
Lock-free GaussSieve for Linear Speedups in
Parallel High Performance SVP Calculation

Artur Mariano
Institute for Scientific Computing
Technische Universität Darmstadt

Darmstadt, Germany
artur.mariano@sc.tu-darmstadt.de

Shahar Timnat
Department of Computer Science

Technion - Israel Institute of Technology
Haifa, Israel

stimnat@cs.technion.ac.il

Christian Bischof
Institute for Scientific Computing
Technische Universität Darmstadt

Darmstadt, Germany
christian.bischof@tu-darmstadt.de

Abstract
Lattice-based cryptography became a hot-topic in the past years be-
cause it seems to be quantum immune, i.e., resistant to attacks op-
erated with quantum computers. The security of lattice-based cryp-
tosystems is determined by the hardness of certain lattice problems,
such as the Shortest Vector Problem (SVP). Thus, it is of prime im-
portance to study how efficiently SVP-solvers can be implemented.

This paper presents a parallel shared-memory implementation
of the GaussSieve algorithm, a well known SVP-solver. Our imple-
mentation achieves almost linear and linear speedups with up to 64
cores, depending on the tested scenario, and delivers better sequen-
tial performance than any other disclosed GaussSieve implementa-
tion. In this paper, we show that it is possible to implement a highly
scalable version of GaussSieve on multi-core CPU-chips. The key
features of our implementation are a lock-free singly linked list,
and hand-tuned, vectorized code. Additionally, we propose an al-
gorithmic optimization that leads to faster convergence.

Keywords GaussSieve, SVP, parallel, mul1ti-core CPU, lock-free

1. Introduction
Cryptography is mainly used to protect information that is sent over
an insecure channel. In 1996, Ajtai found out that some lattice prob-
lems have interesting properties for cryptography, such as average-
case hardness [1]. Cryptosystems based on lattices are said to fall
within the realm of lattice-based cryptography, a rapidly expanding
field since Ajtai’s discoveries on lattice problems. Lattices are dis-
crete subgroups of the m-dimensional Euclidean space Rm, with
a strong periodicity property. A lattice L generated by a basis B, a
set of linearly independent vectors b1,...,bn in Rm, is denoted by:

L(B) = {x ∈ Rm : x =

n∑
i=1

uibi, u ∈ Zn} (1)

where n is the rank of the lattice. When n = m, the lattice
is said to be of full rank. When m is at least 2, each lattice has
infinitely many different bases.

Lattice-based cryptography is particularly attractive since lattice-
based cryptosystems are believed to be quantum immune, i.e., re-
sistant to attacks operated with quantum computers. Lattice-based
cryptosystems can only be broken when specific lattice problems
can be solved in a timely manner. As the security of these sys-
tems is estimated based on the performance of the algorithms that
solve their underlying problems, highly optimized and parallelized
solvers are needed to realistic estimations. One of the underlying
problems in lattice-based crypto-systems is to find the shortest vec-
tor in a given lattice, a problem referred to as the Shortest Vector
Problem (SVP). The SVP consists in finding the nonzero vector
v of a given lattice L, whose norm ‖v‖ is the smallest among the
norms of all nonzero vectors in the lattice L and is denoted by
λ1(L). The problem can be stated for every norm; In this paper, we
address the Euclidean norm, the most common in this context. An
algorithm that solves the SVP is called a SVP-solver.

SVP-solvers work faster on reduced lattice bases, i.e. lattice
bases with short, nearly orthogonal vectors. The main algorithms
that can be used to reduce lattices are the Lenstra-Lenstra-Lovász
(LLL) and the Block Korkine Zolotarev (BKZ) algorithms (cf.
[8]). LLL sparked a new era of research on lattice basis reduction.
Lattice basis reduction algorithms can be used to solve approximate
solutions of the SVP. In fact, for lattices in two dimensions, the
LLL algorithm solves the SVP exactly. Lattice basis reduction
algorithms are widely used in many fields and in cryptanalysis,
including in different types of cryptography, such as knapsack
cryptosystems and special settings of RSA. In this paper, we use
BKZ to pre-reduce the lattices in which we solve the SVP on.

There are three main classes of SVP-solvers: sieving algo-
rithms, enumeration algorithms and algorithms based on the Voronoi
cell of a lattice (see [8] for a comprehensive overview). Sieving al-
gorithms were introduced in 2001, via the AKS algorithm [2], and
extended in 2010, with algorithms that improve the complexity
of AKS [11]. An asymptotic better variant of the AKS algorithm,
called ListSieve, as well as its efficient heuristic GaussSieve, were
presented by Micciancio et al. [11]. While ListSieve was consid-
ered of low practicability, the authors did also present an efficient
heuristic of ListSieve, called GaussSieve. A theoretical improve-
ment of ListSieve was presented by Pujol et al. [16]. Recently, a
three-level sieving heuristic, with better time and space complexity
than ListSieve, was proposed [18]. However, it is still unclear if it
can perform better than GaussSieve, because neither there is a prac-
tical implementation of it nor is the time complexity of GaussSieve
known.

To this day, two parallel versions of GaussSieve were proposed,
either with limited scalability [10, 12], or requiring some parameter
whose optimal value cannot be calculated upfront [6]. The imple-
mentation proposed in [6] requires the number of samples used per



iteration to be given as input. This is a major problem because the
optimal value for this parameter is not known upfront, and sub-
optimal values increase the time that the algorithm takes to con-
verge. In Section 3.2 we overview both implementations in detail.

At this point in time, the fastest probabilistic approach to solve
the SVP in practice, in terms of running time, seems to be enumer-
ation solvers with extreme pruning. However, sieving algorithms
are still interesting because (1) they are asymptotically better than
enumeration (2O(n) vs. 2O(n logn)), (2) they can take more advan-
tage of specific lattices, such as ideal lattices, than enumeration al-
gorithms (see [15], Section 6.1) and (3) some advances in sieving
algorithms have been published during the last years and it is ex-
pected that further optimizations will be proposed in the next years.
For instance, this paper proposes one algorithmic optimization that
enables GaussSieve to converge faster.

Our contribution is three-fold. In addition to the aforementioned
algorithmic optimization of the GaussSieve algorithm, we present
a parallel, scalable multi-core implementation that slightly relaxes
the properties of GaussSieve, with negligible impact on the time
for convergence. Our implementation delivers high levels of perfor-
mance due to hand-tuned and vectorized code. Finally, we propose
an extension to the lock-free list proposed in [5], which is used as
the core of our implementation.

This paper is organized as follows. Section 2.1 provides rele-
vant notation and recaps some definitions, and Section 2.3 explains
the GaussSieve algorithm. In Section 3, we overview related work,
both concerning SVP-solvers in general, and parallel implementa-
tions of the GaussSieve algorithm in particular. Section 4 explains
our approach in detail and the implemented optimizations. Sec-
tion 5 shows how our implementation performs and compares with
other parallel implementations of GaussSieve. Finally, Section 6
concludes the paper and provides some future lines of research.

