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Abstract

The article proposes an Online/Off-line Ring Signature Scheme in random oracle
model.Security of the scheme relies on both Computational Diffie-Hellman and k-CAA
problems. The proposed scheme is proven the two most important security goals Exis-
tential Unforgeability and Signer Ambiguity. Also it has robustness property where the
misbehavior of the signer can be detected. Signing process is performed in two phases
online and offline. All heavy computations are performed in Off-line stage. So the over-
all computational cost is reduced and very less than the traditional signature scheme.
The scheme can be applied to Mobile Ad Hoc Networks (MANETs) that undergo node
mobility.
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1 Introduction

A ring signature scheme allows members of a group to sign messages on behalf of the group
without revealing their identities. This property is known as signer anonymity. Also it can
not be distinguish any two arbitrary signatures that have been generated by the member of
the same group. In case of group signature scheme, generation of the group is anomalous
and there does not exist any group manager to renege the signer’s identity. This states that,
each user is joined with a public key of a typical signature scheme, a user can construct a
group by taking the public keys of all the members of the group and his own public key. In
general ring signature scheme are simplified form of group signature which consists of only
users and no managers. The drawback of Group signature is that, it can be applied, if there
is a cooperation among the users where as ring signature are useful if the cooperation exist
among the ring members.

In conventional public key infrastructure(PKI), the public key is constructed as a random
bit strings is independent of user’s identity. Therefore, it is required a trusted third party or
certificate authority (CA) to prove the relationship between the users and the cryptographic
keys. So the verifier obtains the copy of the certificate of the user to check the certificate
validity prior to the verification of signature. Whereas in ring signature scheme both the
verifier and the public keys are verified in the ring.

2 Previous Works

In 1991, Chaum and Van Heyst [3] proposed Group signature scheme, where a trusted group
manager broadcast a specific group of users and distributes the constructed keys to their mem-
bers. Each group have an individual members, they sign on behalf of their group using these
keys. It is not possible for the verifiers to distinguish the signatures generated by the group
members where as the group leader can. He can revoke the mischievous signers’s anonymity.
In 2001 Rivest et.al [4]formalize the group signature where the group contains only users and
no manager and proposed ring signature instead of group signature. The drawback in group
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signature is there should be proper synchronization among the group members where as in ring
signature scheme no need of any co-operation among the members. Security of this scheme re-
lies on Integer factorization problem. Each member is having public key of a signature scheme
like RSA or ECDSA. A novel construction of general group signatures and multiparty was
proposed by Chaum et al. [3] [26] where the scheme is inspired by zero knowledge proofs is not
so efficient in security. In group signature scheme, Cramer et al. [9] has described how to pro-
vides witness-indistinguishable interactive proof where the Fiat-Shamir technique is applied
and generated ring signature scheme.. For random self reducible language, the interactive
SZK satisfies closer property with respect to monotone Boolean operations which have been
shown by DeSantis et al. [8]. This is used to design ring signature scheme.Applying Identity
based cryptography, using identities of the users as public key, Zhan and Kim [6] introduced
the notion of ID-based ring signature scheme. Later on many identity based ring signature
scheme [11] [12] [13] [25] have been proposed by different authors. The drawback of these
schemes are the size of the ring signature linearly depended on group size. Therefore it is not
possible to construct on large groups. Some of the authors [16] [14] [15] have proposed ring
signature scheme of constant sizes where the size of the signature, but not same level of se-
curity of the scheme based on Integer factorization problem. In 2009 Liu et al. [2]introduced
online/offline signature scheme, where the security relies on Integer factorization problem.
This scheme is suited to implement on mobile devices but has not been defined how to design
a constant size of online/offline signature. In random oracle model an efficient online/offline
signature scheme have been proposed in [24] [28] which are suited to implement on WSNs
and low processor devices.

3 Preliminaries

3.1 Bilinear Pairings

A mapping is defined between two groups known as bilinear pairing. The two form of bilinear
pairings are Weil and Tate pairings on elliptic curve. Let (G1; +) be a cyclic additive groups
of prime order q with generator P . Similarly (G2; .) be a multiplicative cyclic group of same
order q.

e : G1 ×G1 → G2 is a computable and non-degenerated bilinear map.

which satisfies the following properties:

• Bilinear:

1. e(aP, bQ) = e(P,Q)ab, where P,Q are the group elements belongs to G1 and
a, b ∈ Z∗

q .

