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Abstract

Assuming the existence of iO for P/poly and one-way functions, we show how to succinctly
garble bounded-space computations (BSC) M : the size of the garbled program (as well as the
time needed to generate the garbling) only depends on the size and space (including the input
and output) complexity of M , but not its running time. The key conceptual insight behind
this construction is a method for using iO to “compress” a computation that can be performed
piecemeal, without revealing anything about it.

As corollaries of our succinct garbling scheme, we demonstrate the following:

• functional encryption for BSC from iO for P/poly and one-way functions;

• reusable succinct garbling schemes for BSC from iO for P/poly and one-way functions;

• succinct iO for BSC from sub-exponentially-secure iO for P/poly and sub-exponentially
secure one-way functions;

• (Perfect NIZK) SNARGS for bounded space and witness NP from sub-exponentially-secure
iO for P/poly and sub-exponentially-secure one-way functions.

Previously such primitives were only know to exists based on “knowledge-based” assumptions
(such as SNARKs and/or differing-input obfuscation).

We finally demonstrate the first (non-succinct) iO for RAM programs with bounded in-
put and output lengths, that has poly-logarithmic overhead, based on the existence of sub-
exponentially-secure iO for P/poly and sub-exponentially-secure one-way functions.
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1 Introduction

Since the seminal work of Yao [Yao86] in the 1980s, garbled circuits and more generally garbled
programs (such as e.g., garbled RAMs [LO13]) have been extensively studied. A garbling scheme
consists of three procedures: a) program garbling method, b) an input encoding method, and c) an
evaluation procedure. Given a program Π, the garbling method produces a “garbled” version Π̃ of
Π as well as some key key. Next, given the key key and some input x, the input encoding method
produces an encoding x̃ of x; this encoding method is “efficient”—the time needed to encode x
(and as a consequence also the length of x̃) does does not depend on the complexity of Π. Finally,
given a garbled program Π and an encoded input x̃, the evaluation procedure evaluates Π(x);
additionally, given only the encoded program and inputs, Π̃, x̃, an attacker cannot learn more than
just Π(x). As a direct application, a garbling scheme enables a client to, in an “off-line” stage,
garble a program Π, and next provide the garbled program Π̃ to a server. Later, in an on-line stage,
when the input x on which the client wants to evaluate Π becomes known, it can efficiently and
without revealing neither Π nor x ask the server to evaluate Π simply by sending it the encoding x̃
of x—in essence, garbling schemes provide a method for privately delegating computation (with an
expensive off-line stage). Furthermore, on top of this direct application of garbling schemes, they
have found numerous other applications (e.g., secure two-party computation [Yao86], multi-party
computations [BMR90], reusable delegation of computation [GGP10], and so on and so forth.)

But a major deficiency of the all known garbling schemes (both of circuit and RAM garbling
schemes) is that the size of the garbled program Π̃ (and thus also the time needed to generate it)
grows linearly with (and in particular is lower-bounded by) the circuit-size/time-complexity of the
underlying program Π. Thus, even if get a succinct description of Π (e.g., as a Turing-machine or
RAM program), the size of Π̃ will be proportional to the running-time of Π.

1.1 Succinct Garbling Schemes

In this work we study succinct garbling schemes where the size, as well as the time required to
generate, the garbled program Π̃ only grows logarithmically with the running-time of the under-
lying program Π (but polynomially in the size of it). We provide constructions of such succinct
garbling schemes for general classes of computation (assuming the existence of indistinguishability
obfuscators [BGI+01, GGH+13b] for appropriate classes of computation), and next demonstrate
several new applications of succinct garbling schemes.

As an initial observation, we show that assuming the existence of “succinct” iO for some “nice”
class C of computations [BGI+01, BCP14, ABG+13], there exists succinct garbling the same class,
with the same complexity.

Theorem 1 (Initial observations—Informally stated). Assume the existence of succinct indistin-
guishability obfuscators for a “nice” class of computations C and one-way function. Then, there
exists a succinct garbling scheme for C. (In particular, the size of the garbled program depends
polynomially on the size of the program, the length of the input and outputs of the program, but
only poly-logarithmically on its running-time and space.)

Roughly speaking, the garbling of a program Π is an obfuscation a slightly modified program
Π′key that takes as input an authenticated encrypted input, decrypts and verifies the authenticity of
the input (w.r.t the key key) and if it the input is valid simply runs Π on this input; the encoding
of an input is simply an authenticated encryption of the input.1

1The overview oversimplies. To prove this construction secure assuming only that the underlying obfuscation
satisfies iO we need to rely on a particular method for authenticated encryption.
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Let us remark here that the reason the above-mentioned construction is succinct is that we
rely on the succinctness of the underlying iO (as e.g., in the definition of iO for Turing machine
[BGI+01, BCP14, ABG+13].) As such it provides little into into how to achieve succinctness “from-
scratch”. Additionally, to date, the only constructions of succinct iO for Turing machines rely
on “knowledge-based” assumptions—more specifically, the existence of differing-input obfuscation
[BGI+01, BCP14, ABG+13]. Rather, we are here interested in basing succinct garbling schemes
on some hardness assumption. (As we shall see shortly, doing this will also provide insight into
constructions of succinct iO for Turing machines based on some hardness assumption.)

Our main result shows how to obtain succinct garbling schemes relying only on (non-succinct)
iO for circuits—by now there are several constructions of iO [GGH+13b, PST14, GLSW14] for
P/poly based on specific hardness assumptions regarding graded encodings [GGH13a], and some
of them are even falsifiable [PST14, GLSW14]. Our succinct garbling construction from iO for
P/poly, however, only works for any a-priori bounded-space computation—in other words, the size
of the garbled circuit depends polynomially on the space complexity of the computation, but is
independent of its running-time.

Theorem 2 (Main Theorem—Informally stated). Assume the existence of indistinguishability ob-
fuscators for P/poly and one-way functions. Then, for every polynomial p, there exists a succinct
garbling scheme for all polynomial-time programs Π with space-complexity p(·). (In particular, the
size of the garbled program depends polynomially on the size of Π, the length of the input and output
of Π and the , and the space complexity s(·), but only logarithmically on Π’s running-time.)

The key conceptual insight behind our construction is a method for using iO to “compress” a
computation that can be performed piecemeal, without revealing anything about it. More precisely,
in a first step, we show how to obtain a “non-succinct” garbling of bounded-space Turing machines,
and next, in a second step, we show how to use iO to compress this non-succinct garbling into a
succinct one. (We believe that this compression technique may be of independent interest.)

Next, we use this main theorem to enable, among other things, bounded space (polynomial-
time) computations in the context of a) functional encryption (FE), b) resusable succinct garbling
schemes, c) iO, and d) succinct non-interactive arguments (SNARGs), assuming iO for P/poly
and one-way function (for some of these results with sub exponential security); prior to this paper,
these primitives could only be constructed based on “knowledge-based” assumptions [GKP+13a,
BCP14, ABG+13] or in the Random Oracle model [Mic00].

1.2 Succinct Garbling Schemes for Bounded-Space Computations

We turn to providing an overview of our construction of succinct garbling schemes for bounded
space Turing machines. Our construction proceeds in two steps: we first construct a non-succinct
garbling scheme, with the property that the garbled program consists of many “small pieces” that
can be independently generated. Next, in a second step, we use indistinguishability obfuscation
to “compress” the size of the garbled program, by releasing an obfuscated program that takes an
index as input and generates the “piece” corresponding to that index. As a result, the final garbled
program (namely the obfuscated program) is small and can be efficiently computed, and it is only
at the evaluation time that the underlying non-succinct garbled program gets “decompressed” (by
running the obfuscated program on all possible indexes to recover it).
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A Non-succinct Garbling Scheme: Construction Overview Let us first outline a non
succinct garbling scheme for Turing machines2 based on any one-way function. Note that a “trivial”
approach for achieving this is to simply transform any polynomial-time Turing machine into a
polynomial-size circuits and then garble the circuit. While our construction in essence relies on this
principle, we provide a construction that uses as a black-box a garbling scheme for “small” fixed-
sized circuits (and thus this construction may be of independent interest). More precisely, we will
rely on the existence of a garbling scheme for circuits (as in [Yao86]) satisfying an additional useful
property: the key key can be generated independently of the circuit to be garbled (more precisely,
we now have a key generation algorithm Gen that outputs the key key; next, both the encoding
and garbling methods receive this key as input); furthermore, we additionally require that encoded
inputs can be simulated without knowledge of the circuit to be garbled. We refer to such schemes
as garbling schemes with independent key generation and note that Yao’s original scheme (which
can be based on one-way functions) satisfies this property. Our non-succinct garbling scheme now
proceeds as follows for a Turing machine Π with bounded space complexity s(·) and running-time
T (·) and inputs of length n. We construct a “chain” of T (n) garbled circuits that evaluate Π
step by step. More precisely, we first generate keys key1, . . . , keyT (n) for the T (n) garbled circuits.

The ith garbled circuit (which is computed using key keyi) takes as input some state of Π and
computes the next state (ie., the state after one computation step); if the next state is a final state,
it outputs the outputs generated by Π, otherwise its outputs an encoding of this new state using
key keyi+1. (Note that after T (n) steps we are guaranteed to get to a final state and thus this
process is well-defined.)

The input encoding method simply encodes the initial state of Π with input x using the key1,
and to evaluate the garbled program we simply sequentially evaluate each garbled circuit, using
the encodings generated in the previous one as inputs to the next one, and finally outputting the
output generated.

A Non-succinct Garbling Scheme: Proof Overview To show that this construction is a
secure (non-succinct) garbling scheme we need to exhibit a simulator that given just the output
y = Π(x) of the program Π on input x and the number of steps t∗ taken by Π(x) can simulate the
encoded input and program. (The reason we provide the simulation with the number of steps t∗ is
that we desire a garbling scheme with a “per-instance efficiency”—that is, the evaluation time is
polynomial in the actual running-time t∗ and not just the worst-case running-time. To achieve such
“per-instance efficiency” requires leaking the running-time, which is why the simulator gets access
to it.) Towards this, we start by simulating the t∗th garbled circuit with the output being set to y;

this simulation generates an encoded input c̃onft∗−1 and a garbled program Π̃t∗ (if the simulation

is valid, c̃onft∗−1 is supposed to be an encoding of the configuration conft of the TM after t steps
of computation). We then iteratively in descending order simulate the ith (i < t∗) garbled circuits

Π̃i with the output being set to c̃onfi+1 generated in the previously simulated garbled circuit. We
finally simulate the remaining i > t∗ garbled circuits Π̃i with the output being set to some arbitrary
output in the range of the circuit (e.g., simply y), and release c̃onf1 and (Π̃1, . . . Π̃T (n)). (Note that

the fact that we simulate the ith (i > t∗) garbled circuit with the output being set to some arbitrary
value is fine since encoded inputs to those circuits are not released.)

To prove indistinguishability of this simulation, we consider a sequence of hybrid experiments
H0, . . . ,HT (n), where in Hj the first j garbled circuits are simulated, and the remaining T (n) − j

2The choice of a Turing machine as the model of computation is arbitrary and the solution work no matter what
the model of computation is.
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garbled circuits are honestly generated. To “stitch together” the simulated circuits with the honestly
generated ones, the jth garbled circuit is simulated using as output, an honest encoding ĉonfj of
the actual configuration confj of the TM after t steps. It follows from the security of the garbling
scheme (and the fact that a only single encoded input is released for circuit j + 1) that hybrids
Hj and Hj+1 are indistinguishable and thus also H0 (i.e., the real experiment) and HT (n) (i.e., the
simulation).

Let us finally remark a useful property of the above-mentioned simulation. Due to the fact
that we rely on a garbling scheme with independent key generation, each garbled circuit can in fact
be independently simulated—recall that the independent key generation property guarantees that
encoded inputs can be simulated without knowledge of the circuit to be computed and thus all
simulated encoded inputs c̃onf1, . . . c̃onfT (n) can be generated in an initial step. Next, the garbled
circuits can simulated in any order.

The Succinct Garbling Scheme: Construction Overview Let us now turn to making this
garbling scheme succinct. The key idea is to, instead of releasing the actual garbled circuits, release
an obfuscation of the randomized program that generates the garbled circuits. More precisely, we
release an indistinguishability obfuscation of a program Πx,s,s′(t) where x ∈ {0, 1}n is an input to
Π, t ∈ [T (n)] is a “time-step” of Π and s is the seed for a PRF F: Πx,s,s′(t) generates and outputs
the tth garbled circuit in the non-succinct garbling of Π using pseudo-random coins generated by
the PRF with seed s and s′. More specifically, it uses F(s, t) and F(s, t + 1) as randomness to
generate keyt and keyt+1 (recall that the functionality of the tth garbled circuit may depend on
keyt+1), and uses F(s′, t) as randomness for generating the tth garbled circuit.

Now, the new succinct garbled program is the obfuscated program Λ
$← iO(Πx,s,s′), and the

encoding x̂ of x remains the same as before, except that now generated using pseudo-random coins
F(s, 1). Given such a garbled pair Λ and x̂, one can compute the output by first generating the
entire non-succinct garbled program by computing Λ on every time step t, and evaluating the
non-succinct garbling with x̂.

The Succinct Garbling Scheme: Proof Overview Given that the new succinct garbled
program Λ produces “pieces” of the non-succinct garbled program, the natural idea for simulating
the succinct garbled program is to obfuscate a program that produces “pieces” of the simulated
non-succinct garbled program. The above-mentioned “independent simulation” property of the
non-succinct garbled program enable exactly this.

More precisely, given an output y and the running-time t∗ of Π(x), the simulator outputs the
obfuscation Λ̃ of a program Π̃y,t∗,s,s′ that on input t:

• outputs the simulation of the tth garbled circuit (as described in the simulation of the non-
sucking garbling scheme, and using y as the output of the whole program) using F(s, t) and

F(s, t+1) as randomness to generate c̃onft and c̃onft+1, and F(s′, t) as randomness to generate
the simulated garbled circuit;

The encoding of input x̃ is simulated as the non-succinct garbling scheme does, but using pseudo-
random coins F(s, 1). (Note that we here strongly rely on the independent simulation property of
the non-succinct garbled program constructed above, which in turn relies on the independent key
generation property of the underlying garbled circuit.)

It is not hard to see that this simulation works if the obfuscation is virtually black-box secure,
as the entire truth tables of the two programs Πx,s,s′ and Π̃y,t∗,s,s′ are indistinguishable when the
hardwired PRF keys s, s′ are chosen at random. Our goal, however, is to show that assuming
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indistinguishability obfuscation suffices. Towards doing this, as above, we consider a sequence of
hybrid experiments H ′0, . . . ,H

′
T (n) that obfuscates a sequence of programs that “morph” gradually

from Π to Π̃. In particular, the program Π̃x,s,s′

j obfuscated in H ′j produces a non-succinct hybrid
garbled program as in hybrid Hj in the proof of the non-succinct garbling scheme, except that
pseudo-random coins generated using seeds s, s′ are used instead of truly random coins. (More
specifically, for the first j inputs, Π̃j produces simulated garbled circuits (as in Hj), and for the
rest inputs, it produces honestly generated garbled circuits.)

To prove indistinguishability of any two consecutive hybrids H ′j and H ′j+1, we finally rely on
the punctured program technique of Sahai and Waters [SW14], to replace pseudo-random coins
F(s, j+ 1), F(s′, j+ 1) for generating the j+ 1th simulated garbled circuit with truly random coins,
and can then rely on the indistinguishability of the simulation of the j + 1th garbled circuit to
conclude the indistinguishability of neighboring hybrids.

A note on the efficiency of the Garbling Scheme Note that the time (and size) of the garbled
program depends polynomially on the space bound and the length of the inputs and outputs and
only poly-logarithmically in the upper bound on the running-time of the program. The evaluation
time, on the other hand, is linear in the time complexity of the program Π—no matter what model
of computation we rely on (e.g., TM or RAM or PRAM), and again polynomial in the space and
input/output lengths.

1.3 Applications of (Succinct) Garbling Schemes

We now turn to presenting applications of garbling schemes. While our focus here is applications of
succinct garbling schemes, as we shall explain shortly, our results are general and lead to interesting
corollaries also when relying on non succinct schemes.

Application 1: Succinct Randomized Encoding Recall that a randomized encoding [IK02,
AIK04] is a method to, given an input x and a function f , (randomly) encode f(x) in a way that
leaks nothing beyond just f(x). As is well known, garbling schemes imply randomized encoding:
the randomized encoding of f ,x is simply the garbling of f and the encoding of x. Whereas previous
works on randomized encoding have focused on encoding methods that can be performed by low-
depth computations [AIK04], when relying on succinct garbling schemes, we obtain a new type of a
succinct randomized encoding where the encoding can be produced much more efficiently than com-
puting f—in particular, the time needed to produce the encoding only grows poly-logarithmically
with the time-complexity of f . We next show how such succinct randomized encodings are useful
for applications. For notational convenience, we describe these applications using garbling scheme,
but it should be appreciated that for these application succinct randomized encodings actually
suffice.