2. Preliminaries
2.1 Notation and definitions
The Euclidean norm of a vector is the distance spanned from
the origin of the lattice to the point given by the vector v, i.e.
‖v‖ =

√∑n
i=1 v2

i , where vi is the ith coordinate of v. We use the
term zero vector for vectors whose norm is zero, i.e., the origin of
the lattice. Vectors and matrices are written in bold face, vectors
are written in lower-case, and matrices in upper-case, as in vector v
and matrix M. The dot product of two vectors v and p is denoted by
〈v,p〉. The lattice L generated by a basis B is denoted by L(B). We
now give two important definitions in the context of the GaussSieve
algorithm:

Definition 1 - Gauss-Reduced: Two vectors p and v ∈ L(B)
are said to be Gauss-reduced (with respect to each other) when
min(‖p±v‖) ≥ max(‖p‖,‖v‖) holds true. A simple routine to re-
duce two vectors p and v was presented in [11], and is referred to
as the Reduce kernel. When this routine is invoked bi-directionally,
i.e., Reduce(p,v) and Reduce(v,p), p and v become Gauss-reduced.

Definition 2 - Pairwise-reduced: A set or a list L of vectors is
pairwise-reduced, i.e., all its elements are pairwise-reduced, when
every pair (p,v) ∀p,v ∈ L, is Gauss-reduced.

We also recall the definitions of speedup Sp and efficiency Ep,
presented in Equation 2. and 3, respectively.

Sp =
T1

Tp
, (2)

where Tp is the program’s execution time with p processors.

Ep =
Sp

p
=

T1

pTp
(3)

2.2 The Shortest Vector Problem
Virtually every lattice problem has to do with distances. In partic-
ular, the SVP consists in finding the non-zero vector v of a given
lattice L, whose norm ‖v‖ is the smallest among the norms of all
nonzero vectors in the lattice L. This norm is usually denoted by
λ1(L) or simply λ1, if it is clear what lattice is concerned. As a
result, the SVP can formally be defined as the computation of a
vector v ∈ L(B) \ {0} where ‖v‖ = λ1(L(B)). The problem can
be stated for every norm; In this paper, we address the Euclidean
norm, the most common in this context.

The picture of the best SVP-solvers has been changing during
the last decade. In particular, enumeration and sieving have been
two concurrent approaches, competing for the position of the best
SVP-solver. Sieving algorithms were first thought to be impracti-
cal, until the AKS algorithm was proven to be practical, in 2008
[13], even though still uncompetitive with enumeration routines.
In 2010, Micciancio et al. presented GaussSieve, the first sieving
heuristic that outperformed enumeration routines [11]. However,
in the same year, Gama et al. proposed the extreme pruning ap-
proach for enumeration algorithms [4], which drove GaussSieve,
and consequently sieving algorithms, out of the podium. This ap-
proach reduces the probability of enumeration algorithms to find
the shortest vector of a lattice, but it reduces their running time
by a much higher factor. The method shuffles the basis and runs
the extreme pruned enumeration on it, repeating the process until
the shortest vector is found. In practice, enumeration with extreme
pruning becomes probabilistic and a probabilistic stopping crite-
rion, as in sieving algorithms, must be used instead.

Although enumeration algorithms became the main line of re-
search in lattice-based cryptanalysis, several studies on sieving al-
gorithms were still published since 2010 [6, 9, 12, 14, 15, 17, 18].
As mentioned before, sieving algorithms are still of prime impor-
tance, because they can be adapted to take advantage of special
lattice structures, in contrast to enumeration algorithms [15]. Siev-
ing algorithms might have attracted less attention than enumera-
tion algorithms also because they have been thought to be difficult
to parallelize. In particular, Fitzpatrick et al. presented several im-
provements to GaussSieve, which offer considerable speedups in
practice [3]. From those, we highlight an approach that enables to
estimate the angle between two vectors, which can be implemented
very efficiently with vectorized routines. Mariano et al. also showed
very recently that ListSieve, an algorithm categorized as impracti-
cal, is actually practical, especially in massively parallel architec-
tures [10].

In this paper, we show that GaussSieve can, in fact, be paral-
lelized and implemented in a very effective manner, by slightly
relaxing its properties. We hope that this might help to shift the
attention of the community towards sieving algorithms.

2.3 The GaussSieve algorithm [11]
The algorithm is based on sampling lattice vectors and building a
list L of shorter (of smaller norm) and shorter vectors. The sampled
vectors, referred to as samples, undergo a two-stage reduction pro-
cess. For each sample v, this process is based on (1) reducing v,
when possible, with every vector p in L, thus obtaining v’, and (2)
reducing every possible vector p in L with v’. As a result, the list L
will only hold Gauss-reduced vectors. The algorithm also employs
a stack S to keep vectors that are temporarily removed from L.

A collision occurs whenever a sample is reduced to the zero
vector in stage (1). If this occurs, the stage (2) of the reduction



process is not executed and the number of collisions is incremented.
Otherwise, stage (1) does not generate a zero vector but a v’ instead,
and stage (2) is executed. In stage (2), the algorithm checks if
any vector l ∈ L can be reduced against v’. All such vectors are
temporarily removed from L, reduced against v’ and pushed to the
stack S. At the beginning of each iteration, the algorithm checks
if S contains any vector. If this holds, a vector from S is used as a
sample, otherwise a new vector is sampled.

This is iteratively executed until a certain stopping criterion,
K ≥ c, where K is the number of collisions, is met. By then, the
shortest vector is expected to be in L. c is usually set in the form c =
α× mls+ β, where mls is the maximum size of L up to that point.
The workflow of the algorithm is shown in Algorithm 1. Although
the samples can be generated by any algorithm, they are typically
generated with Klein’s algorithm, as in [7]. Klein’s algorithm has
very good theoretical guarantees, and it samples vectors according
to a distribution that is statistically close to Gaussian (the variance
is arbitrary). This is particularly desirable for GaussSieve, since no
direction in space is privileged, and collisions are mostly generated
only after the shortest vector is found [13, 14].

The algorithm is not trivially parallelizable. At a fine-grained
level, while stage (1) of the reduction process is easily paralleliz-
able, phase (2) is not. At a course- grained level, the list L would
be read and written by multiple threads, which is not safe unless
some sort of synchronization is used. In Section 3.2, we describe
the approaches that were followed to parallelize the algorithm. Our
approach is based on parallelizing the algorithm at a course-grained
level, employing a scalable, thread-safe mechanism that permits the
use of L with minimal synchronization.

Algorithm 1: GaussSieve algorithm
Input: Basis B;
Init: L← {}, S ← {}, K ← 0

while K < c do
if S is not empty then

v← S.pop();

else
v← SampleKlein();

v← GaussReduce(v,L, S);
if ‖v‖==0 then

K ← K + 1;

else
L← L ∪ {v};

function GaussReduce(p,L,S)
while ∃vi ∈ L : ‖vi‖ ≤ ‖p‖∧
‖p−vi‖ ≤ ‖p‖ do

p← p−vi;
end
if ‖p‖==0 then

return p;

while ∃vi ∈ L : ‖vi‖ > ‖p‖∧
‖vi−p‖ ≤ ‖vi‖ do

L← L\ {vi};
S.push(vi−p);

return p;

3. Related Work
In this section we overview the available implementations of SVP-
solvers and the parallel implementations of GaussSieve.