2. e(P +Q,R) = e(P,R)e(Q,R), for any group elements P,Q,R belongs to G1.

• Non-degenerate: ∃ P,Q ∈ G1 such that, there is no such pairs (P,Q) ∈ G2 for which
e(P,Q) ̸= 1.

• Computability: ∃ an algorithm which can o compute e(P,Q) efficiently for all P,Q ∈
G1.

3.2 Mathematical Assumptions

Definition 1. Decision Diffie-Hellman Problem (DDHP): Let P be a generator of group
G1. For the elements P, aP, bP, cP decide whether c ≡ ab mod q, where a, b, c ∈ Z∗

q .

Definition 2. Computational Diffie-Hellman Problem (CDHP): Given the elements
P, aP, bP compute abP , for a, b ∈ Z∗

q .

4 Security Discussions

To present the security prove of the proposed scheme, Consider collusion attack with k-traitors
denoted by k-CAA. It is defined as
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Definition 3. k-Collusion Attack Algorithm Assumption(k-CAA) Let k be an integer
and x ∈ Z∗

q , P ∈ G, given h1, h2 . . . hk ∈ Z∗
q ,

1
h1+xP,

1
h2+xP . . . 1

hk+xP to compute 1
h+xP for

some h /∈ {h1, h2 . . . hk}.
We say that the (t, ϵ), k-CAA assumption holds in G, if no t-time algorithm has advantage at
least ϵ in solving the k-CAA problem in G.

k-CAA is said to be (t, ϵ)-hard ⇐⇒

Pr[A(P, xP, h1, h2 . . . hk,
1

h1+xP,
1

h2+xP . . . 1
hk+xP |x ∈ Z∗

q , P ∈ G, h1, h2 . . . hk ∈ Z∗
q)] ≤ ϵ

Definition 4. Modified k-CAA Assumption (Mk-CAA The k-CAA problem in G is de-
fined as follow: for some x, a, b, h1, h2 . . . hk ∈ Z∗

p and P ∈ G, given P, xP, aP, bP, xbP and k-

pairs (h1,
1

h1+x (abP )), (h2,
1

h2+xP (abP )) . . . (hk,
1

hk+x (abP )) output a new pair (h∗, 1
(h∗+x)abP )

for some h∗ /∈ {h1, h2 . . . hk}. We say that the (t, ϵ), k-CAA assumption holds in G, if no
t-time algorithm has advantage at least ϵ in solving the k-CAA problem in G.

k-CAA is said to be (t, ϵ)-hard ⇐⇒

Pr[A(P, xP, ap, bP, xbP, h1, h2 . . . hk,
1

(h1+x)abP,
1

(h2+x)abP . . . 1
(hk+x)abP |x ∈ Zn, P ∈

G1, h1, h2 . . . hk ∈ Zn)] ≤ ϵ

Definition 5. Weak Modified k-CAA Assumption (WMk-CAA) The k-CAA problem
in G is defined as follow: for some x, h1, h2 . . . hk ∈ Z∗

p and P ∈ G, given P, xP, aP, bP

and k-pairs (h1,
1

h1+xP ), (h2,
1

h2+xP ) . . . (hk,
1

hk+xP )) output a new pair (h∗, 1
h∗+xP ) for some

h∗ /∈ {h1, h2 . . . hk}. We say that the (t, ϵ), k-CAA assumption holds in G, if no t-time
algorithm has advantage at least ϵ in solving the k-CAA problem in G.

k-CAA is said to be (t, ϵ)-hard ⇐⇒

Pr[A(P, xP, aP, bP, h1, h2 . . . hk,
1

(h1+x)P,
1

(h2+x) . . .
1

(hk+x)P |x ∈ Zn, P ∈ G1, h1, h2 . . . hk ∈
Zn)] ≤ ϵ

5 Ring Signature Scheme

Here we describe the framework of the ring signature scheme proposed by Rivest et al. [1].
Let there are n possible signers belongs to a ring. The ring member who obtains the actual
signature is referred as signer and other remaining members are non-signer. The possible
signer’s public key is Pi is accessed through PKI directory or certificate. The corresponding
secret key is si. The ring signature comprises the following two probabilistic polynomial time
solvable algorithms.

• ring-sign σ ← RingSign(m,P1, P2 . . . Pn, d, sn). It takes the public keys P1, P2 . . . Pn

of the n ring members, sn secret key of nth member i.e actual signer returns a ring
signature σ for message m.

