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Abstract Leakage-resilient cryptography aims to extend the rigorous guarantees achieved
through the provable security paradigm to physical implementations. The constructions de-
signed on basis of this new approach inevitably suffer from an Achilles heel: a bounded
leakage assumption is needed. Currently, a huge gap exists between the theory of such de-
signs and their implementation to confirm the leakage resilience in practice. The present
work tries to narrow this gap for the leakage-resilient bilinear ElGamal key encapsulation
mechanism (BEG-KEM) proposed by Kiltz and Pietrzak in 2010. Our first contribution is
a variant of the bounded-leakage and the only-computation-leaks model that is closer to
practice. We weaken the restriction on the image size of the leakage functions in these mod-
els and only insist that the inputs to the leakage functions have sufficient min-entropy left,
in spite of the leakage, with no limitation on the quantity of this leakage. We provide a
novel security reduction for BEG-KEM in this relaxed leakage model using the generic bi-
linear group axiom. Secondly, we show that a naive implementation of the exponentiation
in BEG-KEM makes it impossible to meet the leakage bound. Instead of trying to find an
exponentiation algorithm that meets the leakage axiom (which is a non-trivial problem in
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practice), we propose an advanced scheme, BEG-KEM+, that avoids exponentiation by a
secret value, but rather uses an encoding into the base group due to Fouque and Tibouchi.
Thirdly, we present a software implementation of BEG-KEM+ based on the Miracl library
and provide detailed experimental results. We also assess its (theoretical) resistance against
power analysis attacks from a practical perspective, taking into account the state-of-the-art
in side-channel cryptanalysis.

Keywords secure implementation · side-channel cryptanalysis · leakage-resilient
cryptography · security proof · public-key encryption · pairings

1 Introduction

How to secure cryptographic algorithms embedded in devices that can eventually “fall in the
hands” of an adversary? Answering this question is probably the holy grail in cryptography
nowadays. Two paths are taken to explore the possible solutions, a destructive one and a
constructive one. In the first path, we find the rich contributions of the practice and theory
of side-channel attacks. In the second path, we find the no less precious body of coun-
termeasures against the attacks unveiled in the first path. Lately, a novel approach called
leakage-resilient cryptography is being studied, which aims at extending the guarantees de-
livered by the provable security paradigm to the physical world. Despite the clever discov-
eries and constructions provided by this new approach, it persistently presents an Achilles
heel: a bounded leakage assumption is needed. Ensuring this is unfortunately a challenging
endeavor on its own and, admittedly, the leakage-resilient cryptography body of work has
not significantly helped to argue why this could be a reasonable assumption.

In this work, we consider the only computation leaks information (OCL) leakage model
by Micali and Reyzin [22]. In this model only actual computations are supposed to leak sen-
sitive information. This captures the usual situation in side-channel attacks, where leakage
data only depends on the current state of the target device and some independent randomness
[32]. The internal data of the device is divided into two parts, an active and a passive part,
the active part being the input data used in the current computation. Therefore, at a given
time frame, only the active data is leaking. The main non-invasive attacks against embedded
devices, like the attacks based on power consumption [21], electromagnetic radiations [15]
or running-time [20] measurements, belong to this category.

It is currently agreed upon that, not only the OCL model, but also the bounded re-
trieval/memory leakage models [1, 2] or the auxiliary input model [8], rely on a strange
combination of both strong and weak assumptions. On the one side, the information leakage
is supposed to be bounded in a somewhat artificial manner; on the other side, the leakage
considered is overly general, for instance it might come from any polynomial time function.
However, these assumptions are actually far from the reality that practitioners experience in
their daily work in a side-channel analysis lab.

Several contemporary works [32, 27, 4] have put forward ways to redefine the above
models and bring them closer to practice, for symmetric cryptography primitives. This
comes at the cost of algorithmic-level specialization, providing models that are indeed more
realistic, but which apply to a more restrained class of primitives (i.e. pseudorandom gener-
ators, block ciphers).

We aim at contributing to the challenge of bringing leakage-resilient cryptography closer
to the practice. In this work, we do so by analyzing, modifying, implementing and evaluating
a previous leakage-resilient key encapsulation mechanism proposed by Kiltz and Pietrzak
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[18]. This is one of the very few schemes admitting continual leakage (maybe the only one?)
that one could dare to implement in an embedded processor, for instance in a smartphone.
It is a pairing-based stateful variant of the ElGamal encryption scheme (called BEG-KEM),
where the secret key is an element of the pairing base group (essentially a point in the
group of points of an elliptic curve). The secret key is divided into two shares, which are
re-shared at each new decryption call by using multiplicative blinding. To decrypt, one takes
the first half of the secret key, refreshes it, and uses it as the input to a pairing calculation.
In the second step, the second half of the secret key is updated with the blinding used for
refreshing; it is then used as the input to a new pairing calculation; and finally the two pairing
values are multiplied to obtain a decapsulated symmetric key (for the details see Section 2).

