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Abstract

A non-malleable code protects messages against various classes of tampering. Informally, a
code is non-malleable if the message contained in a tampered codeword is either the original
message, or a completely unrelated one. Although existence of such codes for various rich
classes of tampering functions is known, explicit constructions exist only for “compartmentalized”
tampering functions: i.e. the codeword is partitioned into a priori fixed blocks and each block
can only be tampered independently. The prominent examples of this model are the family of
bit-wise independent tampering functions and the split-state model.

In this paper, for the first time we construct explicit non-malleable codes against a natural
class of non-compartmentalized tampering functions. We allow the tampering functions to
permute the bits of the codeword and (optionally) perturb them by flipping or setting them to 0
or 1. We construct an explicit, efficient non-malleable code for arbitrarily long messages in this
model (unconditionally).

We give an application of our construction to non-malleable commitments, as one of the first
direct applications of non-malleable codes to computational cryptography. We show that non-
malleable string commitments can be “entirely based on” non-malleable bit commitments. More
precisely, we show that simply encoding a string using our code, and then committing to each
bit of the encoding using a CCA-secure bit commitment scheme results in a non-malleable string
commitment scheme. This reduction is unconditional, does not require any extra properties
from the bit-commitment such as “tag-based” non-malleability, and works even with physical
implementations (which may not imply standard one-way functions). Further, even given a par-
tially malleable bit commitment scheme which allows toggling the committed bit (instantiated,
for illustration, using a variant of the Naor commitment scheme under a non-standard assump-
tion on the PRG involved), this transformation gives a fully non-malleable string commitment
scheme. This application relies on the non-malleable code being explicit.
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1 Introduction

Non-malleability is a cryptographic notion [DDN91] which requires that an encoding (encryption,
commitment etc.) of a message cannot be used to create a valid encoding of a “related” message
by a (computationally) crippled adversary. Non-malleable codes [DPW10] is a special case of this
idea: here, the encoding is in the form of a single string (rather than an interactive protocol), but
the attacker is heavily crippled in that the tampering function it can apply on a codeword must
belong to very simple classes (e.g., bit-wise functions). Since the class of tampering functions is
simple, one can hope to prove the non-malleability of a code without relying on any computational
assumptions.

Nevertheless, it has been a challenge to obtain explicit constructions of non-malleable codes for
expressive families of attacks. Prior explicit constructions of non-malleable codes rely on the “com-
partmentalized” structure of the tampering function, i.e. the codeword is partitioned into a priori
fixed blocks and each block can only be tampered independently. The prominent examples of this
model are the family of bit-wise independent tampering functions and the split-state model.

In this work, we seek to build explicit non-malleable codes (with efficient encoding and decoding
algorithms) for certain non-compartmentalized tampering functions. In particular, we consider bit-
permutation attacks composed with arbitrary bit-wise functions.1 The motivation for choosing this
class of attacks comes from the following intriguing question:

Can non-malleable string-commitments be “entirely based” on non-malleable bit-commitments?

To formalize this problem, we may consider an idealized model of bit commitments using physical
tokens: to commit a bit to Bob, Alice can create a small physical token which has the bit “locked”
inside (and later, she can send him a “key” to open the token). This completely hides the bit from
Bob until Alice reveals it to him; on the other hand, Alice cannot change the bit inside the token
once she has sent it to Bob. Further, this is a non-malleable bit commitment scheme, in that if Bob
plays a man-in-the-middle adversary, and wants to send a commitment to Carol, he can can only
send the token from Alice as it is, or create a new token himself, independent of the bit committed
to by Alice.

Now, we ask whether, in this model, one can make non-malleable string commitments (relying on no
computational assumptions). This is a question about non-malleable codes in disguise! Indeed, if we
required the commitment protocol to involve just a single round of sending a fixed number of tokens,
then a commitment protocol is nothing but a non-malleable encoding of a string into bits, and the
class of tampering functions we need to protect against is that of bit-level permutations and bit-wise
set/reset. Though we presented this string commitment scheme in an idealized setting involving
tokens, it can be translated to a reduction of non-malleable string commitment to CCA-secure bit
commitment (as defined in [CLP10]).

1An earlier (unpublished) version of this work [AGM+14] considered a restricted class of bit-wise functions, along
with bit-permutations. Specifically, it did not allow the bit-wise functions to be constants (i.e., to set a bit to a fixed
value), but required that there is at least a constant probability that the output is 0 and that it is 1, if the input
is, say, uniform. Such a code is not sufficient to achieve the following commitment result. The code we build in this
paper does handle all bit-wise functions (we note that to handle all randomized bit-wise functions, it is enough to
handle the four deterministic functions from {0, 1} to {0, 1}).
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As mentioned above, the non-malleable codes we build can withstand a slightly larger class of
tampering attacks, which corresponds to the ability of the adversary to apply any set of functions
from {0, 1} to {0, 1} to the bits stored in the tokens (i.e., set, reset, flip or keep), before applying
the permutation attack. (As such, in the above application, we do not actually require the bit
commitment scheme to be CCA secure.)

This application also brings out an important aspect of non-malleable codes: whether they are
explicit or not. While there indeed is an efficient randomized construction of non-malleable codes
that can resist permutations [FMVW14], it will not be suitable in this case, because neither the
sender nor the receiver in a commitment scheme can be trusted to pick the code honestly (Bob
could play either role), and non-malleable codes are not guaranteed to stay non-malleable if the
description of the code itself can be tampered with.

Construction sketch. The focus of our construction is in being able to obtain a clean analysis
rather than the best efficiency. Indeed, in on-going work we consider a more efficient construction
that builds on the current construction (albeit with a more complex analysis). Our construction
consists of four steps, that are sketched below. We present a more detailed overview and further
motivation behind these steps in Section 1.3.

◦ We start with a large-alphabet randomized encoding which has a large enough distance and whose
positions are t-wise independent for a large enough t (e.g., a “packed secret-sharing scheme” based
on the Reed-Solomon code suffices), and make it resistant to permutations by incorporating into
each character its position value; i.e., the character at the ith position in a codeword xi is re-encoded
as 〈i, xi〉, and allowed to occur at any position in the new codeword.

◦ The above code uses a large alphabet. It is concatenated with a binary inner code that is also
resistant to permutations: each character in the outer code’s alphabet is mapped to a positive integer
(in a certain range) and is encoded by a block of bits whose weight (number of positions with a 1)
equals this integer. Note that a permutation may move bits across the different blocks. To resist such
attacks, we keep the bits within each block randomly permuted, and also, ensure that a good fraction
of the weights do not correspond to a valid block (achieved, for instance, by requiring that the the
weight of each block is a multiple of 32 ), so that blindly mixing together bits from different blocks
has some probability of creating an invalid block. A careful combinatorial argument can be used to
show that, despite dependencies among the blocks caused by a permutation attack, the probability
of having all attacked blocks remaining valid decreases multiplicatively with the number of blocks
being attacked thus. This, combined with the fact that the outer code has a large distance, ensures
that the probability of creating a different valid codeword by this attack is negligible. However,
we need to ensure not only that the attack has negligible chance of modifying one codeword into a
different valid codeword, but also that the probability of creating an invalid codeword is (almost)
independent of the actual message. Roughly, this is based on the large independence of the outer
code.

◦ The resulting code is not necessarily resistant to attacks which can set/reset several bits. Towards
achieving resistance to such attacks as well, we consider an intermediate 2-phase attack family: here
the adversary can set/reset bits at random positions, learn which positions were subjected to this

2In our actual analysis, we also allow the attacker to flip any subset of bits. This prevents us from having valid
weights to be 0 modulo 2, as flipping an even number of positions preserves this parity.
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attack, and then specify a permutation attack.3 To resist such attacks, we encode each bit in the
above codeword into a bundle, using an additive secret-sharing. Then, if one or more bits in a
bundle are set/reset, all the other bits in the bundle turn uniformly random. Hence, unless the
adversary chooses to set/reset a very large number of positions (in which case almost every bundle
is touched, and all information about the original message is lost), for every bit which has been
set/reset, there will be several that are uniformly random. Now, even though the adversary can
apply a permutation to rearrange these random bits (into as few bundles as possible), to ensure
that there are only a few bundles with a random bit, the adversary is forced to set/reset at most a
few bundles’ worth of bits. We note that our actual analysis follows a somewhat different argument,
but fits the above intuition.

◦ Finally, the above code is modified as follows: a random permutation over the bits of the code is
applied to a codeword; the permutation itself is encoded using a code of large distance, and appended
to the above (permuted) codeword. Then it can be shown that a full-fledged attack (involving
arbitrary set/reset and permutations) on such a codeword translates to a 2-phase attack of the
above kind. Note that we do not rely on the permutation itself to be encoded in a non-malleable
fashion. Indeed, the adversary can be allowed to learn and modify the encoded permutation after it
has committed to the set/reset part of its attack on the rest of the codeword; in the 2-phase attack,
this is modeled by the fact that the adversary can learn which positions in the codeword were set
and reset, before deciding on the permutation attack.

1.1 Prior Work

Cramer et al. [CDF+08] introduced the notion of arithmetic manipulation detection codes, which
is a special case of non-malleable codes; AMD codes with optimal parameters have been recently
provided by [CPX14]. Dziembowski et al. motivated and formalized the more general notion of
non-malleable codes in [DPW10]. They showed existence of a constant rate non-malleable code
against the class of all bit-wise independent tampering functions. Existence of rate 1 non-malleable
codes against various classes of tampering functions is known. For example, existence of such codes
with rate (1−α) was shown against any tampering function family of size 22αn ; but this scheme has
inefficient encoding and decoding [CG14a]. For tampering functions of size 2poly(n), rate 1 codes
(with efficient encoding and decoding) exist with overwhelming probability [FMVW14].

On the other hand, explicit constructions of non-malleable codes have remained elusive, except for
some well structured tampering function classes. Recently, an explicit rate 1 code for the class
of bit-wise independent tampering function was proposed by [CG14b]. Note that a tampering
function in this class tampers each bit independently. For a more general compartmentalized model
of tampering, in which the codeword is partitioned into separate blocks and each block can be
tampered arbitrarily but independently, an encoding scheme was proposed in [CKM11]. In the most
general compartmentalized model of tampering, where there are only two compartments (known as
the split-state model), an explicit encoding scheme for bits was proposed by [DKO13]. Recently, in
a break-through result, an explicit scheme (of rate 0) was proposed for arbitrary length messages
by [ADL14]. A constant rate construction for 10 states was provided in [CZ14].

3In the actual analysis, we need to consider a slightly stronger 2-phase attack, in which the adversary can also
learn the values of the bits in a small number of positions before specifying a permutation (and flipping a subset of
bits).
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Note that all known explicit construction of codes against particular tampering function classes
heavily relies on the compartmentalized nature of the family of tampering functions, i.e. the code-
word can be a priori partitioned into pieces such that the tampering function is applied indepen-
dently to each partition. For example, bit-wise independent tampering functions act on each bit
independently; and in the split-state model, the tampering on each state is independent. The class
of functions being studied in this paper is one of the most natural classes of tampering functions
without the aforementioned “compartmentalization” property.

Codes under computational assumptions. The idea of improving the rate of error-correcting
codes by considering computationally limited channels stems from the work of Lipton [Lip94].
Restricting the channels to be computationally efficient allows one to use cryptographic assumptions,
for example, Micali et. al. [MPSW05] show how to combine digital signatures with list-decodable
codes to go beyond the classical error correction bound for unique decoding. Further constructions
in various settings were provided in [OPS07, HO08, GS10, CKO14]. In the setting of non-malleable
codes as well, constructions based on computational assumptions have been explored, e.g., in [LL12,
FMNV14].

Non-malleable commitments. There is extensive literature on non-malleable commitments
starting from the work of Dolev, Dwork and Naor [DDN91] leading to recent constant-round con-
structions based on one-way functions [Goy11, LP11, GLOV12]. Our application of nonmalleable
codes to non-malleable commitments is similar in spirit to the work of Meyers and Shelat [MS09]
on the completeness of bit encryption.

Concurrently, and independently of our work, Chandran et al. [CGM+14] relate non-malleable com-
mitments to a new notion of non-malleable codes, called blockwise non-malleable codes. Blockwise
NM-codes are a generalization of the split-state model where the adversary tampers with one state
at a time. Chandran et al. show that block non-malleable codes with t blocks imply non-malleable
commitments of t− 1 rounds. In contrast our work is in the standard setting where there is a single
state, and shows that non-malleable codes boost the security of non-malleable commitments (from
bits to strings or partial to full).

Application of non-malleable codes to cryptographic constructions. AMD codes have
found several applications in information-theoretic cryptography, for secret-sharing, randomness
extraction and secure multi-party computation (e.g., [BT07, CDF+08, GIM+10, GIP+14]). How-
ever, the more general notion of non-malleable codes have had few other applications, outside of
the direct application to protecting the contents of device memories against tampering attacks.

Our application to non-malleable commitment is one of the few instances where non-malleable codes
have found an application in a natural cryptographic problem that is not information-theoretic in
nature. A similar application appears in the recent independent work of Coretti et al. [CMTV14].
There, a variant of (replayable) CCA-secure string encryption is constructed from CCA-secure bit
encryption. While similar in spirit, an important difference between our approach and theirs is
that the non-malleable code used in [CMTV14] is still compartmentalized, and as a result, their
construction requires the use of a separate cryptographic system (a separate public-key) for each
compartment — i.e., each bit position — of the string. In contrast, our non-malleable code is not
compartmentalized; this enables us to obtain non-malleable commitment (which does not have the
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notion of a public-key) with no a priori bound on the length of the string.4 Another difference is
that since [CMTV14] aims to achieve CCA secure encryption (as opposed to non-malleable encryp-
tion), they consider a “continuous” version of non-malleability for codes, but settle for a variant of
(replayable) CCA security in which the decryption key self-destructs the first time it is used on an
invalid ciphertext. Since our focus is on non-malleability (in which the adversary can output only
one set of commitments, or in the case of non-malleable encryption, make only one parallel query
to the decryption oracle), we do not encounter these issues, and our solution does not involve any
self-destruction.

1.2 Our Contribution

The class of tampering functions which permutes the bits of the codeword is represented by SN .
The set of all tampering functions which allow the adversary to tamper a bit by passing it through
a channel is denoted by F{0,1}; this includes forwarding a bit unchanged, toggling it, setting it to 1,
or resetting it to 0. The class of tampering functions which allows the adversary to do apply both:
i.e., tamper bits followed by permuting them is represented by: F{0,1} ◦ SN . Our main result is a
non-malleable code against this class of tampering functions.

Theorem 1 (Non-malleable Code). There exists an explicit and efficient non-malleable code for
multi-bit messages where the class of tampering functions permits the adversary to forward, toggle,
set to 0 or set to 1 each bit of the codeword, followed by permuting the (altered) codeword.

Our main non-malleable encoding which is robust to F{0,1} ◦ SN relies on a basic encoding scheme.
The basic encoding scheme is robust to a weaker class of tampering functions, but it provides slightly
stronger security guarantees. More specifically, the basic scheme protects only against F̃{0,1} ◦ SN
class, where F̃{0,1} is the class of functions which either forward a bit unchanged or toggle it but
do not set or reset it. The stronger security guarantee given by basic scheme is that it allows the
adversary to adaptively choose the tampering function F̃{0,1} ◦ SN . The adversary first specifies n0

and n1, i.e. number of indices it wants to reset to 0 and number of indices it wants to set to 1. It is
provided a random subset of indices of size n0 which is all reset to 0; and a (disjoint) random subset
of indices of size n1 which is all set to 1. Given this information, the adversary can adaptively
choose the tampering function in F̃{0,1} ◦ SN . Even given this additional power, the adversary
cannot tamper the codeword to produce related messages (except with negligible probability).

The security definition achieved by our basic construction is presented in Figure 7. The encoding
scheme is provided in Figure 8 and our result can be distilled in the following theorem.

Theorem 2 (2-Phase Non-malleability). For all L, there exists encoding and decoding scheme Enc
and Dec, respectively, such that, for all n0, n1, and for all np 6 log9 κ, there exists D such that, for
all f ∈ F̃{0,1} ◦ SN and mapping map, the expected simulation error in Figure 7 is negl(κ).

