∈ Q do
7: if v? ∈ desc(vi) then
8: return 0
9: end if

10: end for
11: b

$← {0, 1}
12: if b = 0 then
13: k? = kv?

14: else
15: k?

$← K
16: end if
17: b′ ← AOCorrupt(·,v?)(k?)
18: if b′ = b then
19: return 1
20: else
21: return 0
22: end if

Oracle Query 3 OCorrupt(vi, v
?):

1: if vi ∈ Anc(v?) then
2: return ⊥
3: end if
4: Q = Q ∪ vi
5: return (κvi , ωvi)

• MakeSecrets(1λ, (L,6)) → ωL : returns a labelled set of secret values {ωx : x ∈ L},
denoted ωL.

• MakePublicData(1λ, (L,6)) → Pub(L,6) : returns a set of data Pub(L,6) that is published
by the trusted setup authority

• GetKey(x, y, ωx, Pub(L,6)) → κy: takes two nodes, x, y ∈ L, the secret information for x,
ωx, and the public information, Pub(L,6) and returns κy if y 6 x.

A well-known KAS construction (known as an iterative key encrypting (IKE) KAS [12])
publishes encrypted keys. In particular, for each directed edge (x, y) in the Hasse diagram,
{κy}κx is published. Then for any x > y, there is a (directed) path in the Hasse diagram from x
to y and the key associated with each node on that path can be derived (in an iterative fashion)
by an entity that knows κx. A survey of existing generic schemes is given in [12] whilst further
details of temporal access control and interval-based schemes can be found in [11] and [5]. A
fundamental security property of a KAS is to be secure against key indistinguishability [4]: that
is, given a set of keys κx1 , . . . , κxn , an adversary should not be able to distinguish between the
key for a challenge node x? (not a descendent of any xi) and a randomly chosen key. This
property is crucial if derived keys are to be used in other cryptographic protocols.

29



A.2 Verifiable Outsourced Computation

The concept of non-interactive verifiable computation was introduced by Gennaro et al. [13] and
may be seen as a protocol between two polynomial-time parties: a client, C, and a server, S. A
successful run of the protocol results in the provably correct computation of F (x) by the server
for an input x supplied by the client. More specifically, a VC scheme comprises the following
steps [13]:

1. C computes evaluation information EKF that is given to S to enable it to compute F
(pre-processing)

2. C sends the encoded input σx to S (input preparation)

3. S computes y = F (x) using EKF and σx and returns an encoding of the output σy to C
(output computation)

4. C checks whether σy encodes F (x) (verification)

KeyGen may be computationally expensive but the remaining operations should be efficient
for the client. The cost of setup is amortized over multiple computations of F .

Parno et al. [16] introduced Publicly Verifiable Computation (PVC). The operation of a
Publicly Verifiable Outsourced Computation scheme is illustrated in Figure ??. In this setting,
a single client C1 computes EKF , as well as publishing information PKF that enables other
clients to encode inputs, meaning that only one client has to run the expensive pre-processing
stage. Each time a client submits an input x to the server, it may publish V KF,x, which enables
any other client to verify that the output is correct. It uses the same four algorithms as VC
but KeyGen and ProbGen are now required to output public values that other clients may use to
encode inputs and verify outputs. Parno et al. gave an instantiation of PVC using Key-Policy
Attribute-based Encryption (KP-ABE) for a class of Boolean functions.

Clear et al. [9] discussed the introduction of access control to outsourced computation, but
only considered policies over delegators (assuming semi-honest servers) in a non-verifiable, multi-
client outsourced computation setting. Their construction used a homomorphic ciphertext-
policy ABE scheme and fully homomorphic encryption. Our work uses KP-ABE and symmetric
enforcement primitives, and considers policies over servers and verifiers as well in a publicly
verifiable setting.

A.3 Other Related Work

Gennaro et al. [13] formalized the problem of non-interactive verifiable computation in which
there is only one round of interaction between the client and the server each time a computation
is performed and introduced a construction based on Yao’s Garbled Circuits [17] which provides
a “one-time” Verifiable Outsourced Computation allowing a client to outsource the evaluation
of a function on a single input. However it is insecure if the circuit is reused on a different input
and thus this cost cannot be amortized, and the cost of generating a new garbled circuit is
approximately equal to the cost of evaluating the function itself. To overcome this, the authors
additionally use a fully homomorphic encryption scheme [14] to re-randomize the garbled circuit
for multiple executions on different inputs. In independent and concurrent work, Carter et al. [7]
introduce a third party to generate garbled circuits for such schemes but require this entity to be
online throughout the computations and models the system as a secure multi-party computation
between the client, server and third-party. We do not believe this solution is practical in all
situations since it is conceivable that a trusted entity is not always available to take part in
computations, for example in the battlefield scenario discussed in Section 1. Here, the KDC
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could be physically located within a high security base or governmental building and field agents
may receive relevant keys before being deployed, but actual computations are performed using
more local available servers and communications links. It may not be feasible, or desirable, for
a remote agent to contact the headquarters and maintain a communications link with them for
the duration of the computation. In addition, the KDC could easily become a bottleneck in
the system and limit the number of computations that can take place at any one time, since we
assume there are many servers but only a single (or small number of) trusted third parties.

Some works have also considered the multi-client case in which the input data to be sent
to the server is shared between multiple clients, and notions such as input privacy become
more important. Choi et al. [8] extended the garbled circuit approach [13] using a proxy-
oblivious transfer primitive to achieve input privacy in a non-interactive scheme. Recent work
of Goldwasser et al. [15] extended the construction of Parno et al. [16] to allow multiple clients
to provide input to a functional encryption algorithm.
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