3.1 Sequential SVP-solvers
There are various implementations of SVP-solvers. The fplll1 li-
brary implements several algorithms on lattices, mainly relying
on floating-point computations. As far as the SVP is concerned,
it includes a floating-point implementation of the Kannan-Fincke-
Pohst algorithm, here on referred to as fplll’s svp. This is currently
considered the most efficient sequential available implementation
of an enumeration routine without pruning. Panagiotis Voulgaris
published a C++ sequential implementation2 of GaussSieve, here

1 http://perso.ens-lyon.fr/damien.stehle/fplll/
2 http://cseweb.ucsd.edu/˜pvoulgar/impl.html

on referred to as the gsieve library, used in the experiments of
the original GaussSieve paper [11]. In this paper, we compare the
performance of our sequential implementation with both. To the
best of our knowledge, there are no available implementations of
enumeration-based routines with extreme pruning.

3.2 Parallel implementations of GaussSieve
In 2011, Milde et al. published a first parallel version of the
GaussSieve algorithm [12]. The implementation consists of a ring
structure connecting several instances of GaussSieve, each con-
taining a local list L and a private stack S. Each instance is then
executed by a thread, which samples vectors, one by one, reduces
them against its local list L, and hands them out to the ring structure.
Each vector floats around the ring structure, by means of buffers,
where it is picked by every thread, and reduced against the local
list therein. When the vector returns to the thread that released it, it
is added to the local list of that thread.

In the results shown in [12], the implementation does not scale
well for more than 4 threads (the efficiency is ≥ 85% only for 4 or
fewer threads), because the number of iterations required for con-
vergence increases with the number of threads. This happens be-
cause the local lists progressively hold more and more vectors that
are not Gauss-reduced with all the other vectors in the remaining
lists: if any vector v of a thread i passes by the local list of thread t,
between the release of a vector p, by thread t, and its commitment
to the local list of thread t, v and p will never be reduced against
each other. The bigger the number of threads running on the sys-
tem, the more often this case occurs and therefore the greater the
number of iterations required for convergence.

In 2013, Ishiguro et al. proposed another parallel version of
GaussSieve [6], for shared and distributed memory systems, with
better scalability on shared memory systems3, at least up to 8
threads. Their implementation is based on the following property
of union of pairwise-reduced sets: if two sets A and B are pairwise-
reduced and every pair of vectors (a, b) is Gauss-reduced, ∀a ∈
A, b ∈ B , then A ∪ B is also pairwise-reduced.

The algorithm sets up a list V with r samples, with r provided
as input, and applies a 3-stage reduction process. In stage (1), the
sample vectors in V are reduced against the vectors in L, identically
to the original GaussSieve algorithm, but in parallel. Every vector
that is modified in this process is added to the stack S, otherwise it
is moved to a V’ list, whose elements can not be further reduced
with any element in L. In stage (2), the original vectors in V’
are reduced against one another, in parallel. We emphasize that
the reduced vectors are the original vectors in V’, otherwise this
would represent a dependency. As a result, the vectors in V’ must
be copied to a separate variable before the reduction against other
vectors. The modified vectors are moved onto the stack S, whereas
the unmodified vectors are moved to a list V”. In stage (3), each
thread reduces a part of L against the elements in V”. Again, if any
vector is changed in the reduction process, it is added to the stack
S, otherwise it is added to L’. Like V”, L’ is also pairwise-reduced.

Once this 3-stage process is concluded, L’ and V” are merged to
create the new list L and the list V is filled up with the vectors that
are in S (if they do not total r vectors, more are generated and added
to V). This whole process re-starts until the number of collisionsK
reaches a certain threshold c. However, if K reaches c in the midst
of one iteration, that whole iteration, which contains r samples, is
still fully executed. The original algorithm, on the contrary, stops
as soon as the number of samples reaches the desired boundary c.

This approach has two major drawbacks. While it exposes par-
allelism and permits good scalability on shared memory systems,
(1) the use of r samples increases the computation that is necessary

3 In this paper, the results on distributed memory will not be addressed.



for convergence and (2) the optimal value of r is never known up-
front. In fact, there is a close relation between how optimal r is and
the runtime of the algorithm (see Figure 3(a) in [6]). Additionally,
the optimal value for this parameter varies, very likely, from lattice
to lattice and from dimension to dimension. Therefore, r must be
chosen on the basis of empirical tests, but there is no point in solv-
ing the SVP on the same lattice twice. We can therefore assume
that a non-optimal parameter will always be chosen in first place.

There are also some implementation details that are not dis-
cussed in the paper, and it is unclear how they are solved and how
much overhead they cause in the implementation. For example, in
the three stages of the reduction process, several vectors are moved
to the stack S, which represents a dependency. In Algorithm 4, in
the Appendix of [6], only three kernels, which exclude the inser-
tions in S, are run in parallel. This means that that insertions in S
are sequential, which limits scalability.

Our implementation attains much better scalability figures than
in [12] and better performance than the results reported in [6],
whose code is undisclosed, thereby preventing us from carrying
out thorough comparisons.

4. Lock-free GaussSieve Implementation
The root of the main problems in the implementations described
in Section 3.2 is the distribution of the original list L. In [12],
vectors fluctuate between a number of different data-structures and
might fail at encounter one another during the reduction process.
In contrast to the previously described implementations, we keep
the vectors in a central list L, safely accessible by every thread
concurrently. Unlike scenarios with multiple local lists, as in [12],
vectors are likely to see one another during the reduction process,
because they are physically close to one another. In particular, not
only two vectors v and p are likely to encounter each other during
the reduction process, but reduced versions of these vectors are also
likely to encounter one another, as discussed in Section 4.2. This
approach is also better than [6], because (1) it does not need extra
parameters for which the optimal values are not known upfront and
(2) it stops as soon as the threshold of collisions is reached.

Our implementation is written in C++, uses OpenMP to man-
age a team of threads and uses gsieve’s implementation of Klein’s.
It sets up a shared lock-free list L, which is an enhanced version of
Harris’s linked list [5]. Each thread executes the original workflow
of the algorithm: they sample a vector v, reduce it against every vec-
tor p in L, obtaining v’, and reduce every vector p in L against v’.
Each thread has also a private stack S, were p’ = Reduce(p,v’) is
moved onto, whenever p’ 6= p. Our lock-free implementation relies
on the compare-and-swap atomic primitive for synchronization.

4.1 Enhanced lock-free list
We implemented the lock-free linked list described in [5], with
some modifications and extensions. Each node in the list represents
a vector, and includes an array data[N], which represents the co-
ordinates of the vectors, a long norm, which holds the norm of the
vectors, and a pointer Node *next to the next element in the list.
N is the dimension of the lattice.

struct Node{
DATATYPE attribute ((aligned(8))) data[DIMENSION];
long norm;
Node *next;
}

data is an array of either ints or shorts. The list is ordered by
increasing norm, similarly to key in [5]. For the atomics, we used
compiler built-in functions.