Contribution to non-malleable commitments. As noted earlier, we consider the question of
constructing simple string non-malleable commitments from bit non-malleable commitments. For

4Our non-malleable code can also be used to obtain a variant of non-malleable encryption [BS99, PSV06] — which
refers to a relaxation of CCA2 secure encryption wherein the adversary can make only one parallel set of decryption
queries — for strings of a priori unbounded length, using CCA2 bit encryptions. The variant we obtain is analogous
to Replayable CCA (RCCA) security [CKN03].
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example, if we simply encode the given string and commit to each of its bit using the given non-
malleable bit-commitment, does it result in a secure non-malleable string commitment schemes?
What are the conditions we need on the underlying bit commitment scheme?

For this question, we are interested in a really simple reduction, as opposed to, e.g. “merely” black-
box reductions. Indeed, if we ask for a merely black-box construction we can invoke known (but
complex) reductions: a bit commitment scheme (even malleable) implies a one-way function, which
in turn imply string commitments in a black box way [GLOV12]. Such reductions are not, what we
call totally black-box. For example, if we switch to a model where we are given the bit-commitment
scheme as a functionality which can be executed only a bounded number of times, such as a one-time
program [GKR08] or a hardware token [Kat07], then we do not necessarily have standard one-way
functions. Therefore, the reduction should avoid assuming additional complexity assumptions such
as OWFs or signatures. In fact, for this reason, the reduction should also not rely on using tags and
“tag-based” non-malleability [PR05b]. It should work with standard non-tag-based non-malleable
bit-commitments.

Our reduction actually satisfies these conditions provided that we start with a (non-tag-based)
CCA-secure bit-commitment scheme [CLP10]. We show that (perhaps the simplest construction
where) if we just commit to each bit of a random codeword of the given string works! This gives us
the following theorem:

Theorem 3 (CCA Bit-commitment to Non-malleable String Commitment). There exists a simple
and efficient black-box compiler which, when provided with:

◦ A non-malleable encoding robust to F{0,1} ◦ SN , and

◦ A r-round (possibly non-tag-based) CCA-secure bit-commitment scheme

yields a r-round non-malleable string-commitment scheme.

We note that the theorem statement is unconditional: it does not assume any computational
assumption beyond the given non-malleable bit-commitment. In particular, the theorem holds
even if the bit-commitment is implemented in a model which does not necessarily imply OWFs.
Furthermore, in Section 6, we prove that in fact, the theorem holds even if the bit-commitment is
not CCA-secure but only satisfies a much weaker notion which we call bounded-parallel security.

Finally, we show the power of our non-malleable codes by demonstrating that even if we start with
a seemingly much weaker scheme which allows partial malleability, e.g., it may allow the MIM to
toggle the committed bit, our non-malleable codes can “boost” it to full-fledged malleability. See
Section 6 for details.

1.3 Technical Overview

We provide a high level overview of our results and main technical highlights.
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1.3.1 Basic Encoding Scheme

Our main non-malleable code construction relies crucially on a basic encoding scheme. The basic
encoding scheme only guarantees non-malleability against a weaker class of functions than our
target tampering function class F{0,1} ◦ SN ; but it provides stronger security guarantees which is
reminiscent of adaptive choice of the tampering function based on partial leakage on the message
encoding.

Our basic encoding scheme protects against permutation and toggling of bits, i.e. F̃{0, 1} ◦ SN ; as
well as set/reset of random positions in the codewords. That is, the adversary specifies a message
s to be encoded and specifies how many positions it wants to reset to 0 (say, n0) and how many
positions it wants to set to 1 (say, n1). Following which, these subsets are chosen uniformly at
random and provided to the adversary. Suppose I0 and I1 corresponding to the indices which are
reset and set, respectively. The adversary chooses the tampering function f ∈ F̃{0,1} ◦ SN which
permutes the bits followed by toggling some of them. The security requirement dictates that, over
the random choice of I0 and I1, the adversary should not be able to produce messages related to
the original message s, except with negligible probability.

We provide a short intuitive summary of the experiment in Figure 1. The experiment is formally
provided in Figure 7. In the actual experiment, the adversary also gets to see a few bits of encoding
itself. This turns out to be completely innocuous and, hence, is excluded in this overview.

Expt:

1. The adversary provides n0 and n1; and message s.

2. Let I be a random subset of [N ] of size n0 + n1. Randomly partition I into I0 and I1 with
size n0 and n1, respectively. Provide I0 and I1 to the adversary.

3. The adversary provides tampering function f .

4. Encode s to obtain code c. In the code c, reset each index in I0 and set all indices in I1

to get c′. Apply tampering function f to c′ and obtain tampered codeword c̃. Decode c̃ to
obtain s̃.

Security requirement: Either s̃ = s or s̃ is unrelated to s.

Figure 1: Intuitive 2-Phase Non-Malleability Experiment. Formal definition in Figure 7.

Construction Intuition. We systematically develop our basic encoding scheme and provide a
high level overview of its security proof for intuitive experiment in Figure 1. We begin with an
elementary unary encoding scheme, i.e. where a number n ∈ N is encoded with 1n (suitably padded
with 0s and randomized). This scheme resists permutation attacks but this scheme is inefficient
(because it has exponentially large output).

Next logical step is to explore concatenation codes based constructions, where an outer code
(say Reed-Solomon encoding with share-packing techniques) is concatenated with a suitable non-
malleable inner code. It is tempting to attempt to de-randomize the existential results of [FMVW14]
to obtain these inner encoding schemes (because Reed-Solomon codes use fields of logarithmic al-
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phabet size). This might have worked if the adversary was restricted to use permutations which
preserve the block boundaries for Reed-Solomon codes. This is certainly not the case. If we con-
sider the class of all permutations, the size of the tampering family is too large even for small (i.e.,
constant size) fields. Hence, such a de-randomization is not feasible for our family of tampering
functions.

We amalgamate the two techniques mentioned above, i.e. concatenation of Reed-Solomon encodings
with (a slight variation of) the unary encoding, to obtain our first candidate construction. Although,
it does not fully resolve our problem; but we include this because some of its salient features are
useful in our final basic encoding.

The first encoding scheme is the following. Encode the message s using Reed-Solomon encoding
(with good distance and privacy) using share packing techniques. Suppose the outer codewords is
g1, . . . , gn. Now, encode each xi = 〈i, gi〉 with a suitable unary scheme. The encoding of xi is the
characteristic vector of a random subset of [m] with weight 2c+ 2xi, where c is a suitable constant
and m is sufficiently large.

Note that this encoding scheme is safe against permutations which preserve the block boundaries
(because xi has the index i encoded within it).

Example 1. Now consider a tampering function f which swaps one bit from encoding of 〈1, g1〉 and
〈2, g2〉; and does not tamper any other positions. Due to the high distance of the outer encoding
scheme, either the tampered code is invalid or it is identical to the original codeword. Since, the
outer code also has very high privacy, the probability that the set of first two tampered outer
codewords is identical to the set of first two initial outer codewords is independent of the message
s.

Example 2. Now consider a tampering function f which creates each inner codeword by accumulating
bits from every inner codeword of the input code. In this case, we would like to use the fact that
each bit in the inner code is unpredictable, i.e. it has constant probability of being 0 or 1. Copying
unpredictable bits across block boundaries should not yield valid inner codewords, because mod 2
is highly sensitive. But this turns out to be subtle because these bits are not completely independent;
but are correlated. We show that the intuition is partially correct (Lemma 8). By careful analysis we
exhibit that the parities of at least half of the inner codewords of the tampered code are independent
(see Lemma 4 and this bound is optimal). This suffices to show that all inner codewords in the
tampered code are valid only with negligible probability.

Example 3. Consider any of the examples mentioned above and a tampering function which toggles
an even number of bits in an inner codeword. Such a tampering function would maintain the parity
0 mod 2. It turns out that, instead of using an unary scheme which encodes with 0 mod 2 weight
strings, if we use strings of weight 0 mod 3, our encoding scheme is robust to permutation and bit
toggles as well. In this case, we can show that if a tampering function toggles non-zero number of
bits in any inner codeword, then its parity mod 3 is constant unpredictable.

Example 4. Next, we explore whether this encoding scheme is also non-malleable against an
adversary who can set/reset random positions followed by permuting the remaining bits. We
present the main bottleneck tampering function. Suppose we have a tampering function which
uses n0 + n1 = nm −m. After a random set of indices is set/reset, we choose our permutation f
as follows. It moves around the bits which were set/reset to explicitly write down the first (n− 1)
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inner codewords. Then, it copies remaining bits from the input code to the final inner codeword.

The problem with this example is that the tampered code can either be invalid or it is valid and is
identical to what is defined by the explicitly written down inner codewords (because the tampering
function set/reset nearly the whole codeword). But the probability of the final inner codeword of
the tampered code being consistent is not independent of the message s (because it is obtained by
copying bits from a large number of inner codewords of the input code).

So, we employ the following trick. We additively share each bit of the inner encoding scheme. Now
the bits being copied are uniformly random unless f can choose all bits which specify the additive
secret share of one bit. By suitably choosing parameters we can make the probability of this event
negligibly small.

Our proof shows that this encoding scheme remains non-malleable against the attacks described in
the first three examples. There is a variant of example 2 (say, Example 2′) which creates a technical
bottleneck for this particular encoding scheme. The tampering function preserves block boundaries
of the outer codeword; but permutes entries within each inner encoding. We want to claim that if
such a permutation mixes the additive shares of different bits, then the inner codeword becomes
invalid with constant probability. This is shown in Lemma 13.

Figure 8 formally explains our basic-encoding scheme and its security proof is included in Section 4
and Appendix C. The case analysis proceeds slightly differently from presentation above; but it is
instructive to have these five working examples while understanding the proof.

1.3.2 Main Non-malleable Code Construction

Our main non-malleable coding scheme resistant against the class of attacks F{0,1} ◦ SN is built on
top of the basic coding scheme. In order to encode a message s, we choose a random permutation
σ. The codeword consists of two parts: the first part is the basic encoding of s with σ applied on
it, and the second part is a Reed-Solomon encoding of σ with high distance. Intuitively, applying
a random permutation ensures that setting/resetting bits in the main codeword results in random
positions begin modified in the basic codeword, exactly the kind of attack basic code can handle.

In order to show that the main coding scheme is resistant against a tampering function f ∈ F{0,1} ◦
SN , we prove that we can construct an attack on the 2-phase non-malleability of basic coding scheme
such that the distribution of modified message s̃ in the main coding scheme is statistically close to
that in the basic coding scheme. This implies that if s̃ is independent of s in the latter case, the
same holds in the former case as well.

At a high level the proof proceeds as follows. First of all, if a large number of bits in the left part
of the main codeword is moved to the right, we claim that the resulting right codeword is invalid
with high probability. This follows from the fact that the left codeword has a large number of bits
that are distributed uniformly at random and the right codeword has high distance. Therefore, we
assume that only a small number of bits move across the two parts of the codeword.

Given a tampering function f , we can find out how many bits are being set to 0 and 1 in the left part
of the main codeword, and at what positions. Let these numbers be n0 and n1, and the positions
be Î0 and Î1. We can imagine that a basic codeword is created and a random set of n0 indices
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are set to 0 and another random set of indices are set to 1; call these sets I0 and I1 respectively.
Now, given I0 and I1, we can choose a permutation σ at random such that σ maps positions in Ib
to Îb, for b ∈ {0, 1}. Therefore, effectively, both the left part of the main codeword and the basic
codeword are being modified in the same way.

The main coding scheme’s encoding and decoding procedures are more complex though. If tamper-
ing leads to an invalid right codeword, we would like to modify the basic codeword in such a way
that decoding fails. Towards this, we must first see how f modifies the right codeword. Observe
that some bits from the left codeword may be moved to the right, but their number is small. We
would like to ‘see’ those bits in order to make sure the right codeword is modified in a consistent
way. This requires the 2-phase non-malleability experiment to reveal a small part of the codeword,
and allow the adversary to base its attack on that (which it does).

If we find that the tampered right codeword is valid, we could decode it to obtain a permutation
σ̃, which may be different from σ. The decoding procedure of main coding scheme would apply
the inverse of σ̃ to the left part of the codeword, and then the run the decoding algorithm of the
basic coding scheme, to recover a message s̃. Our proof shows how one can construct a tampering
function in the smaller class F̃{0,1} ◦Sm (where m denotes the size of the basic codeword) such that
the decoding of the basic codeword also produces s̃.

1.3.3 Non-malleable String Commitments from CCA-secure Bit Commitments

We now present a brief overview of the main ideas used in proving Theorem 3. Recall that we need
to show that given a CCA-secure bit-commitment that is not necessarily tag-based, committing to
each bit of the codeword individually, results in a non-malleable string commitment scheme.

The proof that this scheme works is not straightforward because the adversary can simply permute
the commitment protocols and succeed in committing a related codeword. Although the codewords
are immune to permutations, and become invalid, this holds only when the permutations do not
depend on the codeword. In this case, the adversary selects a permutations after seeing the codeword
(although in committed form). This prevents us from directly applying the non-malleability of our
codeword.

To resolve this issue, we make use of the fact that the scheme is CCA-secure. In CCA-secure bit
commitments, roughly speaking, the hiding of the commitments holds even in the presence of a
decommitment oracle O which reruns the values committed to by the adversary to O provided that
they are not a copy of the challenge commitment.

At a high level, given such an O, we use it to extract the permutation applied by the adversary on
the input commitment. Due to the hiding of commitment, we can be sure that the distribution of
such permutations is computationally independent of the committed bit. We then rely on the fact
that a CCA-secure bit commitment is actually concurrent non-malleable [PR05a] and therefore the
permutations are computationally independent of the entire string committed to on left. This defines
a distribution over permutations, from which we can sample given O, even before the challenge
commitment is given. Thus we the adversary succeeds in committing a related string, it means that
a permutations from the distribution so defined succeeds in mauling our codewords, which is not
possible.
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The actual argument works with a general adversary (instead of permutations), and extracts a
tampering function f ∈ F{0,1} ◦ SN . Also, we do not appeal to the concurrent non-malleability of
CCA-secure scheme in our proof, and give a direct self-contained proof.

We remark that the reduction is non-trivial only because we are working in the standard non-tag-
based setting. Otherwise, in case of tags, one can simply sign the entire transcript using the tags
and obtain a NM string commitment. In case of bit commitments, tag-based non-malleability is a
stronger requirement than the standard (non-tag-based) non-malleability.5

As noted earlier, observe that to extract the tampering function f , our reduction does not require
“full fledged” CCA security. The reduction can make all of its commitments to the oracle in parallel
and there is an a-priori known bound on how many such bit-commitments are sent to O (all in
parallel). Constructing Bit-commitment schemes in this model is significantly easier than the full-
fledged concurrency: e.g., constant round constructions under standard assumptions are possible in
this model [Pas04, GLP+12] whereas full-fledged CCA requires at least Õ(log n) rounds [CLP10,
GLP+12] or non-standard assumptions [PPV08]. We call this the bounded-parallel security and our
reduction works for this weaker notion as well.

2 Preliminaries

We denote the set {1, . . . , n} by [n]. If a ∈ [b− ε, b+ ε], then we represent it as: a = b± ε. For a set

S, the set of all k-subsets of S is represented by
(
S
k

)
; and the set of all subsets of S is represented

by 2S . For a function f , if f(i) = j, then we represent it by i 7→f j.

Probability distributions are represented by bold capital alphabets, for example X. The distribution
US represents a uniform distribution over the set S. Given a distribution X, x ∼ X represents that
x is sampled according to the distribution X. And, for a set S, x $← S is equivalent to x ∼ US .

For a joint variable X = (X1, . . . ,Xn) and S = {i1, . . . , i|S|} ⊆ [n], we define the random variable
XS = (Xi1 , . . . ,Xi|S|). We use a similar notation for vectors as well, for example xS represents
the vector restricted to indices in the set S. For a function f(·), the random variable Y = f(X)
represents the following distribution: Sample x ∼ X; and output f(x). Further, f(x[n]) represents
the vector f(x1) . . . f(xn). For example, i+ [n] = {i+ 1, . . . , i+ n}.

The statistical distance between two distributions S and T over a finite sample space I is defined
as:

SD (S,T) :=
1

2

∑
i∈I

∣∣∣∣ Pr
x∼S

[x = i]− Pr
x∼T

[x = i]

∣∣∣∣
For a pair z = 〈x, y〉, define first(z) := x and second(z) := y.