Applications 2: FE, reusable garbling schemes, secure computations We observe that in
contexts such as secure computation [GMW87] and functional encryption [SW05, O’N10, BSW12],
to evaluate a function f on an input x, it suffices to evaluate the randomized function that com-
putes a garbled program of f and an encoding of the input (recall that by the security of the
garbling scheme this reveal no more than the output of the function).3 Thus, by plugging-in

3That is, we are computing a randomized encoding of f(x).
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our construction of succinct garbling schemes for bounded-space computations (BSC) into ear-
lier constructions of secure computation or randomized functional encryption [GJKS]4, we directly
obtain, assuming iO for P/poly and one-way functions, a randomized functional encryption for
BSC, and secure computation protocols for bounded-space programs, where the communication
complexity is grows logarithmically with the the running-time of the program to be evaluated.
We additionally observe that by combing our construction of functional encryption for BSC with
previous results [CIJ+13, GKP+13b]—[CIJ+13] showed that function encryption schemes with
indistinguishability-based security implies ones with simulation-based security, which further im-
plies reusable garbling schemes by [GKP+13b]—directly yields a construction of reusable succinct
garbling schemes for BSC from iO for P/poly and one-way functions. Summarizing,

Theorem 3 (Informally stated). Assume the existence of indistinguishability obfuscators for P/poly
and one-way function. Then, for every polynomial p, the exists secure constructions of the following
primitives which handle computations all polynomial-time computations with space-complexity s(·):

• reusable succinct garbling;

• functional encryption where the size of the secret key for a function is independent of its
running time;

• secure computation where the communication complexity of the protocol is independent of the
running-time of the program.

Let us mentioned that prior to this paper, the second of these primitives could only be con-
structed based on “knowledge-based” assumptions (such as SNARKs and extractable witness en-
cryption [GKP+13a] or differing-input obfuscation [BCP14, ABG+13]), and the third one based on
incomparable assumptions (namely, FHE—it is unknown whether iO and one-way functions imply
FHE).

Applications 3: Succinct iO and SNARGs Recall that in Theorem 1 we demonstrated how
to use succinct iO to get succinct garbling schemes—in fact, the construction works for any “nice”.
We now show a converse of this result: assuming sub-exponentially-secure iO for P/poly, the
existence of a sub-exponentially-secure succinct garbling scheme for a “nice”’5 class of algorithms
yields an iO for the same class of algorithms with the same complexity. We first observe that if
we had an appropriate notion of iO for randomized functionalities, then we could rely on the same
argument as in the context of secure computation and functional encryption—instead of evaluating
a function f , simply compute the randomized functionality that computes the garbled version of
f and the encoded input. We observe that a notion recently considered by Canetti, Lin, Tessaro
and Vaikuntanathan [CLTV14] (which can be achieved based on sub-exponentially-secure iO and
one-way functions) suffices for our purposes as long as the garbling scheme is sub-exponentially
secure.

Combined with Theorem 2, this yields succinct iO for BSC from sub-exponentially-secure iO
for P/poly and sub-exponentially secure one-way functions. Plugging in this result into the Per-
fect NIZK construction of Sahai-Waters [SW14] directly yields a construction of (Perfect NIZK)

4The reason we need randomized functional encryption is to be able to compute the randomized garbling function.
5Here by “nice”, we mean that C (1) contains algorithms with a-priori polynomially-bounded input and output

lengths, (2) is closed under composition with polynomial-sized circuits, and (3) algorithms contained in Cλ is also
contained in Cλ′ , with λ′ ≥ λ. The last requirement is a technicality in order to enable applying a cryptographic
algorithm on an algorithm from Cλ with a bigger security parameter λ′.
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SNARGS for bounded-space NP from sub-exponentially-secure iO for P/poly and sub-exponentially-
secure one-way functions. Summarizing,

Theorem 4 (Informally state). Assume the existence of sub-exponentially-secure indistinguisha-
bility obfuscators for P/poly and sub-exponentially-secure one-way function. Then, for every poly-
nomial p, there exists

• iO for all polynomial-time computations with space-complexity s·);

• (Perfect NIZK) SNARGS (with adaptive soundness)6 for all languages in NP that can be
decided by a non-deterministic polynomial-time Turing machines with space-complexity s(·).

These primitives were only know to exists based on “knowledge-based” assumptions [BCP14,
ABG+13, BP13] or in the Random Oracle Model [Mic00].

Application 4: iO for RAM with poly-logarithmic overhead We finally observe that the
above observation that in the context of iO it suffices to evaluate the garbling of the function instead
of directly evaluating the functions is useful also if relying on non-succinct garbling schemes. In
particular, by relying on the garbled RAM constructions of [LO13, GHL+14] we directly obtain as
a corollary,

• iO for RAM programs with bounded input and output lengths, where the size of the obfus-
cated program only grows quasi-linearly with the RAM complexity of the program, assuming
iO for P/poly and one-way functions, both with sub-exponential security.

There is one subtle detail that needs to be dealt with to obtain the above corollary. If simply
relying on any iO in the above construction, then the use of this underlying primitive could blow-
up the running-time. (If we rely on an iO for circuits with quasi-linear overhead then we are fine,
but this seems to require stronger assumptions.) Rather, we rely on an observation from Gentry,
Halevi, Raykova and Wichs [GHRW14]: the garbled RAM constructions of [LO13, GHL+14] satisfy
a nice “bit-wise compactness” property, where each bit of the garbled circuit can be independently
generated by a “small” circuit of size depending quasi-linearly in the input and output lengths
and only poly-logarithmically in the running time.7 Thus, (inspired by [GHRW14],) instead of
obfuscating the program that generates the whole garbled circuit in one shot, we simply obfuscate
many “small” programs, each of which generates one bit of the garbled circuit. (Note that the
resulting iO is not succinct: the size of the obfucated program depends on the size of the garbled
RAM).

Let us remark that a similar construction was recently provided in [GHRW14]; the difference
between our construction and theirs is that they propose to obfuscate only a single “small” program
that will generate all bits in the garbled RAM, whereas our iO consists of the obfuscation of many
“small” programs, each of which generates only a single bit in the garbled RAM. But, the authors
of [GHRW14] simply conjecture the security of their construction; in contrast, we prove it secure
assuming that the underlying obfuscator satisfies sub-exponentially secure iO.

6The Perfect NIZK construction of [SW14] only satisfies non-adaptive soundness. But by a standard complexity
leveraging trick, it can be made to satisfy adaptive soundness. Since we anyway assume sub-exponential security of
the iO this comes at no cost for us.

7More precisely, the size of the small circuit is Õ(|R| + n + m) × poly(λ, log T ), where R is the RAM machine
under consideration, n and m are its input and output lengths, and T is its running time.
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2 Preliminaries

Let N denote the set of positive integers, and [n] denote the set {1, 2, . . . , n}. We denote by PPT
probabilistic polynomial time Turing machines. The term negligible is used for denoting functions
that are (asymptotically) smaller than one over any polynomial. More precisely, a function ν(·)
from non-negative integers to reals is called negligible if for every constant c > 0 and all sufficiently
large n, it holds that ν(n) < n−c.

2.1 Models of Computation

In this work we will consider different models of computation. Below we define formally different
classes of algorithms; we will start by defining classes of deterministic algorithms of fixed polynomial
size, and then move to define classes of randomized algorithms and classes of algorithms of arbitrary
polynomial size.

Classes of deterministic algorithms of fixed polynomial size.

Polynomial-time Circuits. For every polynomial D, the class CIR[D] = {Cλ} of include all
deterministic circuits of size at most D(λ).

NC1 Circuits. For every constant c and polynomial D, the class NCc[D] = {Cλ} of polynomial-
sized circuits of depth c log λ include all deterministic circuits of size D(λ) and depth at most
c log λ.

Exponential-time Turing Machines. We consider a canonical representation of Turing ma-
chines M = (M ′, n,m, S, T ) with |n| = |m| = |S| = |T | = λ and n,m ≤ S ≤ T ; M takes
input x of length n, and runs M ′(x) using S space for at most T steps, and finally out-
puts the first m bits of the output of M ′. (If M ′(x) does not halt in time T or requires
more than S space, M outputs ⊥.) In other words, given the description M of a Turing
machine in this representation, one can efficiently read off its bound parameters denoted as
(M.n,M.m,M.S,M.T ).

Now we define the class of exponential time Turing machines. For every polynomial D, the
class TM[D] = {Mλ} includes all deterministic Turing machines ΠM containing the canonical
representation of a Turing machine M of size D(λ); ΠM (x, t) takes input x and t of length
M.n and λ respectively, and runs M(x) for t steps, and finally outputs what M returns.

Remark: Note that machine ΠM (x, t) on any input terminates in t < 2λ, and hence its
output is well-defined. Furthermore, for any two Turing machines M1 and M2, they have
the same functionality if and only if they produce identical outputs and run for the same
number of steps for every input x. This property is utilized when defining and constructing
indistinguishability obfuscation for Turing machines, as in previous work [BCP14].

Exponential-time RAM Machines. We consider a canonical representation of RAM machines
R = (R′, n,m, S, T ) identical to the canonical representation of Turing machines above.

For every polynomial D, the class RAM[D] = {Rλ} of polynomial-sized RAM machines
include all deterministic RAM machines ΠR, defined as ΠM above for Turning machines,
except that the Turing machine M is replace with a RAM machine R.
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Classes of randomized algorithms: The above defined classes contain only deterministic al-
gorithms. We define analogously these classes for their corresponding randomized algorithms. Let
X [D] be any class defined above, we denote by rX [D] the corresponding class of randomized algo-
rithms. For example rCIR[D] denote all randomized circuits of size D(λ), and rTM[D] denote all
randomized turning machine of size D(λ).

Classes of (arbitrary) polynomial-sized algorithms: The above defined classes consist of
algorithms of a fixed polynomial D description size. We define corresponding classes of arbitrary
polynomial size. Let X [D] be any class defined above, we simply denote by X = ∪polyDX [D] the
corresponding class of algorithms of arbitrary polynomial size. For instance, CIR and rCIR denotes
all deterministic and randomized polynomial-sized circuits, and TM denotes all polynomial-sized
Turing machines.

In the rest of the paper, when we write a family of algorithms {ALλ} ∈ X , we mean {ALλ} ∈
X [D] for some polynomial D. This means, the size of the family of algorithms is bounded by
some polynomial. Below, for convenience of notation, when X is a class of algorithms of arbitrary
polynomial size, we write AL ∈ Xλ as a short hand for {ALλ} ∈ {Xλ}.

Classes of well-formed algorithms: In the rest of the preliminary, we define various crypto-
graphic primitives. In order to avoid repeating the definitions for different classes of machines, we
provide definitions for general classes of algorithms {ALλ} that can be instantiated with specific
classes defined above. In particular, we will work with classes of algorithms that are well-formed,
satisfying the following properties:

1. For every AL ∈ ALλ, and input x, AL on input x terminates in 2λ steps. Note that this also
implies that AL has bounded input and output lengths.

2. the size of every ensemble of algorithms {ALλ} ∈ {ALλ} is bounded by some polynomial D
in λ, and

3. given the description of an algorithm AL ∈ ALλ, one can efficiently read off the bound
parameters AL.n,AL.m,AL.S,AL.T .

All above defined algorithm classes are well-formed. Below, we denote by TAL(x) the running time
of AL on input x, and TAL the worst case running time of AL. Note that well-formed algorithm
classes are not necessarily efficient; for instance the class of polynomial-sized Turing machines TM
contain Turing machines that run for exponential time. In order to define cryptographic primitives
for only polynomial-time algorithms, we will use the notation ALGT =

{
ALTλ

}
to denote the class

of algorithms in ALG = {ALλ} that run in time T (λ) (in particular, these with ALλ.T < T (λ)).
In the rest of the paper, all algorithm classes are well-formed.

2.2 Garbling Scheme

Definition 1 (Garbling Scheme). A Garbling scheme GS for a class of (well-formed) determinis-
tic algorithms {ALλ}λ∈N consists of algorithms GS = (Garb,Encode,Eval) satisfying the following
properties:

Syntax: For every λ ∈ N, AL ∈ ALλ and input x,

• Garb is probabilistic and on input (1λ, AL) outputs a pair (ÂL,key).8

8(Note that as the algorithm class is well-formed, Garb implicitly has all bound parameters of AL.

9



• Encode is deterministic and on input (key, x) outputs x̂.

• Eval is deterministic and on input (ÂL, x̂) produced by Garb,Encode outputs y.

Correctness: For every polynomial T and every family of algorithms {ALλ} ∈
{
ALTλ

}
and se-

quence of inputs {xλ}, There exists a negligible function µ, such that, for every λ ∈ N,
AL = ALλ, x = xλ,

Pr[(ÂL,key)
$← Garb(1λ, AL), x̂

$← Encode(key, x) : Eval(ÂL, x̂) 6= AL(x)] ≤ µ(λ)

Definition 2 (Security of a Garrbling Scheme). We say that a Garbling scheme GS for a class of
deterministic algorithms {ALλ}λ∈N is secure if the following holds.

Security: There exists a uniform machine Sim, such that, for every non-uniform PPT distinguisher
D, every polynomial T ′, every sequence of algorithms {ALλ} ∈ {ALT

′
λ }, and sequence of inputs

{xλ} where xλ ∈ {0, 1}ALλ.n, there exists a negligible function µ, such that, for every λ ∈ N,
AL = ALλ, x = xλ the following holds:∣∣∣Pr[(ÂL,key)

$← Garb(1λ, AL), x̂
$← Encode(key, x) : D(ÂL, x̂) = 1]

− Pr[(ÃL, x̃)
$← Sim(1λ, 1|x|, 1|AL|, (n,m, S, T ), TAL(x), AL(x)) : D(ÃL, x̃) = 1]

∣∣∣ ≤ µ(λ)

where (n,m, S, T ) = (AL.n,AL.m,AL.S,AL.T ) and Sim runs in time poly(λ, T ′(λ)). More-
over, µ is called the distinguishing gap

Furthermore, we say that GS is δ-indistinguishable if the above security condition holds with a
distinguishing gap µ bounded by δ. Especially, GS is sub-exponentially indistinguishable if µ(λ)
is bounded by 2−λ

ε
for a constant ε.

We note that the sub-exponentially indistinguishability defined above is weaker than usual sub-
exponential hardness assumptions in that the distinguishing gap only need to be small for PPT
distinguisher, rather than sub-exponential time distinguishes.

We remark that in the above definition, simulator Sim receives many inputs, meaning that, a
garbled pair ÂL, x̂ reveals nothing but the following: The output AL(x), instance running time
TAL(x), input length |x| and machine size |AL|, together with various parameters (n,m, S, T ) of
AL. We note that the leakage of the instance running time is necessary in order to achieve instance-
based efficiency (see efficiency guarantees below). The leakage of |AL| can be avoided by padding
machines if an upper bound on their size is known. The leakage of parameters (n,m, S, T ) can be
avoided by setting them to 2λ; see Remark 1 for more details. In particular, when the algorithms
are circuits, inputs to the simulation algorithm can be simplified to (1λ, 1|x|, 1|C|, AL(x)), since all
bound parameters n,m, S, T can be set to 2λ.

Efficiency Guarantees. we proceed to describe the efficiency requirements for garbling schemes.
When considering only circuit classes, all algorithms Garb,Encode,Eval should be polynomial time
machines, that is, the complexity of Garb,Eval scales with the size of the circuit |C|, and that of
Encode with the input length |x|. However, when considering general algorithm classes, since the
description size |AL| could be much smaller than the running time AL.T , or even other parameters
AL.S,AL.n,AL.m, there could be different variants of efficiency guarantees, depending on what
parameters the complexity of the algorithms depends on. Below we define different variants.
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Definition 3 (Different Levels of Efficiency of Garbling Schemes). We say that a garbling scheme
GS for a class of deterministic algorithms {ALλ}λ∈N has succinctness or I/O / space / time-
dependent complexity if the following holds.

Optimal efficiency: There exists universal polynomials pGarb, pEncode, pEval, such that, for every
λ ∈ N, AL ∈ ALλ and input x ∈ {0, 1}AL.n,

• (Â,key)
$← Garb(1λ, AL) runs in time pGarb(λ, |AL|, AL.m),9

• x̂ = Encode(key, x) runs in time pEncode(λ, |x|, AL.m), and

• y = Eval(ÂL, x̂) runs in time pEval(λ, |AL|, |x|, AL.m)×TAL(x), with overwhelming prob-
ability over the random coins of Garb. We note that Eval has instance-based efficiency.

I/O-dependent complexity: The above efficiency conditions hold with pGarb, pEncode, pEval taking
AL.n as additional parameters.

Space-dependent complexity: The above efficiency conditions hold with pGarb, pEncode, pEval tak-
ing AL.S as an additional parameter.

