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Towards Optimal Bounds for Implicit Factorization
Problem

Yao Lu, Liqiang Peng, Rui Zhang and Dongdai Lin

Abstract—We propose a new algorithm to solve the Implicit
Factorization Problem, which was introduced by May and
Ritzenhofen at PKC’09. In 2011, Sarkar and Maitra (IEEE
TIT 57(6): 4002-4013, 2011) improved May and Ritzenhofen’s
results by making use of the technique for solving multivariate
approximate common divisors problem. In this paper, based on
the observation that the desired root of the equations that derived
by Sarkar and Maitra contains large prime factors, which are
already determined by some known integers, we develop new
techniques to acquire better bounds. We show that our attack is
the best among all known attacks, and give experimental results
to verify the correctness. Additionally, for the first time, we can
experimentally handle the implicit factorization for the case of
balanced RSA moduli.

Index Terms—lattices, Implicit Factorization Problem, Cop-
persmith’s method, LLL algorithm, Small root

I. INTRODUCTION

THe RSA cryptosystem is the most widely used public-key
cryptosystem in practice, and its security relies on the

difficulty of Integer Factorization Problem. It is conjectured
that factoring cannot be solved in polynomial-time without
quantum computers.

In Eurocrypt’85, Rivest and Shamir [18] first studied the
factoring with known bits problem. They showed that N = pq
(p, q is of the same bit size) can be factored given 2

3 -fraction
of the bits of p. In 1996, Coppersmith [2] improved [18]’s
bound to 1

2 . Note that for the above results, the unknown bits
are within one consecutive block. The case of n blocks was
later considered in [7], [13].

Motivated by the cold boot attack [4], in Crypto’09,
Heninger and Shacham [6] considered the case of known bits
are uniformly spread over the factors p and q, they presented
a polynomial-time attack that works when ever a 0.57-fraction
of the bits of p and q is given. As a follow-up work, Henecka
et al. [5] focused on the attack scenario that allowed for
error correction of secret factors, which called Noisy Factoring
Problem. Recently, Kunihiro et al. [10] discussed secret key
recovery from noisy secret key sequences with both errors and
erasures.

A. Implicit Factorization Problem (IFP)

The above works require the knowledge of explicitly bits of
secret factor. In PKC’09, May and Ritzenhofen [16] introduced
a new factoring problem with implicit information, called
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Implicit Factorization Problem (IFP). Consider that N1 =
p1q1, . . . , Nk = pkqk be n-bit RSA moduli, where q1, . . . , qk
are αn(α ∈ (0, 1))-bit primes: Given the implicit information
that p1, . . . , pk share certain portions of bit pattern, under what
condition is it possible to factorize N1, . . . , Nk efficiently?
This problem can be applied in the area of malicious genera-
tion of RSA moduli, i.e. the construction of backdoored RSA
moduli. Besides, it also helps to understand the complexity of
the underlying factorization problem better.

Since then, there have been many cryptanalysis results for
this problem [16], [3], [20], [12], [17], [19]. Recently, Sarkar
and Maitra [20] developed a new approach, they used the
idea of [9], which is for the approximate common divisor
problem (ACDP), to solve the IFP, and managed to improve
the previous bounds significantly.

We now give a brief review of their method. Suppose that
primes p1, . . . , pk share certain amount of most significant bits
(MSBs). First, they notice that

gcd(N1, N2 + (p1 − p2)q2, . . . , Nk + (p1 − pk)qk) = p1

Then they try to solve the simultaneous modular univariate
linear equations 

N2 + u2 = 0 mod p1
...

Nk + uk = 0 mod p1

(1)

for some unknown divisor p1 of known modulus N1. Note that
if the root (u

(0)
2 , . . . , u

(0)
k ) = ((p1 − p2)q2, . . . , (p1 − pk)qk)

is small enough, we can extract them efficiently. In [20],
Sarkar and Maitra proposed an algorithm to find the small
root of equations (1). Recently, Lu et al. [12] performed a
more effective analysis by making use of Cohn and Heninger’s
algorithm [1].

B. Our Contributions
In this paper, we present a new algorithm to obtain better

bounds for solving the IFP. As far as we are aware, our attack
is the best among all known attacks.