5Pass and Rosen [PR05b] argue that for string commitments, the two notions are equivalent since one can simply
commit the tag as part of the string, if there are no tags. Since we only have bit commitments, this does not work.
The tag-based approach also requires the additional assumption that it is possible sign the transcript. This may be
undesirable in models such as hardware tokens.
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2.1 Classes of Tampering Functions

We shall consider the following set of tampering functions.

1. Family of Permutations. Let SN denote the set of all permutations π : [N ] → [N ]. Given
an input codeword x[N ] ∈ {0, 1}N , tampering with function π ∈ SN yields the following
codeword: xπ−1(1) . . . xπ−1(N) =: xπ−1([N ]).

2. Family of Fundamental Channels. The set of fundamental channels over {0, 1}, represented as
F{0,1}, contains the following binary channels f : a) f(x) = x, b) f(x) = 1⊕x, c) f(x) = 0, or
d) f(x) = 1. These channels are, respectively, called forward, toggle, reset and set functions.

3. Family of Sensitive Channels. The set of sensitive functions F̃{0,1} contains only forward and
toggle channels. In other words, tampering involves XOR-ing an N -bit input string with a
fixed N -bit string.

We can define more complex tampering function classes by composition of these function classes.
For example, composition of SN with F{0,1} yields the following class of tampering functions. For
any π ∈ SN and f1, . . . , fN ∈ F{0,1}, it transforms a codeword x[N ] into:

fπ−1(1)(xπ−1(1)) . . . fπ−1(N)(xπ−1(N)) =: π(f1,...,N (x[N ]))

This class is represented by: F{0,1} ◦ SN . Our main result provides an efficient non-malleable code
against the tampering class F{0,1} ◦ SN .

ExptEnc,Dec,F ,{Df}f∈F (1κ):
Let Enc : {0, 1}L → C ⊆ {0, 1}N be an encoding scheme (possibly randomized); and Dec :
{0, 1}N → {0, 1}L ∪ {⊥} be its corresponding decoding scheme. Let F be the class of permissible
tampering functions. Any f ∈ F maps elements in C to elements in {0, 1}N . The distribution Df
is over the sample space {0, 1}N ∪ {same∗,⊥}, for every f ∈ F .

For f ∈ F and s ∈ {0, 1}L, define Tamper
(s)
f as the following random variable over the sample

space {0, 1}L ∪ {⊥}: Let c← Enc(s; r), for random r. Let c̃ := f(c). Output Dec(c̃).

For f ∈ F and s ∈ {0, 1}L, define the random variable Sim
(s)
Df as follows: Sample a ∼ Df . If

a = same∗, then output s; otherwise output a.

The simulation error (or, advantage) is defined to be:

advEnc,Dec,F ,{Df}f∈F := max
s∈{0,1}L
f∈F

SD
(

Tamper
(s)
f , Sim

(s)
Df

)

Figure 2: Non-Malleability Experiment
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3 Building Blocks

In this section, we define encoding schemes (equivalently, secret sharing schemes) relevant to our
construction.

Definition 1 (Secret Sharing Scheme). Consider alphabet sets Λ0,Λ1, . . . ,Λm and a joint distribu-
tion S = (X0,X1, . . . ,Xm) over the space Λ0×Λ1×· · ·×Λm. The random variable X0 represents the
secret being shared and Xi for i ∈ [m] represents the i-th share. For s ∈ Λ0 and set T = {i1, . . . , i`},
the conditional distribution (XT |X0 = s) is defined as the conditional distribution of (Xi1 , . . . ,Xi`)
under S when X0 = s. We define the following properties of the secret sharing schemes.

1. t-independence: For any s ∈ Λ0, T ⊆ [n] such that |T | 6 t, we have

SD ((XT |X0 = s),UΛT ) = 0

2. t-privacy: For any s1, s2 ∈ Λ0, T ⊆ [n] such that |T | 6 t, we have

SD ((XT |X0 = s1), (XT |X0 = s2)) = 0

3. r-reconstruction: For any s1, s2 ∈ Λ0, T ⊆ [n] such that |T | > r, we have

SD ((XT |X0 = s1), (XT |X0 = s2)) = 1

Consider a secret sharing scheme with r-reconstruction. Then any two different secrets s, s′ have at
least m− r + 1 different shares. Hence, we define the distance for this secret sharing scheme to be
m− r + 1.

Secret Sharing Schemes. Below, we describe some secret sharing schemes which are relevant
to our construction.

1. Basic Secret Sharing scheme using Reed-Solomon codes X(RS,n,k,`,F). This is a generalization
of Massey secret sharing scheme [Mas95] and is commonly referred to as the “share-packing
technique” for Reed-Solomon codes. This is an [n, k] code over a field F, such that |F| > n+ `.
Let {f−`, . . . , f−1, f1, . . . , fn} ⊆ F. The secret sharing of message (s1, . . . , s`) ∈ F` is done
by choosing a random polynomial p(·) of degree < k conditioned on (p(f−1), . . . , p(f−`)) =
(s1, . . . , s`). The shares {y1, . . . , yn} are evaluations of p(·) at {f1, . . . , fn} respectively. The
formal description of the secret sharing scheme is provided in Figure 3. The field F will
generally have characteristic 2 and this scheme will be used in our main construction presented
in Section 5.

The encoding has (k− `)-privacy (in fact, (k− `) independence) and distance d = n− k+ 1.

2. Secret Sharing scheme using Reed-Solomon codes X(aRS,n,k,`,F). Consider any [n + `, k] code
over finite field F such that |F| > n + `. Given a message s ∈ F`, the secret sharing is
performed as follows: Sample a random Reed-Solomon code conditioned on the fact that its
first ` elements are identical to the message s. Let y1, . . . , yn be the remaining elements in the
codeword. The shares are defined to be 〈1, y1〉, . . . , 〈n, yn〉. It is known that efficient encoding
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Secret Sharing Scheme X(RS,n,k,`,F):

(a) Sample space: Λ0 = F`, Λ1 = · · · = Λn = F.

(b) Conditions: |F| > n+ ` and n > k > `.

(c) Joint Distribution (X0, . . . ,Xn) is defined via the following sampling procedure: We assume
that {f−`, . . . , f−1, f1, . . . , fn} ⊆ F.

i. Pick a random polynomial: p(x) =
∑k−1

i=0 aix
i, where ai

$← F and i ∈ {0} ∪ [k − 1].

ii. Define x0 = (p(f−1), . . . , p(f−`)) ∈ F`.
iii. Define xi = p(fi), for i ∈ [n].

iv. Output (x0, x[n]).

Efficient Encoding and Decoding. Efficient sampling property for X(RS,n,k,`,F) follows from
the efficiency of Lagrange interpolation.

Figure 3: Basic Reed-Solomon based Secret Sharing.

Secret Sharing Scheme X(aRS,n,k,`,F):

(a) Sample space: Λ0 = F`, Λ1 = · · · = Λn = [n]× F.

(b) Conditions: |F| > n+ ` and n > k > `.

(c) Joint Distribution (X0, . . . ,Xn) is defined via the following sampling procedure: We assume
that {f−`, . . . , f−1, f1, . . . , fn} ⊆ F.

i. Pick a random polynomial: p(x) =
∑k−1

i=0 aix
i, where ai

$← F and i ∈ {0} ∪ [k − 1].

ii. Define x0 = (p(f−1), . . . , p(f−`)) ∈ F`.
iii. Define xi = 〈i, p(fi)〉, for i ∈ [n].

iv. Output (x0, x[n]).

Efficient Encoding and Decoding. Efficient sampling property for X(aRS,n,k,`,F) follows from
the efficiency of Lagrange interpolation. In fact, it is also efficient to sample xS ∼ (XS |XT = xT ),
for any S, T ⊆ {0} ∪ [n].

Figure 4: Augmented Reed-Solomon based Secret-Sharing Scheme.
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and decoding exist using Lagrange interpolation. For formal description of this scheme refer
to Figure 4.

The encoding scheme has (k − `)-privacy and distance d = n− k + 1.

3. Balanced unary secret sharing scheme X(unary,m,F,p). Set m := 3p |F |, where F is the message
space. Assume that there exists a bijection map : F → Z|F |. Given a message s ∈ Z|F |, the
secret sharing is performed as follows. Sample a random set S of [m] of weight dm/3e + ps.
The shares are defined to be the characteristic vector of set S. Note that this scheme has
efficient encoding and decoding. For a formal description refer to Figure 5.

For any s ∈ F and any set S used for encoding s, the total weight of the final shares lie in
[m/3, 2m/3]. Hence, the name balanced unary secret sharing scheme.

Secret Sharing Scheme X(unary,m,F,p):

(a) Sample space: Λ0 = Z|F |, Λ1, . . . ,Λm = {0, 1}.

(b) Condition: m = 3p |F |+ 1.

(c) Joint Distribution (X0, . . . ,Xm) is defined via the following sampling procedure: We assume
that there exists a bijection from the set F to Z|F |, say f 7→ map(f).

i. Pick f $← F .

ii. Define x0 = map(f).

iii. Sample x[m]
$←
(

[m]
dm/3e+ px0

)
. Here x[m] is the characteristic vector of the sampled

subset.

iv. Output (x0, x[m]).

Efficient Encoding and Decoding. It is easy to see that there exists efficient encoding and
decoding schemes. In fact, it is also efficient to sample xS ∼ (XS |XT = xT ), for any S, T ⊆
{0} ∪ [m].

Figure 5: Balanced Unary Secret-Sharing Scheme.

4. Additive secret sharing scheme X(add,u,(G,+)). Let (G,+) be a Abelian group. Let y1, . . . , yu
be random elements in G. Define y0 = y1 +· · ·+ yu. We define the secret as y0 and the shares
as y1, . . . , yu. The formal description is provided in Figure 6.

The encoding scheme is (u− 1)-independent and has distance d = 1.

Definition 2 (Concatenation Codes.). Consider two encoding schemes, the outer encoding scheme
X(out) = (X

(out)
0 ,X

(out)
1 , . . . ,X

(out)
n ) over Λ0 × Λ ×· · · × Λ and the inner encoding scheme X(in) =

(X
(in)
0 ,X

(in)
1 , . . . ,X

(in)
m ) over Λ × Λ′ ×· · · × Λ′. The concatenation of the outer code with the inner

code is defined as the joint distribution X(concat) = (X
(concat)
0 ,X

(concat)
1 , . . . ,X

(concat)
nm ) over Λ0×Λ′×

· · ·×Λ′. Given a secret s ∈ Λ0, sample x[nm] ∼ (X
(concat)
[nm] |X(concat)

0 = s) as follows: Sample x
(out)
[n] ∼(

X
(out)
[n]

∣∣∣ X(out)
0 = s

)
. Next, for each i ∈ [n], sample x(i−1)m+[m] ∼

(
X

(in)
[m]

∣∣∣ X(in)
0 = x

(out)
i

)
. Output

x[nm].
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Secret Sharing Scheme X(add,u,(G,+)):

(a) Sample space: Λ0 = G, Λ1, . . . ,Λu = G.

(b) Condition: G is Abelian.

(c) Joint Distribution (X0, . . . ,Xu) is defined via the following sampling procedure:

i. Pick x1, . . . , xu
$←G.

ii. Define x0 =
∑

i∈[u] xi.

Efficient Encoding and Decoding. It is easy to see that there exists efficient encoding and
decoding schemes. In fact, it is also efficient to sample xS ∼ (XS |XT = xT ), for any S, T ⊆
{0} ∪ [u].

Figure 6: Additive Secret-Sharing Scheme.

We represent X(concat) = X(out) ◦X(in) as the concatenation of X(out) with X(in).

Encoding and decoding procedures for concatenation codes are defined naturally using correspond-
ing procedures for inner and outer encoding schemes. Note that the final encoding and decoding
procedures are efficient if the corresponding procedures are efficient for inner and outer schemes.

Moreover, we emphasize that we do not focus on error correcting codes. In particular, if any of
inner or outer decoding procedures fails, we output ⊥ as the decoding of the overall code.

Suppose we have a codeword c[n] over Fn then ci is referred to as the i-th element of the codeword.
Now, consider a concatenation code where each element ci is further encoded using an inner code
over some field (F′)m. The resultant codeword is d[mn] ∈ (F′)mn. The i-th block in d[mn] corresponds
to the encoding of the i-th element of c[n].

For example, we shall consider the following concatenated secret sharing scheme. Let X(in) be con-
catenation of outer code X(unary,m,F,3) and inner code X(add,u,(GF(2),⊕)). Let X(out) be X(aRS,n,k,`,F).
We shall consider the concatenation of X(out) with X(in).

4 Basic Encoding Scheme

Before we present our non-malleable encoding scheme against the class of tampering functions
F{0,1} ◦ SN , we present our basic encoding scheme. This encoding scheme can be interpreted as a
non-malleable code against a weaker class of tampering functions F̃{0,1} ◦ SN but with additional
security properties beyond what non-malleability prescribes. These additional security properties
are summarized via the experiment presented in Figure 7; we refer to this property as “2-Phase Non-
malleability” property. Intuitively, the adversary gets additional information about the codeword
in the first phase before it gets to choose the tampering function in second phase. More precisely,
the 2-Phase experiment is as follows:

1. Adversary sends message s and n0, n1, np ∈ [N ].
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2. The challenger picks an index set I $←
(

[N ]
n0 + n1 + np

)
and randomly partitions I into I0, I1

and Ip of size n0, n1 and np, respectively. It picks c = Enc(s; r), where r is uniformly randomly
chosen. Then it sends (I0, I1, Ip, cIp) to the adversary.

3. Adversary sends a tampering function f ∈ F̃{0,1} ◦ SN .

The security proof of our main construction presented in Section 5 reduces to the 2-phase non-
malleability proof of our basic scheme.

ExptEnc,Dec,n0,n1,np,D(1κ):
Let Enc : {0, 1}L → C ⊆ {0, 1}N be an encoding scheme (possibly randomized); and
Dec : {0, 1}N → {0, 1}L ∪ {⊥} be its corresponding decoding scheme. Let n0, n1, np ∈ [N ]. Let F
be the class of tampering functions. D is a collection of distributions explained below; and map is
a mapping explained below.

For s ∈ {0, 1}L, define Tamper
(s)
map as the following random variable: Pick I $←

(
[N ]

n0 + n1 + np

)
.

Randomly partition I into I0, I1 and Ip of size n0, n1 and np, respectively. Let c = Enc(s; r),
where r is uniformly randomly chosen. Let c′ be defined by the following string: For i ∈ [N ],

c′i =


0, i ∈ I0

1, i ∈ I1

ci, otherwise
.

Let (I0, I1, Ip, cIp) 7→map f be the mapping defined by map, where f ∈ F . Let c̃ = f(c′). Output
Dec(c̃).
Now, define Tamper

(s)
I0,I1,Ip,cIp ,f

as the random variable Tamper
(s)
map conditioned on I0, I1, Ip, cIp

and (I0, I1, Ip, cIp) 7→map f .

D is a collection of distributions indexed by (I0, I1, Ip, cIp , f) and each distribution DI0,I1,Ip,cIp ,f
is over the sample space {0, 1}L ∪ {same∗,⊥}. For any s ∈ {0, 1}L, define the random variable
Sim

(s)
DI0,I1,Ip,cIp ,f

, for (I0, I1, Ip, cIp) 7→map f , as follows: Sample a ∼ DI0,I1,Ip,cIp ,f . If a = same∗,

then output s; otherwise output a.

The simulation error (or, advantage) is defined to be:

advEnc,Dec,n0,n1,np,F ,D := max
s∈{0,1}L

Mapping: map

E
I0,I1
Ip,cIp

[
SD

(
Tamper

(s)
I0,I1,Ip,cIp ,f

,Sim
(s)
DI0,I1,Ip,cIp ,f

)]

Figure 7: 2-Phase Non-Malleability Experiment

Construction. As a high level, our encoding scheme is a concatenation code (see Definition 2)
which does the following: Given a message s, it samples an outer code according to augmented Reed-
Solomon code based secret sharing (see Figure 4). Then for each outer code element, it samples
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an inner codeword which itself is a concatenation code using balanced unary secret sharing scheme
(see Figure 5) and additive sharing scheme (see Figure 6).

The choice of parameters of our scheme are as follows: Let κ be the statistical security parameter.
Given a message s ∈ {0, 1}L, let ` = L

2 lgL . Define n := 3` and k = 2`. Let F be a finite field
of characteristic 2 such that |F| > 4`. Define F := [n] × F and u := ω(log κ). Then we define the
following two secret sharing schemes.