Time-dependent complexity: The above efficiency conditions hold with pGarb, pEncode taking
AL.T as an additional parameter and depending quasi-linearly in AL.T , and the running
time of Eval is bounded by pEval(λ, |AL|, |x|)AL.T .

Furthermore, we say that the garbling scheme GS has succinct input encodings if the encoding
algorithm Encode(key, x) runs in time pEncode(1

λ, |x|).

We say that a garbling scheme is “succinct” if its complexity depends only poly-logarithmically
on the time bound. Thus a scheme with space-dependent complexity is succinct for a class of
algorithms whose space usage is bounded by a fixed polynomial.

On the dependency on the length of the output. Note that in the optimal efficiency defined above,
the complexity of the algorithms depends on the length of their respective inputs and the bound on
their output lengths AL.m. We argue that this is necessary. This is because that the garbling of
an algorithm ÂL together with an encoding of an input x̂ encodes the output AL(x), while leaking
nothing beyond AL(x). (ÂL, x̂ is a randomized encoding of AL, x.) Then, assuming the existence
of pseudorandom generators G, the total size of the garbled function Ĝ and encoded input x̂ must
be at least the length of the output of the function. Otherwise, the simulator can “compress”
random strings with overwhelming probability, which is a contradiction. Therefore, we allow the
complexity of the algorithms to depend on the length of the output in optimal efficiency.

Garbling Schemes for Specific Algorithm Classes. Next we instantiate the above definition
of garbling scheme for general algorithm classed with concrete classes.

Definition 4 (Garbling Scheme for Polynomial-sized Circuits). A triplet of algorithms GSCIR =
(GarbCIR,EncodeCIR,EvalCIR) is a garbling scheme (with linear-time-dependent complexity) for poly-
nomial sized circuits if it is a garbling scheme for class CIR (with linear-time-dependent complexity).

We note that in the case of circuits, succinctness means the complexity scales polynomially in
|C|, whereas linear-time-dependency means the complexity scales linearly with |C|.

9Note that the running time of Garb and similarly other algorithms that takes AL as an input, implicitly depends
logarithmically on the time bound of AL, as its description contains the time bound AL.T .
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Definition 5 (Garbling Schemes for Polynomial Time Turing Machines). A triplet GSTM =
(GarbTM,EncodeTM,EvalTM) of algorithms is a garbling scheme with optimal efficiency or I/O-
/ space- / linear-time-dependent complexity (and succinct input encodings) for Turing machines, if
it is a garbling scheme for class TM, with the same level of efficiency.

Different efficiency requirements impose qualitatively different restrictions. In this work, we
will construct a garbling scheme for Turing machines with space-dependent complexity assuming
indistinguishability obfuscation for circuits. The construction of garbling scheme from iO for Turing
machines, sketched in the introduction, has I/O-dependent complexity. On the other hand, we show
that a scheme with is impossible; in particular, the complexity of the scheme must scale with the
bound on the output length.

Definition 6 (Garbling Schemes for Polynomial Time RAM Machines). A triplet GSRAM =
(GarbRAM,EncodeRAM,EvalRAM) of algorithms is a garbling scheme for polynomial-time RAM ma-
chines with optimal efficiency or I/O- / space- / linear-time- dependent-complexity, (and succinct
input encodings), if it is a garbling scheme for class RAM, with the same level of efficiency.

Recently, the works by [LO13, GHL+14] give construction of a garbling scheme for RAM ma-
chines with linear-time-dependent complexity and succinct input encodings, assuming only one-way
functions.

Garbled Circuits with Independent Key Generation. In this work, we will make use of
a garbling scheme for circuits with a special structural property. In Definition 4, the key key
for garbling inputs is generated depending on the circuit (by Garb(1λ, C)); the special property of
a circuit garbling scheme is that the key can be generated depending only on the length of the
input 1|x| and the security parameter, which implies that the garbled inputs x̂ can also be generated
depending only on the plain input x and the security parameter λ, independently of the circuit—we
call this independent key generation.

Definition 7 (Garbling Scheme for Circuits with Independent Key Generation). A Garbling
scheme GS = (Garb,Encode,Eval) for a deterministic circuit class {Cλ}λ∈N has independent key

generation if the following holds: For every λ ∈ N, and every C ∈ Cλ,

• The algorithm Garb on input (1λ, C) invokes first key
$← Gen(1λ, 1|x|) and then Ĉ

$← Gb(key, C),
where Gen and Gb are all PPT algorithms.

• The security condition holds w.r.t. a simulator Sim that on input (1λ, 1|x|, 1|C|, TC(x), C(x))

invokes first (x̃, st)
$← Sim·Gen(1λ, 1|x|) and then C̃

$← Sim·Gb((1λ, 1|x|, 1|C|, C(x), st), where
Sim·Gen and Sim·Gb are all uniform PPT algorithms.

It is easy to check that many known circuit garbling schemes, in particular the construction by
Yao [Yao86], has independent key generation.

Proposition 1. Assume the existence of one-way functions that are hard to invert in Γ time. Then,
there exists a garbling scheme GSCIR for polynomial-sized circuits with independent key generation
that is Γ−ε-indistinguishable for some constant ε ∈ (0, 1).
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2.3 Indistinguishability Obfuscation

We recall the definition of indistinguishability obfuscation, adapting to arbitrary classes of algo-
rithms. As before, we first define the syntax, correctness and security of iO, and then discuss about
different efficiency guarantees.

Definition 8 (Indistinguishability Obfuscator (iO)). A uniform machine iO is a indistinguisha-
bility obfuscator for a class of deterministic algorithms {ALλ}λ∈N, if the following conditions are
satisfied:

Correctness: For all security parameters λ ∈ N, for all AL ∈ ALλ, for all input x, we have that

Pr[AL′ ← iO(1λ, AL) : AL′(x) = AL(x)] = 1

Security: For every polynomial T , every non-uniform PPT samplable distribution D over the sup-
port

{
ALTλ ×ALTλ × {0, 1}poly(λ)

}
, and adversary A, there is a negligible function µ, such

that, for sufficiently large λ ∈ N, if

Pr[(AL1, AL2, z)← D(1λ) : ∀x, AL1(x) = AL2(x), TAL′(x) = TAL(x),

(|AL|, AL.n,AL.m,AL.S,AL.T ) = (|AL′|, AL′.n, AL′.m,AL′.S, AL′.T )] > 1− µ(λ)

Then, ∣∣∣Pr[(AL1, AL2, z)
$← D(1λ) : A(iO(1λ, AL1), z)]

−Pr[(AL1, AL2, z)
$← D(1λ) : A(iO(1λ, AL2), z)]

∣∣∣ ≤ µ(λ)

where µ is called the distinguishing gap for D and A.

Furthermore, we say that iO is δ-indistinguishable if the above security condition holds with a
distinguishing gap µ bounded by δ. Especially, iO is sub-exponentially indistinguishable if µ(λ)
is bounded by 2−λ

ε
for a constant ε.

Note that in the security guarantee above, the distribution D samples algorithms AL1, AL2 that
has the same functionality, and matching bound parameters. This means, an obfuscated machine
“reveals” the functionality (as desired) and these bound parameters. We remark that the leakage
of the latter is without loss of generality: In the case of circuits, all bound parameters are set to 2λ.
In the case of other algorithm classes, say Turing and RAM machines. If an iO scheme ensures that
one parameter, say AL.S, is not revealed, one can simply consider a representation that always
sets that parameter to 2λ; then security definition automatically ensures privacy of that parameter.
See Remark 1 for more details.

Definition 9 (Different Levels of Efficiency of IO). We say that an indistinguishability obfuscator
iO of a class of algorithms {ALλ} has optimal efficiency, if there is a universal polynomial p such
that for every λ ∈ N, and every AL ∈ ALλ, iO(1λ, AL) runs in time p(λ, |AL|).

Additionally, we say that iO has input- / space- / linear-time- dependent complexity, if
iO(1λ, AL) runs in time poly(λ, |AL|, AL.n) / poly(λ, |AL|, AL.S) / poly(λ, |AL|)AL.T .

We note that unlike the case of garbling schemes, the optimal efficiency of an iO scheme does
not need to depend on the length of the output. Loosely speaking, the stems from the fact that
indistinguishability-based security does not require “programing” outputs, which is the case in
simulation-based security for garbling.
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iO for Specific Algorithm Classes. We recall the definition of iO for polynomial-sized circuits,
NC1 [BGI+01]; and give definitions of iO for polynomial time Turing machines [BCP14] and RAM
machines with different efficiency guarantees.

Definition 10 (Indistinguishability Obfuscator for Poly-sized Circuits and NC1). A uniform PPT
machine iOCIR(·, ·) is an indistinguishability obfuscator for polynomial-sized circuits if it is an in-
distinguishability obfuscator for CIR with optimal efficiency.

A uniform PPT machine iONC1(·, ·, ·) is an indistinguishability obfuscator for NC1 circuits if
for all constants c ∈ N , iONC1(c, ·, ·) is an indistinguishability obfuscator for NCc with optimal
efficiency.

Definition 11 (IO for Turing Machines). A uniform machine iOTM(·, ·) is a indistinguishability
obfuscator for polynomial-time Turing machines, with optimal efficiency or input- / space-dependent
complexity, if it is an indistinguishability obfuscator for the class TM with the same efficiency.

Recently, the works by [BCP14, ABG+13] give constructions of iO for Turing machines10

with input-dependent complexity assuming FHE, differing-input obfuscation for circuits, and P-
certificates [CLP13]; furthermore, the dependency on input lengths can be removed—leading to a
scheme with optimal efficiency—if assuming SNARK instead of P-certificates.

Definition 12 (iO for RAM Machines). A uniform machine iOTM(·, ·) is a indistinguishability
obfuscator for polynomial-time Turing machines, with optimal efficiency or linear-time-dependent
complexity, if it is an indistinguishability obfuscator for the class RAM with the same efficiency.

Remark 1 (Explicit v.s. Implicit Bound Parameters). In the above definitions of Garbling Scheme
and iO for general algorithms, we considered a canonical representation of algorithms AL that
gives information of various bound parameters of the algorithm, specifically, the size |AL|, bound
on input and output lengths AL.n,AL.m, space complexity AL.S, and time complexity AL.T . This
representation allows us to define, in a unified way, different garbling and iO schemes that depend
on different subsets of parameters. For instance,

• The Garbling and iO schemes for TM that we construct in Section 3 and 6 (from iO and sub-
exp iO for circuits respectively) has complexity poly(|AL|, AL.S, log(AL.T )). (In particular,
the size of the garbled TM and obfuscated TM is of this order.)

• The garbling scheme for TM constructed (from iO for TM) sketched in the introduction has
complexity poly(|AL|, AL.n,AL.m, log(AL.T )).

• The garbling scheme for RAM from one-way functions by [LO13, GHL+14] has complexity
scales polynomially in (|AL|, AL.n,AL.m) and quasi-linearly in AL.T . This construction
leads to an iO for RAM (from sub-exp iO for circuits) of the same complexity in 6.

By using the canonical representation, our general definition allows the garbling or iO scheme
to depend on any subset of parameters flexibly. Naturally, if a scheme depends on a subset of param-
eters, the resulting garbled or obfuscated machines may “leak” these parameters (in the above three
examples above, the size of the garbled or obfuscated machines leaks the parameters they depend on);
thus, the security definitions must reflect this “leakage” correspondingly. The general security defi-
nitions 2 and 8 captures this by allowing leakage of all parameters |AL|, AL.n,AL.m,AL.S,AL.T .

10Their works actually realize the stronger notion of differing-input, or extractability, obfuscation for Turing ma-
chines
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However, this seems to “overshoot”, as if a specific scheme does not depend on a particular param-
eter (e.g. AL.S), then this parameter should be kept private. This can be easily achieved, by simply
considering an algorithm representation that always set that parameter to 2λ (e.g. AL.S = 2λ).

2.4 Puncturable Pseudo-Random Functions

We recall the definition of puncturable pseudo-random functions (PRF) from [SW14]. Since in this
work, we only uses puncturing at one point, the definition below is restricted to puncturing only
at one point instead of at a polynomially many points.

Definition (Puncturable PRFs). A puncturable family of PRFs is given by a triple of uniform PPT
machines (PRF·Gen,PRF·Punc,F), and a pair of computable functions n(·) and m(·), satisfying the
following conditions:

Correctness. For all outputs K of PRF·Gen(1λ), all points i ∈ {0, 1}n(λ), and K(−i) = PRF·Punc(K, i),
we have that F(K(−i), x) = F(K,x) for all x 6= i.

Pseudorandom at punctured point. For every PPT adversary (A1,A2), there is a negligible
function µ, such that in an experiment where A1(1

λ) outputs a point i ∈ {0, 1}n(λ) and a state

σ, K
$← PRF·Gen(1λ) and K(i) = PRF·Punc(K, i), the following holds∣∣Pr[A2(σ,K(i), i,F(K, i)) = 1]− Pr[A2(σ,K(i), i, Um(λ)) = 1]

∣∣ ≤ µ(λ)

where µ is called the distinguishing gap for (A1,A2).

Furthermore, we say that the puncturable PRF is δ-indistinguishable if the above pseudorandom
property holds with a distinguishing gap µ bounded by δ. Especially, the puncturable PRF is sub-

exponentially indistinguishable if µ(λ) is bounded by 2−λ
ε

for a constant ε.

As observed by [BW13, BGI14, KPTZ13], the GGM tree-based construction of PRFs [GGM86]
from pseudorandom generators (PRGs) yields puncturable PRFs. Furthermore, it is easy to see
that if the PRG underlying the GGM construction is sub-exponentially hard (and this can in turn be
built from sub-exponentially hard OWFs), then the resulting puncturable PRF is sub-exponentially
pseudo-random.

3 A Succinct Garbling Scheme for BSTM

In this section, we construct a garbling scheme for the class of Turing machines TM with space-
dependent complexity. Thus when the space complexity of the TM is bounded, it yields a succinct
scheme. We will see in the next section that our construction for Turing machines directly applies
to general bounded space computation.

Theorem 5. Assuming the existence of IO for circuits and one-way functions. There exists a
garbling scheme for TM with space-dependent complexity.

Towards this, we proceed in two steps: In the first step, we construct a non-succinct garbling
scheme for TM, which satisfies the correctness and security requirements of Definition 1 and 2,
except that the garbling and evaluation algorithms can run in time polynomial in both the time
and space complexity, M.T and M.S, of the garbled Turing machine M (as well as the simulation
algorithm); the produced garbled Turing machine is of size in the same order. In the second step,
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we show how to reduce the complexity to depend only on the space complexity M.S, leading to a
garbling scheme with space-dependent complexity. Since in this section, only the space and time
bound parameters matter, we will simply write S and T as M.S and M.T , and we use the notion
D to represent the description size of M .

3.1 A Non-Succinct Garbling Scheme

Overview. The execution of a Turing machine M consists of a sequence of steps, where each step
t depends on the description of the machine M and its current configuration conft, and produces
the next configuration conft+1. In the Turing machine model, each step takes constant time,
independent of the size of the Turing machine and its configuration. However, each step can be
implemented using a circuit NextD,S that on input (M, conft) with |M | ≤ D, | conft | ≤ S, outputs
the next configuration conft+1—we call this circuit the “universal next-step circuit”. The size of
the circuit is a fixed polynomial pNext in the size of the machine and the configuration, that is,
pNext(D,S). The whole execution of M(x) can be carried out by performing at most T evaluations
of NextD,S(M, ·), producing a chain of configurations denoted by,

CONFIG(M,x) = (T ∗, conf1, · · · , confT , confT+1), where T ∗ = TM (x), conf1 is the ini-
tial configuration with input x {conf1, · · · , confT ∗−1, confT ∗} are the sequence of con-
figurations until M(x) halts (conft is the configuration before the tth step starts), and
{confT ∗ , · · · , confT+1} are simply set to the output y = M(x).

We note that the initial configuration conf1 can be derived efficiently from x, confT ∗

is called the final configuration, which can be efficiently recognized and from which an
output y can be extracted efficiently.

When succinctness is not required, the natural idea to garble a T -step Turing machine compu-
tation of M(x) is to produce a chain of T garbled circuits (Ĉ1, · · · , ĈT ), for evaluating the next
step circuit NextD,S(M, ·) for M . The tth circuit Ct is designated to compute from the tth configu-
ration conft (as input) to the next conft+1; if the produced conft+1 is a final configuration, then it
simply outputs the output y; otherwise, to enable the evaluation of the next garbled circuit Ĉt+1,
it translates conft+1 into the corresponding garbled inputs ĉonft+1 for Ĉt+1—we call Ct the tth

step-circuit. Then evaluation propagates and the intermediate configurations of the execution of
M on x is implicitly computed one by one, until it reaches the final configuration, in which case,
an output is produced explicitly (without translating into the garbled inputs of the next garbled
circuit). Since each computation step is garbled, and all intermediate configurations, except from
the final output y, are “encrypted” as garbled inputs, the entire chain of garbled circuits can be
simulated given only the output y.