Technically, our algorithm is also to find small root of
Equations (1). Concretely, our improvement is based on the
observation that for 2 ≤ i ≤ k, u(0)i contains a large prime qi,
which already determined by Ni.

Therefore, we separate ui into two unknown variables xi
and yi i.e. ui = xiyi. Consider the following equations

N2 + x2y2 = 0 mod p1
...

Nk + xkyk = 0 mod p1
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TABLE I
COMPARISON OF OUR GENERALIZE BOUNDS AGAINST PREVIOUS BOUNDS

[16] [3] [20] [12] [17] this paper
βn-bit LSBs case (β >
·)

k
k−1

α - F (α, k) H(α, k) G(α, k) T (α, k)

γn-bit MSBs case (γ >
·) - k

k−1
α+ 6

n
F (α, k) H(α, k) G(α, k) T (α, k)

γn-bit MSBs and βn-bit
LSBs together case (γ+
β > ·)

- - F (α, k) H(α, k) G(α, k) T (α, k)

δn-bit in the Middle
case (δ > ·) - 2k

k−1
α+ 7

n
- - - -

1 F (α, k) =
αk2−(2α+1)k+1+

√
k2+2α2k−α2k2−2k+1

k2−3k+2

2 H(α, k) = 1− (1− α)
k

k−1

3 G(α, k) = k
k−1

(
α− 1 + (1− α)

k+1
k + (k + 1)(1− (1− α)

1
k )(1− α)

)
4 T (α, k) = k(1− α)

(
1− (1− α)

1
k−1

)
5 The symbol “-” means that this corresponding case has not been considered.

Fig. 1. Comparison with previous bounds on γ with respect to α: k = 2.
MR Attack denotes May and Ritzenhofen’s attack [16], SS Attack denotes
Sarkar and Maitra’s attack [20], PHXHX Attack denotes Peng et al.’s attack
[17].

with the root (x
(0)
2 , . . . , x

(0)
k , y

(0)
2 , . . . , y

(0)
k ) =

(q2, . . . , qk, p1 − p2, . . . , p1 − pk). Then we introduce
k − 1 new variables zi for the prime factor pi (2 ≤ i ≤ k),
and use the equation xizi = Ni to decrease the determinate
of the desired lattice. That is the key reason why get better
results than [20].

In Fig 1, we give the comparison with previous bounds for
the case k = 2. In Table I-B, we list the comparisons between
our generalized bounds and the previous bounds.

Recently in [17], Peng et al. proposed another method for
the IFP. Instead of applying Coppersmith’s technique directly
to the ACDP, Peng et al. utilized the lattice proposed by May
and Ritzenhofen [16], and tried to find the coordinate of the
desired vector which is not included in the reduced basis,
namely they introduced a method to deal with the case when
the number of shared bits is not large enough to satisfy the
bound in [16].

In this paper, we also investigate Peng et al.’s method.
Surprisingly, we get the same result with a different method.
In Sec V, we give the experimental data for our two methods.

We organize the rest of the paper as follows. In Section II,
we review the necessary background for our approaches. In
Section III, based on new observations, we present our new
analysis on the IFP. In Section IV, we revisit Peng et al.’s
method [17]. Finally, in Sec V, we give the experimental data
for the comparison with previous methods.

II. PRELIMINARIES

A. Notations

Consider that N1 = p1q1, . . . , Nk = pkqk be n-bit RSA
moduli, where q1, . . . , qk are αn(α ∈ (0, 1))-bit primes. Three
cases were considered in this paper, we list them below:
• p1, . . . , pk share βn LSBs where β ∈ (0, 1);
• p1, . . . , pk share γn MSBs where γ ∈ (0, 1);
• p1, . . . , pk share γn MSBs and βn LSBs together where
γ ∈ (0, 1) and β ∈ (0, 1);

For simplicity, here we consider αn, βn and γn as integers.

B. Lattice

Consider a set of linearly independent vectors u1, . . . , uw ∈
Zn, with w 6 n. The lattice L, spanned by {u1, . . . , uw},
is the set of all integer linear combinations of the vectors
u1, . . . , uw. The number of vectors is the dimension of the
lattice. The set u1, . . . , uw is called a basis of L. In lattices
with arbitrary dimension, finding the shortest vector is a very
hard problem, however, approximations of a shortest vector
can be obtained in polynomial-time by applying the well-
known LLL basis reduction algorithm [11].