1. X(out) := X(aRS,n,k,`,F).

2. X(in) := X(unary,m,F,3) ◦X(add,u,(GF(2),⊕)).

Our basic encoding scheme is defined by X(basic) = X(out) ◦X(in). Formally, our scheme is described
in Figure 8.

Let κ be the statistical security parameter. Let {0, 1}L be the message space.
Let F be a characteristic 2 field such that: Let ` = L

2 lgL . Let |F| > 4`. Let n = 3` and
k = 2n/3 = 2`. Let X(out) be the secret sharing scheme X(aRS,n,k,`,F) (see Figure 4).

Let F = [n]×F and u = ω(log κ). Consider the secret sharing schemes X(unary,m,F,3) (see Figure 5)
and X(add,u,(GF(2),+)) (see Figure 6). Define the X(in) as the secret sharing scheme which is the
following concatenation (see Definition 2) code: X(unary,m,F,3) ◦X(add,u,(GF(2),+)).

Define X(basic) as: X(out) ◦X(in).

Encbasic(s ∈ F`):

1. Output c[umn] ∼ (X
(basic)
[umn] |X

(basic)
0 = s).

Decbasic(c[umn] ∈ {0, 1}umn):

1. Decode c[umn] by decoding algorithm corresponding to X(basic) code.

Figure 8: Basic Non-malleable Code achieving 2-Phase Non-malleability.

We emphasize that we can use Algebraic-Geometric codes instead of Reed-Solomon codes in our
outer code to improve the rate of our code by a logarithmic factor, which is not the emphasis of this
paper. We forgo this optimization for ease of presentation of the main ideas of our construction.

Useful Terminology. We shall visualize our inner code X(in) as a two-dimensional object, where
each column represents the additive secret shares of a bit in the unary encoding scheme.
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4.1 Proof of Theorem 2

In this section we prove the result for np = 0 and F = SN . The main result is obtained by slight
modification of the arguments provided below; and are presented in Appendix C.

The proof of Theorem 2 will crucially rely on the notion of “equivalence of codes” and “dirty (inner)
codewords,” as defined below.

Equivalence of Codewords for our Scheme. We need the concept of equivalence of two
codewords g(basic)

[umn] and h(basic)
[umn] which are equivalent if each block encodes identical outer codeword

element.6 Formally defined as follows:

Inner codes. Consider two inner codewords, g(in)
[um] and h

(in)
[um]. We say that g(in)

[um] and h
(in)
[um] are

equivalent codes if they encode the same message according to the inner code X(in).

Non-Malleable codes. Consider two codewords g(basic)
[umn] and h(basic)

[umn] . We say that g(basic)
[umn]

∼= h
(basic)
[umn] if

the following holds. Define g(in)
i = g

(basic)
(i−1)um+[um] for all i ∈ [n]. Similarly, define h(in)

i = h
(basic)
(i−1)um+[um]

for all i ∈ [n]. Then, there exists a π : [n]→ [n] such that for all i ∈ [n], g(in)
i
∼= h

(in)
π(i).

Dirty Inner Codewords. We say that an inner codeword in c̃ is dirty if:

1. The codeword partially receives its bits from one inner codeword. To clarify, it can be the
case that it receives bits from more than one inner codewords, or it receives bits bits from
some inner codeword and some of its bits are obtained from I0 ∪ I1.

2. (The codeword receives all its bits from one inner codeword but) The permutation within the
inner codeword is not column preserving. That is, there exists a column which receives bits
from more than one column of the same inner codeword.

We shall show that if an inner codeword partially receives bits from an inner codeword, then decoding
of that codeword fails with constant probability (see Lemma 9 Case 2.). On the other hand, if the
codeword receives all its bits from one single inner codeword and the permutation is not column
preserving, then decoding of that codeword also fails with constant probability (see Lemma 9 Case
1.). Both these results rely on the high independence of X(add) scheme and the fact that a single
bit in X(unary) is 0 or 1 with constant probability. This will show that any dirty inner codeword is
invalid with a constant probability. The total number of dirty inner codewords are represented by
ndirty.

There are only two ways to prepare inner codeword such that it is valid with probability 1. Based
on these, we have following two kinds of inner codewords.

The inner codewords which are not dirty fall in two categories described below.

6 Note that we only insist that g(basic)
[umn] and h

(basic)
[umn] not only encode the same message s but also every outer codeword

element is identical.
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Fixed Inner Codewords. We say that an inner codeword is completely fixed if all its bits are
obtained from bits in I0∪I1. That is, the whole codeword is explicitly written down using bits from
I0 ∪ I1. The number of such inner codewords is represented by nfixed.

Copied Codewords. We say that an inner codeword is completely copied if it is generated by
copying one whole inner codeword and (possibly) performing column preserving permutations. The
number of such inner codewords is represented by ncopy.

Note that n = ndirty + nfixed + ncopy.

4.2 Key Steps of Proof

Now we begin with our case analysis. We shall explain how DI0,I1,Ip,cIp ,f will be determined for

various cases. We refer to the term SD

(
Tamper

(s)
I0,I1,Ip,cIp ,f

,Sim
(s)
DI0,I1,Ip,cIp ,f

)
in Figure 7 as the

simulation error. The expectation of simulation error over random choices of I0, I1, Ip and cIp is
referred to as expected simulation error.

The threshold value log10 κ chosen below for analysis is arbitrary; any suitable poly log κ will suffice.

Case 1. ndirty > log10 κ. In this case, we have DI0,I1,Ip,cIp ,f output ⊥ with probability 1. The
simulation error in this case is negl(κ) because the probability that the tampered codeword has all
valid inner encodings is 6 ξndirty/2 = negl(κ), where ξ ∈ (0, 1) is a constant (by Lemma 9).

Case 2. ndirty < log10 κ. We shall show that it is highly unlikely (over random choices of I0 and
I1) that n0 + n1 > log13 κ and n0 + n1 6 N − um log10 κ and still we get this case. In particular, it
is negl(κ) (see Lemma 17).

So, henceforth, we can assume that either n0 + n1 < log13 κ or n0 + n1 > N − um log10 κ; at an
expense of negl(κ) additive term in expected simulation error.

Case 2.1. n0 + n1 6 log13 κ. In this case, the tampering function copies most of the inner
codewords into the tampered codeword, because ncopy = n−ndirty−nfixed > n−log10 κ−log13 κ/um.
So, the tampered codeword can either be invalid or (if valid) equivalent to the original codeword
(because distance of the outer codeword � Θ(log13 κ)). Now the probability that the completely
fixed and dirty codewords are each identical to their counterparts in the input codeword does not
depend the message s because the privacy of the outer codeword is� ndirty +nfixed. This probability
σ can be computed exhaustively and does not depend on the message s. So, DI0,I1,Ip,cIp ,f outputs
same∗ with probability σ; otherwise outputs ⊥.

Case 2.2. n0 + n1 > N − um log10 κ. Since the n0 + n1 is large and ndirty is small, this implies
that most inner-codewords have been completely fixed, because nfixed = n − ndirty − ncopy > n −
log10 κ − ncopy > n − 2 log10 κ. In this case, the tampered code word is either invalid or (if valid)
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equivalent to the codeword consistent with the fixed inner codewords (due to high distance of the
outer encoding scheme).

First check whether the fixed blocks can define a valid outer codeword. If not, then set DI0,I1,Ip,cIp ,f
to output ⊥ with probability 1. Again, simulation error in this case is 0.

Otherwise, we are in the case when the set of completely fixed inner codewords fixes the outer
codeword. Let its outer codeword be g∗ and the message corresponding to it be s∗. We say
that (I0, I1) is good if it contains at least one bit from each column. Since we have n0 + n1 >
N − um log10 κ, we have Pr[(I0, I1) is good] = 1− negl(κ) (by Lemma 18).

If (I0, I1) is not good, then we define DI0,I1,Ip,cIp ,f to output ⊥ with probability 1. The simulation
error for particular (I0, I1) can be at most 1; but this incurs additional negl(κ) expected simulation
error over the choices of (I0, I1).

If (I0, I1) is good, then we need to check whether the set of remaining inner codewords of the
tampered codeword are equivalent to the set of inner codewords of g∗. Note that if (I0, I1) is good
then all bits of the original codeword restricted to [N ]\(I0∪I1) are independent uniform random bits
(because all proper subsets of columns have independent uniform bits). This can be exhaustively
computed starting from uniformly random bits. Define this probability to be σ. Clearly, this
probability is independent of the message s. We define DI0,I1,Ip,cIp ,f to output s∗ with probability
σ; and output ⊥ with probability 1− σ. The simulation error in this case is 0.

There exists D such that the expected simulation error for our encoding scheme is negl(κ), for all
n0, n1 and mapping function map, when F = SN and np = 0. For the full proof of Theorem 2 see
Appendix C.

5 Main Construction

Our main encoding scheme is described in Figure 9. In order to show that it is resistant against
the class of tampering attacks F{0,1} ◦ SN , we first define two new random variables for the 2-phase
non-malleability experiment:

Tamper
(s)
n0,n1,np,map := E

I0,I1
Ip,cIp

Tamper
(s)
I0,I1,Ip,cIp ,f

,

Dn0,n1,np,map := E
I0,I1
Ip,cIp

DI0,I1,Ip,cIp ,f .

In the above, given n0, n1, np and s, I0, I1, Ip and cIp are chosen as described in Figure 7. If we
assume that the length of the codeword produced by the basic encoding scheme is N (1), then the
mapping function is of the form:

map :

(
[N (1)]
n0

)
×
(

[N (1)]
n1

)
×
(

[N (1)]
np

)
× {0, 1}np → F̃{0,1} ◦ SN(1) ,

and f = map(I0, I1, Ip, cIp). If a coding scheme is secure against the 2-phase non-malleability attack,
then we can show that for all n0, n1, np,map, there exists a distribution Dn0,n1,np,map such that for
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all s:
SD
(

Tamper
(s)
n0,n1,np,map,Sim

(s)
Dn0,n1,np,map

)
6 negl(κ). (1)

We are now ready to state our lemma, whose proof is provided in Section 5.1.

Lemma 1. For every f ∈ F{0,1} ◦ SN , there exist n0, n1, np (n0 + n1 + np 6 N (1)) and map (as
defined above) such that,

SD
(

Tamper
(s)
f ,Tamper

(s)
n0,n1,np,map

)
6 negl(κ), (2)

where Tamper
(s)
f is defined w.r.t the main encoding scheme (Figure 9) and Tamper

(s)
n0,n1,np,map is

defined w.r.t. the basic encoding scheme (Figure 8).

It is easy to see how this lemma implies Theorem 1. Let the n0, n1, np and map provided by the
above lemma for a particular f be denote by n(f)

0 , n
(f)
1 , n

(f)
p and map(f). For every f ∈ F{0,1} ◦ SN ,

define D∗f to be D
n
(f)
0 ,n

(f)
1 ,n

(f)
p ,map(f) . By (1) and (2), it follows that:

SD
(

Tamper
(s)
f ,Sim

(s)
D∗f

)
6 negl(κ).

5.1 Proof of Lemma 1

Let fset, freset, ftoggle and fforward be functions which map an input bit b ∈ {0, 1} to an output bit
as follows: fset(b) = 1, freset(b) = 0, ftoggle(b) = 1 − b and fforward(b) = b. Consider any tampering
function f = (f1, . . . , fN , π) ∈ F{0,1} ◦ SN , where fi ∈ {fset, freset, ftoggle, fforward} for i ∈ [1, N ] and
π ∈ SN . Let s ∈ {0, 1}L be a message that we would like to encode. We know that the codeword
c[N ] generated by Enc consist of two parts c(1)

[N(1)]
(left) and c(2)

[N(2)]
(right). Define L = [N (1)] and

R = {N (1) + 1, . . . , N (2)}. Further define the following sets of indices:

Î0 = {i ∈ L | π(i) ∈ L and fi = freset},

Î1 = {i ∈ L | π(i) ∈ L and fi = fset},

Îp = {i ∈ L | π(i) ∈ R}.

Note that given the tampering function f , the sets Î0, Î1 and Îp can be easily computed, and that
these sets are disjoint.

First consider the case when |Îp| > ω(log κ), i.e., a substantial number of bits are being moved from
the left part of the codeword to the right. Let c̃(2)

[N(2)]
denote the right part of the codeword after

applying the tampering function f , i.e., c̃(2)
i := fπ−1(N(1)+i)(cπ−1(N(1)+i)) for i ∈ [N (2)]. We know

that c̃(2)

[N(2)]
consists of d+`−1 elements of the field F. We refer to these elements as blocks. A block

is dirty iff a bit on the left part of the codeword is moved to this block through the permutation π.
We know that there are at least ω(log κ) and at most N (1) = d − 1 dirty blocks (because the size
of left codeword is N (1)). Consider any ` blocks which are not dirty. If these blocks do not lie on
an ` − 1 degree polynomial, then the decoding algorithm of X(RS) would output ⊥. On the other
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Let {0, 1}L be the message space and {0, 1}N be the codeword space. Let N (1) = umn be the
size of codeword output by Encbasic, and d = N (1) + 1. Let F be a finite field of characteristic 2.
Let ` =

⌈
N(1) logN(1)

log2 |F|

⌉
, n = d+ ` and k = `. Note that a permutation in SN(1) can be represented

using N (1) logN (1) bits.

Enc(s ∈ {0, 1}L):

1. Choose a permutation σ ∈ SN(1) at random.

2. Let c(1)

[N(1)]
∼ σ(X

(basic)

[N(1)]
|X(basic)

0 = s).

3. Let c(2)

[N(2)]
∼
(
X

(RS,n,k,`,F)
[n] |X(RS,n,k,`,F)

0 = σ
)
. Here we interpret σ as an element in F`; and

the shares ∈ Fn as an element in {0, 1}N
(2)

.

4. Output c[N ] := (c
(1)

[N(1)]
, c

(2)

[N(2)]
).

Dec(c̃ ∈ {0, 1}N ):

1. Let
(
c̃

(1)

[N(1)]
, c̃

(2)

[N(2)]

)
≡ c̃[N ].

2. Decode c̃(2)

[N(2)]
by the decoding algorithm of X(RS) to obtain a permutation σ̃.

3. Output s̃ ∈ {0, 1}L obtained by decoding σ̃−1(c̃
(1)

[N(1)]
) according to the decoding algorithm

of X(basic). (If either of the decoding algorithms fail, output ⊥.)

Figure 9: Main Non-malleable Code
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hand, suppose that the non-dirty blocks do lie on such a polynomial. In this case, the remaining
blocks should have a fixed value. We know that at least ω(log κ) of them are dirty, and that any
ω(log κ) bits in the left codeword are uniformly distributed. Hence, the probability that the dirty
blocks will have the desired fixed value is negligible. Therefore, when |Îp| > ω(log κ), Tamper

(s)
f is

⊥ with all but negligible probability irrespective of s. In this case, we set n0, n1, np and map so that
Tamper

(s)
n0,n1,np,map is ⊥ with high probability too.7

On the other hand if |Îp| 6 ω(log κ), set n0 = |Î0|, n1 = |Î1|, np = |Îp|. Let I0, I1, Ip ⊆ L be three
random, disjoint sets of indices of sizes n0, n1 and np respectively. Also, let c∗

[N(1)]
be a codeword

sampled randomly from Encbasic(s). (In the following, we would only use c∗Ip to define map.) Choose

a random permutation σ ∈ SN(1) such that σ(Ib) = Îb for b ∈ {0, 1} and σ(Ip) = Îp. Draw c
(2)

[N(2)]
as

described in Figure 9. Observe that the distribution of (σ(c∗
[N(1)]

), c
(2)

[N(2)]
) is identical to the output

of Enc algorithm.

In order to obtain the tampered codeword c̃
(2)

[N(2)]
, we define a tampering function g = (g1, . . . ,

gN(2) , πR) which operates on the right part of the codeword. Let Ŵ := {i ∈ R | π(i) ∈ L} be the
indices in the right codeword that move to the left. Recall that Îp is the set of indices that move
the opposite way, i.e., from left to right. Since π is a permutation, we know that |Ŵ | = |Îp|. We
want to define a permutation πR restricted to the indices in R. However, since there are bits that
move across, we first let µ be an arbitrary bijection from Ŵ to Îp. Then πR : R → R is given by

πR(i) =

{
π(i) if i /∈ Ŵ
π(µ(i)) if i ∈ Ŵ .