The result proven in [18], which holds under a variant of the generic group model tai-
lored to pairing groups uses a bounded leakage assumption. Roughly speaking, it is required
that the data leaked against side-channel attacks that satisfy the OCL axiom, shall be sig-
nificantly smaller than κ for a single measurement, where κ is the security parameter (e.g.
κ = 128). These leakages are modeled as an oracle that answers values f (·) for adaptively
chosen arbitrary (but efficiently computable) functions f on input the secret data being used
in the calculation. This kind of requirement, that may look reasonable for a theoretician used
to study cryptographic primitives in the so-called black-box model might seem completely
unrealistic to the practitioner. An an example, let us recall the figure gathered in [32], where
it is pointed out that the leaking of a block cipher recently reported in [24], consisted of
200000 traces leading to more than 1.5 Gigabits of data storage.

We start our investigation by proposing and testing a relaxation on the requirement of
‘bounded leakage size’ in the OCL model. We weaken the restriction on the image size of
the leakage functions in these models to asking that the random variables used to refresh
the secret key shall have enough min-entropy left given the leakage, with no limitation on
the ‘size’ of this leakage. This is an altogether more reasonable leakage bound assumption,
which could eventually be met by clever implementations (in fact we provide an implemen-
tation candidate). We give a new security reduction using the generic bilinear group axiom
for BEG-KEM in this relaxed leakage model, which turns out to be tighter than the original
reduction in [18] in the OCL model. Due to space limitations, we only include here a short
description of the proof. The complete proof can be found in the full version [11].

Secondly, we observe that the blinding mechanism originally proposed is susceptible to
invalidate the leakage bound assumption. This is because to perform blinding, one computes
an exponentiation Gri for a random integer ri, which if implemented in a naive way, can
almost completely leak ri, even with a simple power analysis attack (i.e. with a single power
trace), as we discuss in Section 5. The authors in [18] did not discuss how exponentiation
shall be implemented to meet the leakage bound, nor we can currently find a exponentiation
algorithm with these guarantees. Thus, their positive result risks to be void.

This is why we propose an advanced BEG-KEM+, where we avoid blinding by an ex-
ponentiation Gri for a random integer ri. Our modification is based on the observation that
knowledge of the exponent ri is not needed to perform a successful decryption, but it suf-
fices to build a random element in a suitable pairing base group. We propose instead to use a
random encoding into asymmetric pairing groups by Fouque and Tibouchi [10]. It turns out
that this encoding produces a random element in the base group, and can naturally be im-
plemented in such a way that the leakage expected against a single measurement is arguably
minimal (see Section 5).

Fourthly, we stress that the idea of leakage-resilient cryptography—like any other the-
oretical concept —can only be brought into practice by actual implementation. For this
reason, we implemented BEG-KEM+ in ANSI C on an ARM based microcontroller. BEG-
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KEM+ is, to our knowledge, the first implementation and evaluation of a public-key scheme
from the leakage-resilient literature.

2 Stateful Bilinear ElGamal KEM

In this section we present the stateful bilinear ElGamal Key Encapsulation Mechanism
(BEG-KEM) from [18]. First, we recall the basics of the notion of min-entropy. Then we
introduce the concept of stateful KEM and security under non-adaptive chosen-ciphertext
attacks in the presence of continual min-entropy leakage (CCmLA1). We note again that the
class of leakage functions allowed in our model (based on lowering min-entropy) is broader
than the bounded length model (CCLA1) used in [18]1.

Min-Entropy

Let X be a finite random variable with probability distribution Pr. The min-entropy of X ,
denoted H∞(X), is defined as

H∞(X) :=− log2

(
max

x
Pr[X = x]

)
.

Min-entropy is a standard measure of the worst-case predictability of a random variable.
Let Z be a random variable. The average conditional min-entropy of X given Z, denoted
H̃∞(X |Z), is defined as

H̃∞(X |Z) := − log2

(
E

z←Z

[
max

x
Pr[X = x |Z = z]

])
.

Average conditional min-entropy is a measure of the worst-case predictability of a random
variable given a correlated random variable.

Lemma 1 [[9]] Let f : X→{0,1}λ ′ be a function on X. Then H̃∞(X | f (X))≥H∞(X)−λ ′.

The following result is a variant of the Schwartz-Zippel Lemma [28, 38, 13].

Lemma 2 [Schwartz-Zippel; min-entropy version] Let F ∈ Zq[X1, . . . ,Xn] be a non-zero
polynomial of (total) degree at most d. Let Pi (i = 1, . . . ,n) be probability distributions on

Zq such that H∞(Pi) ≥ logq−λ ′, where 0 ≤ λ ′ ≤ logq. If xi
Pi← Zq (i = 1, . . . ,n) are inde-

pendent, then Pr[F(x1, . . . ,xn) = 0]≤ 2λ ′ d
q

.

Corollary 1 If λ ′< logq−ω (log logq) in Lemma 2, then Pr[F(x1, . . . ,xn) = 0] is negligible
(in logq).

1 We point out the authors of [18] mention that their results also carry over to a relaxed leakage model,
close in spirit to ours. However this model is not fully detailed, and additionally no justification of this fact is
given in [18] nor in [19].
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KEM-CCmLA1KEM(A ,κ,λ ) KEM-Leak-Oracle OCCmLA1(C, fi,hi)
(pk,(σ0,σ

′
0))← KG(κ,λ )

i := 1, w←A OCCmLA1(·) (pk) (σi,wi)
ri←Dec1(σi−1,C)

b $←{0,1} (σ ′i ,K)
r′i←Dec2(σ ′i−1,wi)

(C,K0)← Enc(pk) Λi := fi(σi−1,ri)

K1
$←K Λ ′i := hi(σ

′
i−1,r

′
i,wi)

b′←A (w,CKb) i := i+1
Return (K,Λi,Λ

′
i )

Table 1 CCmLA1 security experiment for KEM.