Vectors in the shared list should not be directly modified, since
if two threads concurrently modify the same vector the result could
be erroneous. If a thread wishes to modify a vector, it should instead
remove it from the list and insert a modified version of it. This
requires a slight change in the Reduce function of the gsieve library.
This function tests if p should be reduced against v, changing p if
the test holds true, removing it from L afterwards. We split Reduce
into two other functions, testReduce and eReduce, thus ensuring
that vectors are never modified while in L.

testReduce tests if p should be reduced against v. It does so by
computing dot = 〈p,v〉 and then testing whether (abs(2 ∗ dot) ≤
‖v‖). If the result is true, then v is removed from L, and copied to
a different variable. This copy of v is updated using eReduce, and
pushed onto the stack S (the private stack of the relevant thread).
If the result is false, eReduce is not called. To avoid performance
losses, the variable dot is passed by reference to testReduce, so it
can be reused in eReduce without any recalculation.

As for stage (1) in the GaussSieve function, a sample vector p
is reduced against all the vectors l ∈ L such that ‖l‖ ≥ ‖p‖. This is
a straightforward process, because all the threads can read the list
concurrently (as mentioned, elements are never written while in L),
and therefore reduce their own samples. After this process, p is to
be inserted in L, such that L remains ordered.

Both the insert and remove methods in Harris’s linked list use
an internal search method, which searches for a given key (a vector
norm in our case) from the beginning of the list. However, in the
lock-free GaussSieve implementation, it is superfluous to search for
the desired norm from the beginning of L. If during the traversal a
vector p that should be reduced against v is found and consequently
needs to be removed from L, the location of p is known at the time.
Similarly, if during the traversal a vector bigger than v is found, and
v should be inserted right before it, the location for the insertion is
known. We extended Harris’s linked list to support insertions and
removals without traversing the list from scratch. However, it is
important to note that the known locations cannot be used blindly,
since other threads may change the list concurrently.

The original search method in Harris’s linked list returns two
nodes: the first node in the list with a key at least as large as the
given search key, and its predecessor. A successful insert operation
inserts the new node between these two returned nodes. A success-
ful remove operation removes the second of these nodes (which
contains the desired key).

We extended Harris’s linked list with two new methods, insert-
ViaPointer, and removeViaPointer. These methods receive an
extra parameter, searchPointer, which is ideally the designated
predecessor of the new node (for an insert) or the predecessor of
the node to be removed (for a remove). These methods are simi-
lar to the original insert and remove methods, but call a modified
version of the search method, which receives the searchPointer
parameter as well.

The modified search method, searchFromMiddle, begins the
search from the given searchPointer, instead of from the begin-
ning of the list. Ideally, this parameter points to the first node (of
the pair of nodes to be returned), and the search will be completed
after very few steps. The searchFromMiddle method also helps
if several new nodes were concurrently inserted to the list immedi-
ately after the searchPointer, and one of them is now the wanted
predecessor, since starting the search from the searchPointer is
still much preferable to starting it from the beginning. Moreover,
thanks to special traits in Harris’s linked list, the searchPointer
can potentially be helpful even if the node it points to has already
been deleted. Harris’s linked list is designed in such a way that al-
lows the traversal to continue through deleted nodes. Such nodes
have a special mark that marks them as logically deleted before
they are physically removed from the list.



If during the traversal of the nodes that starts from the search-
Pointer, searchFromMiddle finds a node that is both (1) with a
norm smaller than the desired norm and (2) not deleted, then there
is no need to start the search from the beginning of the list. Often,
the searchPointer itself points to such a node, the desired one
for our purposes. If searching from the middle does not find such
a node, then there is no choice but to revert back to searching from
the beginning, such as in Harris’s original search method.

This approach is optimistic. In most cases, the given pointer to
the insertViaPointer or removeViaPointer is the immediate
predecessor, and searchFromMiddle will be completed at once.
Even if this is not the case, searchFromMiddle still has a good
chance of saving a considerable amount of time by avoiding a
search from the beginning of the list. In a small number of cases,
due to concurrency, the only choice is to search from the beginning.

Note that in terms of functionality, insertViaPointer and
removeViaPointer are identical to the regular insert and
remove, but they have the potential of saving considerable time.

4.2 Relaxation of GaussSieve properties
The implementation proposed by Milde et al., in [12], relaxes
the properties of GaussSieve in the sense that several pairs of
vectors might never be Gauss-reduced during the execution of the
algorithm. Let us consider a scenario with 2 threads, where a given
vector v and a given vector p are released, at the same time, by
threads 1 and 2, respectively. If the vector p is reduced against the
vectors in the local list of thread 1 before v is in that list, p and
v will never be reduced against each other (missed reduction). v
and p will eventually be added to the local lists of threads 1 and 2,
respectively. Each vector will possibly fluctuate between the local
list of the thread that released it and the private stack of that same
thread, but v and p will never be reduced against each other.

Similarly to Milde et al. [12], we relax the properties of the
GaussSieve heuristic, although to a much smaller degree. In our
implementation, it is possible that a given vector p is reduced
against the elements in the lock-free list L, while another vector
v is already in the system but not in the list L. For instance, v
may lie on the private stack S or under the reduction stage (1) of
another thread. If this occurs, p will not be reduced against v, but
it is possible that v is reduced against p. This will be verified if,
when v is later on reduced against all the elements in L, p remains
unchanged and still in L. In fact, this is likely to happen, because
if v lies on the stack of one thread, it means that it will soon
be reduced against all the elements in L. Assuming this scenario,
where v changes to v’, it is also possible that a reduced version of
p, p’, is later on reduced against v’. In fact, this is very likely to
happen, because every vector fluctuates between the private stack S
of each thread and the lock-free list L. When the element is picked
from the private stack of one thread, it is reduced against all the
elements in L. In a nutshell, while it is possible that a vector p is not
reduced against another vector v when it should be, it is likely that
reduced versions of these vectors are eventually reduced against
one another, unlike Milde et al..

Although this is a different behaviour from the original algo-
rithm, its impact on the convergence speed is minimal, otherwise
the scalability of our parallel version would be considerably af-
fected, as in [12]. As the number of missed reductions grows with
the number of threads in our approach, it might happen that a very
conservative stopping criterion has to be used for a large number of
threads. However, the output of our implementation was, for all our
experiments (up to 64 threads), identical to the sequential version.

4.3 Code optimizations
The dominant kernel of the implementation is the calculation of the
dot product 〈p,v〉, whose result is used to determine if a vector p

should be reduced against a vector v. We have vectorized this ker-
nel for vectors with both integer and short entries, using 128-bit
registers from SSE 4.2 (4 integers or 8 shorts are packed per reg-
ister). While integer entries did not result in overflow during our
experiments, short entries did. To overcome this, we used the in-
struction PMADDWD, which multiplies point-wise short entries, pro-
ducing temporary signed, doubleword results. The adjacent dou-
bleword results are then summed up and stored in the destination
operand, thus keeping overflow losses. We show performance re-
sults pertaining to the vectorization of this kernel in Section 5.2.1.