Lemma 1 (LLL [11]). Let L be a lattice of dimension w.
In polynomial-time, the LLL algorithm outputs reduced basis
vector vi, 1 6 i 6 w that satisfy

‖ v1 ‖6‖ v2 ‖6 · · · 6‖ vi ‖6 2
w(w−1)

4(w+1−i) det(L)
1

w+1−i

We also state a useful lemma from Howgrave-Graham [8].
Let g(x1, . . . , xk) =

∑
i1,...,ik

ai1,...,ikx
i1
1 · · ·x

ik
k . We define

the norm of g by the Euclidean norm of its coefficient vector:
||g||2 =

∑
i1,...,ik

a2i1,...,ik .
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Lemma 2 (Howgrave-Graham [8]). Let g(x1, . . . , xk) ∈
Z[x1, . . . , xk] be an integer polynomial that consists of at most
w monomials. Suppose that

1) g(y1, . . . , yk) = 0 mod pm for | y1 |6 X1, . . . , | yk |6
Xk and

2) ‖ g(x1X1, . . . , xkXk) ‖< pm√
w

Then g(y1, · · · , yk) = 0 holds over the integers.

The approach we used in the rest of the paper relies
on the following heuristic assumption [15][7] for computing
multivariate polynomials.

Assumption 1. The lattice-based construction in this work
yields algebraically independent polynomials, this common
roots of these polynomials can be computed using techniques
like calculation of the resultants or finding a Gröbner basis.

III. OUR NEW ANALYSIS FOR IMPLICIT FACTORIZATION

As described in the previous section, we will use the fact the
desired root of target equations contains large prime factors qi
(2 ≤ i ≤ k) which are already determined by Ni to improve
Sarkar’s results.

A. Analysis for Two RSA Moduli: the MSBs Case

Theorem 1. Let N1 = p1q1, N2 = p2q2 be two different n-bit
RSA moduli with αn-bit q1, q2 where α ∈ (0, 1). Suppose
that p1, p2 share γn MSBs where γ ∈ (0, 1). Then under
Assumption 1, N1 and N2 can be factored in polynomial-time
if

γ > 2α(1− α)

Proof: Let p̃2 = p1 − p2. We have N1 = p1q1, N2 =
p2q2 = p1q2 − p̃2q2, and gcd(N1, N2 + p̃2q2) = p1. Then we
want to recover q2, p̃2 from N1, N2. We focus on a bivariate
polynomial f(x, y) = N2 + xy with the root (x(0), y(0)) =
(q2, p̃2) modulo p1. Let X = Nα, Y = N1−α−γ , Z = N1−α

be the upper bounds of q2, p̃2, p2. Following we will use the
fact that the small root q2 is already determined by N2 to
improve Sarkar’s results.

First let us introduce a new variable z for p2. We multiply
the polynomial f(x, y) by a power zs for some s that has to
be optimized. Additionally, we can replace every occurence of
the monomial xz by N2. Define two integers m and t, let us
look at the following collection of trivariate polynomials that
all have the root (x0, y0) modulo pt1.

gk(x, y, z) = zsfkN
max{t−k,0}
1 for k = 0, . . . ,m

For gk(x, y, z), we replace every occurrence of the monomial
xz by N2 because N2 = p2q2. Therefore, every monomial
xkykzs(k ≥ s) with coefficient ak is transformed into a
monomial xk−syk with coefficient akNs

2 . And every mono-
mial xkykzs(k < s) with coefficient ak is transformed into a
monomial ykzs−k with coefficient akNk

2 .
To keep the lattice determinant as small as possible, we try

to eliminate the factor of N i
2 in the coefficient of diagonal

entry. Since gcd(N1, N2) = 1, we only need multiplying the
corresponding polynomial with the inverse of N i

2 modulo N t
1.

Compare to Sarkar’s lattice, the coefficient vectors
gk(xX, yY, zZ) of our lattice contain less powers of X , which
decreases the determinant of the lattice spanned by these vec-
tors, however, on the other hand, the coefficient vectors contain
powers of Z, which in turn increases the determinant. Hence,
there is a trade-off and one has to optimize the parameter s
subject to a minimization of the lattice determinant. That is the
key reason why we can get better result than Sarkar’s results.