Note that since µ(i) ∈ Îp, π(µ(i)) ∈ R. We define g1, . . . , gN(2) as follows:

gi(b) =


fj if j /∈ Ŵ
fset if j ∈ Ŵ and fµ(j)(c

∗
σ−1(µ(j))) = 1

freset if j ∈ Ŵ and fµ(j)(c
∗
σ−1(µ(j))) = 0,

where j = N (1) + i. Observe that µ(j) ∈ Îp, and hence σ−1(µ(j)) ∈ Ip.

Apply g1, . . . , gN(2) followed by πR to c(2)

[N(2)]
to obtain the tampered codeword c̃(2)

[N(2)]
. If c̃(2)

[N(2)]
is not

a valid codeword, set map(I0, I1, Ip, c
∗
Ip

) = f̂ , where f̂ ∈ F̃{0,1}◦SN(1) such that Decbasic(f̂(c∗
N(1))) =⊥

with high probability. Otherwise, let σ̃ be the decoded permutation. Set map(I0, I1, Ip, c
∗
Ip

) = f∗,
where f∗ = (f∗1 , . . . , f

∗
N(1) , π

∗) is defined as follows. Let πL : L → L be a permutation given by

πL(i) =

{
π(i) if i /∈ Îp
π(µ−1(i)) if i ∈ Îp.

7 It is easy to note that there exists tampering functions which always produce invalid codes.
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Set π∗ := σ̃−1 ◦ πL ◦ σ. On the other hand, f∗1 , . . . , f∗N(1) are given by:

f∗i =



fset if i ∈ I1

freset if i ∈ I0

fforward if i ∈ Ip and c∗i = fµ−1(σ(i))(c
(2)

µ−1(σ(i))−N(1))

ftoggle if i ∈ Ip and c∗i 6= fµ−1(σ(i))(c
(2)

µ−1(σ(i))−N(1))

fσ(i) otherwise.

Note that fσ(i) ∈ {fforward, ftoggle}.

We show that given c̃
(2)

[N(2)]
decodes to σ̃, σ̃−1(f(σ(c∗

[N(1)]
))) = f∗(c∗

[N(1)]
). This would imply that

Decbasic(f
∗(c∗

[N(1)]
)) exactly matches with

Dec(f(Enc(s)) = Dec∗basic(σ̃
−1f(Enc(s)) = Dec∗basic(σ̃

−1(f(σ(c∗
[N(1)]

)))).

In the following, we use h1h2 . . . hn(x) as a shorthand for h1(h2(. . . hn(x) . . .)) for clarity, where
h1, . . . , hn are functions. We also let m = N (1). Let c∗(σ,f1,...,fm) be the codeword obtained after
applying σ followed by f1, . . . , fm on c∗[m]. We know that for i ∈ [1,m],

c
∗(σ,f1,...,fm)
i =


0 if σ−1(i) ∈ I0

1 if σ−1(i) ∈ I1

fi(c
∗
σ−1(i)) otherwise.

Further, when we apply the permutation π, we get a codeword c∗(σ,f)
[m] such that for i ∈ [1,m],

c
∗(σ,f)
i =


0 if σ−1π−1(i) ∈ I0

1 if σ−1π−1(i) ∈ I1

fπ−1(i)(c
(2)

π−1(i)−m) if σ−1µπ−1(i) ∈ Ip
fπ−1(i)(c

∗
σ−1π−1(i)) otherwise,

where µ is the bijection from Ŵ to Îp. Using πL, we can rewrite the above as follows:

c
∗(σ,f)
i =


0 if σ−1π−1

L (i) ∈ I0

1 if σ−1π−1
L (i) ∈ I1

fπ−1(i)(c
(2)

π−1(i)−m) if σ−1π−1
L (i) ∈ Ip

fπ−1
L (i)(c

∗
σ−1π−1

L (i)
) otherwise.

Finally, applying σ̃−1, we get a codeword c∗(σ,f,σ̃
−1)

[m] such that

c
∗(σ,f,σ̃−1)
i =


0 if σ−1π−1

L σ̃(i) ∈ I0

1 if σ−1π−1
L σ̃(i) ∈ I1

fπ−1σ̃(i)(c
(2)

π−1σ̃(i)−m) if σ−1π−1
L σ̃(i) ∈ Ip

fπ−1
L σ̃(i)(c

∗
σ−1π−1

L σ̃(i)
) otherwise.
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On the other hand, when f∗ is applied on c∗[m], we get a codeword c̃∗[m] such that

c̃∗i =


0 if σ−1π−1

L σ̃(i) ∈ I0

1 if σ−1π−1
L σ̃(i) ∈ I1

fµ−1σσ−1π−1
L σ̃(i)(c

(2)

µ−1σσ−1π−1
L σ̃(i)−m) if σ−1π−1

L σ̃(i) ∈ Ip
fσσ−1π−1

L σ̃(i)(c
∗
σ−1π−1

L σ̃(i)
) otherwise.

Simplifying using the fact that π−1
L (i) = µπ−1(i) for i ∈ πL(Îp), we can easily see that for all i ∈ [m],

c
∗(σ,f,σ̃−1)
i = c̃∗i . This completes the proof.

Observe that though the function map constructed above is randomized, one can easily show that
there must exist a deterministic function which satisfies (2).

6 Application to Non-malleable Commitments

6.1 Non-malleability Definitions

Let 〈C,R〉 denote a statistically binding and computationally hiding commitment scheme. We
assume w.l.o.g. that the scheme has a non-interactive reveal phase: committer simply sends the
value v along with decommitment information d, and it is verified using a function open(c, v, d)
where c is the commitment transcript. We also assume that the scheme is efficiently checkable: to
accept or reject, R applies a public function on the transcript c.

CCA-security. We consider an adversary A who has access to a decommitment oracle O. O
participates with A in many concurrent sessions of (the commit phase of) 〈C,R〉; at the end of
each session, if the session is accepting, O returns the (unique) value committed by A in that
session; otherwise it returns ⊥.8 For a bit b and auxiliary input z, let BITb(〈C,R〉,O, A, n, z)
denote the output of the following experiment: on input (1n, z), AO receives a commitment to
b while simultaneously interacting with O. If AO sends a commitment to O whose transcript is
identical to that of the left commitment, experiment aborts and outputs ⊥; otherwise it outputs
whatever AO outputs.

Definition 3 (CCA-secure Bit Commitments, [CLP10]). Let 〈C,R〉 be a bit commitment scheme
and O be a decommitment oracle for it. We say that 〈C,R〉 is CCA-secure w.r.t. O, if for every
PPT A, every z ∈ {0, 1}∗ it holds that:

BIT0(〈C,R〉,O, A, n, z) ≈c BIT1(〈C,R〉,O, A, n, z).

We say that 〈C,R〉 is CCA-secure if there exists a decommitment oracle O′ such that 〈C,R〉 is
CCA-secure w.r.t. O′.

8If there is more than one possible decommitment, O returns any one of them. Note that since 〈C,R〉 is efficiently
checkable, and the session is accepting, such a valid decommitment always exists. In addition, note that since we
only have statistical binding, this value is unique except with negligible probability.
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An analogous version of the definition which considers many concurrent executions on left (instead
of just one), is known to be equivalent to the current definition via a simple hybrid argument
[PR05a].

Bounded parallel security. Let t(n) be an arbitrary polynomial. We say that an adversary A
defined above is a t-bounded-parallel adversary w.r.t. O if it makes at most k 6 t(n) commitments
to O and all k sessions are executed in parallel.

Definition 4 (t-Bounded-parallel CCA-secure Bit Commitments). We say that 〈C,R〉 is t-bounded-
parallel CCA-secure if it is CCA-secure (satisfies Definition 3) w.r.t. all t-bounded-parallel adver-
saries.

Non-malleable string commitment. For a bit b and auxiliary input z, let STRb(〈C,R〉,O, A, n, z)
denote the output of the following experiment: on input (1n, z), A adaptively chooses two strings
(v0, v1) of length n, and receives a commitment to vb while simultaneously A also interacts with
a receiver, attempting to commit to some value. Define ṽ to be the value contained in the right
commitment.9. If A’s commitment transcript on right is either not accepting, or identical to the
transcript on left, then output a special symbol ⊥; if ṽ = v, output a special symbol same∗; other-
wise, output ṽ.10

Definition 5 (Non-malleable String Commitments). We say that 〈C,R〉 is a non-malleable string
commitment if for every PPT A and every z ∈ {0, 1}∗ it holds that

STR0(〈C,R〉, A, n, z) ≈c STR1(〈C,R〉, A, n, z).

6.2 Non-malleable Sting Commitments from Non-malleable Bit-commitments

Construction. Given a bit commitment scheme 〈C,R〉, we construct a string commitment scheme
〈C ′, R′〉 for {0, 1}n as follows. Let nm-code be a non-malleable coding scheme for messages of length
n that is robust to F := F0,1 ◦ SN , and let t(n) denote the length of the codewords for some
fixed polynomial t. Let Enc and Dec be encoding and decoding algorithms. To commit to a
string v ∈ {0, 1}n, C ′ generates a random codeword w ← Enc(v), and commits to each bit of w
independently, and in parallel using the bit-commitment protocol 〈C,R〉. The receiver checks that
no two bit-commitment transcripts, out of t such transcripts, are identical. If the check fails, or if
any of the bit-commitment transcripts are not accepting, the receiver rejects; otherwise it accepts
the commitment. To decommit to v, the receiver sends v along with decommitment information
for each bit of w denoted by (wi, di) for every i ∈ [t]; the receiver accepts v if and only if all
recommitments verify and the resulting codeword decodes to v.

We now prove Theorem 3 by proving that this reduction results in a non-malleable string commit-
ment scheme.

9Note that ṽ is unique w.h.p. and there exists d̃ s.t. open(c̃, ṽ, d̃) = 1 where c̃ is the right commitment.
10Following [DDN91], this definition allows MIM to commit to the same value. It is easy to prevent MIM from

committing the same value generically in case of string commitments: convert the scheme to tag based by appending
the tag with v, and then sign the whole transcript using the tag.
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Proof. To prove the theorem, we prove that scheme 〈C ′, R′〉 satisfies Definition 5. We observe
that the reduction is unconditional and preserves round complexity. Note that in our setting N =
t(n), and we use N and t interchangeably. We now show that distributions STR0 and STR1 are
computationally indistinguishable.

We first describe a procedure that defines a distribution over tampering functions f ∈ F{0,1} ◦ SN
based on the A’s behavior. Let O be a decommitment oracle for 〈C,R〉. The procedure EO has
access to O, takes a bit b as input, and works as follows.

Procedure EO(b): Procedure incorporates A,n, z, and initiates an execution of A on (1n, z).
It forwards all right interactions of A to O, and interacts on left as follows. When A sends
(v0, v1), E computes codewords w0, w1 corresponding to these values, and then commits to
codeword wb using 〈C ′, R′〉. When A sends its last message on the right, E checks that all t(n)
bit-commitments on right are accepting and that no two of them have identical transcripts.
If the test fails, it outputs ⊥; otherwise, it outputs a tampering function f constructed as
follows (we view f as a table of t entries, where each entry contains either a unique number
in [t] or a string in {set, reset}):11

1. For every right transcript i that is not an exact copy of any of the t transcripts on left,
E forwards the last message of this session to O and receives a decommitment to either
0 or 1. If the received value is 0, it writes reset in the i-th position of f , and if the value
is 1, it writes set. (In the unlikely event O does not return a bit, E aborts.)

2. For every right transcript i that is a copy of a unique left transcript j, E writes the
number j in i-th position of f .

Let fb := EO(b). Let wb and w̃b denote the distributions of codewords on left-side and right-side
(committed by A) in the execution of EO(b). We note that these distribution are well defined
and only depend on A,n, z (and O as well, but any valid oracle will yield statistically similar
distributions). By construction, since there are no repeated transcripts, fb ∈ F0,1 ◦ SN w.h.p. for
all b ∈ {0, 1} (if A does not abort). Further, by definition:

w̃b = fb(wb).

Now consider the experiment defining distribution STRb. We observe that, by construction, the
execution of this experiment is identical to the internal execution of EO(b), and therefore if we let
ṽb the value in the commitment on right, then ṽb is distributed identically to Dec(fb(wb)) where Dec
is the decoding algorithm of nm-code.

For two bits a, b, define the following game GO(a, b):

Game GO(a, b): The game first proceeds exactly as the execution of EO(a) and obtains a tamper-
ing function distributed as fa; it then applies fa to wb and if fa(wb) = wb it reruns same∗, oth-
erwise it returns the decoding of the resulting codeword: i.e., the message Xa,b := Dec(fa(wb))

where (w0, w1) are two codewords sampled in the beginning (when following steps of EO(a)).
11For this reduction it is not necessary for the nm-code to be robust against toggle.
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Observe that STRb is distributed identically to Xb,b, and we need to show that X0,0 ≈c X1,1. We do
this in two steps: we first show that X0,0 ≈c X1,0 and X0,1 ≈c X1,1; then we show that X0,1 ≈c X1,0.

Lemma 2. X0,0 ≈c X1,0 and X0,1 ≈c X1,1.

Proof. We prove that X0,0 ≈c X1,0. The proof of the second part will be identical to that of the
first part. The proof follows from the CCA-security of the bit-commitment scheme.

Formally, to prove that X0,0 ≈c X1,0, we construct a sequence of t hybrids {Hi}i∈t, each of which
has access to the oracle O, as follows. HO0 is identical to game GO0,0 in which permutation f0 is
applied to w0.

Hybrid HOi : Hi proceeds identically to Hi−1 except that it constructs its codewords differently.
When A produces v0, v1, Hi defines string v∗i as follows: first i bits of v∗i are identical to the
first i bits of v1, and the rest t − i bits are identical to the last t − i bits of v0. It then sets:
wi0 = Enc(v∗i ) and then commits to wi0 (instead of w0—a codeword of v0). The rest of the
execution proceeds identically to Hi−1, and hybrid constructs a tampering function, denoted
f i0, exactly as procedure E and then outputs Dec(f i0(w1)).

Observe that HOt is identical to GO(0, 1), and f t0 is identical to f1; output of Ht is identical to
X1,0. We claim that for every i ∈ [t]: Hi−1 ≈c Hi. If this is not true for some i, then we can
construct an adversary AObit against the CCA security of 〈C,R〉 as follows. AObit interacts with an
outside challenger as follows. It starts and executes identically to hybrid Hi−1 for all commitments
on left and right except for the commitment corresponding to the i-th bit on left side. Instead,
it receives this commitment from the outside challenger and plays it as its own i-th commitment.
In the end, AObit outputs Dec(f i0(w0)). W.l.o.g. let i-th bits of v0 and v1 be 0 and 1 respectively:
then, if the challenger commits to b, Abit’s execution is identical to Hi−b+1. It follows that the two
hybrids must be indistinguishable. And since there are only polynomially many hybrids, we have
that X0,0 ≈c X1,0. The claim for the second part follows in a near identical fashion, with a simple
change of variables.

Lemma 3. X1,0 ≈c X0,1.

Proof. The proof of this part will make use of the non-malleability of nm-code, in addition to the
CCA-security of the bit-commitment scheme. Before proceeding further, let us note that f0 and f1

are well defined distribution, and in particular can be sampled (though inefficiently) using procedure
EO(0) and EO(1).

To prove the claim, we define Y0,0 to be the output of the following experiment which uses the oracle
O: the experiment samples f0 using A and O (e.g., following EO(0)); it then randomly samples an
independent codeword w∗0 for the value v0 and returns the decoding of f0(w∗0).

We first claim that due to the CCA security of 〈C,R〉, it holds that X1,0 ≈c Y0,0. By computational
hiding of the commitment scheme, we have that X1,0 ≈c Y0,0. First observe that in X1,0, f1 is
applied on an independent codeword w0 of the (adversarially chosen value v0); the same holds in
Y0,0 but with function f0 independent of the codeword of v0. Therefore, the indistinguishability of
these two variables follows in identical fashion as the proof of the previous lemma.
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Finally, we claim that Y0,0 ≈s X0,1 (statistically close). In both cases, f0 is applied to an indepen-
dently generated codeword; note that if f0 does not change the codeword, the distributions return
symbol same∗. Therefore, even though f0 is applied to codewords that correspond to different mes-
sages in two hybrids, the output is same∗ in case the tampered codewords do not change, and ⊥
otherwise with high probability. By non-malleability of our code, both of these distributions are
statistically close to a simulated distribution that only depends (on the fixed distribution of) f0.
Therefore we have X1,0 ≈c Y0,0 ≈s X0,1.