Another relevant optimization, that improved our implementa-
tion in up to 15%, is to reduce the number of (dynamic) memory
allocations of vectors. As we developed our own module for stack
S, we save one memory allocation when removing a vector from a
list and inserting on the stack S. As mentioned, this is first copied
to a different variable, allocated within the GaussReduce function,
which is then used as a stack element.

4.4 Algorithmic optimizations
Similarly to enumeration algorithms, that have been optimized
with techniques such as extreme pruning, sieving algorithms can
also be modified to converge faster. We observed that GaussSieve
converges in fewer iterations when:

- (opt1) the samples used during the sieving process are short;

- (opt2) the reduction of the samples is primarily done against
vectors that are short themselves.

From here on, these cases will be referred to as opt1 and opt2,
respectively. In order to attain opt1, we changed parameter d, in
Klein’s algorithm, to log(n)/70, thus forcing it to sample shorter
vectors. This was addressed in [6] first hand (see Section 5.4). It is
known that the shorter the samples in sieving algorithms, the faster
the algorithms converges. Although our experiments confirmed the
performance gains reported in [6], we noticed that, with this mod-
ification, the sampler can become a very heavy or even the domi-
nant kernel within the algorithm. Moreover, with this optimization,
the default stopping criterion becomes insufficient for lattices in
dimensions up to 60, a problem that was not addressed in [6].

opt2 can be achieved by ordering the reduction of sampled
vectors differently than in the gsieve library. According to the
description of the algorithm, in [11], the reduction of a sampled
vector abides by the following condition:

while (∃vi ∈ L : ‖vi‖ ≤ ‖p‖ ∧ ‖p− vi‖ ≤ ‖p‖ ) do
p← p− vi (4)

In the gsieve library, the possible reduction of a sample p is
tested against every element in L, and the process restarts from
the beginning of the list only (1) after testing the reduction of
p against every element in L and (2) if at least one reduction is
successful. Our implementation, on the other hand, restarts the
process from the beginning of the list whenever a reduction is
successful, therefore forcing the algorithm to use the shorter vectors
in L in first place. Despite of this difference, both implementations
abide by Equation 4, but our reduction process is more efficient.

5. Results
We divide this section into three subsections. In Section 5.1, we
compare the performance of our implementation, running with one
thread, with the best disclosed sequential implementations of some
SVP-solvers. In Section 5.2, we present results concerning the vec-
torization and the scalability of our implementation, as well as the
impact of lattice reduction on GaussSieve. Finally, in Section 5.3,
we compare our implementation with the results of the previous
parallel implementations of GaussSieve [6, 12].



The analysis was carried out with several random lattices, gen-
erated with Goldstein-Mayer bases, in multiple dimensions, avail-
able on the SVP-challenge4 website. All lattices were generated
with seed 0. Table 1 provides the specifications of the two test plat-
forms, with 16 and 64 cores. The 16-core machine runs Ubuntu
11.10, kernel 3.0.0-32-generic, whereas the 64-core machine runs
SUSE Linux Enterprise Server 11 SP3, kernel 3.0.101-0.29-default.
The results were obtained on the 16-core machine, except in Sec-
tion 5.2.3, where we present the scalability tests for both machines.

16-core machine 64-core machine

#Sockets 2 8
CPU manufacturer Intel Intel
Model number E5-2670 E7-8837
Launch date Q1’12 Q2’11
Micro-architecture Sandy Bridge Nehalem-C
Frequency 2600 MHz 2667 MHz
Cores 8 8
SMT Hyper-threading Not available
L1 Cache 8 × 32 kB iC+dC 8 × 32 kB iC+dC
L2 Cache 8 × 256 kB 8 × 256 kB
L3 Cache 20 MB shared 24 MB shared
System memory 128 GBs 1 TB

Table 1. Specifications of the test platforms. SMT stands for Si-
multaneous multi-threading, iC/dC for instruction/data cache.

The code was compiled with Intel icpc 13.1.3, but the ex-
periments in Section 5.2.1 include results for GNU g++ 4.6.1 as
well. We used the -O2 optimization flag on both compilers, since it
was slightly better than -O3. Every experiment was repeated three
times and the best sample was chosen, although the runtimes usu-
ally were quite stable among different runs. The elapsed time of
lattice reduction is not included in the results. Target norms (cf. def-
inition in Section 5.3.2) were never used, except in Section 5.3.2.

5.1 Performance comparison in sequential
In this section, we compare our parallel lock-free implementation
of GaussSieve, from here on referred to as plfgsieve, running with
a single thread, with (1) the fplll’s svp call and (2) the gsieve li-
brary, both overviewed in Section 3.1. The codes were compiled
with icpc and the bases were BKZ-reduced. We used NTL’s im-
plementation of BKZ5, with block-size 20. Although fplll has it-
self an implementation of BKZ, we stuck to NTL’s implementation
of BKZ for all of the three SVP-solvers, since different implemen-
tations of BKZ impact the performance of the solvers.

With higher block-sizes, BKZ finds the shortest vector per se,
thus making comparisons of the solvers impossible: the execution
time of the SVP-solvers would be nearly zero, since the elapsed
time of the lattice reduction process is not included in the measure-
ments.

We deactivated optimization opt1 described in Section 4.4 in
our implementation, because it renders the algorithm unstable for
lattices in dimensions lower than 60, as also mentioned in Section
4.4. As for the stopping criterion, described in Section 2.3, we set
α = 0.1 and β = 200, for both gsieve and plfgsieve.

As Figure 1 shows, our version outperforms clearly the gsieve
library, due to the use of vectorization and opt2. In particular, the
difference of performance grows with the dimension of the lattice.
For instance, our implementation is ≈2.56x faster for a lattice in
dimension 50, but ≈4.45x and ≈5.61x faster for lattices in dimen-
sions 66 and 68. Moreover, the runtime of GaussSieve increases
with the dimension of the lattice, regardless of the implementation.

4 http://www.latticechallenge.org/svp-challenge/
5 http://www.shoup.net/ntl/

20

400

8000

160000

50 52 54 56 58 60 62 64 66 68

Lattice Dimension

fplll's svp
gsieve
plfgsieve

E
xe

cu
tio

n 
Ti

m
e 

(s
)

Figure 1. Execution time, in seconds, for fplll’s svp, gsieve and
plfgsieve (1 thread), on lattices in dimensions 50-68 (less is better).

The running time of fplll’s svp, on the contrary, does not neces-
sarily increase on a lattice in a higher dimension. For instance, the
fplll’s svp is faster on the lattice in dimension 60 than on the lattice
in dimension 58. The fplll’s svp is slower than both implementa-
tions of GaussSieve for lattices in higher dimensions than 54. In
particular, the differences become very significant for high dimen-
sions (e.g. ≈40x slower than plfgsieve for dimensions 64 and 66).

5.2 Performance of parallel lock-free GaussSieve
This section shows the assessment of the vectorization of the dot
product kernel on our implementation, the impact of lattice reduc-
tion on GaussSieve, and its scalability.