Stateful Key Encapsulation Mechanism

Formally, a split-state key encapsulation mechanism KEM= (KG,Enc,Dec1,Dec2) consists
of four polynomial-time algorithms. Let κ denote the security parameter and λ denote the
leakage parameter. The key generation procedure KG(κ,λ ) takes as input κ and λ , and
outputs the public key pk, a pair of initial (stateful) secret states (σ0,σ

′
0), and the pub-

lic parameters PP. The encapsulation procedure Enc(pk ) takes as input pk, and outputs
a secret symmetric key K and the corresponding ciphertext C. The stateful decapsulation
procedure takes C as an input and outputs K ∈K . This procedure is split into two consec-
utive steps Dec1 and Dec2, where each step accesses distinct parts of the two secret states.
The procedures Dec1 and Dec2 may also update the secret key using locally generated fresh
randomness:

(σi,wi)
ri← Dec1(σi−1,C) ; (σ ′i ,K)

r′i← Dec2(σ ′i−1,wi).

The scheme KEM is required to satisfy the following correctness property:

Pr
[
Dec2

(
Dec1(Enc(pk) ,σi−1)\σi, σ

′
i−1
)
= K :(

pk,
(
σi−1,σ

′
i−1
))
← (KG,Dec1,Dec2) , K← Enc(pk)

]
= 1.

The security of the scheme KEM is defined by the experiment in Table 1.
In this experiment, fi(σi−1,ri) and hi(σ

′
i−1,r

′
i,wi) are (efficiently computable) leakage

functions that the adversary can choose adaptively between the rounds. The functions fi(·)
and hi(·) are such that the min-entropy of the individual inputs of the leakage functions is
decreased by at most λ bits, given the corresponding leakages. More precisely, the require-
ment on the leakage functions is that

H̃∞ (t | fi(σi−1,ri))≥H∞ (t)−λ ∀t ∈ σi−1∪ ri,

and

H̃∞

(
t | hi(σ

′
i−1,r

′
i,wi)

)
≥H∞ (t)−λ ∀t ∈ σ

′
i−1∪ r′i ∪wi.

Essentially, the above equations restrict the class of allowed leakage functions to those that
do not decrease the min-entropy of each atomic parameter of the secret state by more than
λ bits. For instance, if wi = {wi,1,wi,2}, then we require that individually wi,1 and wi,2 have
their min-entropy reduced by at most λ bits given the leakages.

Definition 1 [CCmLA1 security for KEM] A key encapsulation mechanism KEM is secure
under non-adaptive chosen-ciphertext attacks in the presence of continual split-state leakage
(CCmLA1), with min-entropy leakage bound λ , if Pr [b′ = b] is at most negligibly greater
than 1

2 in the Experiment KEM-CCmLA1KEM(A ,κ,λ ) for any efficient adversaryA .
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Note that if in the above definition we would force the leakage functions to have output
length of at most λ bits, then we would obtain the CCLA1 security for KEM as defined in
[18]. From Lemma 1, we have that the conditional min-entropy of a random variable, given
the leakage output of at most λ bits, cannot decrease by more than λ bits. Hence if a KEM
is CCLA1 secure, then it is also CCmLA1 secure.

Bilinear Groups

Let BGen′(κ,λ ) be a probabilistic bilinear group generator that outputs (G,GT ,q, e′, g)
such that:

1. G= 〈g〉 and GT are (multiplicatively written) cyclic groups of prime order q with binary
operations · and ?, respectively. The size of q is κ bits.

2. e′ : G×G→GT is a map that is:
(a) bilinear: ∀u,v ∈G and ∀a,b ∈ Z, e′(ua,vb) = e′(u,v)ab.
(b) non-degenerate: e′(g,g) 6= 1.

Such a group G is said to be a bilinear group if the above properties hold and the group
operations in G and GT , and the map e′ are efficiently computable. The group G is called as
base group and GT as target group.

Generic Bilinear Group Model

The generic bilinear group (GBG) model [6] is an extension of the generic group model [31].
The encodings of the elements of G and GT are given by random bijective maps ξ : Zq→ Ξ

and ξT :Zq→ΞT , respectively, where Ξ and ΞT are sets of bit-strings. The group operations
in G and GT , and evaluation of the bilinear map e are performed by three public oracles O ,
OT and Oe, respectively, defined as follows. For all a,b ∈ Zq

– O(ξ (a),ξ (b)) := ξ (a+bmodq)
– OT (ξT (a),ξT (b)) := ξT (a+bmodq)
– Oe(ξ (a),ξ (b)) := ξT (abmodq)

We assume that the (fixed) generator g of G satisfies g = ξ (1), and also the (fixed) generator
gT of GT satisfies gT = e(g,g) = ξT (1). The encoding of g is provided to all users of the
group oracles. The users can thus efficiently sample random elements in both G and GT .