• ring-verify (‘‘true’’, ‘‘false’’) ← RingVerify(σ,m, P1, P2 . . . Pn). It takes the
signature σ, message m and the possible public keys P1, P2 . . . Pn and returns either
true or false.

6 Online/Off-line Ring Signature Scheme

Ring signature scheme allows member of group of users to sign a message on behalf of the
group belonging to the ring, without revealing the actual signer’s identities. This property
is known as signer anonymity. So it allows the group of users to prove the verifier that the
generator of the signature belongs to the group without disclosing identity of the generator.
Also it is not possible to distinguish any two arbitrary signatures that have been generated
by the same group member. Signer’s anonymity is being protected because of the signatures
have been issued by a member of a ring which is known to the verifier only but doesn’t know
exactly who has signed on the message.

In Online/Off-line Signature scheme, the signing process is performed in two phases namely
online and off-line. All heavy computations are performed in off-line phase whereas in online
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phase comparatively light computations are performed. But the online phase is more efficient
than the off-line. Total computational cost and time is very less as compare to the traditional
ring signature scheme [29] [30].

6.1 Framework of ID-based Online/Off-line Ring Signature Scheme

It comprises five algorithms solvable in probabilistic polynomial time(PPT):

• Setup: (param,msk) ← Set(1k). Let k ∈ N be a security parameter. The algorithm
take k as input and returns publicly known global parameters param and master secret
key msk.

• Extract: dID ← Ext(1k, param,msk, ID). For any user with identity ID, the algo-
rithm takes k the security parameter, param the global parameter a and msk master
secret key and returns dID as the secret key of the user.

• Off-lineSign: σoff ← Sgnoff (1
k, param, ID,msk, dID) Let a group of n user par-

ticipate in ring signing with identities {ID1, ID2 . . . IDn} ∈ {0, 1}∗. It is a proba-
bilistic algorithm takes a security parameter k, global parameters param and identities
{ID1, ID2 . . . IDn} as input to generate an off-line signature σoff . Optionally, it may
also take the actual each signer secret key dk and public key QIDk

.

• OnlineSign: σ ← Sgnon(1
k, param,m, σoff ,

∪n
i= 1{IDi}, dk). The algorithm takes a

security parameter k, the global parameters param, a message m, an off-line signature
σoff and the secret key dk of one member who acts as actual signer. It generates a
signature σ on message m.

• Verify: (“accept”, “Reject”) ← V er(1k, param, σ,
∪n

i= 1{IDi}) takes a security pa-
rameter k, the global parameters param, a signature σ, message m and n users identities∪n

i= 1{IDi}, ∀i = 1 . . . n returns“accept” if σ is valid else returns “reject”.

6.2 ID-based Online/Off-line Ring Signature Scheme for General Ac-
cess Structure

An ID-based online/off-line Ring signature scheme comprises the following five probabilistic
polynomial time (PPT) algorithms:

• Setup: (param,msk) ← Set(1k). Let k ∈ N be a security parameter. The algorithm
take k as input and returns publicly known global parameters param and master secret
key msk.

• Extract: dID ← Ext(1k, param,msk, ID). For any user with identity ID, the algo-
rithm takes k the security parameter, param the global parameter a and msk master
secret key and returns dID as the secret key of the user.

• Off-lineSign: σoff ← Sgnoff (1
k, param,

∪n
i= 1{Ui},

∪
{dIDkj

},
∪
{QIDkj

}) takes a se-
curity parameter k and the global parameters param to generate an off-line signature
σoff . It is a probabilistic algorithm taking n groups of user’s identities

∪n
i= 1{Ui},

Ui =
∪n

i= 1{IDij} as input, where n is the maximum number of groups of users to be
included in the ring signature and . Optionally, it may also take the actual each signer
secret key

∪
{dIDkj

} and public key
∪
{QIDkj

} in one of the group Uk, where 1 ≤ k ≤ n
as input; it returns an off-line signature σoff .

• OnlineSign: σon ← Sgnon(1
k, param,m, σoff ,Ui), Where Ui =

∪n
i= 1{IDij}, ∀i =

1 . . . n takes a security parameter k, the global parameters param, a message m, an
off-line signature σoff , n groups of users identities {Ui}, Ui =

∪n
i= 1{IDij}, ∀i = 1 . . . n

generates a signature σ.