Finally, we note that each step-circuit Ct evaluates NextD,S(M, ·) and has the capability of
garbling an input for the next garbled circuit Ĉt; this can only be achieved if the circuit garbling
scheme has independent key generation, which ensures that the input garbling can be done inde-
pendently of the circuit garbling, and only takes time polynomial in the length of the input (rather
than, in the size of the circuit).

Our Non-Succinct Garbling Scheme. We now describe formally our non-succinct garbling
scheme GSns = (Garbns,Encodens,Evalns). We rely on a garbling scheme for polynomial-sized
circuits with independent key generation.
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• Let GSCIR = (GarbCIR,EncodeCIR,EvalCIR) be a garbling scheme for polynomial-sized circuits,
and SimCIR the simulation algorithm. We require GSCIR to have independent key generation,
that is, GarbCIR = (GenCIR,GbCIR), and SimCIR = (Sim·GenCIR,Sim·GbCIR) as described in
Definition 7.

Let NextD,S be the universal next step circuit for machine of size at most D and space complexity
at most S; it has a fixed polynomial size pNext(D,S) and can be generated efficiently given D and
S. For every λ and M ∈ TMλ, our scheme proceeds as follows:

The garbling algorithm Garbns(1
λ,M):

Let S = M.S, T = M.T and D = |M |.
Sample 2T sufficiently long random strings α1, · · · , αt and β1, · · ·βt; produce a chain of T
garbled circuits using GarbCIR by running the following program for every t ∈ [T ].

Program Pλ,S,M (t ; (αt, αt+1, βt)) :

1. Generate the key keyt+1 for the next garbled circuit:

If t < T , compute the key for the t + 1th garbled circuit keyt+1 = GenCIR(1λ, 1S ;αt+1)
using randomness αt+1. (Note that keyt is generated for inputs of length S.)

2. Prepare the step-circuit Ct:

Stept on a S-bit input conft (i) compute conft+1 = NextD,S(M, conft); (ii) if conft+1

is a final configuration, simply outputs the output y contained in it11; (iii) otherwise,
translate conft+1 to the garbled inputs of the t + 1th garbled circuit, by computing
ĉonft+1 = EncodeCIR(keyt+1, conft+1).

3. Garble the step-circuit Ct:

Compute the key using randomness αt, keyt = GenCIR(1λ, 1S ;αt), and garble Ct using
randomness βt, Ĉt = GbCIR(keyt,Ct;βt),

4. Output Ĉt.

Generate key as follows: Compute the key for the first garbled circuit using randomness α1,
key1 = GenCIR(1λ, 1S ;α1); set key = key1 ‖1S .

Finally, output M̂ = (Ĉ1, · · · , ĈT ),key.

The encoding algorithm Encodens(key, x): Let conf1 ∈ {0, 1}S be the initial configuration of

M with input x; compute x̂ = ĉonf1 = EncodeCIR(key1, conf1).

The evaluation algorithm Evalns(M̂, x̂): Evaluate the chain of garbled circuits M̂ = (Ĉ1, · · · , ĈT )

in sequence in T iterations: In iteration t, compute z = EvalCIR(Ĉt, ĉonft); if z is the garbled

inputs ĉonft+1 for the next garbled circuit Ĉt+1, proceed to the next iteration; otherwise,
terminate and output y = z.

Next, we proceed to show that GSns is a non-succinct garbling scheme for TM.

Efficiency. We summarize the complexity of different algorithms of the non-succinct scheme.
It is easy to see that for any Turing machine M with D = |M |, S = M.S and T = M.T , the
garbling algorithm Garbns runs in time poly(λ,D, S)× T , and produces a garbling machine of size
in the same order. Thus the garbling scheme is non-succinct. On the other hand, the encoding
and evaluation algorithms Encodens and Evalns are all deterministic polynomial time algorithms.
Finally, the simulation run in time poly(λ,D, S)× T as the garbling algorithm.

11Pad y with 0 if it is not long enough
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Correctness. We show that for every polynomial T ′, every sequence of algorithms {M = Mλ} ∈
{TMT ′

λ }, and sequence of inputs {x = xλ} where xλ ∈ {0, 1}M.n, there exists a negligible function
µ, such that,

Pr[(key, M̂)
$← Garbns(1

λ,M), x̂ = Encodens(key, x) : Evalns(M̂, x̂) 6= M(x)] ≤ µ(λ)

Let CONFIG(M,x) = (T ∗, conf1, · · · , confT , confT+1) be the sequence of configurations gener-
ated in the computation of M(x), where T ≤ T ′(λ). It follows from the correctness of the circuit
garbling scheme GarbCIR that with overwhelming probability (over the randomness of Garbns), the

following is true: (1) for every t < T ∗, the garbled circuit Ĉt, if given the garbled input ĉonft cor-

responding to conft, computes the correct garbled inputs ĉonft+1 corresponding to conft+1, and (2)

for t = T ∗, the garbled circuit ĈT ∗ , if given the garbled input ĉonfT ∗−1 corresponding to confT ∗−1,
produces the correct output y. (Note that the evaluation procedure terminates after T ∗ iterations
and circuits Ĉt for t > T ∗ are never evaluated). Then since the garbled input x̂ equals to the

garbled initial configuration ĉonf1, by conditions (1) and (2), the evaluation procedure produces
the correct output with overwhelming probability.

Security. Fix any polynomial T ′, any sequence of algorithms {M = Mλ} ∈ {TMT ′
λ }, and any

sequence of inputs {x = xλ} where xλ ∈ {0, 1}M.n. Towards showing the security of GSns, we
construct a simulation algorithm Simns, and show that the following two ensembles are indistin-
guishable: For convenience of notation, we suppress the appearance of M.n and M.m as input to
Sim. {

realns(1
λ,M, x)

}
=

{
(M̂,key)

$← Garbns(1
λ,M), x̂ = Encodens(key, x) : (M̂, x̂)

}
λ

(1){
simuns(1

λ,M, x)
}

=
{

(M̃, x̃)
$← Simns(1

λ, 1|x|, 1|M |, S, T, TM (x),M(x)) : (M̃, x̃)
}
λ

(2)

Below we describe the simulation algorithm. Observe that the garbled machine M̂ consists of T
garbled circuits (Ĉ1, · · · , ĈT ) and the garbled input x̂ is simply the garbled input of the initial con-
figuration conf0 (corresponding to x) for the first garbled circuit Ĉ1. Naturally, to simulate them,
the algorithm Simns needs to utilize the simulation algorithm SimCIR = (Sim·GenCIR,Sim·GbCIR) of
the circuit garbling scheme, which requires knowing the output of each garbled circuit. In a real
evaluation with M̂, x̂, the output of the (T ∗)th garbled circuit is y = M(x), the output of the

garbled circuits t < T ∗ is the garbled input ĉonft+1 for next garbled circuit t+ 1, and the garbled
circuits t > T ∗ are not evaluated, but for which y is a valid output. Thus, in the simulation, garbled
circuits t = T ∗, · · · , T can be simulated using output y; whereas garbled circuits t = 1, · · · , T ∗ − 1
will be simulated using the simulated garbled inputs for circuit t+ 1. More precisely,

The simulation algorithm Simns(1
λ, 1|x|, 1|M |, S, T, T ∗ = TM (x), y = M(x)):

Sample 2T sufficiently long random strings α1, · · · , αT , β1, · · · , βT . Simulate the chain of
garbled circuits by running the following program for every t ∈ [T ].

Program Qλ,S,|M |,T ∗,y(t ; (αt, αt+1, βt)) :

1. Prepare the output outt for the tth simulated circuit C̃t:

If t ≥ T ∗, outt = y. Otherwise, if t < T ∗, set the output as the garbled input for
the next garbled circuits, that is, outt = c̃onft+1 computed from (c̃onft+1, stt+1) =
Sim·GenCIR(1λ, 1S ; αt+1) using randomness αt+1.
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2. Simulate the tth step-circuit C̃t:

Given the output outt, simulate the tth garbled circuit C̃t by computing first (c̃onft, stt) =
Sim·GenCIR(1λ, 1S ; αt) and then C̃t = Sim·GbCIR(1λ, 1S , 1q, outt, stt ; βt), using random-
ness αt, βt where q = q(λ, S) is the size of the circuit Ct.

3. Output C̃t.

Simulate the garbled input x̃ by computing again (c̃onf1, st1) = Sim·GenCIR(1λ, 1S ; α1) using

randomness α1, and setting x̃ = c̃onf1.

Finally, output (M̃ = (C̃1, · · · , C̃T ), x̃).

Towards showing the indistinguishability between honestly generated garbling (M̂, x̂) and the
simulation (M̃, x̃), we will consider a sequence of hybrids hyb0ns, · · · , hybTns, where hyb0ns samples
(M̂, x̂) honestly, while hybTns generates the simulated garbling (M̃, x̃). In every intermediate hybrid
hybγns, a hybrid simulator HSimγ

ns is invoked, producing a pair (M̃γ , x̃γ) . At a high-level, the γth

hybrid simulator on input (1λ,M, x) simulate the first γ − 1 garbled circuits using the program
Q, generates the last T − γ garbled circuits honestly using the program P, and simulates the γth

garbled circuits using the program R described below, which “stitches” together the first γ − 1
simulated circuits with the last T − γ honest circuits into a chain that evaluates to the correct
output. More precisely, we will denote by

COMBINE[(P1, S1), ·, (P`, S`)] a merged circuit that on input x in the domain X, com-
putes Pj(x) if x ∈ Sj , where S1, · · · , S` is a partition of the domain X.

The hybrid simulation algorithm HSimγ
ns(1

λ,M, x) for γ = 0, · · · , T :

Compute T ∗ = TM (x) and y = M(x), and the intermediate configuration confγ+1 as defined
by CONFIG(M,x).

Sample 2T sufficiently long random strings {αt, βt}t∈[T ]. Simulate the chain of garbled circuits
by running the following program for every t ∈ [T ], which combines programs P, Q and R
as below.

Program Mγ = COMBINE [(Q, [γ − 1]), (R, {γ}), (P, [γ + 1, T ])] (t ; (αt, αt+1, βt)) :

• If t ≤ γ − 1, compute C̃t = Qλ,S,|M |,T ∗,y(t ; (αt, αt+1, βt)); output C̃t.

• If t ≥ γ + 1, compute Ĉt = Pλ,S,M (t ; (αt, αt+1, βt)); output Ĉt.

• If t = γ, compute C̃t = Rλ,S,confγ+1(γ ; (αγ , αγ+1, βγ)) define as follow:

1. Prepare the output outγ of the simulated γth circuit C̃t:
Set the output outγ to y if confγ+1 is a final configuration. Otherwise, the output
should be the garbled input corresponding to confγ+1 for the next garbled circuit;

since the γ + 1th circuit is generated honestly, we compute outγ = ĉonfγ+1 by

first computing keyγ+1 = GenCIR(1λ, 1S ; αγ+1), and then encoding ĉonfγ+1 =
EncodeCIR(keyγ+1, confγ+1).
(Note that the difference between program Q and R is that the former prepares the

output outγ using simulated garbled input c̃onft+1, whereas the latter using honestly

generated garbled input ĉonfγ+1.)

2. Simulate the γth circuit C̃t:
Given the output outγ , simulate the γth garbled circuit C̃γ by computing (c̃onfγ , stγ) =

Sim·GenCIR(1λ, 1S ; αγ) and C̃t = Sim·GbCIR(1λ, 1S , 1q, outγ , stγ ; βγ), where q =
q(λ, S) is the size of the circuit Ct.
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If γ > 0, simulate the garbled input x̃γ as Simns does. Otherwise, if γ = 0, generate the
garbled input x̃0 honestly as in Garbns and Encodens.

Finally, output (M̃γ = (C̃1, · · · , C̃γ , Ĉγ+1ĈT ), x̃γ).

We overload notation hybγns(1
λ,M, x) as the output distribution of the hybrid simulator HSimγ

ns.
By construction, in HSimγ

ns, when γ = 0, M0 = P and the garbled input x̃0 is generated honestly;
thus, {hyb0ns(1λ,M, x)} = {realns(1λ,M, x)} (where realns is the distribution of honestly generated
garbling; see equation (1)); furthermore, when γ = T , M0 = Q and the garbled input x̃γ is simu-
lated; thus

{
hybγns(1

λ,M, x)
}

=
{
simuns(1

λ,M, x)
}

(where simuns is the distribution of simulated
garbling; see equation (2)). Thus to show the indistinguishability between {realns(1λ,M, x)} and
{simuns(1

λ,M, x)}, it suffices to show the following claim:

Claim 1. For every γ ∈ N, the following holds{
hybγ−1ns (1λ,M, x)

}
λ
≈
{
hybγns(1

λ,M, x)
}
λ

Proof. Fix a γ ∈ N, a sufficiently large λ ∈ N, an M = Mλ and a x = xλ. The only difference
between the garbling (M̃γ−1, x̃γ−1) sampled by hybγ−1ns (1λ,M, x) and the garbling (M̃γ , x̃γ) sampled
by hybγns(1

λ,M, x) is the following: Let confγ be the intermediate configuration at the beginning
of step γ.

• In hybγ−1ns , the γth garbled circuit Ĉγ is generated honestly using program P. The circuit
Cγ (as described in algorithm Garbns) is the composition of the circuit Nextλ,S(M, ·) and the
encoding algorithm EncodeCIR(keyγ+1, ·), where keyγ+1 = GenCIR(1λ, 1S ;αγ+1) is generated
honestly.

Furthermore, the first γ− 1 garbled circuits are simulated using R and Q. The simulation of
the first γ−1 circuits as well as the generation of the garbled input x̃γ depends potentially on

the garbled input ĉonfγ corresponding to confγ for Ĉγ (when confγ is not a final configuration;
see Step 1 in R).

In other words, the output of hybγ−1ns can be generated by the following alternative sampling
algorithm:

– Generate garbled circuits γ+1, · · · , T honestly using program P; prepare the γth circuit
Cγ using keyγ+1.

– Receive externally honest garbling (Ĉγ , ĉonfγ) of (Cγ , confγ).

– Simulate the first γ − 1 circuits using R and Q, with ĉonfγ hardwired in R.

• In hybγns, the γth garbled circuit C̃γ is simulated using program R; the output outγ used for
simulation is set to either y (if confγ+1 is a final configuration) or the honestly generated

gabled input ĉonfγ+1. In other words, outγ = Cγ(confγ), where Cγ is prepared in the same
way as above.

Furthermore, the previous γ − 1 garbled circuits are also simulated using program Q. Their
simulation as well as the generation of the garbled input x̃γ+1 depends potentially on the

corresponding simulated garbled input c̃onfγ of C̃γ .

In other words, the output of hybγns can be generated by the same alternative sampling
algorithm above, except that the second step is modified to:
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– Receive externally simulated garbling (C̃γ , c̃onfγ) generated using output Cγ(confγ).

Then it follows from the security of the circuit garbling scheme GSCIR that the distributions of
(Ĉγ , ĉonfγ) and (C̃γ , c̃onfγ) received externally by the alternative sampling algorithm above are
computationally indistinguishable, and thus the distributions of outputs of hybγ−1ns and hybγns, which
can be efficiently constructed from them, are also indistinguishable

Finally, by the above claim, it follows from a hybrid argument over γ, that {realns(1λ,M, x)}
and {simuns(1

λ,M, x)} are indistinguishable; Hence, GSns is a secure garbling scheme for TM.

3.2 A Garbling Scheme for TM with Space-dependent Complexity

In this section, we construct a garbling scheme GS = (Garb,Encode,Eval) for TM with space-
dependent complexity. This scheme will rely on the non-succinct garbling scheme GSns = (Garbns,
Encodens,Evalns) in a non-black-box, but largely modular, way.

Overview. The garbling scheme GSns described in the previous section is non-succinct because
its garbling algorithm Garbns runs in time proportional to the time-bound T (and generates a
garbling of size proportional to T .) Our first observation is that the “bulk” of the computation of
Garbns is evaluating the same randomized program P(·) for T times with coordinated random coins,
to create a chain of garbled circuits:

M̂ = (Ĉ1, · · · , ĈT ), Ĉt = P(t;αt, αt+1, βt)

The complexity of each garbled circuit depends only on the size of M and its space complexity
S, that is, poly(D,S) (independent of T ). Our main idea towards constructing a garbling scheme
GS with space-dependent complexity is to defer the T executions of P, from garbling time (that
is, in Garb), to evaluation time (that is, in Eval), by using an indistinguishability obfuscator iO
for circuits. More specifically, instead of computing the chain of garbled circuits M̂ directly, the
new garbling algorithm Garb generates an obfuscation of the program P, that is P = iO(P), and
use that as the new garbled machine; (since P has size poly(D,S), the obfuscation is “succinct”
and so is the new garbling algorithm). The procedure for creating garbled inputs x̂ remains the
same as in the non-succinct scheme GSns. Then, on input (P, x̂), the new evaluation algorithm
Eval first generates the chain of garbled circuits M̂ = (Ĉ1, · · · , ĈT ) by evaluating P on inputs from
1, · · ·T ; once the chain M̂ of garbled circuits is generated, the output can be computed by evaluating
Evalns(M̂, x̂) as in the non-succinct scheme GSns. (Note that to make sure that evaluation algorithm
has instance-based efficiency, the algorithm Eval actually generates and evaluates Ĉt’s one by one,
and terminates as soon as an output is produced.)