We further assume that Ξ ∩ΞT = φ , |Ξ | = |ΞT | = q, and that the elements of Ξ and
ΞT are efficiently recognizable. For instance, the encodings in Ξ can comprise of the binary
representation of the set {0,1, . . . ,q− 1}, where every string begins with ‘0’ and all are of
uniform length. The encodings in ΞT are similarly defined but instead begin with ‘1’. Since
the encodings are efficiently recognizable, the queries to a group oracle with an invalid
encoding can be detected and an error can be raised. For simplicity, we assume that the
users’ queries to the oracles are all valid.

2.1 Bilinear ElGamal KEM

The scheme BEG=
(
KGBEG, EncBEG, Dec1BEG, Dec2BEG

)
is as follows:

1. KGBEG(κ): Compute PP=(G,GT ,e′,q,g)←BGen′(κ,λ ) and randomly choose x, t0
$←

Fq. Set X = gx, σ0 = gt0 , σ ′0 = gx−t0 , and XT = e′ (g,g)x. Return (pk,sk0), where
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(a) the public key is pk = (PP,XT ).
(b) the secret state is sk0 = (σ0,σ

′
0) ∈G×G.

2. EncBEG(pk): Choose a random r $← Fq. Compute the ciphertext C = gr, and the derived
key K = X r

T . Return (C,K).

3. Dec1BEG(σi−1,C): Choose a random ti
$← Fq, set σi = σi−1 · gti , Yi = e′ (σi,C). Return

(ti,Yi).
4. Dec2BEG(σ ′i−1,(ti,Yi) ,C): Set σ ′i = σ ′i−1 ·g−ti , and Y ′i = e′ (σ ′i ,C). Compute the derived

key K = Yi ·Y ′i ∈GT . Return K.

The correctness of the scheme follows from the fact that σi ·σ ′i = X ∀i ≥ 0 and using the
bilinearity of e′ ().

Theorem 1 [18, Theorem 1] The scheme BEG (also called BEG-KEM) is CCLA1 secure in
the generic bilinear group model. The advantage of an s-query adversary who gets at most
λ bits of leakage per each invocation of Dec1BEG or Dec2BEG is at most s3

q 22λ+1.

3 A CCmLA1 Security Reduction in the Generic Bilinear Group Model

We show that BEG-KEM is also leakage-resilient in the min-entropy leakage model intro-
duced above, where leakage functions are not necessarily size-bounded. The only restriction
is that the inputs to the leakage functions shall have enough min-entropy left, as a function
of a leakage parameter λ , given the corresponding outputs. Interestingly, by using a different
proof technique than [19], we obtain a tighter bound on the adversarial CCLmA1 advantage
than the bound claimed in [18] for the adversarial CCLA1 advantage, w.r.t. the number of
oracle queries s. In other words, with respect to the previous work, we provide here a new
security reduction under a more realistic leakage model, and surprisingly we achieve better
tightness.

Theorem 2 The scheme BEG-KEM is CCmLA1 secure in the GBG model. The advantage
of an s-query adversary with min-entropy leakage bound λ is

(
9s2+3s

q

)
22λ .

At a high level, the proof of this theorem proceeds in two steps as in [13, 12]. First we
show in Theorem 3 that the scheme is secure if there is no leakage, i.e., CCA1 security.
Note that the adversary is transparent to the internal details of secret state updates. Then, we
complete the proof of CCmLA1 security by analyzing the effect of leakage on the CCA1
security.

The main idea to prove the CCA1 security is that the adversary will not be able to
compute the derived symmetric key K0 even after seeing the challenge ciphertext. To show
this we just need to prove that K0 cannot be written as a “linear combination” of the elements
of GT that it has got as input or can compute itself using the pairing oracle along with the
input elements of G. Hence in the GBG model it will not be able to distinguish the actual
derived key or a randomly chosen key in GT . The challenger simulates the security game G
to the adversary in the naive way. Also, the challenger simulates the generic bilinear group
oracles in the usual way by maintaining lists of pairs of encodings and polynomials that
represent the relation amongst group elements.

We then argue that that the proof for the non-leakage setting (i.e. proof of Theorem 3)
and that for the leakage setting would be the same conditioned on the fact that the adversary
is unable to derive useful relation amongst the elements it has seen or guessed, and that it will
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not be able to compute and hence leak the full secret key X through the leakage functions,
if λ is sufficiently small. Finally, we show that the probability of this event is increased by
a factor of at most 22λ compared to the non-leakage setting. The formal proof of the next
theorem can be found in [11].

Theorem 3 The scheme BEG is CCA1 secure in the generic bilinear group model, i.e., it
is secure against non-adaptive chosen-ciphertext attacks if there is no leakage of the secret
states. The advantage of an s-query adversary is at most 1

2 +
9s2

q .

Leakage Setting: Completing Proof of Theorem 2.

Let us first briefly sketch the main ideas of the proof. Working on the lines of the proof of the
previous theorem, the advantage of A is bounded by its success probabilities conditioned on
the event whether or not a collision has occurred in the lists consisting of elements of G and
GT . It is important to note that the proof for the non-leakage setting (i.e. proof of Theorem
3) and the leakage setting would be the same conditioned on the fact that a collision has
not occurred, and that the leakage functions will not be able to compute the “polynomial X”
corresponding to the secret key nor guess the correct representations of the group elements
for which it only partially obtains information through the leakage functions. The reason
is that in the event of no collision, the adversary gets to see only distinct group elements
and hence it will not have enough information on the relation amongst the group elements it
can compute. The fact that the leakage functions cannot compute the full secret key shows
that the adversary will never be able to continually leak the whole of the secret key. Hence
leakage on the secret state will not be useful in this case. Hence the success probability of A
is the same in the event of no collision (that includes the event of guessing the representations
of group elements using partial information about them).