5.2.1 Vectorization and compiler’s impact
This section shows a quantitative performance evaluation of the
vectorization of the kernel that computes the dot product 〈v,p〉, the
dominant kernel of the proposed implementation. The kernel was
isolated and ran on synthetic vectors, in dimension 80, both 8- and
16-bytes aligned. In order to obtain solid numbers, the kernel was
run 100 million times and the average performance was calculated.

Table 2 presents the results of the benchmarks, when the data
array, introduced in the beginning of Section 4.1, is 8-byte aligned.
It includes the number of Cycles Per Element (CPE), where an el-
ement is a multiplication of vi and pi, in the dot product 〈v,p〉.
The results differ considerably for different data-types and be-
tween hand- and compiler-vectorized code. Both compilers per-
form equally on code that is not hand-vectorized, for short ar-
rays, whereas g++ 4.6.1 performs better than icpc 13.1.3 for
not hand-vectorized code on int arrays, by a factor of≈1.39x. This
picture changes for hand-vectorized code: icpc 13.1.3 performs
better than g++ 4.6.1 for integer arrays, by a factor of ≈2.74x,
and a factor of ≈2.70x is gained in operations on short arrays.

For memory that is 16-byte aligned, the difference between
the performance of both compilers is very similar to the results
with 8-byte aligned memory. With integers, the performance of all
scenarios and both compilers is actually, for two decimal places,
the same as with memory that is 8-byte aligned. When it comes
to short arrays, icpc 13.1.3 performs worse in code that is not
hand-vectorized, but maintains the very same levels of performance
in hand-vectorized code. gcc 4.6.1, on the other hand, performs
worse in both hand and not hand-vectorized code. These results are
shown in Table 3.

A thorough comparison between the compilers is beyond the
scope of this paper. The results in this section assess the vectoriza-
tion of the dot product kernel that we devised, and the selection of
the best compiler for our implementation, running on the machine



icpc 13.1.3 g++ 4.6.1

Time (s) CPEs Time (s) CPEs

Not hand-vectorized

integers 9.618 3.126 6.900 2.242
shorts 7.012 2.279 7.000 2.274

Hand-vectorized

integers 0.698 0.227 1.910 0.621
shorts 0.364 0.118 0.982 0.320

Table 2. Runtime, in seconds, and CPE of the dot product kernel,
compiled with both icpc 13.1.3 and g++ 4.6.1. The time concerns
100 million runs of the kernel. Memory is 8-bytes aligned.

selected for benchmarks. On the basis of these results, the results
in the remaining sections were obtained with icpc 13.1.3, except
when said otherwise, and 8-byte aligned data.

icpc 13.1.3 g++ 4.6.1

Time (s) CPEs Time (s) CPEs

Not hand-vectorized

integers 9.611223 3.123647 6.906026 2.244458
shorts 7.488067 2.433622 7.952487 2.584558

Hand-vectorized

integers 0.697577 0.226713 1.911845 0.621350
shorts 0.363973 0.118291 1.054764 0.342798

Table 3. Runtime, in seconds, and CPE of the dot product kernel,
compiled with both icpc 13.1.3 and g++ 4.6.1. The time concerns
100 million runs of the kernel. Memory is 16-bytes aligned.

5.2.2 Impact of lattice reduction
While it is known that lattice reduction interferes with the perfor-
mance of GaussSieve, the degree of this interference is not entirely
known. In particular, different block-sizes in BKZ might greatly
change the performance of GaussSieve. One of the reasons why
the optimality of lattice reduction in this context is very hard to
estimate, is because it depends not only on the dimension of the
lattice but also from lattice to lattice. This means that different pa-
rameters of BKZ might be optimal for a certain lattice L in a given
dimension n, but might be suboptimal for a different latticeQ, even
ifQ is in the same dimension n.

Although this subject deserves a thorough analysis by itself,
we did conduct a small, yet useful, investigation on this mat-
ter. This enables fair comparisons with other implementations
of GaussSieve, such as those shown in Section 5.3. In particu-
lar, we tested our implementation, running with 32 threads, on a
80-dimensional random lattice BKZ-reduced with different block-
sizes, ranging from 26 to 42. The results are shown in Figure 2.

Considering the execution time of GaussSieve exclusively, the
optimal block-size for the lattice reduction process, with BKZ,
is 42. However, the execution time of BKZ increases with the
block-size, and becomes a significant portion of the overall elapsed
time for block-sizes bigger than 36. This means that even when
GaussSieve is executed in a short time-frame, the combined execu-
tion time might be substantially higher than in cases where BKZ
is run with a small block-size. For instance, GaussSieve executes
approximately 8 times faster when BKZ reduces the lattice with
block-size 42 instead of 34. However, the combined elapsed time
is almost 2 times smaller when BKZ runs with block-size 34. This

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

26 28 30 32 34 36 38 40 42

Block-size in BKZ

BKZ+GaussSieve
GaussSieve
BKZ

E
xe

cu
tio

n 
Ti

m
e 

(s
)

Figure 2. Execution time, in seconds, of GaussSieve, BKZ and
both combined for different block-sizes in BKZ.

is interesting because it seems a common practice to omit the ex-
ecution time of the lattice reduction process, when reporting the
execution times for SVP-solvers (e.g. [6, 12]).

The results in the following sections concern lattices that are
BKZ-reduced with block-size 32 (except when said otherwise),
because it is the most effective value from those in which the lattice
reduction process represents <5% of the overall elapsed time.

5.2.3 Scalability
The scalability of our implementation on the 16-core machine was
measured for random lattices in dimensions 60, 70 and 80. Lower
dimensions are either solved very quickly or the lattice reduction
process finds the shortest vector per se, rendering a scalability anal-
ysis worthless. Running the implementation in higher dimensions,
on the other hand, is impractical for a single thread.

We conducted two sets of experiments. In the first set, opt2,
described in Section 4.4, was not activated. In the second set,
on the contrary, opt2 was activated. BKZ ran with block-size 20
for dimensions 60 and 70, and with block-size 32 for dimension
80. Running the implementation on lattices in dimensions 60 and
70 with the same block-size, of 32, is particularly fast, and no
significant conclusions can be drawn about the results. Moreover,
the parameter d, in dimension 60, was log(n)/30, because the
default stopping criterion is insufficient if d is log(n)/70 instead.
The data array, which holds the coordinates of the vectors, was set
to hold shorts in both sets of experiments.

Figure 3 shows the execution time for the first set of experi-
ments, for 1-32 threads. The application scales linearly for up to 16
threads. The speedup for 16 threads, in both 60 and 80 dimensions,
is almost linear. The use of two sockets (which involves the use of
interconnecting CPU buses) does not seem to impair the scalability
of our implementation, since it scales linearly for a lattice in dimen-
sion 70. The scalability is limited for the lattice in dimension 60,
probably due to the small workload that is entailed. For the lattice
in dimension 80, it is possible that the scalability is hurt by the re-
laxation of the GaussSieve properties on this particular lattice. As
shown in Table 4, efficiency levels are very high for the three cases,
varying between 83.5% and 102.25%. In fact, superlinear speedups
are achieved for dimension 70 in 2 cases. Moreover, the implemen-
tation benefits from SMT (rows are highlighted in light gray in Ta-
ble 4), since a considerable part of the workflow is memory-bound.