To make the above high-level idea go through, a few details need to be taken care of. First,
the program P is randomized, whereas indistinguishability obfuscators only handles deterministic
circuits. This issue is resolved by obfuscating, instead, a wrapper program P(t) that runs P(t) with
pseudo-random coins generated using a PRF on input t. In fact, the use of pseudo-random coins
also allows coordinating the random coins used in different invocations of P on different inputs,
so that they will produce coherent garbled circuits that can be run together. The second question

is how to simulate the new garbled machine P $← iO(P). In the non-succinct scheme the chain
M̂ of garbled circuits is simulated by running the program Q for T times (again with coordinated
random coins),

M̃ = (C̃1, · · · , C̃T ) Ĉt = Q(t;αt, αt+1, βt)
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Naturally, in the succinct scheme, the simulation creates Q $← iO(Q) (where Q is the de-randomized
version for Q, as P is for P). By the pseudo-randomness of PRF and the security of garbled
circuits, we have that the truth tables M̂ and M̃ of P and Q are indistinguishable; but this does
not directly imply that their obfuscations are indistinguishable. We bridge the gap by considering
the obfuscation of a sequence of hybrid programs (as in the security proof of the non-succinct
garbling scheme).

∀γ ∈ [0, T + 1], Mγ = COMBINE [(Q, [γ − 1]), (R, {γ}), (P, [γ + 1, T ])] , Mγ $← iO(Mγ)

The sequence of hybrid programs “morphs” gradually from program P = M0 to program Q =
MT+1; since every pair of subsequent programs Mγ−1,Mγ differs only at two inputs (γ − 1 and γ)
with indistinguishable outputs, we can use standard techniques such as puncturing and programing
to show that their obfuscations are indistinguishable, and hence so are P and Q.

Our Succinct Garbling Scheme. We now describe the formal construction, which relies on the
following building blocks.

• A garbling scheme for polynomial-sized circuits, with independent key generation: GSCIR =
(GarbCIR,EncodeCIR,EvalCIR), where GarbCIR = (GenCIR,GbCIR) and its the simulation algo-
rithm is SimCIR = (Sim·GenCIR,Sim·GbCIR).

• An indistinguishability obfuscator iOCIR(·, ·) for polynomial-sized circuits.

• A puncturable PRF (PRF·Gen,PRF·Punc,F) with input length n(λ) and output length m(λ),
where n(λ) can be set to any super-logarithmic function n(λ) = ω(log λ), and m is a suffi-
ciently large polynomial in λ.

For every λ and M ∈ TMλ, the garbling scheme GS proceeds as follows:

Circuit P = Pλ,S,M,Kα,Kβ : On input t ∈ [T ], does:

Generates pseudo-random strings αt = F(Kα, t), αt+1 = F(Kα, t+ 1) and βt = F(Kβ , t);

Compute Ĉt = Pλ,S,M (t ; (αt, αt+1, βt)) and output Ĉt.

Circuit Q = Qλ,S,|M |,T∗,y,Kα,Kβ : On input t ∈ [T ], does:

Generate pseudo-random strings αt = F(Kα, t), αt+1 = F(Kα, t+ 1) and βt = F(Kβ , t);

Compute C̃t = Qλ,S,|M |,T∗,y(t ; (αt, αt+1, βt)) and output C̃t.

The circuits in Figure 1, 2 and 3 are padded to their maximum size.

Figure 1: Circuits used in the construction and simulation of GS

The garbling algorithm Garb(1λ,M):

1. Sample PRF keys: Kα
$← PRF·Gen(1λ) and Kβ

$← PRF·Gen(1λ).

2. Obfuscate the circuit P:

Obfuscate the circuit P(t) = Pλ,S,M,Kα,Kβ (t) as described in Figure 1, which is essentially
a wrapper program that evaluates P on t using pseudo-random coins generated using

Kα and Kβ as described above. Obtain P $← iO(1λ,P).
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3. Generate the key for garbling input:

Compute key in the same way as the garbling scheme Garbns does, but using pseudo-
random coins generated using Kα. That is, Compute the key for the first garbled circuit
using randomness α1 = F(Kα, 1), key1 = GenCIR(1λ, 1S ;α1); set key = key1 ‖1S .

4. Finally, output (P,key).

The encoding algorithm Encode(key, x): Compute x̂ = Encodens(key, x).

The evaluation algorithm Eval(P, x̂): Generate and evaluate the garbled circuits in the non-
succinct garbling M̂ one by one; terminate as soon as an output is produced. More precisely,
evaluation proceeds in T iterations as follows:

At the beginning of iteration t ∈ [T ], previous t− 1 garbled circuits has been generated and

evaluated, producing garbled input ĉonft (ĉonf1 = x̂). Then, compute Ĉt = P(t); evaluate

z = EvalCIR(Ĉt, ĉonft); if z is a valid output, terminate and output y = z; otherwise, proceed

to the next iteration t+ 1 with ĉonft+1 = z.

Next, we proceed to show that GS is a garbling scheme for TM with space-dependent complexity.

Correctness. Fix any machine M ∈ TM and input x. Recall that the garbling algorithm Garb
generates a pair (P,key); the latter is later used by the encoding algorithm Encode to obtain
garbled input x̂, while the former is later used by the evaluation algorithm Eval to create the non-
succinct garbling M̂ = {Ĉt = P(t)}t∈[T ]; the non-succinct garbling M̂ is then evaluated with x̂ using
algorithm Evalns. The distribution of the garbled input and the non-succinct garbling recovered by
Eval is as follows:

D1 =
{

(P,key)
$← Garb(1λ,M) :

(
x̂ = Encode(key, x), M̂ =

{
Ĉt = P(t)

}
t∈[T ]

)}
It follows from the construction of Garb,Encode and the correctness of the indistinguishability
obfuscator that the above distribution D1 is identical to the distribution D2 of a garbled pair
(M̂ ′, x̂′) generated by the algorithms Garbns,Encodens of the non-succinct scheme, using pseudo-
random coins, formalized below.

D2 =
{
Kα,Kβ

$← PRF·Gen(1λ), ∀t ∈ [T ], αt = F(Kα, t), βt = F(Kβ, t) :(
x̂′ = Encodens(key′ = GenCIR(1λ, 1S ;α1), x), M̂ ′ =

{
Ĉt = P(t;αt, αt+1, βt)

}
t∈[T ]

)}
By the pseudo-randomness of PRF, distribution D2 is computationally indistinguishable from the
garbled pair generated by Garbns,Encodens, using truly random coins.

D3 =
{

(M̂ ′′,key′′)
$← Garbns(1

λ,M) :
(
x̂′′ = Encodens(key′′, x), M̂ ′′

)}
The correctness of the non-succinct garbling scheme GSns guarantees that with overwhelming
probability, evaluating M̂ ′′ with x̂′′ produces the correct output y = M(x); furthermore, the correct
output y is produced after evaluating only the first T ∗ = TM (x) garbled circuits. Thus, it follows
from the indistinguishability between D1 and D3 that, when evaluating a garbled pair (M̂, x̂)
sampled from D1, the correct output y is also produced after evaluating the first T ∗ garbled circuits.
Given that D1 is exactly the distribution of the non-succinct garbled pairs generated in Eval, we
have that correctness holds.
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Efficiency. We show that the garbling scheme GS has space-dependent complexity.

• The garbling algorithm Garb(1λ,M) runs in time poly(λ, |M |, S). This is because Garb pro-
duces an obfuscation of the program P (a de-randomized version of P ) which garbles cir-
cuits Ct using pseudo-random coins for every input t ∈ [T ]. Since the program Ct has size
q = poly(λ, |M |, S) as analyzed in the non-succinct garbling scheme, so does P and P (note
that the input range T of these two programs are contained as part of the description of
M , and hence |M | > log T ). Therefore, Garb takes time poly(λ, |M |, S) to produced the
obfuscation of P. Additionally, notice that Garb generates the key as the algorithm Garbns
does, which in turn runs GarbCIR(1λ, 1S) and takes time poly(λ, S). Overall, Garb runs in time
poly(λ, |M |, S) as claimed.

• Encode run in time the same as the Encodens algorithm which is poly(λ, |M |, S).

• The evaluation algorithm Eval on input (P, x̂) produced by (P,key)
$← Garb(1λ, 1S) and

x̂ = Encode(key, x) runs in time poly(λ, |M |, S) × T ∗, T ∗ = TM (x), with overwhelming
probability.

It follows from the analysis of correctness of GS that with overwhelming probability over the
coins of Garb, the non-succinct garbling M̂ defined by P satisfies that when evaluated with
x̂, the correct output is produced after T ∗ iterations. Since Eval does not compute the entire
non-succinct garbling M̂ in one shot, but rather, generates and evaluates the garbled circuits
in M̂ one by one. Thus it terminates after producing and evaluating T ∗ garbled circuits.
Since the generation and evaluation of each garbled circuit takes poly(λ, |M |, S) time, overall
Eval runs in time TM (x)× poly(λ, |M |, S) as claimed.

Security. Fix any polynomial T ′, any sequence of algorithms {M = Mλ} ∈ {TMT ′
λ }, and any

sequence of inputs {x = xλ} where xλ ∈ {0, 1}M.n. Towards showing the security of GS, we
construct a simulator Sim, satisfying that the following two ensembles are indistinguishable in λ:{

real(1λ,M, x)
}

=
{

(P,key)
$← Garb(1λ,M), x̂ = Encode(key, x) : (P, x̂)

}
λ

(3){
simu(1λ,M, x)

}
=

{
(Q, x̃)

$← Sim(1λ, 1|x|1|M |, S, T, TM (x),M(x)) : (Q, x̃)
}
λ

(4)

As discussed in the overview, the simulation will obfuscate the program Q used for simulating
the non-succinct garbled machine M̃ = (C̃1, · · · , C̃T ). More precisely,

The simulation algorithm Sim(1λ, 1|x|, 1|M |, S, T, T ∗ = TM (x), y = M(x)):

1. Sample PRF keys: Kα
$← PRF·Gen(1λ) and Kβ

$← PRF·Gen(1λ).

2. Obfuscate the circuit Q:

Obfuscate the circuit Q(t) = Qλ,S,|M |,T ∗,y,Kα,Kβ (t) as described in Figure 1, which is
essentially a wrapper program that evaluates Q on t, using pseudo-random coins {αt, βt}
generated by evaluating F on keys Kα and Kβ and inputs t ∈ [T ]. Obtain Q $← iO(1λ,Q).

3. Simulate the garbled input:

Simulate the garbled input x̃ in the same way as simulator Simns does, but using pseudo-
random coins. That is, compute (c̃onf1, st1) = Sim·GenCIR(1λ, 1S ; α1), where α1 =

F(Kα, 1); set x̃ = c̃onf1.
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4. Finally, output (Q, x̃).

The simulator Sim(1λ, 1|x|, 1|M |, S, T, T ∗, y = M(x)) runs in time poly(λ, |M |, S). This follows
because the simulator simulates the garbled Turing machine by obfuscating the program Q. As the
program Q simply runs Q using pseudo-random coins, its size is poly(λ, |M |, S); thus obfuscation
takes time in the same order. On the other hand, Sim simulates the garbled input x̃ as the simulator
Simns does, which simply invokes SimCIR(1λ, 1S) of the circuit garbling scheme, which takes time
poly(λ, S). Therefore, overall the simulation takes time poly(λ, |M |, S) as claimed.

Towards showing the indistinguishability between honestly generated garbling (P, x̂)
$← real(1λ,M, x)

and the simulation (Q, x̃)
$← simu(1λ,M, x) (see equation (3) and (4) for formal definition of real

and simu), we will consider a sequence of hybrids hyb0, · · · , hybT , where the output distribution of
hyb0 is identical to real, while that of hybT is identical to simu. In every intermediate hybrid hybγ , a
hybrid simulator HSimγ is invoked, producing a pair (Mγ

, x̃γ), where Mγ
is the obfuscation of (the

de-randomized wrapper of) a merged program Mγ that produces a hybrid chain of garbled circuit
as in the security proof of the non-succinct garbling scheme, where the first γ garbled circuits are
simulated and the rest are generated honestly. More precisely,

The hybrid simulation algorithm HSimγ(1λ,M, x) for γ = 0, · · · , T :

Compute T ∗ = TM (x) and y = M(x), and the intermediate configuration confγ+1 as defined
by CONFIG(M,x).

1. Sample PRF keys: Kα
$← PRF·Gen(1λ) and Kβ

$← PRF·Gen(1λ).

2. Obfuscate the circuit Mγ:

Obfuscate the circuit Mγ(t) = (Mγ)λ,S,M,T ∗,y,confγ+1,Kα,Kβ (t) as described in Figure 1,
which is essentially a wrapper program that evaluates the combined program

Mγ = COMBINE [(Q, [γ − 1]), (R, {γ}), (P, [γ + 1, T ])] (t ; (αt, αt+1, βt)),

using pseudo-random coins {αt, βt} generated usingKα andKβ. Obtain Mγ $← iO(1λ,Mγ).

3. Simulate the garbled input:

If γ > 0, simulate the garbled input x̃γ in the same way as in Sim. Otherwise, if γ = 0,
generate x̃0 honestly, using Garb and Encode.

4. Finally, output (Mγ
, x̃γ).

Circuit Mγ = (Mγ)λ,S,M,T∗,y,confγ+1,Kα,Kβ : On input t ∈ [T ], does:

Generate pseudo-random strings αt = F(Kα, t), αt+1 = F(Kα, t+ 1) and βt = F(Kβ , t);

Compute C̃t = Mγ(t ; (αt, αt+1, βt)) and output C̃t, where Mγ is:

(Mγ)λ,S,M,T∗,y,confγ+1 = COMBINE [(Q, [γ − 1]), (R, {γ}), (P, [γ + 1, T ])] (t ; (αt, αt+1, βt))

The circuits in Figure 1, 2 and 3 are padded to their maximum size.

Figure 2: Circuits used in the security analysis of GS
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We describe circuits Mγ
1 to Mγ

6 . They all have parameters λ, S,M, T ∗, y, confγ+1 hardwired in;
for simplicity, we suppress these parameters in the superscript.

Circuit Mγ
1 = (Mγ

1)Kα(γ+1),Kβ(γ+1),αγ+1,βγ+1 : On input t ∈ [T ], does:

If t 6= γ, generate pseudo-random string αt+1 = F(Kα(γ + 1), t+ 1).

If t 6= γ + 1, generate pseudo-random strings αt+1 = F(Kα(γ + 1), t) and βt =
F(Kβ(γ + 1), t).

Proceed as Mγ does using random coins αt, αt+1, βt.

Circuit Mγ
2 = (Mγ

2)Kα(γ+1),Kβ(γ+1),α′γ+1,β
′
γ+1 :

Identical to (Mγ
1)Kα(γ+1),Kβ(γ+1),α′γ+1,β

′
γ+1 , with α′γ+1, β

′
γ+1 sampled at random.

Circuit Mγ
3 = (Mγ

3)Kα(γ+1),Kβ(γ+1),Ĉγ+1,ĉonfγ+1 : On input t ∈ [T ], does:

If t = γ + 1, output Ĉγ+1.

If t = γ, set outγ using ĉonfγ+1 as in Step 1 of program R; simulate and output C̃γ as in
Step 2 of R.

Otherwise, compute as Mγ
2 does using the punctured keys Kα(γ + 1),Kβ(γ + 1).

Circuit Mγ
4 = (Mγ

4)Kα(γ+1),Kβ(γ+1),C̃γ+1,c̃onfγ+1 :

Identical to (Mγ
3)Kα(γ+1),Kβ(γ+1),C̃γ+1,c̃onfγ+1 , with simulated garbling pair C̃γ+1, c̃onfγ+1.

Circuit Mγ
5 = (Mγ

5)Kα(γ+1),Kβ(γ+1),α′γ+1,β
′
γ+1 : On input t ∈ [T ], does:

If t = γ + 1, compute C̃γ+1 using program R with randomness α′γ+1, αγ+2, β
′
γ+1.

If t = γ, compute C̃γ using program Q, which internally computes c̃onfγ+1 for setting the
output outγ using randomness α′γ+1.

Otherwise, compute as Mγ
4 does using the punctured keys Kα(γ + 1),Kβ(γ + 1).

Circuit Mγ
6 = (Mγ

6)Kα(γ+1),Kβ(γ+1),αγ+1,βγ+1 :

Identical to (Mγ
5)Kα(γ+1),Kβ(γ+1),αγ+1,βγ+1 , with αγ+1 = F(Kα, γ+ 1), βγ+1 = F(Kβ , γ+ 1)

The circuits in Figure 1, 2 and 3 are padded to their maximum size.