However the probability that a collision occurs in the leakage setting is increased by
a factor of at most 22λ . This is because when A has access to leakage output f i(σi−1, ti)
and hi(σ

′
i−1,(ti,Yi)) during ith decryption query, then in adversary’s view the parameters ti

(i≥ 1) are no longer uniformly distributed even though they are still independent. Hence A
can now cause collisions among polynomials with increased probability. Since ti appears in
both f i() and hi(), its (average conditional) min-entropy will be reduced by at most 2λ bits.

The only useful information that the leakage functions can provide to A is about the
secret key X . This is because the values ti are independent of the derived shared secret key.
However A can use the leakages of ti to eventually leak X . If A is able to compute X ,
then it can trivially compute the symmetric key corresponding to the challenge ciphertext.
The event of no collision, and the fact that X is not a “linear combination” of the inputs
to the leakage functions, guarantees that A is unable to compute X . Note that because the
representations of group elements in the GBG model are randomized, the probability of
guessing the complete representations of each of σi−1, σ ′i−1 and Yi, given the leakages, is
increased by a factor of at most 22λ . For a formal proof see [11].

4 BEG-KEM+ : A Leakage-Resilient KEM Closer to Practice

Our choice of BEG-KEM for this investigation is entirely motivated by the fact that a similar
leakage-resilience result as that proven in [18] cannot be expected for a pairing-less group,
as shown in [14]. This motivates using pairing groups to implement ElGamal.
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On the other hand, while Theorem ensures a protection against side-channel attacks that
combine traces of different computations (e.g. differential power analysis attacks), we still
need protection against single trace attacks, i.e. Simple Power Analysis (SPA). The use of
pairing groups can help on this respect, as pointed out by Scott in [29]:

”[...] it is of interest to consider the resistance of pairing-based protocols to so-
called SPA attacks [...] one might with reasonable confidence expect that the power
consumption profile of (and execution time for) such protocols will be constant and
independent of any secret values.”

We continue by proposing a tweak to BEG-KEM with the aim to make the most, from a
minimizing leakage perspective, out of our choice of using pairing groups to realize leakage-
resilient public key cryptographic primitives.

4.1 An Advanced BEG-KEM+ More Resistant to Side-Channel Attacks

Let us first make the observation that Dec1∗BEG is picking a random point in the pairing
based group G by computing an exponentiation gr for a random r. As is well-known, a
naı̈ve implementation of exponentiation can leak the entire exponent r, which would, of
course, invalidate the required bound of maximum leakage in our new (as well as in the old)
model. This leads us to the question whether it is possible, given the large body of side-
channel resistant exponentiation techniques, to find an algorithm that would likely meet the
leakage bound for single measurements. In other words, we have to answer the question of
whether the exponentiation can be made resistant against SPA attacks.

Exponentiation in a multiplicative group (or scalar multiplication in an elliptic curve
group) of large order involves hundreds or even thousands of low-level arithmetic operations
such as modular multiplication. Unfortunately, all these low-level operations are (either di-
rectly or indirectly) controlled by the secret exponent, which means that each of them can
potentially leak sensitive information (see e.g. [36, 35, 33] for further details). Consequently,
we need both an SPA-resistant exponentiation algorithm and an SPA-resistant implemen-
tation of the underlying multiple-precision operations. The latter is difficult to achieve in
software due to side-channel leakage induced by certain micro-architectural features such
as the early-termination mechanism of integer multipliers in ARM processors [16]. For ex-
ample, it was shown in [16] that highly regular exponentiation (resp. scalar multiplication)
techniques, which are (in theory) perfectly SPA-resistant, succumb to an SPA attack when
exploiting the early-termination mechanism. Therefore, we avoid exponentiation with a se-
cret exponent in our modified scheme.2

A careful analysis of BEG-KEM reveals that Dec1∗BEG only needs to sample uniformly
at random an element u of G, and that knowledge of logg u is not necessary. It suffices then
to use a method that computes a random point in the base group.

One possibility is to use a variant of the so-called try-and-increment approach [7, 34],
where a random coordinate x for an elliptic curve point is chosen; next if a point in the curve
exists with that x-coordinate, its y-coordinate is computed and the procedure is stopped.
Otherwise, the procedure is iterated until a point in the curve is found. We have chosen not

2 As mentioned previously, the secret exponent controls a large number of multiple-precision arithmetic
operations, which execute an even larger number of mul instructions. Each of these mul instructions can
potentially trigger the early-termination mechanism and, hence, leak information about the secret exponent.
In our modified scheme, the secret value is only used as input of a multiple-precision operation and does not
control any other operations.
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to follow this approach, in particular because its running time depends on the consecutive
seeds x1,x2, . . . used, which could eventually lead to timing leakages or attacks. It should be
noted that the original try-and-increment approach has been found to be vulnerable to tim-
ing attacks in some contexts (when used to build a Password Authenticated Key-Exchange
protocol, see [34][Section 3.2] for details). We prefer to use instead a method that will run
in (almost) constant time, which is a common approach when thwarting timing attacks.