We have to find two short vectors in lattice L. Suppose that
these two vectors are the coefficient vectors of two trivariate
polynomial f1(xX, yY, zZ) and f2(xX, yY, zZ). There two
polynomials have the root (q2, p̃2) over the integers. Then we
can eliminate the variable z from these polynomials by setting
z = N2

x . Finally, we can extract the desired root (q2, p̃2) from
the new two polynomials if these polynomials are algebraically
independent. Therefore, our attack relies on Assumption 1.

We are able to confirm Assumption 1 by various experi-
ments later. This shows that our attack works very well in
practice.

Now we give the details of the condition which we can find
two sufficiently short vectors in the lattice L. The determinate
of the lattice L is

det(L) = N
t(t+1)

2
1 X

(m−s)(m−s+1)
2 Y

m(m+1)
2 Z

s(s+1)
2

The dimension of the lattice is w = m+ 1.
To get two polynomials which sharing the root q2, p̃2, p2,

we get the condition

2
w(w−1)

4w det(L) 1
w <

pt1√
w

Substituting the values of the det(L) and neglecting low-order
term, we obtain the new condition

t2

2
+α

(m− s)2

2
+ (1−α− γ)m

2

2
+ (1−α)s

2

2
< (1−α)tm

Let t = τm, s = σm, the optimized values of parameters τ
and σ were given by

τ = 1− α σ = α

Plugging in this values, we finally end up with the condition

γ > 2α(1− α)

One can refer to Fig. 1 for the comparison with previous
theoretical results.

B. Extension to k RSA Moduli

In this section, we give an analysis for k (k > 2) RSA
moduli.

Theorem 2. Let N1 = p1q1, . . . , Nk = pkqk be k different
n-bit RSA moduli with αn-bit q1, . . . , qk where α ∈ (0, 1).
Suppose that p1, . . . , pk share γn MSBs where γ ∈ (0, 1).
Then under Assumption 1, N1, . . . , Nk can be factored in
polynomial-time if

γ > k(1− α)
(
1− (1− α)

1
k−1

)
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Proof: Let p̃i = p1 − pi. We have N1 = p1q1 and Ni =
piqi = p1qi − p̃iqi (2 ≤ i ≤ k). We have gcd(N1, N2 +
p̃2q2, . . . , Nk + p̃kqk) = p1. Then we want to recover qi, p̃i
(2 ≤ i ≤ k) from N1, . . . , Nk. We construct a system of k−1
polynomials 

f2(x2, y2) = N2 + x2y2
...

fk(xk, yk) = Nk + xkyk

with the root (x(0)2 , y
(0)
2 , . . . , x

(0)
k , y

(0)
k ) = (q2, p̃2, . . . , qk, p̃k)

modulo p1. Using the similar technique of Theorem 1, and
introducing k − 1 new variable zi for pi (2 ≤ i ≤ k), we
define the following collection of trivariate polynomials.

gi2,...,ik(x2, . . . , xk, y2, . . . , yk, z2, . . . , zk)

= (z2 · · · zk)sf i22 · · · f
ik
k N

max{t−i2−···−ik,0}
1

with 0 ≤ i2 + · · · + ik ≤ m (Because of the asymmetric
nature of the unknown variables x2, . . . , xk, we use the same
parameter s).

For gi2,...,ik , we replace every occurrence of the monomial
xizi by Ni. We can eliminate the factor of N j2

2 · · ·N
jk
k in the

coefficient of diagonal entry. The determinate of the lattice L
is

det(L) = NsN
1

k∏
i=2

X
sXi
i Y

sYi
i Z

sZi
i

where

sN =

t∑
j=0

j

(
t− j + k − 2

k − 2

)
=

(
t+ k − 1

k − 1

)
t

k

sX2
= · · · = sXk

=

m−s∑
j=0

j

(
m− s− j + k − 2

k − 2

)
=

(
m− s+ k − 1

k − 1

)
m− s
k

sY2 = · · · = sYk
=

m∑
j=0

j

(
m− j + k − 2

k − 2

)
=

(
m+ k − 1

k − 1

)
m

k

sZ2 = · · · = sZk
=

s∑
j=0

j

(
m− s+ j + k − 2

k − 2

)
=

(
m+ k − 1

k

)
ks−m
m

+

(
m− s− 1 + k − 1

k

)
k +m− s− 1

m− s− 1

Here Xi = Nα, Yi = N1−α−γ , Zi = N1−α are the upper
bounds of qi, p̃i, pi. The dimension of the lattice is

w = dim(L) =
m∑
j=0

(
j + k − 2

j

)
=

(
m+ k − 1

m

)