• Verify: (“accept”, “Reject”) ← V er(1k, param, σ) .This is the verification algorithm
which takes the input k, param,σ, m and user’s identities {Ui}, Ui =

∪n
i= 1{IDij},∀i =

1 . . . n of the group and returns“accept” if σ is valid else returns “reject”.
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7 Security Notions

The two most important security goals of ring signature scheme are Signer Ambiguity and
Existential Unforgeability. These can be define as

Definition 6. (Signer Ambiguity) An identity-based ring signature scheme for n groups of
users with identities L = {ID1, ID2 . . . IDn} is said to have the unconditional signer ambigu-
ity if for any IDi, 1 ≤ i ≤ n, message m and signature σ ← Sgnon(1

k, param,m, σoff ,
∪n

i= 1{IDi}, dk),
where dk is the secret key of the actual sigher, any unbound adversary A takes L,m and σ as
input returns the actual signer indexed by k with probability less than 1

n .

Definition 7. (Existential Unforgeability)An identity-based ring signature scheme is said
to be secure against existential unforgebility under adaptive chosen-message attacks (EUF-IDRS-CMA2),
if there does not exist any adversary with non-negligible advantage in EUF-IDRS-CMA2-game.

EUF-IDRS-CMA2-game:
The game is played between a challenge C and adversary A. Formally it is defined as

• Setup: The challenger C runs the algorithm Setup that takes the security parameter
k ∈ N, generates public system parameters params and master secret key s. Sends public
system parameter params to A. the system parameters and sends to the adversary A.
The adversary A performs polynomially bounded number of queries in adaptive manner
i.e each query may depend on the answer of the previous query:

• Attack:

1. Key Extraction Oracle: when A requests the private key of the actual signer
on an identity ID, C executes the algorithm Extract and obtains the secret key.
Formally Ext(1k, param,msk, ID)← dID. Then sends to the adversary A.

2. Off-line Signing Oracle: A chooses n users identities
∪n

i= 1{IDi}, ∀i = 1 . . . n
requests the off-line signature, C executes the algorithm Off-Sign and obtains the
offline signature σoff . Then Sends to A.

3. Online Signing Oracle: A submits signing oracle qs number of times in adaptive
manner as : On any message m and n users identities

∪n
i= 1{IDi}, ∀i = 1 . . . n, C

runs the algorithm On-Sign and obtains the online signature σon. Then sends to
A.

• Forgery:
After executing the queries polynomial number of times, A obtains the signature σ∗ and
the identities

∪n
i= 1{ID∗

i } of the n users such that

1. (
∪n

i= 1{ID∗
i },m∗) has not been asked as one of the off-line signing queries and

online signing queries.

2. Key Extraction queries never returns each of the secret keys in (
∪n

i= 1{dID∗
i
}.

3. Verify(σ, (
∪n

i= 1{ID∗
i }) = Accept.

A wins the above game with the probability

Pr[SussEUF−IDRS−CMA2
A (k)] ≤ 1

2 + ϵ.

8 Proposed Online/Off-line Ring Signature Scheme

8.1 Construction

• Setup : Given security parameters k, the KGC chooses groups G1 and G2 of prime
order q. A generator P of G1, a bilinear map ê : G1 × G1 → G2 and two collision
resistant hash function H0. Where H0 : {0, 1}∗ → G1, H : G1 × {0, 1, }∗ → F∗

q . A key

derivation function F : G2 → {0, 1}k. Where |k| is the length of the key strings. It
chooses a master-key s ∈ F∗

q and computes Ppub = sP . The KGC publishes the system
public parameters params = <G1,G2, e, q, p, Ppub,H0,H>.
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• KeyGen : The Signer submits her identity ID ∈ {0, 1}∗ to KGC. KGC computes the
Signer’s public key QID = H0(ID) ∈ G1 and private key dID = sQID. Then both the
keys are to be send through a secure channel to the signer.

• Ring Signing: Let U = {U1 . . .Un} be the group of participants in the signing process.
Let the actual signer is Uk. Her public and private keys are QIDk

and dk respectively.
The signer computes the following to generate the ring signature on behalf of the group
U . The computation is carried out in the following two phases:

1. Off-line: At the Off-line phase the signer chooses ri ∈ Z∗
q randomly and computes

Vi = ri · Ppub. ∀i = 1, 2 . . . n.