This completes the proof of the theorem.

The proof the theorem below is nearly identical to the proof of Theorem 3: it follows from observing
that the MIM in the proof has to make only t commitments to O and all of them can be done in
parallel. Let t be a polynomial bounding the length of the codewords of our scheme.

Theorem 4 (t(n)-Bounded-parallel Bit-commitment to Non-malleable String Commitment). There
exists a simple and efficient black-box compiler which, when provided with:

◦ A non-malleable encoding robust to F{0,1} ◦ SN , and

◦ A r-round (possibly non-tag-based) t(n)-bounded-parallel bit-commitment scheme

yields a r-round non-malleable string-commitment scheme.

6.3 From Partial Non-malleability to Full Non-malleability

We now show that our non-malleable codes can help upgrade a protocol which has only partial
non-malleability to one with full non-malleability. This section is at an informal level where we try
to demonstrate our ideas through an example only.

Consider Naor’s 2-round commitment based on adaptive PRGs as our starting point. Let G :
{0, 1}n → {0, 1}3n be a pseudorandom generator (PRG) where n is the security parameter. In
Naor’s scheme, the receiver sends a random string r ∈ {0, 1}3n; to commit to 0, the committer sends
z = G(s) and to commit to 1 it sends z ⊕ r where ⊕ denotes bitwise exclusive-or and s ∈ {0, 1}n
is a random seed. If the PRG is an adaptive PRG12 then this scheme is a partially non-malleable
bit commitment scheme: it allows A to toggle the committed bit, but (probably) not much more.
This is because, given access to the inversion oracle OG, A can learn the value it commits to on
“right”; if the scheme were not non-malleable, it compromises the hiding of commitment on “left”,
contradicting the adaptive security of the PRG G. Although the scheme is not non-malleable, it has
some flavor of non-malleability which can be coupled with non-malleable codes to get full security.

We only aim to achieve a slightly weaker definition of non-malleability, called non-malleability w.r.t.
replacement [Goy11] (building upon [Wee10]). Informally, this is the same as usual definition of

12Roughly speaking, following [PPV08, KMO10], G is said to be adaptively secure if no PPT adversary A can tell
if y = G(s) for a random s ∈ {0, 1}n or y is uniform even if A has access to a special inversion oracle OG; on query
a string z of length 3n, the oracle tells whether z is in the range of G or not. A is not allowed to query the challenge
string y.
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non-malleability except that whenever the A sends a commitment for which no valid decommitment
exists, the definition considers A to have “admitted defeat.” When this happens, the definition allows
a “simulator” to replace the invalid value (denoted by ⊥) by any arbitrary value of its choice (hat
helps maintain an indistinguishable distribution. Such weaker definitions suffice for a large class of
applications of non-malleability [Goy11, Wee10].

There are 4 ways in which A can “admit defeat” as above. These cases are listed below, and we say
that A acts as a defeat channel on the received commitment:

(1) when A receives commitment to a bit 0 on left, it commits to 0 on right, but if it receives
commitment to 1, it commits to ⊥; we denote this by defeat0→0,1→⊥.

(2) opposite of the first case, denoted by defeat1→1,0→⊥.

(3) “toggle” variant of case (1) where A commits to 1 if it receives a commitment to 0 and ⊥ in
the other case; this is denoted by defeat0→1,1→⊥.

(4) opposite of (3), denoted by: defeat1→0,0→⊥.

We need a non-malleable code which, in addition to tolerating permutation, set, reset, toggle attacks,
also tolerates these all four defeat attacks described above. More precisely, let F∗ be a class of
tampering functions where every function f ∈ F∗ is fully specified by a string of n′ entries where
each entry either contains a unique number i ∈ [n′] or an entry from {set, reset, togglej} or an entry
from defeat := {defeat0→0,1→⊥, defeat1→1,0→⊥, defeat0→1,1→⊥, defeat1→0,0→⊥}. Note that only the
last requirement is an additional requirement in F∗ when compared to F ◦SN . Here n′ is the length
of the codeword for n-bit strings. When an entry contains a number i, will write copyi instead of
just i to mean that it is a copy of i-th bit of the original codeword. To summarize, f ∈ F∗ is then
described by n′ actions where action ∈ {set, reset} ∪ {copyi}i∈[n′] ∪ {togglei}i∈[n′] ∪ defeat.

On input a codeword w ∈ {0, 1}n′ , the output w′ = f(w) corresponding to f := {actioni}ni=1 is
defined as before: for every i ∈ [n′], if actioni = set, then w′i = 1; if actioni = reset, then w′i = 0; if
actioni = copyj , then w′i = wj ; if actioni = togglej , then w′i = 1− wj ; finally, if actioni ∈ defeat bit
w′i is defined to be either 0 or ⊥, according to items (1)–(4) above, depending on the value of wj
and the type of the “defeat” action.

To commit to a string x of length, say n, our commitment scheme first encodes x using a non-
malleable code that is secure against F∗. It then commits to each bit of the resulting codeword
using Naor’s bit commitment scheme (instantiated using an adaptive PRG G). These commitments
can be done in parallel. The receiver accepts a string commitment as follows. Let (ri, ti) be the
two messages of i-th bit commitment; by construction ti = zi or zi ⊕ ri for some string zi in the
range of G. Note that zi is always well defined for honestly generated commitments. Define set
Si := {zi, zi⊕ ri} = {ti, ti⊕ ri}. Then, the receiver accepts the commitment if for all distinct i, i′ it
holds that Si ∩Si′ = ∅. It is easy to check that this holds with high probability for honestly created
commitments.

We claim that the above scheme is a non-malleable string commitment scheme. In fact, we only show
that, as before, the attack by an adversary A translates to a tampering attack f on the underlying
codeword for some f ∈ F∗. Further, this f can be extracted with the help of the inversion oracle
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for G, say OG. Thereafter, one can apply the arguments as in the previous section to argue full
non-malleability.13

We show how to construct f given c, c′ ← A(c) and access to the inversion oracle OG without
compromising the hiding property of left commitment c. Let c = {ci}i∈[n′] = {(ri, ti)}i∈[n′] be the
commitment given to A on left and c′ = {c′j}j∈[n′] = {(r′j , t′j)}j∈[n′]. Our goal is to construct f ∈ F∗
without violating the hiding of the commitments on left. To do this, we have to be careful to not
query the oracle OG on any value which might violate the hiding of commitments on left. Indeed,
A might carefully select string ri sent on left, or, t′j sent on right which reveal useful information
via the answers of OG. Therefore, we will ensure that we never query such strings. These strings of
interest are: t′j , t

′
j ⊕ r′j , t′j ⊕ ri, t′j ⊕ r′j ⊕ ri for every j and i in [n′].14

Recall that we defined set Si = {ti, ti ⊕ ri} for commitments on left; define S′j = {tj , tj ⊕ rj}
analogously for commitments on right. Further recall that Si∩Si′ = ∅ for all distinct i, i′ w.h.p. for
honestly generated commitments, and the commitment on right is accepted if and only if S′j∩S′j′ = ∅
for all distinct j, j′. Observe that except with negligible probability, it holds that for every j there
do not exist distinct indices i, i′ (corresponding to left commitments) such that S′j ∩ Si 6= ∅ and
S′j ∩ Si′ 6= ∅. This is because Si and Si′ do not intersect, and therefore if the claim were false,
we must have, w.l.o.g., t′j ∈ Si and t′j ⊕ rj ∈ Si′ ; but the later can only happen with negligible
probability since rj and ti′ are honestly generated.

This allows us to define the parent of every right commitment j as follows. If there exists an i-th
on left such that Si ∩ S′j 6= ∅, define parent(j) = i. Note that by the argument above, for every j, if
there exists a parent then such a parent is unique with high probability.

Given c′, we now construct f = {actionj}j∈[n′] as follows. For every j on the right:

1. if parent(j) does not exist, query the oracle OG on all strings in the setXj := S′j∪(∪iSi ⊕ rj).15

It is easy to check that the j-th commitment sent by A on right appears in Xj ; let bj be the
bit committed to in this commitment. Since all strings in Xj are sent to OG, the value of bj
is also known. Define actionj = set if bj = 0 and reset otherwise. Observe that no strings in
set Xj are likely to appear in any of the sets Si on left, for all i, with high probability.

2. if parent(j) = i, define actionj as follows.

(a) IF ri = r′j then: (1) if t′j = ti, define actionj = copyi, (2) if t′j = ti ⊕ ri let , define
actionj = togglei;

(b) ELSE: (in this case it will be one of the defeat channels as follows:) (1) if t′j = ti then
actionj = defeat0→0,1→⊥, (2) if t′j ⊕ r′j = ti ⊕ ri then actionj = defeat0→⊥,1→1, (3) if
t′j = ti⊕ri then actionj = defeat0→⊥,1→0, (4) if t′j⊕r′j = ti then actionj = defeat0→1,1→⊥.

This completes the description of our f . Therefore, with the help of the inversion oracle, attack on
the outer commitment has been translated to an attack on the inner codeword w. Further, note

13We note that our objective here is not to obtain a string NM commitment from adaptive PRGs; they are already
known. We merely want to demonstrate that non-malleable codes can boost partial NM to full NM.

14Of course, A is also free to commit to its own values by sending appropriate strings in/out of the range of G;
however, such strings will be “easy cases”: they will simply translate to fix types of attacks on the underlying codeword,
as we describe shortly.

15Si ⊕ rj means the set where each element of Si is XORed with rj .
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that in defining this attack f ∈ F∗, no string that belong to any of the left sets Si for all i were
queried to the inversion oracle. Therefore, it is possible to learn f with the help of the oracle without
compromising the hiding of left commitment to w. Therefore, it holds that for every two messages
x0, x1, if we let w0, w1 their respective non-malleable codewords sampled uniformly, c0, c1 honestly
generated commitments to wo, w1 respectively, c′b ← A(cb) the commitment produced by A on input
cb for b ∈ {0, 1}, and fb ∈ F∗ the tampering functions corresponding to c′b, then by the adaptive
security of G it holds that: f0 ≈c f1. This is the crux of the argument in the previous section,
and now one can proceed in the same manner as in previous section.

Remark. We note that although we do not specifically talk about the defeat channels in our
analysis, our code is actually resistant to these classes of attacks as well. Consider any defeat
channel, modeled as a deterministic function from {0, 1} to {0, 1,⊥}. The adversary now applies
a tampering which first applies set, reset, toggle, defeat actions to each bit and then applies a
permutation from SN . The reason our code still resists against this enhanced class of attacks is that
if the adversary applies a function involving ⊥ to a large number of bits, then w.h.p., there will be
at least one ⊥ in the final decoding (since, our final code actually has a large independence, if we
encode the permutation using such a code). On the other hand, if he applies such functions to only
a small number of places, the probability that it will result in a ⊥ is independent of the message.
And conditioned on it not resulting in a ⊥, the effect of the attack is the same as that of applying
an attack which never sends any bit to ⊥.
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A Ensuring Independence

Definition 6 (Weighted Bipartite Graph). Let G = (VL, VR,W ) be a weighted bipartite graph
with partite sets VL and VR and a symmetric weight function W : VL × VR → {0} ∪ N, such that
W (u, v) = W (v, u). The weight on the edge between nodes u ∈ VL and v ∈ VR is denoted by wu,v.

Let nL = |VL| and nR = |VR|. Without loss of generality we assume that VL = [nL] and VR = [nR].
The graph G is connected if there exists a path from every u ∈ VL to v ∈ VR via edges with positive
weights.

The left degree of a vertex u ∈ VL is denoted by degL(u) :=
∑

j∈VR wu,j . Similarly, the right
degree of a vertex v ∈ VR is denoted by degR(v) :=

∑
i∈VL wi,v. An m-regular bipartite graph has

degL(u) = m = degR(v), for all u ∈ VL and v ∈ VR. Note that for an m-regular graph, nL = nR.

An ordering of the right partite set is defined by a permutation π : [nR]→ [nR] on VR.

Let G = (VL, VR,W ) be a weighted connected bipartite graph. An edge (u, v) is k-blue w.r.t. an
ordering π if wu,v > 0 and the following conditions are satisfied:

1.
∑

j∈VR:π(j)6π(v)wu,j < degL(u)

2.
∑

j∈VR:π(j)<π(v)wu,j < degL(u)− k

And edge (u, v) is k-red w.r.t. an ordering π if wu,v > 0 and it is not k-blue w.r.t. the ordering π.
Further, a node v ∈ VR is k-blue w.r.t. an ordering π if there exists an edge incident on it which is
k-blue w.r.t. π.

We emphasize that the classification of an edge as k-blue or k-red edge depends on the ordering π
of the nodes in VR.

Property 1. For all u ∈ VL there exists v1 6= v2 such that wu,v1 > 0 and wu,v2 > 0.

Observation 1. Given a weighted bipartite graph G satisfying Property 1 and an ordering π, for
any u ∈ VL define firstπ(u) as the unique v∗ ∈ VR such that wu,v∗ > 0 and ∀v ∈ VR, if wu,v > 0
then π(v∗) 6 π(v). Note that if degL(u) > k then the edge (u, v∗) is always k-blue w.r.t. π.

Claim 1. Let G be a weighted bipartite graph satisfying Property 1 such that degL(u) > 2k for all
u ∈ VL. If an edge (u, v) is k-red w.r.t. an ordering π = (π1, . . . , πnR) then (u, v) is k-blue w.r.t.
πrev := (πnR , . . . , π1).

Proof. We have the following two cases for edge (u, v).

1.
∑

j∈VR:π(j)6π(v)wu,j = degL(u): Note that v∗u = v w.r.t. πrev. Since G satisfies Property 1,
(u, v) is k-blue w.r.t. πrev by Observation 1.

2.
∑

j∈VR:π(j)<π(v)wu,j > degL(u) − k: Since degL(u) > 2k,
∑

j∈VR:π(j)>π(v)wu,j 6 k. Thus,∑
j∈VR:πrev(j)<πrev(v)wu,j < k < degL(u)− k. Hence, (u, v) is k-blue w.r.t. πrev.
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Lemma 4. Let G be a connected weighted bipartite graph satisfying Property 1 such that degL(u) >
2k for all u ∈ VL. There exists an ordering π such that at least n/2 vertices in VR are k-blue w.r.t.
the ordering π.

In particular, π ∈ {π1 = (1, . . . , nR), π2 = (nR, . . . , 1)}.

Proof. Here we will prove the second statement in the theorem. More precisely, we will show that a
vertex v ∈ VR is k-blue w.r.t. at least π1 or π2. In particular, wlog if v ∈ VR is not k-blue w.r.t. π1,
then it is k-blue w.r.t. π2. Since v is not k-blue in π1, all the edges incident on v are k-red. Since
G is connected, there is at least one edge incident on v. By Claim 1, this edge is k-blue w.r.t. π2.
Hence, v is k-blue w.r.t. π2.

The lemma follows by an averaging argument.

B Unpredictability

Given a distribution D over a set S and a function f : S → R, define the distribution f(D) over set
R by the following sampling procedure: Sample x ∼ D. Output f(x).

Definition 7 (δ-Balanced). A distribution D over a set S is δ-balanced if

∀s ∈ S,
(

Pr
x∼D

(x = s) > 0

)
=⇒

(
Pr
x∼D

(x = s) ∈ [δ, 1− δ]
)

Definition 8 (α-Unpredictability). A distribution D over sample space S is said to be α-unpredictable,
if there exists s0, s1 ∈ S such that Prs∼D[s = s0], Prs∼D[s = s1] > α and s0 6= s1.

Definition 9 (Weight, Density, Dense, Sparse). For an n-bit binary string x[n], its weight (repre-
sented as wt(x[n])) is the number of 1s in it. Its density is defined to be wt(x[n])/n. It is α-dense if
its density is at least α; and it is α-sparse if its density is at most α.

Now consider the weighted bipartite graph G as described in the Appendix A. Moreover, let G be
a m-regular bipartite graph with nL = n = nR and degL(u) = degR(v) = m for all u ∈ VL, v ∈ VR.
Next, we label the vertices in VL by elements in Λ0. More precisely, let map : VL → Λ0 mapping
vertices in VL to Λ0. The label on u ∈ VL is denoted by map(u). For the rest of the analysis, fix
any labeling map for the vertices VL.