Figure 4 shows the results for the second set of experiments. In
dimension 60, linear speedups are achieved for up to 8 threads and
an almost linear speedup is achieved for 16 threads. Dimension 70
unveiled a problem that might occur depending on the parametriza-
tion of the sampler. opt1 forces Klein’s kernel to output shorter vec-
tors, which renders the kernel heavier and less scalable. The scal-



1

20

400

8000

160000

1 2 4 8 16 32

#Threads

Dim 80
Dim 70
Dim 60

E
xe

cu
tio

n 
Ti

m
e 

(s
)

Figure 3. Scalability of our implementation on the 16-core ma-
chine (with SMT) for 1-32 threads. Results for lattices in dimen-
sions 60, 70 and 80. BKZ’s block-size is 32. opt1 is turned off.

Dimension 60 Dimension 70 Dimension 80

Threads S E S E S E

First set of trials

2 2.00x 100% 1.96x 98.00% 1.92x 96%
4 3.88x 97.00% 4.09x 102.25% 3.82x 95.5%
8 7.35x 91.88% 8.06x 100.75% 7.35x 91.88%
16 13.36x 83.50% 15.36x 96.00% 13.58x 84.88%
32 17.18x 53.69% 20.25x 63.28% 21.20x 66.25%

Second set of trials

2 1.83x 91.85% 1.91x 95.50% 1.93x 96.50%
4 3.84x 96.00% 3.48x 87.00% 3.83x 95.75%
8 7.34x 91.75% 4.97x 62.13% 7.22x 90.25%
16 13.32x 83.25% 5.66x 35.38% 12.64x 79.00%
32 16.41x 51.29% 4.20x 13.13% 16.82x 52.56%

Table 4. Speedups (S) and Efficiency (E) of our implementation
running on three random lattices (dimensions 60, 70 and 80).
BKZ’s block-size set to 32. SMT is used in grayed out rows.

ability of this kernel is hurt by the use of, among others, a rand()-
alike function. As this becomes the dominant kernel with this opti-
mization, the scalability of the whole implementation is reduced. In
fact, this is the only case where our implementation does not benefit
from SMT. This problem is mitigated for higher dimensions, where
the sampler is no longer the dominant kernel, as proven by the re-
sults in dimension 80. It is unclear if higher dimensions might ben-
efit from even more strict parameters in Klein’s algorithm, which

1

20

400

8000

160000

1 2 4 8 16 32

#Threads

Dim 80
Dim 70
Dim 60

E
xe

cu
tio

n 
Ti

m
e 

(s
)

Figure 4. Scalability of our implementation on the 16-core ma-
chine (with SMT) for 1-32 threads. Results for lattices in dimen-
sions 60, 70 and 80. BKZ’s block-size is 32. opt1 is turned on.

400

8000

160000

8 16 32 64

#Threads

Dim 78
Dim 76

E
xe

cu
tio

n 
Ti

m
e 

(s
)

Figure 5. Scalability of our implementation on a 64-core machine,
with 8-64 threads. Results for lattices in dimensions 76 and 78.
BKZ’s block-size is 32. opt1 is turned off.

might speedup GaussSieve but shift the computation weight to the
Klein’s algorithm. Either way, we emphasize that (1) a more scal-
able and efficient kernel of Klein’s algorithm must be developed
and (2) the proposed implementation of the GaussSieve kernel can
be seen as a highly efficient and scalable building block in future
implementations.

Figure 5 shows the execution times of our implementation on
the 64-core machine, for 8, 16, 32 and 64 threads. This corresponds
to the use of one, two, four and eight CPU-chips, respectively. As
we are primarily interested in the scalability of our GaussSieve
kernel, opt1 was deactivated in these tests. The version of icpc on
this machine is 14.0.2 and the code was also compiled with -O2.
As the figure shows, our implementation scales almost linearly for
up to 64 threads. The speedups and efficiency are shown in Table
5. Our implementation scales linearly for a lattice in dimension
76 and almost linearly for a lattice in dimension 78. The running
times are considerably slower than in the 16-core machine due to
the differences in the microarchitectures.

Dimension 76 Dimension 78

Threads S E S E

8 7.08x 89% 7.74x 97%
16 14.84x 93% 14.86x 93%
32 32.02x 100% 29.65 93%
64 63.64x 99% 53.96x 84%

Table 5. Speedup (S) and Efficiency (E) of our implementation on
the 64-core machine. BKZ’s block-size is 32. opt1 is turned off.

5.3 Comparison of parallel performance
This section compares the performance of our implementation with
the parallel GaussSieve implementations described in [12] and [6],
recapped in Section 3. For the sake of simplicity, we refer to
these as Milde2011 and Ishiguro2013, respectively. The trials were
conducted on the 16-core machine, described in Section 5.

5.3.1 Comparison with Milde2011
We ran both implementations with 1-32 threads on a random lattice
in dimension 70. Solving lattices in higher dimensions is imprac-
tical for less than 32 threads. In this comparison, the lattice was
BKZ-reduced, with block-size 32, and we deactivated opt1 in our
implementation, since it degrades the scalability of the GaussRe-
duce kernel, as mentioned in the previous section.

As shown by Figure 6, not only the single-core performance
of our implementation is faster than Milde2011, by a factor bigger



20

400

8000

160000

1 2 4 8 16 32

#Threads

Milde2011
plfgsieve

E
xe

cu
tio

n 
Ti

m
e 

(s
)

Figure 6. Scalability of our implementation and Milde2011, for 1-
32 threads on the 16-core machine (with SMT). Results for a lattice
in dimension 70. BKZ’s block-size is 32. opt1 is turned off.

than 10x, but it also scales much better. In particular, our implemen-
tation achieves efficiency levels of 98%, 102.25%, 100.75%, 96%
and 63.28% (the latter with SMT), whereas Milde2011 achieves
only 92%, 69.56%, 42.75%, 22.62% and 14.92% (the latter with
SMT) for 2, 4, 8, 16 and 32 threads, respectively.

5.3.2 Comparison with Ishiguro2013
The Ishiguro2013 implementation is not disclosed, and several im-
plementation details, such as those discussed in Section 3.2, are
omitted, thus making a re-implementation impossible. Neverthe-
less, we can still compare our results with the execution times re-
ported in the paper, since we use the same CPU-chip model. We
also replicated the test environment: we ran our implementation
with 32 threads, the execution time of the lattice pre-reduction
(BKZ with block-size 30) was not measured.

Using 32 threads and r = 8.192, the authors reported an exe-
cution time of 0.9 hours, i.e., 54 minutes or 3240 seconds, for the
execution on a random lattice (seed 0) from the SVP-challenge,
in dimension 80 (see Section 5.3, Table 2). The execution times
for both a random and an ideal lattice are exactly the same, which
is surprising, considering that substantial speedups (e.g. >50x) are
possible to be achieved for GaussSieve on ideal lattices [14].