2. Online: At this phase, the signer chooses ti ∈ Z∗
q ∀i ̸= k randomly and computes

the online signature on message m as

σk = P
s(QIDk

H(m)+rk)
− 1

s(QIDk
H(m)+rk)

∑
i ̸=k ti(PpubQIDk

H(m) + Vi), σi = tiP

∀i ∈ {1, 2 . . . n} \ {k}

The final signature σ = {
∪

i ̸=k{σi}, σk,
∪n

i= 1{Vi}}.

• Verify: The signature σ = {
∪

i ̸=k{σi}, σk,
∪n

i= 1{Vi}} on message m is accepted ⇐⇒∏n
i= 1 e(PpubQIDiH(m) + Vi, σi) = e(P, P )

8.2 Robustness

Definition 8. A multi-party signature scheme is said to be robustness if the misbehavior of
any participating signer can be detected, and the final signature will be invalid on proof of
correctness of the verification equation even if there exit only one misbehaving signer.

The following proof of correctness shows that the proposed scheme satisfies robustness
property.

8.2.1 Proof of Correctness∏n
i= 1 e(PpubQIDiH(m) + Vi, σi)

=
∏n

i ̸=k e(PpubQIDiH(m) + Vi, σi)e(ti(PpubQIDk
H(m) + Vk), σk)

= e(ti(
∑n

i ̸=k tiPpubQIDiH(m) + Vi), P )e(PpubQIDk
H(m) + Vk, σk)

= e(ti(
∑n

i ̸=k PpubQIDiH(m) + Vi), P ) ·
e(PpubQIDk

H(m) + Vk,
P

s(QIDk
H(m)+rk)

− 1
s(QIDk

H(m)+rk)

∑
i ̸=k(ti(PpubQIDk

H(m) + Vi)

= e(ti(
∑n

i ̸=k PpubQIDi
H(m) + Vi), P ) ·

e(PpubQIDk
H(m) + Vk,

1
s(QIDk

H(m)+rk)
{P −

∑
i ̸=k ti(PpubQIDk

H(m) + Vi)}
= e(ti(

∑n
i ̸=k PpubQIDiH(m) + Vi), P ) ·

e(Ppub(QIDk
H(m) + rk),

1
s(QIDk

H(m)+rk)
{P −

∑
i ̸=k ti(PpubQIDk

H(m) + Vi)}
= e(ti(

∑n
i ̸=k PpubQIDiH(m) + Vi), P ) ·

e(sP (QIDk
H(m) + rk),

1
s(QIDk

H(m)+rk)
{P −

∑
i̸=k ti(PpubQIDk

H(m) + Vi)}
= e(ti(

∑n
i ̸=k PpubQIDi

H(m) + Vi), P ) ·
e(P, {P −

∑
i ̸=k ti(PpubQIDk

H(m) + Vi)} = e(P, P )

9 Security Analysis

Theorem 1. The proposed scheme has unconditional signer ambiguity.

Proof. Let the ring signature be σ = {σ1, σ2 . . . σn} of the set of n participant users generated
by the private key dk of the actual signer. All ti are chosen randomly from Z∗

q and computed
σi = tiP on message m for all i = 1, 2 . . . n except i ̸= k. the group of signature {σ1, σ2 . . . σn}
has |G1|n−1 possible values for which can be chosen by signature generation procedure with
equal possibility except the actual signer. These ti,H and sk are used to compute σk. Vi is
computed in the off-line phase by ri for all i = 1, 2 . . . n.

6



Note the distribution {σ1, σ2 . . . σn} are identical to the distribution {t1P, t2P . . . tnP :∑n
i= 1 tiP = C1} and {r1Ppub, r2Ppub . . . rnPpub :

∑n
i= 1 riPpub = C2}. Where C1 and C2

are elements of G1 by closure property. These depend on n and m. Hence for any unbounded
adversary Adv, any set of users and random k, the probability Pr[Adv(σ) = k] ≤ 1

n .

Definition 9. In random oracle model, a forger F is said to be (t, qh0 , qh, qe, qs, ϵ)-break, the
online/off-line signature scheme under adaptive chosen message attack, if after submitting at
most qh0 and qh hash queries, qe key extraction query, qs online/off-line signing queries in
additive manner with t-processing time, it obtains a valid forge signature with probability at
least ϵ.
(t, qh0 , qh, qe, qs, ϵ)-secure, if there does not exist any forger who (t, qh0 , qh, qe, qs, ϵ)-breaks the
scheme.