To get 2k − 2 polynomials which sharing the root q2, p̃2, p2,
we get the condition

2
w(w−1)

4(w+4−2k) det(L)
1

w+4−2k <
pt1√
w

Substituting the values of the det(L) and neglecting low-order
term, we obtain the new condition(

t+ k − 1

k − 1

)
t

k
+ (k − 1)α

(
m− s+ k − 1

k − 1

)
m− s
k

+ (k − 1)(1− α− γ)
(
m+ k − 1

k − 1

)
m

k

+ (k − 1)(1− α)
(
m+ k − 1

k

)
ks−m
m

+ (k − 1)(1− α)
(
m− s− 1 + k − 1

k

)
k +m− s− 1

m− s− 1

< (1− α)t
(
m+ k − 1

m

)
Let t = τm, s = σm, the optimized values of parameters τ
and σ were given by

τ = (1− α)
1

k−1 σ = 1− (1− α)
1

k−1

Plugging in this values, we finally end up with the condition

γ > k(1− α)
(
1− (1− α)

1
k−1

)
One can refer to Table I-B for the comparison with previous

theoretical results.

C. Extension to the LSBs Case

Following we show a similar result in the case of p1, . . . , pk
share some MSBs and LSBs together. This also takes care of
the case when only LSBs are shared.

Theorem 3. Let N1 = p1q1, . . . , Nk = pkqk be k different
n-bit RSA moduli with αn-bit qi (α ∈ {0, 1}). Suppose that
p1, · · · , pk share γn MSBs (γ ∈ {0, 1}) and βn LSBs (β ∈
{0, 1}) together. Then under Assumption 1, N1, · · · , Nk can
be factored in polynomial-time if

γ + β > k(1− α)
(
1− (1− α)

1
k−1

)
Proof: Suppose that p1, . . . , pk share γn MSBs and βn

LSBs together. Then we have the following equations:
p2 = p1 + 2βnp̃2

...
pk = p1 + 2βnp̃k

We can write as follows

Niq1 −N1qi = 2βnp̃iq1qi for 2 ≤ i ≤ k

Then we get

(2βn)−1Niq1 − p̃iq1qi ≡ 0 mod N1 for 2 ≤ i ≤ k
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Let Ai ≡ (2βn)−1Ni mod N1 for 2 ≤ i ≤ k. Thus, we
have 

A2 − q2p̃2 ≡ 0 mod p1
...

Ak − qkp̃k ≡ 0 mod p1

Then we can construct a system of k − 1 polynomials
f2(x2, · · · , xk) = A2 + x2y2

...
fk(x2, · · · , xk) = Ak + xkyk

with the root (x(0)2 , y
(0)
2 , . . . , x

(0)
k , y

(0)
k ) = (q2, p̃2, . . . , qk, p̃k)

modulo p1. The rest of the proof follows the similar technique
as in the proof of Theorem 2. We omit the details here.

IV. REVISITING PENG ET AL.’S METHOD [17]

In [17], Peng et al. gave a new idea for IFP. Recall the
method proposed by May and Ritzenhofen in [16], the lower
bound on the number of shared LSBs has been determined,
which can ensure the vector (q1, · · · , qk) is shortest in the
lattice, namely the desired factorization can be obtained by
lattice basis reduction algorithm.

Peng et al. took into consideration the lattice introduced
in [16] and discussed a method which can deal with the
case when the number of shared LSBs is not enough to
ensure that the desired factorization cannot be solved out by
applying reduction algorithms to the lattice. More narrowly,
since (q1, · · · , qk) is in the lattice, it can be represented
as a linear combination of reduced lattice basis. Hence the
problem of finding (q1, · · · , qk) is transformed into solving a
homogeneous linear equation with unknown moduli. Peng et
al. utilized the result from Herrmann and May [7] to solve out
the linear modulo equation and obtain a better result.