Figure 3: Circuits used in the security analysis of GS, continued

We overload the notation hybγ(1λ,M, x) as the output distribution of the γth hybrid. By
construction, when γ = 0, M0 = P and the garbled input x̃0 is generated honestly; thus,
{hyb0(1λ,M, x)} = {real(1λ,M, x)}; furthermore, when γ = T , MT = Q and the garbled in-
put x̃T is simulated; thus

{
hybT (1λ,M, x)

}
=
{
simu(1λ,M, x)

}
. Therefore, to show the security of

GS, it boils down to proving the following claim:

Claim 2. For every γ ≥ 0, the following holds{
hybγ(1λ,M, x)

}
λ
≈
{
hybγ+1(1λ,M, x)

}
λ

Proof. Fix a γ ∈ N, a sufficiently large λ ∈ N, an M = Mλ and a x = xλ. Note that the only

difference between (Mγ
, x̃γ)

$← hybγ and (Mγ+1
, x̃γ+1)

$← hybγ+1 is the following:

• For every γ, the underlying obfuscated programs Mγ ,Mγ+1 differ on their implementation for
at most two inputs, namely γ, γ + 1, and,
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• when γ = 0, the garbled input x̃0 is generated honestly in hyb0, whereas x̃1 is simulated in
hyb1.

To show the indistinguishability of the two hybrids, we consider a sequence of sub-hybrids from
Hγ0 = hybγ to Hγ7 = hybγ+1. Below we describe these hybrids Hγ0 , · · ·H

γ
7 , and argue that the

output distributions of any two subsequent hybrids are indistinguishable. We denote by (Mγ
i , x̃

γ
i )

the garbled pair produced in hybrid Hγi for i = 0, · · · , 7. For convenience, below we suppress the
superscript γ, and simply use notations Hi = Hγi , Mi = Mγ

i , Mi = Mγ
i and x̃i = x̃γi .

Hybrid H1: Generate a garbled pair (M1, x̃1) by running a simulation procedure that proceeds
identically to HSimγ , except from the following modifications:

• In the first step, puncture the two PRF keysKα,Kβ at input γ + 1, and obtainKα(γ + 1) =
PRF·Punc(Kα, γ + 1) and Kβ(γ + 1) = PRF·Punc(Kβ, γ + 1). Furthermore, compute
αγ+1 = F(Kα, γ + 1) and βγ+1 = F(Kβ, γ + 1).

• In the second step, obfuscate a circuit M1 slightly modified from Mγ : Instead of having
the full PRF keys Kα,Kβ hardwired in, M1 has the punctured keys Kα(γ + 1),Kβ(γ + 1)
and the PRF values αγ+1, βγ+1 hardwired in; M1 proceeds identically to M1, except that
it uses the punctured PRF keys to generate pseudo-random coins corresponding to input
t 6= γ + 1 and directly use αγ+1, βγ+1 as the coins for input t = γ + 1. See Figure 1 for
a description of M1 = Mγ

1 .

By construction, H1 only differs from hybγ at which underlying program is obfuscated, and
program M1 has the same functionality as Mγ . Thus it follows from the security of indistin-
guishability obfuscator iO that, the obfuscated programs Mγ

and M1 are indistinguishable.
(Furthermore, the garbled inputs x̃γ and x̃1 in these two hybrids are generated in the same
way.) Thus, we have that the output (M1, x̃1) of H1 is indistinguishable from the output
(Mγ

, x̃γ) of hybγ . That is,{
hybγ(1λ,M, x)

}
λ
≈
{
H0(1

λ,M, x)
}
λ

Hybrid H2: Generate a garbled pair (M2, x̃2) by running the same simulation procedure as in
H1 except from the following modifications: Instead of using pseudo-random coins αγ+1 and

βγ+1, hybrid H2 samples two sufficiently long truly random string α′γ+1, β
′
γ+1

$← {0, 1}poly(λ)
and replace αγ+1, βγ+1 with these truly random strings. More specifically, H2 obfuscates a
program M2 that is identical to M1, but with (Kα(γ + 1),Kβ(γ + 1), α′γ+1, β

′
γ+1) hardwired

in; furthermore, if γ = 0, α′1 (as opposed to α1) is used to generate the garbled input x̃2. Since
only the punctured keys Kα(γ + 1),Kβ(γ + 1) are used in the whole simulation procedure, it
follows from the pseudo-randomness of the punctured PRF that the output (M2, x̃2) of H2 is
indistinguishable from that (M1x̃1) of hyb1. That is,{

H1(1
λ,M, x)

}
λ
≈
{
H2(1

λ,M, x)
}
λ

Hybrid H3: Generate a garbled pair (M3, x̃3) by running the same simulation procedure as in H2

with the following modifications:

• Observe that in program M2, α
′
γ+1, β

′
γ+1 are used in the evaluation of at most two inputs,

γ and γ + 1:
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For input γ + 1, program P is invoked with input γ+1 and randomness α′γ+1, αγ+2, β
′
γ+1,

in which a circuit Cγ+1 is prepared depending on αγ+2, and then obfuscated by com-
puting

keyγ+1 = GenCIR(1λ, 1S ;α′γ+1) Ĉγ+1 = GbCIR(keyγ+1,Cγ+1;β
′
γ+1)

If γ > 0, for input γ , program R is invoked with input γ and randomness αγ , α
′
γ+1, βγ , in

which a garbled circuit C̃γ is simulated; the output outγ used for the simulation depends
potentially on an honest garbling of confγ+1, that is,

ĉonfγ+1 = EncodeCIR

(
GenCIR(1λ, 1S ;α′γ+1), confγ+1

)
Using outγ , C̃γ is simulating using randomness αγ , βγ .

First modification: Hybrid H3 receives externally the above pair Ĉγ+1, ĉonfγ+1. In-

stead of obfuscating M2 (which computes Ĉγ+1, ĉonfγ+1 internally), H3 obfuscates M3

that has Ĉγ+1, ĉonfγ+1 directly hardwired in (as well as Kα(γ + 1),Kβ(γ + 1)). M3 on

input γ + 1, directly outputs ĉonfγ+1; on input γ, it uses ĉonfγ+1 to compute C̃γ ; on all
other inputs, it proceeds identically as M2. (See Figure 1 for a description of M3.) It is

easy to see that when the correct values Ĉγ+1, ĉonfγ+1 are hardwired, the program M3

has the same functionality as M2.

• In H2, if γ = 0, α′1 is used for garbling the input,

key1 = GenCIR(1λ, 1S ;α′1) ĉonf1 = EncodeCIR(key1, conf1)

where conf1 is the initial state corresponding to x.

Second modification: Instead, if γ = 0, hybrid H3 receives ĉonf1 externally, and
directly outputs it as the garbled inputs x̂3 = ĉonf1.

When H3 receives the correct values of (ĉonfγ+1, Ĉγ+1) externally, it follows from the security
of iO that the output distribution of H3 is indistinguishable from that of H2. That is,{

H2(1
λ,M, x)

}
λ
≈
{
H3(1

λ,M, x)
}
λ

Hybrid H4: Generate a garbled pair (M4, x̃4) by running the same procedure as in H3, except that

H4 receives externally a simulated pair (c̃onfγ+1, C̃γ+1) produced as follows:

(c̃onfγ+1, stγ+1) = Sim·GenCIR(1λ, 1S ;α′γ+1) (5)

C̃γ+1 = Sim·GbCIR
(

1λ, 1S , 1q, outγ+1, stγ+1;β
′
γ+1

)
(6)

where outγ+1 is set to be the output of circuit Cγ+1 on input confγ+1. Thus, it follows from

the security of the circuit garbling scheme GSCIR that the simulated pair (c̃onfγ+1, C̃γ+1) that

hybrid H4 receives externally is indistinguishable to the honest pair (ĉonfγ+1, Ĉγ+1) that H3

receives externally. Since these two hybrids only differ in which pair they receive externally,
it follows that: {

H3(1
λ,M, x)

}
λ
≈
{
H4(1

λ,M, x)
}
λ
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Hybrid H5: Generate a garbled pair (M5, x̃5) by running the same procedure as in H4, except

that instead of receiving (c̃onfγ+1, C̃γ+1) externally, it computes them internally using truly
random coins α′γ+1, β

′
γ+1. More precisely,

• It obfuscate a program M5 that have Kα(γ + 1),Kβ(γ + 1), α′γ+1, β
′
γ+1 hardwired in:

On input γ+1, it computes C̃γ+1 using the program R with randomness α′γ+1, αγ+2, β
′
γ+1

(which computes C̃γ+1 as described in equations (5) and (6)).

On input γ, it computes C̃γ using the program Q with randomness αγ , α
′
γ+2, βγ (which

computes internally c̃onfγ+1 as described in equation (5)).

On other inputs t 6= γ, γ + 1, it computes as M4 does.

• If γ = 0, α′1 is used for computing c̃onf1 as described in equation (5), and then output

x̃4 = c̃onf1.

It follows from the fact that M5 computes (c̃onfγ+1, C̃γ+1) correctly internally, it has the
same functionality as M4; thus, the obfuscation of these two programs are indistinguishable.
Combined with the fact that the distribution of the garbled inputs x̃4 is identical to x̃3, we
have that {

H4(1
λ,M, x)

}
λ
≈
{
H5(1

λ,M, x)
}
λ

Hybrid H6: Generate a garbled pair (M6, x̃6) by running the same procedure as in H5, except that
instead of using truly random coins α′γ+1, β

′
γ+1, use pseudo-random coins αγ+1 = F(Kα, γ + 1)

and βγ+1 = F(Kβ, γ + 1). In particular, H6 obfuscates a program M6 that is identical to M5

except that Kα(γ + 1),Kβ(γ + 1), αγ+1, βγ+1 are hardwired in, and if γ = 0, α1 is used to
generate the garbled input x̃6. It follows from the pseudo-randomness of the punctured PRF
that: {

H6(1
λ,M, x)

}
λ
≈
{
H5(1

λ,M, x)
}
λ

Hybrid H7: Generate a garbled pair (M7, x̃7) by running the hybrid simulator HSimγ+1. Note
that the only difference between HSimγ+1 and the simulation procedure in H6 is that instead
of obfuscating M6 that has tuple (Kα(γ + 1),Kβ(γ + 1), αγ+1, βγ+1) hardwired in, HSimγ+1

obfuscates Mγ+1 that has the full PRF keys Kα,Kβ hardwired in and evaluates αγ+1, βγ+1

internally.

Since Mγ+1 and Mγ
6 has the same functionality, it follows from the security of iO that{

H6(1
λ,M, x)

}
λ
≈
{
H5(1

λ,M, x)
}
λ

Finally, by a hybrid argument, we conclude the claim.

Given the above claim, by a hybrid argument over γ, we have that {real(1λ,M, x)} and {simu(1λ,M, x)}
are indistinguishable; Hence, GS is a secure garbling scheme for TM.
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4 Succinct Garbling of Bounded Space Computation

In the section, we observe that our approach for constructing a succinct garbling scheme for bounded
space TM in the previous two sections applies generally to any bounded space computation (e.g.,
bounded-space RAM). This immediately yields a garbling scheme for any model of computation
with space-dependent complexity.

Theorem 6. Assuming the existence of IO for circuits and one-way functions. There exists a
garbling scheme for any abstract model of sequential computation, such as TM and RAM, with
space-dependent complexity.

A Garbing Scheme for Any Bounded Space Computation: Given an underlying circuit
garbling scheme GS = (Garb,Encode,Eval), to construct a garbling scheme GSA for {ALλ}, proceed
in the following two steps:

Step 1: Construct a non-succinct garbling scheme: Observe that the computation of a ma-
chine AL of AL.T steps can be divided into AL.T 1-step “blocks” that transforms the current
configuration to the next; therefore, to garble AL, it suffices to garble each block, augmented
with the encoding algorithm of GS that translates the next configuration to the garbled in-
put for the next garbled block (when an output is produced, it is output directly without
translation)—call this an “augmented block”. The final garbling then consists of a sequence
of T garbled blocks.

Step 2: Compress the size using IO: As before, we then use iO to “compress” the size of the
non-succinct garbling constructed in the first step, by giving the obfuscation of the algorithm
that on input t, runs Garb to garble the tth augmented block, producing the tth garbled block.
The obfuscated program is the succinct garbled program.

The efficiency and security analysis remains the same as before. This concludes Theorem 6.

5 From Garbling to FE to Reusable Garbling

We observe that in contexts such as secure computation [GMW87] and functional encryption
[SW05, O’N10, BSW12], to evaluate a function f on an input x, it suffices to evaluate the random-
ized function that computes a garbled program of f and an encoding of the input (recall that by
the security of the garbling scheme this reveal no more than the output of the function). Thus,
by plugging-in our construction of garbling schemes with space-dependent complexity into earlier
constructions of secure computation or randomized functional encryption [GJKS], we directly ob-
tain, assuming iO for P/poly and one-way functions, a randomized functional encryption with
space-dependent complexity, and secure computation protocols whose the communication com-
plexity grows polynomially with the space complexity of the program to be evaluated, but only
logarithmically with the the running-time.

We additionally observe that by combing our construction of functional encryption with pre-
vious results [CIJ+13, GKP+13b]—[CIJ+13] showed that function encryption schemes with indis-
tinguishability based security implies ones with simulation-based security, which further implies
reusable garbling schemes by [GKP+13b]—directly yields a construction of reusable succinct gar-
bling schemes with space-dependent complexity from iO for P/poly and one-way functions.

We emphasize that the above applications work generally for any “nice” class of algorithms;
(conditions on the algorithm classes are specified in the theorem statements below). Therefore,
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below we show the connections between Garbling, randomized functional encryption and reusable
garbling w.r.t. general classes of algorithms.12 Applications to specific models of computation can
then be derived as special cases.

Below, we start with the definitions of function encryption and reusable garbling scheme, and
then move to showing the connections.

5.1 Functional Encryption

We first recall definitions of public key functional encryption schemes, both the indistinguishability-
based definitions and simulation-based definitions, adapting to general algorithm classes. For
indistinguishability-based security, we recall the definition for randomized algorithms in [GJKS],
whereas for simulation-based security, we recall the definition of [BSW12, O’N10] for deterministic
Boolean algorithms. Below we first introduce the syntax, then various security notions and finally
the efficiency guarantees.

Syntax. We introduce the syntax and correctness of functional encryption scheme w.r.t. classes
of potentially randomized algorithms, which immediately imply the syntax and correctness for
deterministic algorithms.

Definition (Functional Encryption.). A functional encryptions scheme FE for a class of (well-
formed) (potentially randomized) algorithms {ALλ}λ∈N consists of algorithms (FE.Setup,FE.Enc,
FE.KeyGen,FE.Dec) where the first three are probabilistic algorithms while the last is deterministic;
furthermore, they satisfy the following syntax and correctness:

• FE.Setup(1λ) outputs a public key MPK and a master secret key MSK.

• FE.Enc(x,MPK) outputs a ciphertext CT.

• FE.KeyGen(AL,MSK) on input an algorithm AL ∈ ALλ, outputs a secret key skAL.

• FE.Dec(CT, skAL) outputs a string y.

Correctness: For every polynomial T and polynomial n = n(λ), every sequence of algorithm tuples
{ ~AL = ~ALλ} ∈ {ALnλ} and every sequence of input tuples {~x = ~xλ} where xi ∈ {0, 1}poly(λ),
the following two distributions are computationally indistinguishable:

• Real:
{
FE.Dec(CTi, SKALj )

}
i∈[n],j∈[n] where,

(MPK,MSK)
$← FE.Setup(1λ)

CTi
$← FE.Enc(MPK, xi) for i ∈ [n]

skALj
$← FE.KeyGen(ALj ,MSK) for j ∈ [n]

• Ideal: {ALj(xi; rij)}i∈[n],j∈[n] where,

for every j ∈ [n], {rij}i∈[n] are sufficiently long random strings if ALj is a randomized

algorithm and are empty if ALj is a deterministic algorithm. (In the case that xi exceeds
the input length bound of the algorithm ALj, |xi| > ALj .n, the output is set to ⊥).

12Since the application to MPC is straightforward, we omit the details of the proof below.
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Indistinguishability based security. We provide the definition of indistinguishability based
security for classes of (potentially randomized) algorithms. Our definition is a generalization of
that in [GJKS] to the case of full security.

Definition 13 ((Full) q1-`-q2-IND-security). A functional encryption scheme FE is (ful-)q1-`-q2-IND
secure if for every polynomial T , the advantage of any PPT adversary A in the following game is
negligible.

Experiment (ful-)q1-`-q2-IND
FE
A (1λ, T = T (λ)):

1. Setup: (MPK,MSK)
$← FE.Setup(1λ)

2. Non-Adaptive Key Queries: (~m0, ~m1, st1)
$← AFE.KeyGen(MSK,·),O1(·)(MPK).

3. Generate Challenge Ciphertext: ∀i, CTi
$← FE.Enc(MPK,mb,i), where b

$← {0, 1}.