For this reason, we decided to build a random element in the pairing base group by
using a so-called encoding to the base group [30, 17, 10]. Roughly speaking, an encoding is
a deterministic function mapping an arbitrary string to a point in an elliptic curve. Recently,
Fouque and Tibouchi [10] proposed a modification of the Shallue and van de Woestijne
encoding into arbitrary elliptic curves [30], that maps arbitrary strings to Barreto-Naehrig
asymmetric pairing groups [3]. Let f :F∗p→E(Fp) be the Fouque-Tibouchi encoding. Then,

(t1, t2) 7→ u = u1 ·E u2 builds a point u ∈ E(Fp) distributed uniformly at random if t1, t2
$←

F∗p, where ·E is the addition operation in E(Fp). Additionally, [10] points out that f can
be naturally implemented so that its computation is completely independent of the inputs,
which clearly helps us towards meeting our desired min-entropy leakage bound.

BEG-KEM+

Let ABGen be an asymmetric bilinear group generator that outputs (G1,G2,GT ,e, q,g1,g2)
with |G1|= |G2|= |GT |= q, where q is a prime, κ be the security parameter, and λ be the
leakage parameter. We will again use the multiplicative notation for group operations in G1,
G2, and GT . Let e : G1×G2→ GT be a type 3 pairing map, i.e., e is a non-degenerate bi-
linear map with no known efficiently computable isomorphism ψ : G2→G1. These groups
are instantiated using the BN curves, denoted E(Fp), of the form y2 = x3 +b, where b ∈ Fp
[3]. Also, let G1 and G2 be generators of G1 and G2, respectively, and f : F∗p→ G1 be the
Fouque-Tibouchi encoding of the elements of G1.

The advanced BEG−KEM+ =
(
KG+

BEG, Enc+BEG,
Dec1+BEG, Dec2+BEG

)
is defined as follows:

1. KG+
BEG(κ): Compute PP=(G1,G2,GT ,e,q,G1,G2)←ABGen(κ) and randomly choose

x, t0
$← Fq. Set X = Gx

1, σ0 = Gt0
1 , σ ′0 = G(x−t0)

1 , and XT = e(G1,G2)
x. Return (pk,sk0),

where
(a) the public key is pk = (PP,XT ).
(b) the secret state is sk0 = (σ0,σ

′
0).

2. Enc+BEG(pk): Choose a random r $← Fp. Compute the ciphertext C = Gr
2, and the derived

key K = X r
T . Return (C,K).

3. Dec1+BEG(σi−1,C): Choose random ti,zi
$← F∗p, set ui = f (ti) · f (zi), and compute σi =

σi−1 ·ui, Yi = e(σi,C). Return (ui,Yi).
4. Dec2+BEG(σ

′
i−1,(ui,Yi) ,C): Set σ ′i = σ ′i−1 · (ui)

−1, and Y ′i = e(σ ′i ,C). Compute the de-
rived key K = Yi ·Y ′i ∈GT . Return K.

Algorithm 1 describes the constant-time hashing function to BN curves from [10]. As
described in the original paper, implementing this algorithm against timing and Simple
Power Analysis (SPA) attacks is not difficult to be achieved. In step 6 and 7, instead of
computing the values χq(x3

1+b) and χq(x3
2+b) in a straightforward way, which can leak se-

cret data, the authors suggested to use blinding. Namely, in order to get α and β , we actually



A Leakage-Resilient ElGamal Key Encapsulation Mechanism 11

Algorithm 1 Shallue-van de Woestijne encoding to BN curves y2 = x3 +b [10]
Input: A random number t ∈ F?

p.
Output: Point P ∈ E(Fp)

1: w←
√
−3 · t/(1+b+ t2)

2: x1← (−1+
√
−3)/2− tw

3: x2←−1− x1
4: x3← 1+1/w2

5: r1,r2,r3
$← F?

p

6: α ← χq(r2
1 · (x3

1 +b))
7: β ← χq(r2

2 · (x3
2 +b))

8: i← [(α−1) ·β mod 3]+1

9: return P[xi,χq(r2
3 · t) ·

√
(x3

i +b)]

evaluate χq(r2
1 · (x3

1 + b)) and χq(r2
2 · (x3

2 + b)), where r1 and r2 are random field elements
generated in Step 5. On the other hand, in order to prevent the leakage while computing the
index i, they employ a specific algebraic function φ(α,β ) = [(α−1) ·β mod 3]+1, which
runs in constant time.

5 Secure Implementation and Performance Analysis

In this section, we first describe a software implementation of BEG-KEM+ (along with the
instantiation of the underlying pairing groups) and present the execution times we measured
on an ARM Cortex M-3 processor. The second part of this section is devoted to a “practical”
security evaluation of BEG-KEM+ by analyzing potential sources of information leakage in
the underlying arithmetic operations that could be exploited to mount a side-channel attack.