We emphasize that the analysis holds for any arbitrary labeling.

For each u ∈ VL, map(u) is encoded using the encoding scheme X(unary,m,Λ0,3) (see Figure 5). Note
that m = 9|Λ0|. Also, we will choose the parameter used in red/blue labeling of edges and vertices
in Appendix A as k = m/2.

Next, [m] is sequentially partitioned into Su,1, . . . , Su,n such that [m] = Su,1∪ . . .∪Su,n and |Su,j | =
wu,j , ∀j ∈ [n]. For any vertex u ∈ VL, sample xu,[m] ∼ (X[m]|X0 = m(u)). For j ∈ [nR] with
wu,j = 0, define Bu,j = 0. For each j ∈ [nR] with wu,j > 0, we define Bu,j =

∑
i∈Su,j Xu,i. In other

words, Bu,j is the random variable representing wt(Xu,Su,j ).
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Now consider an ordering π of VR such that the number of vertices which are k-blue w.r.t. π are at
least n/2. Such a ordering π is guaranteed to exist by Lemma 4. Let the set of k-blue vertices w.r.t.
π be Sπblue such that |Sπblue| > n/2. We share process these vertices in ascending order as induced by
π, i.e. a vertex v ∈ Sπblue is processed before v′ ∈ Sπblue if and only if π(v) < π(v′).

Consider the next vertex v ∈ Sπblue w.r.t. π. Then there is an edge, say (u, v), incident on v which
is k-blue w.r.t. π. We shall analyze the distribution on vertex v given the fixings of all the edges
to vertices v′ ∈ VR such that π(v′) < π(v). Let Yv = ∪i∈VL ∪j∈VR:π(j)<π(v) XSi,j . Also, let all the
edges incident on v apart from (u, v) be Gv = ∪i 6=uXSi,v .

We partition the outgoing edges from vertex u into three sets F, S, T ⊂ [m] as follows: F =
∪j:π(j)<π(v)Su,j , S = Su,v and T = ∪j:π(j)>π(v)Su,j . Note that by definition of a k-blue edge, T 6= ∅.

Figure 10 shows the various sets of edges defined above.

u v
k-Blue Edge

with Weight wu,v

Set of wires: F
Restricted to: Good Fixing

Set of wires: S ∪ T
Total Weight of wires: > k

Set of wires: G
Any Fixing Permitted

Figure 10: Argument about “Why are Blue Edges Unpredictable?”

For the analysis below, we begin by making the following observation. Though we need to condition
the analysis of edge (u, v) on (Yv,Gv), it is sufficient to condition on XF ,Gv. In particular, we
claim the following:

Claim 2. (Bu,v mod 3|Yv = yv,Gv = gv) ≡ (Bu,v mod 3|XF = xF ,Gv = gv), where xF is
restriction of yv to the set F .

Let Zv be the random variable bit string at the node v in this graph. Let Pv = wt(Zv) mod 3. In
order to show that Zv is a valid encoding according to ModΛ0 conditioned on Yv with at most a
constant probability, we do the following: We show that (Pv|Y) is β-unpredictable for some constant
β ∈ (0, 1) (Lemma 7). In this direction, we first prove that (Bu,v mod 3|XF ,Gv) is α-unpredictable
for some constant α ∈ (0, 1) (Lemma 6).

We prove these lemmas conditioned on the fact that XF comes from a good distribution. Hence,
we begin by defining a good fixing for XF . A good fixing intuitively means that even after setting
the edges from the vertex u which go to prior vertices, there are a sufficient number of both 0s and
1s in XSu,v∪T . More precisely, we define it as follows:

Definition 10. (c-Good Fixing) Let x∗F be a fixing for the variable XF . We say that x∗F is a c-good
fixing if for all x ∈ Supp(XS∪T |XF = x∗F ), x is c-dense and (1− c)-sparse.

We emphasize that above definition is independent of the weight of the edge (u, v).

Lemma 5. Sample xu,[m] ∼ (X1, . . . ,Xm|X0 = map(u)). Then, ∀c ∈ (0, 1/3), ∃ν = negl(κ) such
that Pr[xu,F is a c-good fixing] > 1 − ν, where the probability is taken over the randomness of the
sampling procedure.
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Proof. This follows from Lemma 11 by noting that wt(xu,[m]) ∈ [m/3, 2m/3] and |Su,v| + |T | >
m/2.

Lemma 6 (Unpredictability of Bu,v mod 3). Let c ∈ (0, 1) be a constant such that x∗F be a c-good
fixing for XF . Let G = gv. Then, there exists a constant α > 0 such that (Bu,v mod 3|XF =
x∗F ,Gv = gv) is α-unpredictable.

Proof. Since x∗F is a c-good fixing, XSu,v∪T is c-dense and (1−c)-sparse. By Lemma 14, there exists
a constant α > 0 such that (Bu,v mod 3|XF = x∗F ,Gv = gv) is α-unpredictable.

Lemma 7 (Unpredictability of (Pv|Yv = yv)). There exists a constant β ∈ (0, 1) and ν = negl(κ)
such that (Pv|Yv) is β-unpredictable with probability 1− ν(κ).

Proof. Sample xu,[m] ∼ (X1, . . . ,Xm|X0 = map(u)). Then by Lemma 5, ∀c ∈ (0, 1/3), ∃ν = negl(κ)
such that Pr[xu,F is a c−good fixing] > 1−ν. We call this a good event. Now, given such a c-good
fixing x∗F and any fixing gv of Gv, by Lemma 6, (Bu,v mod 3|XF = x∗F ,Gv = gv) is α-unpredictable
for a constant α ∈ (0, 1). This implies that (Bu,v mod 3|Yv = yv,Gv = gv) is α-unpredictable
(Claim 2). Hence, (Pv|Yv = yv,Gv = gv) is α-unpredictable.

Since there are
(

3
2

)
pairs of possible parity values, by an averaging argument over gv, (Pv|Yv = yv)

is β-unpredictable for β = α

(
3
2

)−1

conditioned on the good event.

Lemma 8. Pr[∀j ∈ VR, Pj ≡ 0 mod 3] 6 (1− γ)nR/2 for some constant γ ∈ (0, 1) with probability
1− negl(κ). Further, this holds even for a graph with multiple connected components.

Proof.

Pr[∀j ∈ VR, Pj ≡ 0 mod 3] 6 Pr[∀j ∈ Sπblue, Pj ≡ 0 mod 3]

=
∏

j∈Sπblue

Pr[Pj ≡ 0 mod 3|Yj = yj ]

6 (1− β + ν(κ))|S
π
blue|,

where ν = negl(κ). The last inequality follows from Lemma 7. The lemma follows by noting that
|Sπblue| > nR/2.

Note that the above analysis was done for a given mapping map. Thus, analysis of each components
can be done independently. Hence, this analysis extends naturally to any bipartite graph G.

B.1 Unpredictability of Dirty Inner Codewords

Lemma 9. Consider the definition of “dirty codewords” as in Section 4.1. If there are ndirty inner
codewords which are dirty, then the probability that all of them are valid inner codewords is 6
Θ(1)ndirty/2.
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Proof. We consider the following exhaustive cases.

Case 1. Suppose a dirty inner codeword receives all its bits from one inner codeword but the per-
mutation is not column preserving. Consider only those columns which are not column preserving;
discard the rest. Then we construct a bipartite graph, where left partite set represents the input
columns; and the right partite set represents the tampered columns. The XOR of every entry in
the input column is the value associated with that input column. Now we can apply Lemma 13.

If there exists a connected component of size > 3, then the parity of the whole inner codeword
mod 3 is (constant) unpredictable. So, the inner codeword is invalid with constant probability.

If all connected components are of size 2, and both left nodes have associated values (0, 0) or (1, 1),
then the parity mod 3 of the right vertices is also constant unpredictable. Further, with constant
probability (over the randomness of X(unary)) the value associated with these two left columns is
(0, 0) or (1, 1), respectively.

This shows that with constant probability the tampered inner codeword is invalid.

Case 2. Now we consider the permutations which mix multiple inner codewords.

Let us assume that the permutation is column preserving. In this case, we can directly apply
Lemma 8 to conclude that the probability of all tampered inner encodings are valid is Θ(1)ndirty/2.

If the permutation is not column preserving, then argument of Lemma 8 goes through again, because
every blue edge continues to be constant unpredictable even if it copies a part of the column (due
to high independence of X(add)).

Lemma 10. Consider the definition of “dirty codewords” as in Appendix C. If there are ndirty inner
codewords which are dirty, then the probability that all of them are valid inner codewords is 6 ξndirty/2

for some constant ξ ∈ (0, 1).

Proof. We consider the following exhaustive cases.

Case 1. Suppose a dirty codeword is such that it is a column preserving copy of one inner code-
word, but there exists a column which has an odd number of toggle gates. This attack corresponds
to flipping certain bits in the inner encoding scheme, i.e., balanced unary encoding scheme. By
Lemma 16 the parity of this inner codeword mod 3 is constant unpredictable. Moreover, this
inner codeword fails independently of all the inner codewords.

Case 2. Suppose a dirty inner codeword receives all its bits from one inner codeword but the
permutation is not column preserving. First, consider only those columns which are not column
preserving; discard the rest. Then we construct a bipartite graph, where left partite set represents
the input columns; and the right partite set represents the tampered columns. The XOR of every
entry in the input column is the value associated with that input column. If that column has odd
number of toggle gates, we flip the input value of the left vertex. Now we can apply Lemma 13.
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If there exists a connected component of size > 3, then the parity of the whole inner codeword
mod 3 is (constant) unpredictable. So, the inner codeword is invalid with constant probability.

If all connected components are of size 2, and both left nodes have associated values (0, 0) or (1, 1),
then the parity mod 3 of the right vertices is also constant unpredictable. Further, with constant
probability (over the randomness of X(unary)) the value associated with these two left columns is
(0, 0) or (1, 1), respectively. Finally, if there are some other columns which have been copied in a
column preserving manner but toggle gates have been applied to them, still it is easy to see that
the parity of the whole inner codeword is constant unpredictable. This shows that with constant
probability the tampered inner codeword is invalid. Note that in case also, the dirty codeword fails
independent of the other codewords.

Case 3. Now we consider the permutations which mix multiple inner codewords and such con-
nected components. Let us assume that the permutation is column preserving. In this case, we
can directly apply Lemma 8 to conclude that the probability of all tampered inner encodings are
valid is Θ(1)ndirty/2. Note that a blue edge remains unpredictable even when some bits are toggled
by Lemma 16.

If the permutation is not column preserving, then argument of Lemma 8 goes through, because
every blue edge continues to be constant unpredictable even if it copies a part of the column (due
to high independence of X(add)).

C Remaining part of Theorem 2

In this section, we give a formal proof of Theorem 2. First we give a high level overview about how
we need to change the proof given in the Section 4.1 for the case when np = 0 and F = SN to
handle np 6= 0 and F = F̃ ◦ SN .

We begin defining “dirty inner codewords” for this setting. An inner codeword is dirty if:

1. The inner codeword receives its bits partially from one inner codeword.

2. (The codeword receives all its bits from one inner codeword but) The permutations within
the inner codeword is not column preserving.

3. (The codeword receives all its bits from one inner codeword and it is column preserving but)
There exists a column which has odd number of toggle gates.

C.1 First Generalization

First we shall generalize the proof in Section 4.1 to F̃{0,1} ◦ SN but still have np = 0.

Now, we show that the analysis of Section 4 needs to change only slightly. Moreover, the analysis
does not need to change for the case when the number of dirty codewords is small. Below, we
highlight the changes for the case when dirty is large. We need to show that each dirty inner
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codeword fails with a constant probability. Moreover, given that the number of dirty codewords is
“large”, we need that large number of these fail independently, so that the total failure probability is
1−negl(κ). Below, we describe why each of the dirty codewords described satisfies these conditions.

1. The analysis of Lemma 8 continues to hold identically because an unpredictable (blue) edge
when toggled remains unpredictable. So, the first case of definition of dirty codewords can be
taken care of identically as in Section 4.1.

2. The analysis of Lemma 13 continues to hold as well because toggling a wire is equivalent to
toggling the value at its left vertex. Unpredictability still holds and we can show that the
parity mod 3 is unpredictable. So, the second case of dirty codeword definition mentioned
above is taken care of.

3. For the third case of how inner codewords become dirty, we need a new lemma. The new
lemma (see Lemma 16)16 says that, even if one column has odd number of toggle gates, the
inner codeword becomes invalid with constant probability. Thus, our analysis of Section 4.1
continues to hold in this setting.

We use these cases to prove Lemma 10 which we use in our full proof below.

C.2 Second Generalization

Now, we generalize the proof for np 6 log9 κ. In Case 1 of the proof, where ndirty > log10 κ, the
tampering function can reduce the number of dirty inner codewords by at most np. But ndirty−np =
Θ(log10 κ), so that part of the proof still goes through.

Now, for Case 2 of the proof, we have ndirty < log10 κ. We can again interpret cIp as additional
small number of set/resets. Since, the privacy and distance of the outer codewords are � log13 κ
an additional number of log9 κ set/resets do not create any bottlenecks for Case 2.1. or Case 2.2.

Now we give a formal proof of Theorem 2.

C.3 Formal Proof of Theorem 2

Refer to the above definition of dirty codewords. We now define the copied and fixed codewords for
this scenario.

Fixed Inner Codewords. We say that an inner codeword is completely fixed if all its bits are
obtained from bits in I0∪I1. That is, the whole codeword is explicitly written down using bits from
I0∪ I1. Note that some of these bits might have been toggled. The number of such inner codewords
is represented by nfixed.

16 This result holds not only for toggle-channels but a more general class of channels called non-constant channels.
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Copied Codewords. We say that an inner codeword is completely copied if it is generated by
copying one whole inner codeword and (possibly) performing column preserving permutations. Also,
even number of toggles might have been applied to any of these columns. The number of such inner
codewords is represented by ncopy.

Note that, as before, n = ndirty + nfixed + ncopy.

For this proof we also define peeked codewords as follows:

Peeked Inner Codewords. We say that an inner codeword is a peeked codeword if one of its
bits has been copied from Ip. Let npeek be the number of such codewords. Note that npeek 6 np.

C.3.1 Key Steps of Proof

Now we begin with our case analysis. We shall explain how DI0,I1,Ip,cIp ,f will be determined for

various cases. We refer to the term SD

(
Tamper

(s)
I0,I1,Ip,cIp ,f

,Sim
(s)
DI0,I1,Ip,cIp ,f

)
in Figure 7 as the

simulation error. The expectation of simulation error over random choices of I0, I1, Ip and cIp is
referred to as expected simulation error.

The threshold value log10 κ chosen below for analysis is arbitrary; any suitable poly log κ will suffice.

Case 1. ndirty > log10 κ. In this case, we have DI0,I1,Ip,cIp ,f output ⊥ with probability 1.

The simulation error in this case is negl(κ) as follows: Consider the set of dirty codewords which
do not contain any bit from Ip. Let n′dirty be the number of such codewords. Then, n′dirty >

ndirty − npeek > log10 /2. Now, the probability that the tampered codeword has all valid inner
encodings is 6 ξn

′
dirty/2 = negl(κ), where ξ ∈ (0, 1) is a constant (by Lemma 10).

Case 2. ndirty < log10 κ. We shall show that it is highly unlikely (over random choices of I0 and
I1) that n0 + n1 > log13 κ and n0 + n1 6 N − um log10 κ and still we get this case. In particular, it
is negl(κ) (see Lemma 17).

So, henceforth, we can assume that either n0 + n1 < log13 κ or n0 + n1 > N − um log10 κ; at an
expense of negl(κ) additive term in expected simulation error.

Case 2.1. n0 + n1 6 log13 κ. In this case, the tampering function copies most of the inner
codewords into the tampered codeword, because ncopy = n − ndirty − nfixed. Define n′copy as the
number of codewords copied but not peeked. Then, n′copy > ncopy−npeek > n−ndirty−nfixed−npeek >
n− log10 κ− log13 κ/um− log9 κ > n−2 log13 κ. So, the tampered codeword can either be invalid or
(if valid) equivalent to the original codeword (because distance of the outer codeword � 2 log13 κ).
Now the probability that the completely fixed and dirty codewords are each identical to their
counterparts in the input codeword does not depend the message s because the privacy of the outer
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codeword is � 2 log13 κ. This probability σ can be computed exhaustively and does not depend on
the message s. So, DI0,I1,Ip,cIp ,f outputs same∗ with probability σ; otherwise outputs ⊥.