4. Adaptive Key Queries: α
$← AFE.KeyGen(MSK,·),O2(·)(st1, ~CT).

O1 is a stateful oracle that on input (AL, null), generates a secret key skAL
$← FE.KeyGen(MSK, AL)

and records it internally, and on input (AL,C) checks if a secret key has been generated for AL,
and returns FE.Dec(skAL, C) if it is the case (⊥ otherwise). O2 is identical to O1 except that it
only decrypts ciphertext C 6= CTi for all i. The advantage of A is Pr[α = b]− 1/2.

Restriction on A: Let S1 and S2 represent the sets of non-adaptive and adaptive key queries
made by A in Step 2 and 4 respectively; let Q1, Q2 be the sets of key queries A submits to O1 and
O2 respectively. A must follow the restriction that 0) S1, S2, Q1, Q2 ⊆ ALTλ , 1) |S1| ≤ q1(λ), 2)
|S2| ≤ q2(λ), 3) |~m0| = |~m1| ≤ ` and for every i ∈ [|~m0|] |m0,i| = |m1,i|, and 4) for every i, j, let
ALj be the jth query in S1 ∪ S2, the following distributions are indistinguishable:

{r $← {0, 1}poly(λ) : (ALj(m0,i; r), TAL(m0,i; r))}λ
{r $← {0, 1}poly(λ) : (ALj(m1,i; r), TAL(m1,i; r))}λ

Additionally, we consider the following weaker notions.

Definition 14 (Selective q1-`-q2-IND-security). A functional encryption scheme FE is selective

q1-`-q2-IND secure if for every polynomial T , the advantage of any PPT adversary A is negligible
in the sel-q1-`-q2-IND(1λ, T ) game, which is the same as the above q1-`-q2-IND game, except that A
is required to select the challenge messages ~m0, ~m1 at the beginning of experiment before MPK,MSK
are chosen.

Note that in the selective game sel-q1-`-q2-IND, it is without loss of generality to remove Step 2
in the experiment; thus, we can assume w.l.o.g. that q1 = 0. Furthermore, it follows from standard
hybrid argument that for any polynomials q1, `, q2, q1-1-q2-IND security implies q1-`-q2-IND security,
both in the selective and full game. Thus in the rest of the paper we use interchangeably q1-1-q2-IND
security and q1-`-q2-IND security.

Definition 15 (Honest-Sender (full or selective) q1-`-q2-IND-Security). We say that a functional
encryption scheme is honest-sender (full or selective) q1-`-q2-IND secure, if it satisfies the same
security condition as in Definition 13, except that, in the experiments the oracles O1 and O2 are
empty.
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When the class of algorithms are deterministic, the standard definition in the literature considers
only honest-sender security. We follow this convention; when an algorithm class is deterministic
only security against malicious receiver is considered.

Definition ((Honest-sender) Full or Selective IND-security). A functional encryption scheme FE is
(honest-sender) ful-IND-secure or sel-IND-secure, if it is (honest-sender) ful-poly-1-poly-IND-secure
or sel-0-1-poly-IND-secure.

Simulation based security. Next we proceed to define simulation based security notions. In
this case, we consider only classes of algorithms {ALλ} that are deterministic. Furthermore, we
note that it is without loss of generality to consider only Boolean algorithms. This is because
a functional encryption scheme for Boolean algorithms can be easily turned into a scheme for
algorithms with m-bit outputs, by running the Boolean scheme for m times in parallel. Such
parallel repetition leads to a scheme where the ciphertext length is linear in n ×m (as well as in
λ), where n is the input length. On the other hand, it was shown that simulation-based secure
functional encryption must have the size of ciphertexts growing linearly with the output length (if
there is any non-adaptive queries made before the challenge ciphertexts are generated). Thus, the
parallel repetition is essentially optimal.

Definition. A functional encryption scheme FE for a class {ALλ} of deterministic Boolean al-
gorithms with is (ful-)q1-`-q2-SIM secure if for every PPT adversary A, there exists a simulator
Sim = (Sim1,Sim2) such that the output of the following two experiments are indistinguishable for
every polynomial T .
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Experiment (ful-)q1-`-q2-RealExp
FE
A (1λ, T = T (λ)):

1. Setup: (MPK,MSK)
$← FE.Setup(1λ)

2. Non-Adaptive Key Queries: (~m, st1)
$← AFE.KeyGen(MSK,·)(MPK).

3. Generate Challenge Ciphertext: ∀i, CTi
$← FE.Enc(MPK,mi), where b

$← {0, 1}.

4. Adaptive Key Queries: α
$← AFE.KeyGen(MSK,·)(st1, ~CT).

5. Output (MPK, ~m, S1, S2, α), where S1 and S2 are the sets of non-adaptive and adaptive key
queries made by A in Step 2 and 4 respectively.

Experiment (ful-)q1-`-q2-IdealExp
FE
A (1λ, T = T (λ)):

1. Setup: (MPK,MSK)
$← FE.Setup(1λ)

2. Non-Adaptive Key Queries: (~m, st1)
$← AFE.KeyGen(MSK,·)(MPK); let `′ = |~m|

3. Generate Challenge Ciphertext: ( ~CT, st′)
$← Sim1(MPK, `′, {|mi|},V)

4. Adaptive Key Queries: α
$← AO(·)(st1, ~CT)

5. Output (MPK, ~m, S1, S2, α).

In the above experiment V in Step 3 contains the outputs of the algorithms in S1 applied to ~m, that
is, V = ∪Q∈S1VQ with VQ = {Q, skQ, TQ(mi), Q(mi)}i∈[`′]. Additionally, the oracle O(·) in Step

4 is the second stage simulator, namely Sim2(st
′,MSK, ·, ·), where the third argument is a query

circuit Q and the fourth argument is VQ.

Restriction on A in the above two experiments: 0) S1, S2 ⊆ ALTλ 1) |S1| ≤ q1(λ), 2)
|S2| ≤ q2(λ), 3) |~m| ≤ `.

Additionally, a functional encryption scheme FE is (honest-sender) selective q1-`-q2-SIM secure if
for every PPT adversary A, the outputs of the experiments sel-q1-`-q2-RealExp and sel-q1-`-q2-IdealExp
are indistinguishable for every polynomial T , where the two games are the same as the above, ex-
cept that A is required to select the challenge messages ~m0, ~m1 at the beginning of experiment before
MPK,MSK are chosen (and without access to the FE.KeyGen oracle).

We note that in the above definition, the second state simulator Sim2 receive as input the
instance running time TQ(mi) for every Q and mi. This is necessary since the efficiency guarantees
below require the decryption algorithm to have instance-based efficiency.

Efficiency. Finally, We now move to define different efficiency requirement for functional encryp-
tion.

Definition (Different Levels of Efficiency of Functional Encryption Scheme). We say that a func-
tional encryption scheme FE has optimal efficiency, or I/O- / space- / linear-time dependent
complexity if the following conditions hold.
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Optimal efficiency: Algorithms FE.Setup,FE.Enc,FE.KeyGen run in time polynomial in their in-
put lengths, that is pSetup(λ), pEnc(λ, |x|), pKeyGen(λ, |AL|), and FE.Dec runs in time
pDec(λ, |AL|, |x|)TAL(x) for a polynomial pDec.

I/O-dependent complexity: The above condition holds, except that the running time of FE.KeyGen
and FE.Dec additionally depends on AL.n,AL.m.

Space-dependent complexity: The above condition holds, except that the running time of FE.KeyGen
and FE.Dec additionally depends on AL.S.

linear-time-dependent complexity: The above condition holds, except that the running time of
FE.KeyGen and FE.Dec depends quasi-linearly on AL.T .

We note that the FE.Setup and FE.Enc always runs polynomially in their input length, indepen-
dent of the parameters of the algorithms that are potentially to be evaluated. Furthermore, in the
case of SIM-secure functional encryptions, we only consider Boolean algorithms; thus, it is possible
to have schemes with optimal efficiency, where the encryption and key generation algorithms runs
in time independent of the output length.

5.2 Reusable Garbling Scheme

We recall the definition of reusable garbled circuits in [GKP+13b], adapted for general algorithm
classes. In [GKP+13b], their definition considers adaptive input selection, and their construction
achieves so. An alternative definition with static input selection is considered in [GHRW14] for
reusable garbled RAM. The two variants corresponds tightly with fully or selectively SIM-secure
functional encryption schemes. Below we define both variants.

Definition 16 (Reusable Security [GKP+13b].). We say that a garbling scheme GS for a class of
deterministic Boolean algorithms {ALλ}λ∈N has reusable security with adaptive input selection, if
for all PPT adversary A there is a simulator Sim = (Sim·Gb, Sim·Inp) the following two games are
indistinguishable for all polynomial T .
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Experiment RealExpGSA (1λ, T = T (λ)):

1. (AL, st1)
$← A(1λ)

2. (ÂL,key)
$← Garb(1λ, AL)

3. α
$← AEncode(key,·)(st1, ÂL)

Experiment IdealExpGSA (1λ, T = T (λ)):

1. (AL, st1)
$← A(1λ)

2. (ÃL, st)
$← Sim·Gb(1λ, |AL|, (AL.n,AL.m,AL.S,AL.T ))

3. α
$← AO(·)(st1, ÃL)

where the oracle in the third step is the second stage simulator Sim·Inp(st, ·, ·, ·) that receives as
the second parameter the length of the input 1|x|, as the third parameter the instance running time
TAL(x) and the fourth parameter the output AL(x).
Restriction on A in the above two experiments: the algorithm AL chosen by A is in ALTλ .

Furthermore, we say that GS has reusable security with selective input selection, if the above
indistinguishability is true for all PPT adversary A that selects its oracle queries in the third step
at the beginning of the games.

5.3 IND-secure FE for General Classes of Randomized Algorithm

We show a general method for constructing (full or selective) IND-secure functional encryption
for a general class {ALλ} of (potentially randomized) algorithms, from a garbling scheme GS =
(Garb,Encode,Eval) for the corresponding class of “de-randomized” algorithms, and a (full or se-
lective respectively) IND-secure functional encryption for circuits.

Towards this, consider a randomized algorithm AL, let deRand[AL, k] be the following de-

randomized algorithm corresponding to AL, where k
$← PRF·Gen(1λ) is a PRF key.

deRandF[AL, k](x) : Run AL(x) with pseudo-random coins rt = F(k, t) for step t

Then the high-level idea for constructing a IND-secure FE FEA for {ALλ} is the following:
The secret key corresponding to algorithm AL will a the secret key generated using the IND-secure
circuit-FE FEC for the (randomized) algorithm that garbles the de-randomized CAL as described
above. More specifically, the circuit CAL is constructed as follows:

(Γ̂, x̂)
$← CAL(x) : k

$← PRF·Gen(1λ), (Γ̂,key)
$← Garb(1λ, deRandF[AL, k]), x̂

$← Encode(key, x)

Below we state our result formally. Note that since the garbling algorithm must work with algo-
rithms of the form deRandF[AL, k]), we require that it is for an algorithms class that is closed under
composition with polynomial-sized circuits, which implies that for every AL ∈ ALλ, deRandF[AL, k])
is in ALλ.

Proposition 2 (IND-secure FE for General Classes of Randomized Algorithms). Let {ALλ} be any
class of (potentially randomized) algorithms that is closed under composition with polynomial-sized
circuits. It holds that if there are
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• i) a garbling scheme GS = (Garb,Encode,Eval) for deterministic algorithms in {ALλ}.
ii) a (ful-)IND-secure (or sel-IND-secure) functional encryption scheme IND-FEC for the class
rCIR of polynomial-sized randomized circuits.

• then, there is a (ful-)IND-secure (or sel-IND-secure respectively) functional encryption scheme
IND-FEA for {ALλ}.

Furthermore, if GS has optimal efficiency or I/O-dependent complexity, IND-FEA has I/O-dependent
complexity. If GS has space- / linear-time- dependent complexity, so does IND-FEA.

Proof. Below we give the construction and proof. Given an IND-secure circuit FE FEC = (FE.Setup,
FE.KeyGen,FE.Enc,FE.Dec), our IND-secure FE is constructed as follows: It has the same setup
and encryption algorithm. The key generation and decryption algorithms invokes the algorithms
FE.KeyGen and FE.Dec as sub-routines. To generate a key for algorithm AL, FEA generates a key
skCAL using FEC for the circuit CAL as described above and returns skAL = skCAL . To decrypt a
ciphertext c of value x, it invokes the decryption algorithm FE.Dec(skCAL , c) to obtain a pair (Γ̂, x̂),
and then evaluates the garbled pair to obtain an output y.

The IND-security of FEA reduces to the IND-security of FEC . This follows as an adversary A
attacking the former can be transformed into an adversaryA′ attacking the latter. More specifically,

in an INDFE
C

A′ game, the adversary A′ can internally emulate a game INDFE
A

A for A: For every key
query AL from A, A′ translates AL to a key query CAL to its own key generation oracle, and
for every decryption query c from A, A′ simply relays c to its own decryption oracles, and upon
receiving an output (Γ̂, x̂), it evaluates the garbled pair to obtain y and feeds A with y.

It is easy to see that A emulates the view of A′ perfectly. The only thing we need to establish
is that whenever A sends a legitimate key query AL—that is, for the two challenge messages x1
and x2, the outputs and running time of AL on x1 and x2 are indistinguishable—the translated
key queries CAL is also legitimate—that is, its outputs on x1 and x2 are indistinguishable. Below
we argue this.

It follows from the pseudo-randomness of PRF and the security of the garbling scheme that
for any polynomial T , any T -time randomized algorithm AL and any two inputs x1, x2 such that
AL(x1; r), TAL(x1, r) for random r is indistinguishable from AL(x2; r), TAL(x2, r) for random r, we
have that the outputs of CAL on input x1 and x2 are also indistinguishable. More precisely, for
every polynomial T ,

∀ {AL}λ ∈
{
ALTλ

}
, {x1}λ , {x2}λ ,

if
{
r

$← {0, 1}AL.T : AL(x1; r), TAL(x1, r)
}
λ
≈
{
r

$← {0, 1}AL.T : AL(x2; r), TAL(x2, r)
}
λ
,

then, {CAL(x1)}λ ≈ {CAL(x2)}λ

This follows since for each i ∈ {1, 2}, it follows from the pseudo-randomness of the PRF that the
output and running time of deRandF[AL, k] on x1 and x2 are indistinguishable, when the PRF key
is chosen at random, that is,{

k
$← PRF·Gen(1λ) : deRandF[AL, k](x1), TdeRand[AL,k](x1)

}
λ

≈
{
k

$← PRF·Gen(1λ) : deRandF[AL, k](x2), TdeRand[AL,k](x2)
}
λ
,

Then it follows from the security of the garbling scheme that the output of CAL(x1), which is a
freshly generated garbled pair {Γ̂, x̂1}, can be simulated by random variables in the first ensemble
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above, and that of CAL(x2) can be simulated by variables in the second ensembles. Therefore, the
indistinguishability of CAL(x1) and CAL(x2) holds.

This concludes the security of FEA.

Combining with known garbling schemes for circuits [Yao86], and TM and RAM with space-
dependent complexity (our construction), the above lemma immediately implies the following the-
orem:

Theorem 7. The following statements hold:

• Assume the existence of randomized functional encryption for NC1, there is a randomized
functional encryption for P/poly.

• Assume the existence of randomized functional encryption for P/poly, there is a randomized
functional encryption scheme for TM and RAM with space-dependent complexity.

5.4 From IND security to SIM security.

The work by De Caro et. al. [CIJ+13] showed a tight connection between functional encryption
with indistinguishability-based security and that with simulation-based security. More precisely,
they provide a generic transformation that turns any (full or selective) q-`-poly-IND secure func-
tional encryption scheme IND-FE for polynomial-sized circuits to a (full or selective) q-`-poly-SIM
functional encryption scheme SIM-FE for polynomial-sized circuits, assuming one-way functions.

With a closer examination of their transformation, it is easy to see that their transformation
works for general classes of algorithms (beyond circuits). Below we state the generic transformation
theorem implicit in their security proof.

Proposition 3 (Generic Transformation from FE with IND-Security to SIM-Security (Implicit
in [CIJ+13])). For every class {ALλ} of deterministic Boolean algorithms that are closed under
composition with polynomial-sized circuits, the following holds: Assuming the existence of one-way
functions, for every polynomial q and `,

• if there is a (ful-)q-`-poly-IND-secure (or sel-q-`-poly-IND-secure) functional encryption scheme
IND-FE for the class of algorithms {ALλ}.

• then there is a (ful-)q-`-poly-SIM-secure (or sel-q-`-poly-SIM-secure respectively) functional
encryption scheme SIM-FE for {ALλ},

Furthermore, the following efficiency preservation holds.