5.1 Implementation Details and Performance Analysis

We implemented both BEG-KEM and BEG-KEM+ in Magma and ANSI C, whereby the
former implementation served as a reference for the latter. The C implementation is based
on the MIRACL library to ensure an efficient execution of the pairing evaluation and all
other arithmetic operations in the diverse groups and fields. We instantiated both BEG-KEM
and our improved scheme using the Ate pairing over a 254-bit Barreto-Naehrig (BN) curve.
More specifically, our implementations adopts the curve BN254 from [26], which provides
a security level roughly comparable to that of 128-bit AES. BN curves are defined by a
Weierstrass equation of the form y2 = x3+b over a prime field Fq, whereby q can be written
as polynomial p(u) = 36u4 + 36u3 + 24u2 + 6u+ 1 for some parameter u [3]. In our case,
u =−(262 +255 +1) =−0x4080000000000001 and, hence, q has a length of 254 bits. The
curve BN254 is given by the equation y2 = x3 + 2 (i.e. b = 2) and has prime order with
embedding degree k = 12.

The execution times for various arithmetic operations in the different fields and groups
are summarized in Table 2, whereby all timings are specified in millions of clock cycles. Our
prototype platform for performance evaluation is an Arduino Due microcontroller board
equipped with an ARM Cortex-M3 CPU. Even though the three groups G1, G2, and GT
have the same order, the underlying multiple-precision arithmetic operations are performed
with operands of different size. G1 and G2 are elliptic curve groups over Fq and Fq2 , the
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elements of which have, in our case, a bitlength of 254 and 508 bits, respectively. The group
GT is a subgroup of the multiplicative group of the extension field Fq12 , i.e. the modular
multiplications for exponentiation in GT are carried out on 3048-bit operands.

Table 2 Running times for field exponentiation,
square root, inversion, group exponentiation and
pairing operations (in 106 clock cycles)

Operation Running time
Square root Fq 0.7
Inversion Fq 0.087

Encoding to G2 3.7
Exponentiation G1 4.5
Exponentiation G2 10.0
Exponentiation GT 27.1

Pairing 65.0

Table 3 Comparison of running times for key gen-
eration, encapsulation and decapsulation for BEG-
KEM and BEG-KEM+ (in 106 clock cycles)

Operation BEG-KEM BEG-KEM+
KeyGen 108 108

Encryption 34 34
Decryption 131 140

The execution times for key generation, encapsulation as well as decapsulation for both
BEG-KEM and BEG-KEM+ are given in Table 3. Our results show that an encapsulation
can be carried out in 34 million clock cycles, while the decapsulation takes about 140 million
cycles. We observe that our modified decapsulation algorithm is roughly 6% slower than the
original one.

5.2 Side-Channel Resistance from a Practical Point of View

One of the fundamental principles of leakage-resilient cryptography is to use a critical secret
only once (or a few times), which ensures that an attacker is not able to retrieve the secret
key if the per-invocation leakage is in some way “limited” or “bounded.” In every invoca-
tion of the scheme or function, the secret is either “refreshed” or a completely new secret is
generated randomly. The original BEG-KEM scheme from [18], and also our variant BEG-
KEM+, follow this principle. As a consequence, all forms of side-channel attack that require
several executions of a cryptographic function with one and the same secret key, e.g. Differ-
ential Power Analysis (DPA), are obviously not applicable to BEG-KEM+ (and in fact the
latter is guaranteed by Theorem 2). However, attacks that aim to recover the secret key from
information leaked from a single invocation of a cryptographic function (i.e. Simple Power
Analysis (SPA) attacks) may succeed under certain conditions. The group exponentiation
computed in the BEG-KEM scheme to derive a random group element σ0 = gt0 serves as
a good example. If this exponentiation is implemented in completely straightforward way
(e.g. using the square-and-multiply method) an attacker can obtain t0 if he is able to dis-
tinguish group squarings from group products in the power consumption profile. Such SPA
attacks on unprotected or insufficiently protected ECC implementations are fairly easy and
have been reported extensively in the literature, see e.g. [5, Chapter IV] and the references
therein. Therefore, we advocated to replace the afore-mentioned group exponentiation by a
deterministic encoding into an elliptic curve group [10].

SPA Resistance of Pairing Evaluation.

Section 4 quotes a statement of Scott [29, Section 3.1] saying that one can expect the power
consumption profile of a pairing-based protocol to be independent of any secret values. An
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intuitive explanation why pairings are fairly “robust” against SPA leakage is also given in
[29]: the target of the attack is a secret point, which is generally much harder to reveal than
e.g. a secret scalar or a secret exponent. AS mentioned before, our implementation uses
the Ate pairing instantiated on a BN curve over a 254-bit prime field Fp. Consequently,
the secret is the x and y coordinate of an elliptic curve point, which are in our case simply
elements of Fp. The only way in which an attacker can hope to gain information about
x and y is by inspecting the power consumption and execution time of the Fp-arithmetic
operations (e.g. addition, multiplication) performed on them. However, the operand-related
SPA leakage from field-arithmetic operations is generally very small. To explain this in
detail, let us use the addition in Fp as example, which is nothing else than a modular addition
r = a+ b mod p. We assume that a is a secret value and that b is known to the attacker. A
modular addition consists of an ordinary addition s = a+b, followed by a subtraction if the
sum s is equal to or bigger than p. Conventional wisdom from the side-channel community
says that such a conditional subtraction causes differences in the power consumption profile
(and also execution time), which is observable by an attacker. However, the information
content is very small; in fact, when the subtraction is executed the attacker just knows that
a+b≥ p, i.e. he has learned that a≥ p−b.