Theorem 2. In random oracle model, if ∃ a (t, qh0 , qh, qe, qs, ϵ)-forger can obtains a valid
forge online/off-line signature for n members, then ∃ (t∗, ϵ∗)-algorithm can solve CDH and
qs-CAA problems where

ϵ∗ ≥ ( 1
qs+1 )ϵ, t

∗ ≤ (nqs + 3n+ 1)tsmul + 2(n− 1)tadd + (n− 1)tmul + (n− 1)tinv

Proof. To prove, we consider the security model of Rivest et al. [1] defined in section-5 and
follow similar proof of Zhang et al. [7]. Let there are n ring members denoted by the set X
are associated with public keys {P1, P2 . . . Pn} are given to the adversary A and simulates the
ring signing and hashing oracles. The target of A is to obtain a valid forge online/off-line ring
signature in X with condition that prior to this, m has not been submitted to the oracle of
online/off-line ring signing.

Let us assume that, ∃ a (t, qh0 , qh, qe, qs, ϵ)-forger F algorithm can obtain a valid forge
online/off-line signature of a set of ring members of size n. Let F construct a probabilistic
polynomial time algorithm B and run as subroutine to solve CDH and qs-CAA problems.

• qs-CAA : Let B is given a challenges as :
Given P ∈ G1, Q = xP, h1, h2 . . . hqs ∈ Z∗

q and 1
h1+xP + 1

h2+xP . . . 1
hqs+xP .

Compute 1
h+xP for some h /∈ {h1, h2 . . . hqs}

• CDHP: Let B is given a challenges as :
Given P,Q = aP,R = bP ∈ G1, a, b ∈ Z∗

q

Compute abP .

Algorithm B performs the following simulation by interacting with the forger F . Let C is given
the random instances <a, aP, bP> of CDHP and compute abP . C runs B as subroutine and
behaves as A’s challenger in EUF-IDRS-CMA2-game. While the game played between A and
C, A asks to C for answer to the H0 and H random oracles. In fact the answers are obtained
randomly and are stored in a list to preserve consistency and avoid collision. So C constructs
two lists as L0 and L1 for both the random oracles H0 and H respectively.
C provides A the system parameters with Ppub = aP . At any time A can submit the

queries on random oracle oracles H0, H, key extraction and online and off-line signing in
adaptive manner. To answer these queries, A performs the following oracles:

• Queries on Oracle H0 : In this request, we consider part of challenge aP in the
answer to the series of queries on H0. When an identity ID is submitted to oracle H0,
A toss a coin T ∈ {0, 1} returns 0 and 1 with probability µ and µ−1. A picks randomly
λi ∈ Z∗

q and continue the process until λi does not belongs to L0 list. It has with the
following two choices :

1. If T = 0, then H0(ID) = λiP .

2. If T = 1, then H0(ID) = λi(aP ).

C includes the tuples <ID, λi, T> in L0 in both the above cases.

• Queries on key extraction: Let ∃ a (t, qh0 , qh, qe, qs, ϵ)-forger F can obtains a valid
forge online/off-line signature of the ring members of size n. Let F constructs an algo-
rithm A to solve qs-CAA problem, i.e

Private key depends upon the identity ID. So when A requests the private key, A takes
the corresponding tuple <ID, λi, T> from the list L0 and checks T = 0 or 1. If T = 1,
A returns “failure” and halts it. Else A searches for other tuples .
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– For T = 0, if the tuples <ID, λi, T> is in L0 , then computes the private key as
dID = λi(bP ) and the computation is known to C.

– For T = 1, C does not know both the value a and b. This results “failure” for
this identity.

• Queries on Oracle H: InH-query, A runs at most q∫ queries as {h1, h2 . . . hqs} obtains
qh answers {u1, u2 . . . uqh} on mi, 1 ≤ i ≤ qh. When A asks these queries, C searches
the entry in L1 list. If it is found, the answer is return to A, else the answer is taken as
a random value and given to A. Also F is given the public keys X = {P1, P2 . . . Pn} of
the n ring members.