In this section, we revisit Peng et al.’s method and modify
the construction of lattice which is used to solve the homoge-
neous linear modulo equation. Therefore, a further improved
bound on the shared LSBs and MSBs is obtained.

Firstly, we recall the case of primes shared LSBs. As-
sume that there are k different n-bit RSA moduli N1 =
p1q1, · · · , Nk = pkqk, where p1, · · · , pk share γn LSBs and
q1, · · · , qk are αn-bit primes. The moduli can be represented
as 

N1 = (p+ 2γnp̃1)q1
...

Nk = (p+ 2γnp̃k)qk

Furthermore, we can get following modular equations
N−11 N2q1 − q2 ≡ 0 mod 2γn

...
N−11 Nkq1 − qk ≡ 0 mod 2γn

(2)

In [16], May and Ritzenhofen introduced a k-dimensional
lattice L1 which is generated by the row vectors of following

matrix 
1 N−11 N2 N−11 N3 · · · N−11 Nk
0 2γn 0 · · · 0
0 0 2γn · · · 0
...

...
...

. . .
...

0 0 0 · · · 2γn

 .

Since (2) holds, the vector (q1, · · · , qk) is the shortest vector
in L1 with a good possibility when γ ≥ k

k−1α. Then by
applying the LLL reduction algorithm to the lattice, the
vector (q1, · · · , qk) can be solved out. Conversely, when
γ < k

k−1α the reduced basis (λ1, · · · , λk) doesn’t contain
vector (q1, · · · , qk), nevertheless, we can represent the vector
(q1, · · · , qk) into the form with a linear combination of re-
duced basis. Namely, there exist integers x1, x2, · · · , xk such
that (q1, · · · , qk) = x1λ1+· · ·+xkλk. Moreover, the following
system of modular equations can be obtained,

x1l11 + x2l21 + · · ·+ xklk1 = q1 ≡ 0 mod q1
...

x1l1k + x2l2k + · · ·+ xklkk = qk ≡ 0 mod qk

(3)

where λi = (li1, li2, · · · , lik), i = 1, 2, · · · , k.
Based on the Gaussian heuristic, we have a rough estimation

on the size of the reduced basis. We estimate the length of λi
and the size of lij as det(L2)

1
k = 2

nt(k−1)
k , hence the solution

of (3) is |xi| ≈ qi
klij
≈ 2αn−

nt(k−1)
k −log2k ≤ 2αn−

nt(k−1)
k .

Then using the Chinese Remainder Theorem, from (3) we
can get the following homogeneous modular equation

a1x1 + a2x2 + · · ·+ akxk ≡ 0 mod q1q2 · · · qk (4)

where ai is an integer satisfying ai ≡ lij mod Nj for 1 ≤
j ≤ k and it can be calculated from the lij and Nj .

For this linear modular equation, Peng et al. directly utilized
the method of Herrmann and May [7] to solve it and obtain
that when

γ ≥ k

k − 1
(α−1+(1−α)

k+1
k +(k+1)(1− (1−α) 1

k )(1−α)

the desired solution can be solved out.
In this paper, we notice that the linear modular equation

is homogeneous which is a variant of Herrmann and May’s
equation, hence we utilize the following theorem which is
proposed by Lu et al. in [14] to modify the construction of
lattice used in [17].

Theorem 4. Let N be a sufficiently large composite integer
(of unknown factorization) with a divisor p (p ≥ Nβ). Fur-
thermore, let f(x1, . . . , xn) ∈ Z[x1, . . . , xn] be a homogenous
linear polynomial in n(n ≥ 2) variables. Under Assumption
1, we can find all the solutions (y1, . . . , yn) of the equation
f(x1, . . . , xn) = 0 (mod p) with gcd(y1, . . . , yn) = 1,
|y1| ≤ Nγ1 , . . . |yn| ≤ Nγn if

n∑
i=1

γi <
(
1− (1− β)

n
n−1 − n(1− β)