• if IND-FE has optimal efficiency, or space- / linear-time-dependent complexity, so does
SIM-FE, and

• if IND-FE has succinct ciphertexts, so does SIM-FE.

Note that the fact that the resulting SIM-secure functional encryption scheme can have optimal
efficiency (if the underlying IND-secure functional encryption has) does not contradict with the lower
bound that the ciphertext and key sizes must scale with the output length, because we consider
only Boolean algorithms. SIM-secure functional encryption scheme for multi-bit algorithms can be
constructed via parallel repetition of a scheme for Boolean algorithms; in this case, the ciphertext
and key sizes do scale with the output length.
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5.5 From SIM-secure FE to Reusable Garbling Scheme

The work by Goldwasser et. al. [GKP+13b] give a transformation from a (ful-)1-1-0-SIM-secure func-
tional encryption scheme for circuits to a fully secure reusable garbling scheme. It is straightforward
to see that their construction works for general classes of algorithms and when considering reusable
garbling schemes with only static input selection, only sel-1-1-0-SIM-secure functional encryption
is needed.

Proposition 4 (Generic Transformation from 1-1-0-SIM-Secure FE to Reusable Garbling Scheme
(Implicit in [GKP+13b])). For every class {ALλ} of well-formed deterministic Boolean algorithms
that are closed under composition with polynomial-sized circuits, the following holds: Assuming
the existence of one-way functions,

• if there is a (ful-)1-1-0-SIM-secure (or sel-1-1-0-SIM-secure) functional encryption scheme
SIM-FE for the class of algorithms {ALλ},

• then there is a reusable garbling scheme GS for {ALλ} with adaptive (or static) input selec-
tion.

Furthermore, the following efficiency preservation holds.

• if SIM-FE has optimal efficiency or I/O- /space- / linear-time-dependent complexity, so does
GS, and

• if SIM-FE has succinct ciphertexts, GS has succinct input encodings.

Combining Proposition 2, 3 and 4, with our construction of garbling schemes with space-
dependent complexity, we obtain the following.

Theorem 8. Assume the existence of iO for P/poly and one-way function, there is re-usable
garbling scheme for TM and RAM with space dependent complexity.

6 Garbling v.s. iO

In this section we show a connection between (succinct) iO for classes of algorithms C and (succinct)
garbling schemes for the same classes C. Roughly speaking,

• assuming the existence of (succinct) iO for any “nice” class C of algorithms and one-way
functions, there exists a (succinct) garbling scheme for C;

• assuming the existence of iO for P/poly and a (succinct) garbling scheme for any “nice” class
C of algorithms, both with sub-exponential security, there exists a (succinct) iO for C.

6.1 From Garbling to iO

We present a generic transformation from a garbling scheme for an algorithm class {ALλ} to an
indistinguishability obfuscator for {ALλ}, assuming sub-exponentially indistinguishability obfusca-
tors for circuits. We require that the algorithm class to have the property that for any λ < λ′ ∈ N,
it holds that every algorithm AL ∈ ALλ is also contained in ALλ′—we say that such a class is
“monotonically increasing”. For instance, the class of Turing machines TM and RAM machines
RAM are all monotonically increasing.
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Proposition 5. Let {ALλ} be any monotonically increasing class of deterministic algorithms. It
holds that if there are

• i) a sub-exponentially indistinguishable iO, iOC , for circuits, and

ii) a sub-exponentially indistinguishable garbling scheme GS for {ALλ}.

• then, there is an indistinguishability obfuscator iOA for {ALλ}.

Furthermore, the following efficiency preservation holds.

• if GS has optimal efficiency or I/O-dependent complexity, iOA has I/O-dependent complexity.

• If GS has space-dependent complexity, so does iOA.

• If GS and iOC have linear-time-dependent complexity, so does iOA.

Proof of Proposition 5. This result relies on a notion from the recent work by Canetti, Lin,
Tessaro and Vaikuntanathan [CLTV14] which they refer to as probabilistic iO . In [CLTV14], they
show that assuming sub-exponentially indistinguishable IO for circuits and sub-exponentially secure
puncturable PRF, the following natural way for obfuscating probabilistic circuits does achieve a
limited notion of indistinguishability-based security. Below, we first recall their result and show
how to apply it to obtain iO from garbling.

Probabilistic iO. Consider the following natural way of obfuscating a probabilistic circuit C.

Ĉ
$← piO(1λ, C) : k

$← PRF·Gen(1λ
′
); C ′(x) = C(x;F(k, x)); Ĉ

$← iO(1λ
′
, C ′), with λ′ = poly(λ,C.n)

The work of [CLTV14] showed that when the underlying iO and PRF are all sub-exponentially
indistinguishable, the above algorithm piO ensures the indistinguishability of the obfuscation of
two strongly indistinguishable circuits. More precisely, two circuits (C1, C2) with n = C1.n = C2.n
are strongly indistinguishable w.r.t. auxiliary input z if for every input x ∈ {0, 1}n, outputs of
C1(x) and C2(x) are negl(λ)2−n indistinguishable given z.

Lemma 1 (pIO for Circuits [CLTV14]). Consider any sequence of probabilistic circuit pairs and
auxiliary input

{
C1
λ, C

2
λ, zλ

}
, such that, for every non-uniform PPT R, and every λ ∈ N, C1 = C1

λ,
C2 = C2

λ, z = zλ,

∀x ∈ {0, 1}n, where n = C1.n = C2.n∣∣Pr[y
$← C1(x) : R(C1, C2, x, y, z) = 1]− Pr[y

$← C2(x) : R(C1, C2, x, y, z) = 1]
∣∣ ≤ negl(λ)2−n

Assuming sub-exponentially indistinguishable iO for circuits iOC , and sub-exponentially indis-
tinguishable OWF. The algorithm piO described above ensures that,{

C1, C2, piO(1λ, C1), z
}
λ
≈
{
C1, C2, piO(1λ, C2), z

}
λ

For completeness, we include a proof sketch of the lemma.
Proof Sketch: The proof of the lemma essentially relies on complexity leveling. To see the proof,
first consider a simpler case, where the two circuits C1 and C2 have identical implementation on
all but one input x∗, and the outputs on x∗, C1(x

∗) and C2(x
∗), are indistinguishable. In this case,

we show that piO(1λ, C1) ≈ piO(1λ, C2). Recall that Ĉb
$← piO(1λ, Cb) is the iO obfuscation of
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program C ′b that evaluates Cb with pseudo-random coins generated using a hardwired PRF key

k. Thus, it follows from the security of iO that Ĉb is indistinguishable to iO(C ′′b ) where C ′′b has a
punctured key k(x∗) and Cb(x

∗;F(k, x∗)) hardwired in. Then it follows from the pseudo-randomness
of puncturable PRF and the indistinguishability of C1(x

∗) and C2(x
∗) that iO(C ′′0 ) and iO(C ′′1 ) are

indistinguishable. Therefore, by a hybrid argument, we have that piO(1λ, C1) ≈ piO(1λ, C2).
Now consider the case where C1 and C2 are completely different, but their output distributions

are negl(λ)2−n-indistinguishable. To show that their pIO obfuscation are indistinguishable, we just
need to consider an exponential, 2n, number of hybrids, where in each hybrid, the implementation
for one input x∗ is changed from using C1 to C2. By the same argument as before, neighboring
hybrids have a distinguishing gap O(negl(λ)2−n); thus by an exponential hybrid argument, the
overall distinguishing gap is bounded by negl(λ). This concludes the lemma.

Construction of iO for General Algorithms. Using the lemma from [CLTV14], we now prove Propo-
sition 5.

Given 2−λ
ε
-indistinguishable iO iOC and garbling scheme GS, let piO be the obfuscator for

probabilistic circuits from iOC as described above. Let RE be the following “randomized encoding”
algorithm:

(ÂL, x̂)
$← RE(1λ, AL, x), where (ÂL,key)

$← Garb(1λ
′
, AL, x), x̂ = Encode(key, x), λ′ = (λ+AL.n)1/ε

Note that it is due to the monotonically increasing property of the algorithm class that we can
invoke Garb with a bigger security parameter λ′ for AL ∈ ALλ. Then our iO for the general
algorithm class proceeds as,

ÂL
$← iOA(1λ, AL) where ÂL

$← piO(λ,RE(1λ, AL, ·))

It follows from the correctness of GS and iOC underlying piO that iOA has correctness.

Security. Next, we argue about the security of iOA by contra-position. Fix a polynomial T , a non-

uniform PPT samplable distribution D over the support
{
ALTλ ×ALTλ × {0, 1}poly(λ)

}
, such that,

with overwhelming probability, (AL1, AL2, z)← D(1λ) satisfies that AL1 and AL2 are functionally
equivalent and has matching parameters. Suppose that iOA is insecure, that is, there is a non-
uniform PPT A that distinguishes the following ensembles with inverse polynomial probability
1/p(λ). {

(AL1, AL2, z)
$← D(1λ) : (iOA(1λ, AL1), z)

}
λ{

(AL1, AL2, z)
$← D(1λ) : (iOA(1λ, AL2), z)

}
λ

Since D satisfies that with overwhelming probability, AL1, AL2 sampled from it have the same
functionality and matching parameters, there exists one such sequence {(AL1,λ, AL2,λ, zλ)} w.r.t.
which A distinguishes obfuscation of AL1,λ and AL2,λ given zλ with probability 1/2p(λ). By
construction of iOA, this implies that A distinguishes the following ensembles with probability
1/2p(λ). {

(piO(1λ,RE(1λ, AL1,λ, ·)), zλ)
}
λ

(7){
(piO(1λ,RE(1λ, AL2,λ, ·)), zλ)

}
λ

(8)
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We show this A contradicts with Lemma 1. It follows from 2−λ
ε
-indistinguishability of GS and the

fact that algorithm RE invokes the garbling algorithm with security parameter λ′ = (λ+ n)1/ε, for
every λ ∈ N, and xλ ∈ {0, 1}AL1.n, the following ensembles are negl(λ)2−n-indistinguishable.{

C1, C2, xλ,RE(1λ, AL1,λ, xλ)), zλ)
}
λ{

C1, C2, xλ,RE(1λ, AL2,λ, xλ)), zλ)
}
λ

where Cb = RE(1λ, ALb,λ, ·). Thus it follows from Lemma 1 that ensembles (7) and (8) are indis-
tinguishable. This gives a contradiction with the fact that A distinguishes them and hence, the
security of iOA holds.

Efficiency. Finally, we analyze the efficiency of iOA. It is easy to see that piO(1λ, C) runs in
polynomial time ppIO(λ′, |C|) where the polynomial ppIO depends on the running time of the un-
derlying iO and PRF; moreover, if the underlying iO has linear-time-dependent complexity, ppIO
also depends quasi-linearly in |C|. Let pRE(λ′, |AL|, n,m, S, T ) be the running time of RE(1λ, AL, x)
(depending on the efficiency of GS, the polynomial pRE depends on a subset of the parameters).
Overall, the running time of iOA(1λ, AL) is

ppIO(λ′, pRE(λ′, |AL|, n,m, S, T )) where λ′ = poly(λ, n)

Therefore,

• If GS has optimal efficiency (that is, pRE depends only on m) or I/O-dependent complexity
(that is, pRE does not depend on S, T ), iOA has I/O-dependent complexity.

• If GS has space-dependent complexity (that is, pRE depend on T ), so does iOA.

• If GS and the underlying iO has linear-time-dependent complexity (that is, pRE depends
quasi-linearly on T and so does ppIO on |C|), so does iOA.

Finally, we note that combining the proposition with constructions of garbling schemes for
TM and RAM in Section 3 and 4, we directly obtain iO for TM and RAM with space-dependent
complexity.

Theorem 9. Assume a sub-exponentially indistinguishable iO for circuits and sub-exponentially
secure OWF. There is an indistinguishability obfuscator for TM and RAM with space-dependent
complexity.

Regarding Evaluation Efficiency. Evaluating the iO for TM and RAM obtained in Theorem 9
on input x, involves evaluating the obfuscated program on x once to obtain a garbled pair (ÂL, x̂),
and then evaluate them. Therefore, overall, evaluation takes time TAL(x) × poly(λ, |AL|, AL.S).
When the space is large, the overhead on computation time is large. We can then improve the
evaluation efficiency (at the price of losing succinctness of the garbled RAM) by combining propo-
sition with the construction of garbling RAM by [LO13, GHL+14]. Since their garbled RAM has
size and evaluation time quasi-linear in the time complexity (i.e., poly(λ, |AL|, AL.m)T ), we can
obtain the following:

Theorem 10. Assume a sub-exponentially indistinguishable iO for circuits and sub-exponentially
secure OWF. There is an indistinguishability obfuscator for RAM with input and output lengths
bounded by a-priori fixed polynomials, and the indistinguishability obfuscator has linear-time de-
pendent complexity.

42



We note that when combining the theorem with the garbling scheme for RAM of [LO13,
GHL+14] in a straightforward way, it actually yields only an iO for RAM with complexity (in
terms of both size and evaluation time) polynomial in the time complexity T of the RAM machine
being obfuscated. However, we can apply the same trick as described in [GHRW14] to improve
the efficiency of the iO for RAM to depend only quasi-linearly on T . In the work of [GHRW14],
they noticed that in the construction of [LO13, GHL+14], each bit in a garbled RAM and an
input encoding can be generated using a small circuit of size Õ(|R| + n + m) × poly(λ, log T ),
where R is the RAM machine under consideration, n = R.n, m = R.m and T = R.T . Thus,
to achieve linear-time-dependent complexity, we can simply modify our construction above as fol-
lows. Instead of directly obfuscating the whole randomized encryption algorithm RE, which has
size S = Õ(|R| + n + m) × poly(λ, log T ) × T and leads to a poly(S) size obfuscated circuit, do
the following: Decompose RE into a set of S small circuits {REi} each of which computes the
ith bit in the randomized encoding, and then obfuscate each REi separately. Since each REi is
small, the final obfuscation only depends on T quasi-linearly; more precisely, the complexity is
poly(λ, |R|, n,m, log T )× T .

6.2 From iO to Garbling

We here show how to transform iO for a class C into garbling scheme for the same class with the
same efficiency.

Proposition 6. Let {ALλ} be any class of deterministic algorithms. It holds that if there is an
iO iO for {ALλ}, then there is a garbling scheme GS for this class. Furthermore, the following
efficiency preservation holds.

• if iO has optimal efficiency or input- / I/O- dependent complexity, GS has I/O-dependent
complexity.

• If iO has space- / linear-time- dependent complexity, so does GS.

We observe that combining the construction of iO for Turing machines with input-dependent
complexity by [BCP14, ABG+13] with the theorem, we obtain a Garbling scheme for Turing ma-
chine with only I/O dependent complexity.

Corollary 1. Assume the existence of iO for Turing machines with input-dependent complexity.
There is a garbling scheme for Turing machines with I/O-dependent complexity.

Proof of Proposition 6. The construction is quite straight-forward and illustrates the difference be-
tween obfuscation and garbling schemes. The key generation is simply the key generation algorithm
for Lamport’s one-time signature scheme [Lam79] with the tweak that instead of using a one-way
function (as in Lamport’s construction), we use a length doubling PRG—the public key for signing
messages of length n consist of 2n images {cbi = f(rbi )}i∈[n],b∈{0,1} of a PRG f , and the secret key

is the set of pre-images {rbi}i∈[n],b∈{0,1}; both the public and secret keys are output as part of the
garbling key. The encoding of an input x is a signature of x (i.e., (rx11 , . . . , r

xn
n ), and the encoding

of an algorithm AL is the obfuscation of a program Π[AL] that on input n (presumed) pre-images ~r
determines whether there exist an input x such that f(ri) = cxii and if so runs AL(x); otherwise it
simply outputs ⊥; it is important that the computation performed to determine the input x takes
a number of steps t0 that is independent of the input.

To show that this construction is a secure garbling we need to exhibit a simulator that given just
the output y = AL(x) of the program AL on input x and the number of steps T ∗ taken by AL(x)
(as well as other parameters (n,m, S, T ) of AL) can simulate the encoded input and program.

43



To simulate the encoded input, we simply output n random pre-images ~r, and to simulate the
the encoded program, we simply obfuscate the program Π̃ that on input ~r outputs y while taking
T ∗ steps, and on any other input outputs ⊥ while taking t0 steps. (The bound parameters of Π̃
are set to (n,m, S, T ).)

To show indistinguishability of the simulation, we consider a hybrid experiment which proceeds
just as the real one expect that the key generation algorithm is modified so that (with overwhelm-
ing probability) there only exists a signature for the message x—we simply let c1−xii be chosen
as a uniform random string (instead of picking it in the image of f . By the security of the PRG
this experiment is indistinguishable from the real one; furthermore (with overwhelming probabil-
ity) the program being obfuscated in this experiment is functionally equivalent and has the same
running-time as Π̃ for all inputs, and thus by security of the TM indistinguishability obfuscator
this experiment is indistinguishable from the simulated one.
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