• Online/Off-line Signing Query: A acts as a actual signer and chooses α1 = 1, α2, . . . αn

randomly from Z∗
q . A initializes :

Setup

P1 = d1Q
P2 = α2Q+ h(α2 − d2)P
...
Pn = αnQ+ h(αn − dn)P
Assume that, there are n number of ring members with identities {ID1, ID2 . . . IDn}
have private keys {d1, d2 . . . dn} respectively. Where di = sQIDi , QIDi = H0(IDi). The
online/off-line signing oracle query for ui are prepared by F . A obtains the signatures
as

Σi = {σi1, σi2, . . . σin}

and given to F , where
σi1 = (1− α) · 1

hj+xP

σi2 = (α2 − d2)
−1 · 1

hj+xP

σi3 = (α3 − d3)
−1 · 1

hj+xP

...
σik = (−1)k(αk − dk)

−1 · 1
hj+xP

...
σin = (αn − dn)

−1 · 1
hj+xP

Verify

Now we need to verify that Σi should pass the following verification equation, else the
process halt and returns “failure” .

n∏
k=1

e(PpubQIDk
H(mi) + Pk, σik) = e(P, P ) (1)

∏n
k=1 e(PpubQIDk

H(mi) + Pk, σik)
=

∏n
k=1 e(hjdkP + Pk, σik)

= e(hjd1P + P1, σi1)
∏n

k=2 e(hjdkP + dkQ+ (αk − dk)(Q+ hP ), (αk − dk)
−1 1

hj+xP )

= e(hjd1P+d1Q, (1−α)· 1
hj+xP )

∏n
k=2 e(hjdkP+dkQ+(αk−dk)(Q+hP ), (αk − dk)

−1 1
hj+xP )

= e(hjd1P+xd1P, (1−α)· 1
hj+xP )

∏n
k=2 e(hjdkP+dkQ+(αk−dk)(Q+hP ), (αk − dk)

−1 1
hj+xP )

= e((hj+x)d1P, (1−α)· 1
hj+xP )

∏n
k=2 e(hjdkP+dkQ+(αk−dk)(Q+hP ), (αk − dk)

−1 1
hj+xP )

= e(P, P )
(1−α)d1

∏n
k=2 e((hj+x)dkP, (αk − dk)

−1 1
hj+xP )e((αk − dk)(Q+ hP ), (αk − dk)

−1 1
hj+xP )

= e(P, P )
(1−α)d1

∏n
k=2 e(P, P )

(−1)t(αk−dk)
−1dk = e(P, P )

Output

At the end of the simulation, F returns a message-signature pair (m,σ = {σ1, σ2 . . . σn})
of n ring members with public keys P1, P2 . . . Pn. Note that the hash value of m is some
uk such that, there is not submitted any signature query for m. A returns “failure”
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and halt for uk = h,else∏n
i=1 e(PpubQIDiH(m) + Pi, σi)

=
∏n

i=1 e(dihP + Pi, σi)
=

∏n
i=1 e(dihP + αiQ+ h(αi − di)P, σi)

=
∏n

i=1 e(dihP + αidQ+ hαiP − hdiP, σi)
=

∏n
i=1 e(αiQ+ αihP, σi)

= e(Q+ hP,
∑n

i=1 αiσi)
= e((h+ x)P,

∑n
i=1 αiσi) = e(P, P )

Hence we note that, A returns 1
h+xP =

∑n
i=1 αiσi.

The number of operations in Z∗
q and of the group elements G1 require for Setup and Output

in the above simulation for Online/offline Signing query is given by:
Setup

• Number of multiplication in Z∗
q is (n− 1).

• Number addition of group elements of G1 is (n− 1).

• Number of scalar multiplication of G1 is (2n+ 1).

• In signing query, the number of scalar multiplication of G1 is nqs.

• Number of inversion is (n− 1).

Output

• Number of scalar multiplication of G1 is n.

• Number addition of group elements of G1 is (n− 1).

Let the maximum time requires for scalar multiplication and inverse operation in Z∗
q are tmul

and tinv respectively. Scalar multiplication and addition of group elements of G1 are tsmul

and tadd respectively. Hence the running time t∗ of A is sum of running time of F and
(nqs + 3n+ 1)tsmul + 2(n− 1)tadd + (n− 1)tmul + (n− 1)tinv. i.e

t∗ ≤ (nqs + 3n+ 1)tsmul + 2(n− 1)tadd + (n− 1)tmul + (n− 1)tinv

Probability Analysis

B is successful if the following events holds

1. E1: A returns a valid forged signature (mf , σf );

2. E2 : During the simulation of oracles, the processes is being not aborted or halt.

3. E3: If T = 0 and the event E2 occurs i.e the conditional probability of E3 given the
event E1 and E2 occurs.

Probability of successes is

P [E1 ∩ E3] = P [E1]P [E2 | E1]P [E3 | E1 ∩ E2]

From the following claims, we can evaluate the lower bound of the probability.