(
1− n−1

√
1− β

))
The running time of the algorithm is polynomial in logN but
exponential in n.
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TABLE II
THEORETICAL AND EXPERIMENTAL DATA OF THE NUMBER OF SHARED MSBS IN [20] AND SHARED MSBS IN OUR METHOD IN SEC. III

k
bitsize of (pi, qi), i.e.,

((1− α)log2Ni, αlog2Ni)
No. of shared MSBs in pi [20] No. of shared MSBs in pi (Sec. III)

theo. expt. dim time(sec) theo. expt. dim time(sec)
2 (874,150) 278 289 16 1.38 257 265 46 5572.75
2 (824,200) 361 372 16 1.51 322 330 46 4967.07
2 (774,250) 439 453 16 1.78 378 390 46 4273.77
2 (724,300) 513 527 16 2.14 425 435 46 2117.31
3 (874,150) 217 230 56 29.24 200 225 136 6898.65
3 (824,200) 286 304 56 36.28 255 280 136 10613.38
3 (774,250) 352 375 56 51.04 304 335 136 18757.73
3 (724,300) 417 441 56 70.55 346 375 136 6559.34
3 (674,350) 480 505 56 87.18 382 415 136 12340.21
3 (624,400) 540 569 56 117.14 410 450 136 14823.92
3 (512,512) - - - - 450 480 136 7326.63

TABLE III
THEORETICAL AND EXPERIMENTAL DATA OF THE NUMBER OF SHARED MSBS IN [17] AND SHARED MSBS IN OUR METHOD IN SEC. IV

k
bitsize of (pi, qi), i.e.,

((1− α)log2Ni, αlog2Ni)
No. of shared MSBs in pi [17] No. of shared MSBs in pi (Sec. IV)

theo. expt. dim time(sec) theo. expt. dim time(sec)
2 (874,150) 267 278 190 1880.10 257 265 46 498.17
2 (824,200) 340 357 190 1899.21 322 333 46 771.78
2 (774,250) 405 412 190 2814.84 378 390 46 1248.98
2 (724,300) 461 470 190 2964.74 425 435 46 2016.00
3 (874,150) 203 225 220 5770.99 200 218 120 5802.06
3 (824,200) 260 288 220 6719.03 255 280 120 8688.47
3 (774,250) 311 343 220 6773.48 304 340 120 10856.42
3 (724,300) 356 395 220 7510.86 346 375 120 31364.93
3 (674,350) 395 442 220 8403.91 382 420 120 39123.82
3 (624,400) 428 483 220 9244.42 410 450 120 83035.58
3 (512,512) 476 - - - 450 490 120 166932.36

For this homogeneous linear equation (4) in k variables
modulo q1q2 · · · qk ≈ (N1N2 · · ·Nk)α, by Theorem 4 with
the variables xi < (N1N2 · · ·Nk)δi ≈ 2kδin, i = 1, 2, · · · , k,
we can solve out the variables when
k∑
i=1

δi ≈ kδi ≤ 1− (1−α)
k

k−1 − k(1−α)
(
1− (1− α)

1
k−1

)
where δ1 ≈ δ2 ≈ · · · ≈ δk.

Hence, when

α− γ(k − 1)

k
≤ 1− (1−α)

k
k−1 −k(1−α)

(
1− (1− α)

1
k−1

)
Namely,

γ ≥ k

k − 1

(
α− 1 + (1− α)

k
k−1 + k(1− (1− α)

1
k−1 )(1− α)

)
= (1− α)

(
1− (1− α)

1
k−1

)

the desired vector can be found out.
The above result can be easily extend to MSBs case using

the technique in [17]. Surprisingly we get the same result as
Theorem 2 by modifying Peng et al.’s technique.

V. EXPERIMENTAL RESULTS

We implemented our analysis in Sage 5.12 computer al-
gebra system on a laptop with Intel(R) Core(TM) Duo CPU
(2.53GHz, with1.9GB RAM in the guest OS Ubuntu 13.10
with Windows 7 as the host OS).

Since our method of Sec. III is based on an optimized
method of [20], we present some numerical values for com-
parisons between these two methods in Table IV.

Meanwhile our method of Sec. IV is based on an improved
method of [17], we present some numerical values for com-
parison with these two methods in Table IV.

In particular, for the first time, we can experimentally handle
the IFP for the case of balanced RSA moduli.
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