Despite of this, our implementation solves the very same lat-
tice in 2896 seconds, i.e. less than 48 and a half minutes (or ≈0.8
hours), which represents an improvement of nearly 12%. In fact,
running the Ishiguro2013 implementation with an optimal value for
r would still require not less than 45 minutes, i.e. 2700 seconds (see
Section 5.1, Figure 3(a)). This is equivalent to a more relaxed stop-
ping criterion on our implementation, since r directly influences the
number of iterations required for convergence. In particular, one
can compare this result to the most relaxed stopping criterion on
our implementation, which is to set a target norm tn as in [15], that
permits the algorithm to stop as soon as a vector with norm smaller
or equal to tn is found. In this case, with the same 32 threads and
BKZ’s block-size 30, our implementation runs in 1788 seconds,
which represents an improvement factor of more than 1.5x.

The authors do not present or comment on the impact of BKZ’s
block-size on the performance of the GaussSieve, and therefore
we assume that 30 is the optimal choice for this parameter on
their implementation. On the contrary, we did assess the impact
that different block-sizes in BKZ have on the performance of our
implementation, as shown in Section 5.2.2. In particular, for BKZ
with block-size 34, our implementation solves the SVP on the
aforementioned lattice in ≈2328 and ≈1591 seconds, respectively
with and without a target norm set. These numbers mean that our
implementation is faster by a factor between ≈1.39x and ≈1.7x.

6. Conclusions and Outlook
This paper proposes a parallel implementation of GaussSieve, an
important heuristic that solves the SVP. We show that, by slightly
relaxing the properties of GaussSieve, it is possible to achieve
almost linear and linear speedups up to 64 cores, depending on the
tested scenario. The core idea of the proposed implementation is a
lock-free list that holds the vectors in the system, combined with
hand-vectorized and hand-optimized code.

In comparison to the previously proposed parallel implementa-
tions of GaussSieve, our implementation performs and scales much
better than Milde2011, and outperforms Ishiguro2013, by factors of
between nearly 1.12x and 1.50x, for lattices that are BKZ-reduced
with block-size 32, and between nearly 1.39x and 1.70x, for lattices
that are BKZ-reduced with block-size 34.

In the future, we plan to adapt our algorithm to work on ideal
lattices, and implement it on CPU+GPU frameworks (e.g. [9]). In
this version, we plan to integrate the improvements proposed in [3].
We also plan to implement a parallel version of BKZ on GPUs.

Acknowledgements
We thank M. Schneider for providing us the implementation
showed in [12], and Ö. Dagdelen, L. Santos, T. Laarhoven and
F. Correia for insightful discussions. This work was partially sup-
ported by the German Science Foundation through SFB 1119
(CROSSING).

References
[1] M. Ajtai. The Shortest Vector Problem in L2 is NP-hard for Random-

ized Reductions (Extended Abstract). In Proceedings of the Thirtieth
Annual ACM Symposium on Theory of Computing, STOC ’98, pages
10–19, New York, NY, USA, 1998. ACM.

[2] M. Ajtai et al.. A Sieve Algorithm for the Shortest Lattice Vector
Problem. In Proceedings of the Thirty-third Annual ACM Symposium
on Theory of Computing, STOC ’01, pages 601–610, New York, NY,
USA, 2001. ACM.

[3] R. Fitzpatrick et al. Tuning GaussSieve for Speed. In Third Inter-
national Conference on Cryptology and Information Security in Latin
America (Latincrypt), Florianopolis, Brazil, September 2014.

[4] N. Gama, P. Nguyen, and O. Regev. Lattice Enumeration Using Ex-
treme Pruning. In H. Gilbert, editor, Advances in Cryptology - EU-
ROCRYPT 2010, volume 6110 of Lecture Notes in Computer Science,
pages 257–278. Springer Berlin Heidelberg, 2010.

[5] T. L. Harris. A Pragmatic Implementation of Non-blocking Linked-
Lists. In Proceedings of the 15th International Conference on Dis-
tributed Computing, DISC ’01, pages 300–314, London, UK, UK,
2001. Springer-Verlag.

[6] T. Ishiguro et al.. Parallel Gauss Sieve Algorithm : Solving the SVP
in the Ideal Lattice of 128-dimensions. Cryptology ePrint Archive,
Report 2013/388, 2013.

[7] P. Klein. Finding the Closest Lattice Vector when It’s Unusually
Close. In Proceedings of the Eleventh Annual ACM-SIAM Symposium
on Discrete Algorithms, SODA ’00, pages 937–941, Philadelphia, PA,
USA, 2000. Society for Industrial and Applied Mathematics.

[8] T. Laarhoven et al.. Solving Hard Lattice Problems and the Security
of Lattice-Based Cryptosystems. Cryptology ePrint Archive, Report
2012/533, 2012.

[9] A. Mariano et al.. A (ir)regularity-aware task scheduler for hetero-
geneous platforms. In Proceedings of the Second International Con-
ference on High Performance Computing, HPC-UA’12, pages 45–56,
Kiev, Ukraine, October, 8-10 2012.

[10] A. Mariano et al.. A comprehensive empirical comparison of parallel
ListSieve and GaussSieve. In To appear in APCI&E’14 - Workshop
on Applications of Parallel Computation in Industry and Engineering,
Porto, Portugal, August 2014.



[11] D. Micciancio and P. Voulgaris. Faster exponential time algorithms
for the shortest vector problem. In Proceedings of the Twenty-First
Annual ACM-SIAM Symposium on Discrete Algorithms, SODA ’10,
pages 1468–1480, Philadelphia, PA, USA, 2010. SIAM2.

[12] B. Milde and M. Schneider. A parallel implementation of GaussSieve
for the shortest vector problem in lattices. In Proceedings of the
11th International Conference on Parallel computing technologies,
PaCT’11, pages 452–458, Berlin, Heidelberg, 2011. Springer-Verlag.

[13] P. Q. Nguyen and et al. Sieve algorithms for the shortest vector
problem are practical. J. of Mathematical Cryptology, 2(2), 2008.

[14] M. Schneider. Analysis of Gauss-Sieve for Solving the Shortest Vector
Problem in Lattices. In WALCOM: Algorithms and Computation,
volume 6552 of Lecture Notes in Computer Science, pages 89–97.
Springer Berlin Heidelberg, 2011.

[15] M. Schneider. Sieving for Shortest Vectors in Ideal Lattices. In
Progress in Cryptology AFRICACRYPT 2013, volume 7918 of Lec-
ture Notes in Computer Science, pages 375–391. Springer Berlin Hei-
delberg, 2013.

[16] P. Xavier et al.. Solving the shortest lattice vector problem in time
22.465n. Cryptology ePrint Archive, Report 2009/605, 2009.

[17] W. Xiaoyun et al.. Improved Nguyen-Vidick heuristic sieve algorithm
for shortest vector problem. In In Proceedings of ASIACCS 11, pages
1–9. ACM, 2011.

[18] F. Zhang et al.. A Three-Level Sieve Algorithm for the Shortest Vector
Problem. In SAC 2013 - 20th International Conference on Selected
Areas in Cryptography, Burnaby, Canada, August 2013.