Claim 1. The probability that B does abort or halt during the simulation of the oracle is at
least 1

ϵ1
, where ϵ1 is a small positive integer.

9



Proof. Let us assume without loss of generality, A does not submit signature query twice for
the same messages. By the method of induction, we prove that, the probability B does not

abort is at least (1− 1
qs−1 )

i
after submitting i number of signature queries.

Let i = 0, the claim is trivially true. i.e P [E1] ≥ 1
ϵ1
. For ith signature query, let the tuple

(mi, ID, λ, Ti) ∈ L0, the bit Ti does not depend on A’s views prior to the submission of
signature query. The value that could be submitted to A that depend on Ti is H(mi). But
the distribution on H(mi) is same whether Ti = 0 or Ti = 1. Hence the probability that the
query causes B is at most 1

qs+1 .
Therefore by method of induction hypothesis, the probability that B does not abort after
submitting i times is at least (1− 1

qs+1 ) + . . .+ (1− 1
qs+1 ), (i times) i.e

P [¬abort] = (1− 1
qs+1 )

i

Since A submits qs times, the probability that B does not abort is at least (1− 1
qs+1 )

qs . Hence

(1− 1
qs+1 )

qs ≥ 1
ϵ1

Claim 2. A generates a valid forged signature provided B does not abort during the time of
A’s signature query and the probability is at most ϵ2, where ϵ2 is a small positive integer.
Hence P [E2 | E1] ≥ ϵ2.

Proof.

Claim 3. The probability of even E3 occurs and T = 0 with B does not abort during the
simulation of signature oracle and A generates a valid forged signature (mf , σf ) is at least

1
qs+1 .

Proof. Event E1 and E2 occurs simultaneously. B does not abort and generates a valid forged
signature (mf , σf ) for which the tuple (mf , ID, λ, Ti) in L0 list has Ti = 1. When A returns
the output, at that time it knows the value of Ti for those mi for which it submits the signature
query. All the remaining Tis are not associated with A’s views. In fact, A did not submit a
signature query for mi, then the value of H(mi) for these Ti. But the distribution on H(mi)
is same for both Ti = 0 and Ti = 1. Since A could not have submitted a signature query for
mf , we know T depend on A’s correct views. Hence

P [T = 0 | E1 ∩ E2] =
1

qs+1

P [E1 ∩ E3] = P [E1]P [E2 | E1]P [E3 | E1 ∩ E2]

= (1− 1
qs+1 )ϵ1(

1
qs+1 ) ≥

ϵ1
ϵ2
( 1
qs+1 ) ≥ ϵ

Running time of B
B’s running time is the sum of the running time of H0-query, H1-query and qs-query.

10 Performance

In this section, we compare the computational cost for each signature generation and verifica-
tion of our scheme with the schemes proposed by the authors Zhang et al., Lin et al., Awasthi
et al. and Chow et al. in random oracle model. Let denote the following notation for the cost
of operations that are performed in these schemes.

• Mul(G1) : Scalar multiplications in G1

• Mul(G2) : Scalar multiplications in G2

• Add(G1) : Addition of group elements in G1

• Add(G2) : Addition of group elements in G2

• P : Bilinear pairings

• H : Hashing

10



Table 1: Comparison of Computational Cost

Scheme Generation Verification

P H Add(G1) Mul(G1) Mul(G2) P H Add(G1) Mul(G1) Mul(G2)

Zhang et al. [6] 2n− 1 n n n n− 1 2n n − n n

Lin et al. [10] 2n− 1 1 n 2n− 1 n 2 1 n− 1 n+ 1 n

Awasthi et al. [5] 2n− 1 n n+ 1 2n n− 1 2 n+ 1 n+ 1 n+ 1 1

Chow et al. [12] − − 2n− 2 n − 2 − 2n n −
Proposed Scheme 2n− 1 n n n n− 1 2n n − n −

11 Conclusion

In this paper, we have proposed a novel construction of identity based online/off-line signature
scheme in random oracle model. Security of the scheme is proven on the assumption of k-CAA
and computational Diffie-Hellman problem. Our scheme is more efficient in computational
cost and security. Since no heavy computations such as pairing are performed in the online
and offline stages. Hence overall computational is reduced in our scheme. This scheme is
suited to implement on low processor devices for many application such as whistle blowing,
authentication etc.
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