The situation is similar for multiplication in Fp, which is nothing else than a modu-
lar multiplication r = a · b mod p. Again, we assume that a is the secret value and that b
is known to the attacker. A modular multiplication involves a conventional multiplication
t = a · b, followed by a modular reduction r = t mod p, which is in pairing-based cryptog-
raphy typically implemented using Montgomery’s algorithm [23]. Both the multiplication
and Montgomery reduction are highly regular (i.e. do not have to execute any conditional
statements), except for the so-called “final subtraction.” Montgomery’s reduction technique
does not directly compute t mod p but produces the following output

x =
(
t +(t · p′ mod 2n) · p

)
/2n (1)

where p′ =−p−1 mod 2n and n is the bitlength of p. Note that x may be not fully reduced,
which means a final subtraction of p is necessary to get the least non-negative residue as
result. An attacker able to observe whether or not this final subtraction is executed learns
only whether x≥ p or not, which does not reveal much information about a. The same also
holds for subtraction and squaring in Fp. However, a noteworthy exception is the inversion
operation, which we will further discuss below. In summary, a straightforward implemen-
tation of the arithmetic operations (bar inversion) in Fp leaks only very little information
about the operands, which confirms that pairing evaluation is, in general, not susceptible to
SPA attacks. To our knowledge, the recent literature contains only two papers in which SPA
attacks on pairings are discussed [25, 37], but both of them are only relevant for pairings
over binary fields where the multiplication is implemented in a highly irregular way. The
attack from [35] is only applicable to scalar multiplication with a secret scalar, but not to
pairings with a secret point.

SPA Resistance of Encoding Function.

The encoding function shown in Algorithm 1 consists of a number of basic arithmetic opera-
tions (e.g. addition, multiplication) in the field Fp. Furthermore, two inversions are executed,
one in step 1 and the other in step 4. The straightforward approach to invert an element of
a finite field is the Extended Euclidean Algorithm (EEA). Conventional wisdom from the
side-channel community says that the EEA is a highly irregular algorithm, executing many
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conditional operations, which is likely to leak SPA-relevant information about the operand
to be inverted. In order to prevent an SPA attack on the inversion operation, we apply a sim-
ple multiplicative masking. That is, instead of inverting a field element v directly, we first
multiply it by a random number r, which yields the product t = v · r. Then, we invert this
product using the EEA to obtain 1/t = 1/(v · r), which we finally multiply again by r to get
1/v as result.

The function χ in step 6 and 7 of Algorithm 1 is essentially an evaluation of the Legen-
dre Symbol, which, in turn, consists of an exponentiation using a constant public exponent
(i.e. (p+ 1)/4). The input to the χ function is “blinded” by the random value r2

1 and r2
2 ,

which means the underlying exponentiation can not leak any SPA-relevant information. As
mentioned in Section 4.1, a constant-time algebraic function is adopted for the calculation
of the index i in step 8, which also cannot leak.

6 Conclusion

In this paper we aimed to bring the concept of leakage-resilient cryptography closer to prac-
tice. Most of the leakage-resilient public key cryptography schemes proposed until now
are too inefficient for real-world applications. Even though they provide provable security
against a large class of side-channel attacks, they do so under certain leakage models and
leakage bound requirements that are far from what we can ensure in practice. On the other
hand, the side-channel countermeasures are often ad-hoc and do not provide enough se-
curity guarantees. We addressed this problem by bringing best practices from both worlds
together. First, we argued that a naive implementation of the pairing group exponentiation in
the leakage-resilient ElGamal key encapsulation mechanism proposed by Kiltz and Pietrzak
makes it impossible to reach the required leakage bound. To overcome this problem, we
have made two additional contributions. On the one hand, we have proposed a relaxed leak-
age model, that we call min-entropy leakage, that lifts the restriction on the image size of
leakage functions, and proposes instead to require that the inputs to the leakage functions
have sufficient min-entropy left, in spite of the leakage. On the other hand, we adopted a
different mechanism for finding a random point in an elliptic curve group, namely the en-
coding of Fouque and Tibouchi. We assessed the security of our implementation from both a
theoretical and a practical perspective and argued that it is indeed secure in both the worlds.
BEG-KEM+ is, to our knowledge, the first leakage-resilient public-key scheme that has been
successfully implemented and evaluated on an embedded 32-bit processor.
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11. Galindo, D., Großschädl, J., Liu, Z., Vadnala, P.K., Vivek, S.: Implementation and eval-
uation of a leakage-resilient elgamal key encapsulation mechanism. Cryptology ePrint
Archive, Report 2014/835 (2014)

12. Galindo, D., Vivek, S.: A leakage-resilient pairing-based variant of the Schnorr signa-
ture scheme. In: M. Stam (ed.) IMA Int. Conf., LNCS, vol. 8308, pp. 173–192. Springer
(2013)

13. Galindo, D., Vivek, S.: A practical leakage-resilient signature scheme in the generic
group model. In: SAC 2012, LNCS, vol. 7707, pp. 50–65. Springer (2013)

14. Galindo, D., Vivek, S.: Limits of a conjecture on a leakage-resilient cryptosystem. Inf.
Process. Lett. 114(4), 192–196 (2014)

15. Gandolfi, K., Mourtel, C., Olivier, F.: Electromagnetic analysis: Concrete results. In:
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