Case 2.2. n0 + n1 > N − um log10 κ. Since the n0 + n1 is large and ndirty is small, this implies
that most inner-codewords have been completely fixed. Define n′fixed as number of codewords which
are fixed but not peeked. Then, n′fixed > n − ndirty − ncopy − npeek > n − log10 κ − ncopy − log9 κ >
n − 3 log10 κ. In this case, the tampered code word is either invalid or (if valid) equivalent to the
codeword consistent with the fixed inner codewords (due to high distance of the outer encoding
scheme).

First check whether the fixed blocks can define a valid outer codeword. If not, then set DI0,I1,Ip,cIp ,f
to output ⊥ with probability 1. Again, simulation error in this case is 0.

Otherwise, we are in the case when the set of completely fixed inner codewords fixes the outer
codeword. Let its outer codeword be g∗ and the message corresponding to it be s∗. We say
that (I0, I1) is good if it contains at least one bit from each column. Since we have n0 + n1 >
N − um log10 κ, we have Pr[(I0, I1) is good] = 1− negl(κ) (by Lemma 18).

If (I0, I1) is not good, then we define DI0,I1,Ip,cIp ,f to output ⊥ with probability 1. The simulation
error for particular (I0, I1) can be at most 1; but this incurs additional negl(κ) expected simulation
error over the choices of (I0, I1).

If (I0, I1) is good, then we need to check whether the set of remaining inner codewords of the
tampered codeword are equivalent to the set of inner codewords of g∗. Note that if (I0, I1) is good
then all bits of the original codeword restricted to [N ]\(I0∪I1) are independent uniform random bits
(because all proper subsets of columns have independent uniform bits). This can be exhaustively
computed starting from uniformly random bits. Define this probability to be σ. Clearly, this
probability is independent of the message s. We define DI0,I1,Ip,cIp ,f to output s∗ with probability
σ; and output ⊥ with probability 1− σ. The simulation error in this case is 0.

There exists D such that the expected simulation error for our exceeding scheme is negl(κ), for all
n0, n1 and for all np < log9 κ and mapping function map, when F = F̃ ◦ SN .

D Mathematical Tools

In this section we prove some useful mathematical tools relevant for our results.

Lemma 11 (Tail Inequality for Hypergeometric Distribution [Hoe63, Chv79]). Let c ∈ (0, 1) be a
constant, m,n ∈ N and m ∈ [cn, (1− c)n]. Let X[n] = U[n]

m

. For every t ∈ N, we have:

Pr
x[n]∼X[n]

∑
i∈[t]

xi = t
(m
n
± ε
) 6 2 exp

(
−DKL

(m
n

+ ε,
m

n

)
· t
)
6 2 exp(−ε2t/3),
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where DKL (α, β) := α ln α
β + (1− α) ln 1−α

1−β . In particular:

Pr
x[n]∼X[n]

∑
i∈[t]

xi ∈ [(c− ε)t, (1− c− ε)t]

 6 2 exp(−ε2t/3)

Lemma 12 (Coupon Collector Problem: Concentration). Suppose there are n coupons. Let Xn,t

be the random variable representing the number of tries needed to obtain t unique coupons (where
coupons are picked uniformly at random with replacement). Then, we have the following concentra-
tion bound:

Pr[Xn,t > b] 6
et

(n/t)b−t

Proof. Let Gp be a geometric random variable, i.e. outputs i with probability qi−1p, where q = 1−p
and p ∈ (0, 1).

Let Xi be the random variable representing the number of samples needed to see the i-th unique
coupon after the (i − 1)-th coupon has already been sampled. Note that Xi is identical to Gpi ,
where pi =

(
1− i−1

n

)
. We define qi = i−1

n .

Now, we have Xn,t =
∑t

i=1Xi. So, we have:

Pr [Xn,t > b] = Pr [exp (λXn,t) > exp(λb)] , where λ > 0

Note that, when q exp(λ) < 1, we have:

E [exp(λGp)] =
∑
i>1

exp(λi)qi−1p

=
p exp(λ)

1− q exp(λ)

Therefore, we have:

E [exp (λXn,t)] =
t∏
i=1

E [exp (λXi)]

=
t∏
i=1

pi exp(λ)

1− qi exp(λ)

Note that, we need exp(λ) < 1/qi, for all i ∈ [t]. This implies that exp(λ) < n/(t − 1). We use
λ = λ∗ such that exp(λ∗) = n/t.

Now, for λ = λ∗, we have:

E [exp (λXn,t)] =

t∏
i=1

(
npi

t− nqi

)
=
n(n− 1) . . . (n− t+ 1)

t(t− 1) . . . 1
=

(
n
t

)
exp(λb) =

(n
t

)b
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By Markov inequality, we have:

Pr [exp (λXn,t) > exp(λb)] 6
E [exp (λXn,t)]

exp(λb)

6

(
n
t

)/(
n

t

)b
6
(en
t

)t/(n
t

)b
= et(n/t)−(b−t)

Lemma 13 (Re-randomization Lemma). Let G = ((L,R), E) be an undirected bipartite graph with
partite sets L and R. Corresponding to every node u ∈ L, we have au ∈ {0, 1}. Corresponding to
every node u ∈ L and v ∈ N(u), we have random variables Zu,v such that they are independent
uniform variables on {0, 1} and the only constraint on them is:∑

v∈N(u)

Zu,v = au

Define Yv =
∑

u∈N(v) Zu,v. Consider a connected component in G with node set {u1, . . . , us} in the
left partite set and {v1, . . . , vt} in the right partite set. Then, Yv1 , . . . , Yvt are independent uniform
random variables, except

∑
i∈[t] Yvi =

∑
i∈[s] aui .

Proof. We shall prove the result by induction on the number of nodes in the left partite set. Suppose
|L| = 1, then this result is trivially true.

Suppose this is true for all bipartite graphs with |L| < n.

Now suppose |L| = n. Remove one of the vertices and apply the induction hypothesis on the
remaining graph G′. Suppose the removed vertex is u∗.

For the inductive step, we perform a second induction on dL(u∗). If dL(u∗) = 1 then we have
Zv,u∗ = au∗ , where v be the unique vertex in N(u∗). There are two cases to consider: a) v lies in a
connected component of G′, or b) v is a connected only to u. In both these cases, it is easy to see
that the induction hypothesis is true.

Suppose |N(u∗)| = 2. In this case, we have following cases: a) both vertices lie in one component of
G′, b) both vertices lie in different components G′, c) both vertices do not lie in any component of
G′, or d) one of the vertices lies in a component of G′ while another does not lie in any component of
G′. The only interesting case is (b); for all other cases it is easy to see that the induction hypothesis
holds trivially. For case (b), Suppose that v1 and v2 are neighbors of u∗. Suppose v1 lies in the
first component of G′ and v2 lies in the second component. Note that Zu∗,v1 is uniformly random,
so all Yv in the first component become uniformly random. Next, note that Zu∗,v2 = au∗ + Zu∗,v1 .
So, Yv2 in G′ gets added with Zu∗,v2 . The updated Yvs are all uniformly random except that:∑

v∈R′ Yv =
∑

u∈L′ au, where L
′ and R′ are the left- and right- partite sets of the union of first and

second connected components.

Suppose |N(u∗)| > 2, then it follows from the fact that the first |N(u∗)| − 1 random variables are
uniformly and independently random. So, this case is directly similar to the |N(u∗)| = 2 case.
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Lemma 14 (Unpredictability Lemma). Let c ∈ (0, 1) be a constant, m,n ∈ N and m ∈ [cn, (1−c)n].
Define X[n] = U[n]

m

. Let p ∈ N be a constant. Given any t ∈ [n − 1], let parityn,m,t,p be the

random variable:
∑

i∈[t]Xi mod p. Then, there exists a constant µ ∈ (0, c) such that parityn,m,t,p
is µ-unpredictable.

Proof. We consider two cases.

Case (n− t+ 1) > n/2. A random sample of X[n], satisfies the following condition with 1− ν(n)
probability (where, ν(n) = negl(n)): The random variable X[n]\[t−1] is (c− ε)-dense and (1− c+ ε)-
sparse (by Lemma 11), for any constant ε ∈ (0, 1). Lets call this a good event. This implies that
the random variable Xt is (c− ε)-balanced. Therefore, conditioned on a good event, parityn,m,t,p is
(c− ε)-unpredictable.

Since there are
(
p
2

)
pairs of parity values, by an averaging argument, parityn,m,t,p is (c − ε)(1 −

ν(n))

(
p
2

)−1

-unpredictable. Any constant µ < (c− ε)
(
p
2

)−1

suffices.

Case (n − t + 1) < n/2. This implies that t − 1 > n/2. With 1 − ν(n) probability, where
ν(n) = negl(n), X[t+1] is (c − ε)-dense and (1 − c + ε)-sparse (by Lemma 11), for any constant
ε ∈ (0, 1). Lets call this a good event. This implies that the random variable Xt+1 is (c − ε)-
balanced. Therefore, conditioned on a good event, parity of last (n− t) bits is (c−ε)-unpredictable.
Which implies that conditioned on a good event, parityn,m,t,p is (c− ε)-unpredictable.

Consequently, parityn,m,t,p is (c−ε)(1−ν(n))

(
p
2

)−1

-unpredictable. Any constant µ < (c−ε)
(
p
2

)−1

suffices.

Lemma 15 (Unpredictability of Dirty Matchings). Let c ∈ (0, 1) be a constant, m,n ∈ N and
m ∈ [cn, (1 − c)n]. Define X[n] = U[n]

m

. Consider non-constant channels fi1 , . . . , fiz , I =

{i1, . . . , iz} ⊆ [n]. Define Y as follows: For all i ∈ [n], define Yi = fi(Xi) if i ∈ I, else Yi = Xi.
Consider the random variable PY =

∑
i∈[n] Yi mod 3. Then there exists a constant µ ∈ (0, 1) such

that PY is µ-unpredictable.

Proof. A channel f is “confusing” if there exists b ∈ {0, 1} such that Supp(f(b)) = {0, 1}.

Case 1. There exists a confusing channel in {fi1 , . . . , fiz}. Without loss of generality assume that f1

is confusing and Supp(f(0)) = {0, 1}. We have Pr[X1 = 0] ∈ [c, 1−c]. Fix a setting of X conditioned
on X1 = 0. Fix the internal randomness of all remaining channels. This fixes Y2 +· · ·+ Yn mod 3.
Now, we have Pr(Y1 = 0) and Pr(Y1 = 1) are at least a constant conditioned on these fixings. So,
overall we can set µ = Pr(X1 = 0) ·min{Pr[Y1 = 0|X1 = 0],Pr[Y1 = 1|X1 = 0]}.
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Case 2. There are no confusing channels. This implies that all channels are “toggle” channels.
Without loss of generality assume that {i1, . . . , iz} = [z]. If fi is a toggle then note that Yi = 1−Xi

over Z3. So,

Y1 +· · ·+ Yn mod 3 = z − (X1 +· · ·+Xz) + (Xz+1 +· · ·+Xn) mod 3

= z +m− 2(X1 +· · ·+Xz) mod 3

= z +m+ (X1 +· · ·+Xz) mod 3

Note that X1 +· · · + Xz is µ unpredictable, for some constant µ Lemma 14. Hence, Y1 +· · · + Yn
mod 3 is µ unpredictable.

Lemma 16 (Unpredictability w.r.t. Channels). Let c ∈ (0, 1) be a constant, m,n ∈ N and m ∈
[cn, (1− c)n]. Define X[n] = U[n]

m

. For any t ∈ [n− 1], let f1, . . . , ft be non-constant channels;

and define Yi = fi(Xi), for all i ∈ [t]. Let parityn,m,t,3 be the random variable:
∑

i∈[t] Yi mod 3.
Then, there exists a constant µ ∈ (0, c) such that parityn,m,t,3 is µ-unpredictable.

Further, for t = n and (n−m) 6= 0 mod 3, if there exists fi such that it is not the identity mapping
(i.e. it is not f(b) = b), then Pr[parityn,m,t,3 6= 0] is at least a constant.

Proof. When t ∈ [n − 1], the proof follows by combining the proofs of Lemma 14 and Lemma 15.
We just show the proof for the case (n − t + 1) > n/2. The final case (n − t + 1) < n/2 follows
analogously.

A channel f is “confusing” if there exists b ∈ {0, 1} such that Supp(f(b)) = {0, 1}.

Case 1. Suppose there exists a confusing channel in {f1, . . . , ft}. Without loss of generality assume
that ft is confusing and Supp(f(0)) = {0, 1}.

We know that with probability 1 − negl(n), the random variable X[n]\[t−1] is (c − ε)-dense and
(1 − c + ε)-sparse (by Lemma 11), for any constant ε ∈ (0, 1). Let us call this a good event. This
implies that the random variable Xt is (c − ε) balanced. Therefore, conditioned on a good event
Pr[Xt = 0] > (c− ε).

Conditioned on Xt = 0 and the good event, choose a fixing of X[n] and also fix the internal
randomness of all channels {f1, . . . , ft−1}. Now, it is clear that parityn,m,t,3 is at least (c − ε) ·
min{Pr[Yt = 0|Xt = 0],Pr[Yt = 1|Xt = 0]} − negl(n).

Case 2. Suppose there are no confusing channels; that is all channels are toggle channels. Again
we condition on the good event mentioned above and mimic the proof of Lemma 15 for the corre-
sponding case.

Let us consider the case of t = n. Suppose there exists a confusing channel. Without loss of
generality assume that f1 is a confusing channel with Supp(f(0)) = {0, 1}. Then we know that
Pr[X1 = 0] ∈ [c, 1 − c]. By fixing a choice of X2,...,n and internal randomness of f2, . . . , ft we get
that parityn,m,t,3 is constant unpredictable.

Suppose all channels are toggles. In this case, we use the fact that Yi = 1 − Xi, for each i ∈ [t].
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Now we have: ∑
i∈[n]

Yi mod 3 =
∑
i∈[t]

1−Xi mod 3

= (n−m) mod 3

D.1 Some useful Results

Lemma 17. If n0+n1 > log13 κ and n0+n1 6 N−um log10 κ, then ndirty > log10 κ, with probability
1− negl(κ).

Proof. Let Î be the number of inner codewords which have at least one index reset or set. We
consider the following cases:

1. If n0 + n1 > log13 κ and n0 + n1 < n log2 κ. Then Î > Θ((n0 + n1)/ log2 κ) with probability
1− negl(κ).17 Next, observe that ndirty = Î − nfixed > Θ

(
n0+n1

log2 κ

)
= ω(log10 κ).

2. If n0 + n1 > n log2 κ but n0 + n1 6 N − um log10 κ: In this case, we have Î = n, with
probability 1 − negl(κ). Next, observe that ndirty = Î − nfixed > n − (n − log10 κ) = log10 κ,
with probability 1− negl(κ).

Lemma 18 (Load Balancing). If n0 + n1 > N − um log10 κ then the probability that there exists a
column none of whose indices are in I0∪ I1 is 1−negl(κ), if a) u = ω(1), and b) n/ log10 κ = κΘ(1).

Proof. We have |I0 ∪ I1| > N − um log10 κ. Consider the number of indices which are not set/rest
(call them holes): H 6 um log10 κ. There are mn columns. Expected number of holes per column:
6 u log10 κ

n . We want to show that the probability of a column receiving u holes is very low. So,
we consider the general load balancing problem below. The probability of receiving u holes in on
column is less than the probability of receiving at least u balls in one bin, when H balls are thrown
into mn bins.

Consider the problem of throwing α balls into η bins. The probability that the first bin contains at

least τ balls is at most
(
α
τ

)
η−τ . So, the probability p that there exists a bin with at least τ balls

is at most η
(
α
τ

)
η−τ , by union bound. Let µ = α/η be the average number of balls per bin, then

p 6 n(eµ/τ)τ .

In our case, we have (eµ/τ) = (1/η)Θ(1). Thus, it suffices for τ = ω(1) to make p = negl(κ).

Consequently, the probability that one of our columns has u holes when the expected number of
holes is u log10 κ/n is negl(κ), if a) u = ω(1), and b) n/ log10 κ = κΘ(1).

17 See Lemma 12. If the number of samples b > t + t+ω(log κ)
ln(n/t)

, then we get t unique coupons with 1 − negl(κ)
probability.
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